Solvatofluorochromism and twisted intramolecular charge-transfer state of the nile red dye

Profiles of the S1 potential energy surface of the Nile Red dye along the rotational coordinate of the amino group are computed using time‐dependent density functional theory (TDDFT) and XMCQDPT2/CASSCF. The calculated profiles exhibit two minima corresponding to a planar locally excited (LE) state...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of quantum chemistry Vol. 112; no. 18; pp. 3059 - 3067
Main Authors Ya. Freidzon, Alexandra, Safonov, Andrei A., Bagaturyants, Alexander A., Alfimov, Michael V.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.09.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Profiles of the S1 potential energy surface of the Nile Red dye along the rotational coordinate of the amino group are computed using time‐dependent density functional theory (TDDFT) and XMCQDPT2/CASSCF. The calculated profiles exhibit two minima corresponding to a planar locally excited (LE) state and a twisted intramolecular charge transfer (TICT) state. The profiles calculated by time‐dependent density functional theory (TDDFT) depend on the weight of the hartree‐fock (HF) exchange in the functional: at 0% exchange, only the TICT minimum exists, whereas at 50% exchange and more there is only the LE minimum. The profiles obtained by TDDFT at 20–25% HF exchange are in qualitative agreement with that obtained by XMCQDPT2/CASSCF calculations. The energy of the charge transfer state is lowered due to the participation of doubly excited configurations and dynamic correlations, which is implicitly included in the density functionals. The solvent effects on the relative energies of the LE and TICT states and on the barrier height are studied using the polarizable continuum model. The effect of hydrogen bonds is studied for a complex of Nile Red with two water molecules. The solvatochromism of Nile Red fluorescence in aprotic polar solvents is explained by nonspecific solvation, which stabilizes the LE state and causes Nile Red fluorescence solvatochromism; in water and alcohols, it is explained by the formation of hydrogen bonds, which stabilize the TICT state and facilitate the LE‐to‐TICT transition. © 2012 Wiley Periodicals, Inc. The fluorescence of the Nile Red dye is highly sensitive to the environment. Time‐dependent DFT and second‐order multireference perturbation theory show that the S1 state of Nile Red has two minima, one corresponding to planar locally excited and the other to twisted intramolecular charge‐transfer states. The solvatofluorochromism of Nile Red is explained by the effect of nonspecific solvation in aprotic solvents or hydrogen bonding in protic solvents on both minima and on the barrier height.
AbstractList Profiles of the S 1 potential energy surface of the Nile Red dye along the rotational coordinate of the amino group are computed using time‐dependent density functional theory (TDDFT) and XMCQDPT2/CASSCF. The calculated profiles exhibit two minima corresponding to a planar locally excited (LE) state and a twisted intramolecular charge transfer (TICT) state. The profiles calculated by time‐dependent density functional theory (TDDFT) depend on the weight of the hartree‐fock (HF) exchange in the functional: at 0% exchange, only the TICT minimum exists, whereas at 50% exchange and more there is only the LE minimum. The profiles obtained by TDDFT at 20–25% HF exchange are in qualitative agreement with that obtained by XMCQDPT2/CASSCF calculations. The energy of the charge transfer state is lowered due to the participation of doubly excited configurations and dynamic correlations, which is implicitly included in the density functionals. The solvent effects on the relative energies of the LE and TICT states and on the barrier height are studied using the polarizable continuum model. The effect of hydrogen bonds is studied for a complex of Nile Red with two water molecules. The solvatochromism of Nile Red fluorescence in aprotic polar solvents is explained by nonspecific solvation, which stabilizes the LE state and causes Nile Red fluorescence solvatochromism; in water and alcohols, it is explained by the formation of hydrogen bonds, which stabilize the TICT state and facilitate the LE‐to‐TICT transition. © 2012 Wiley Periodicals, Inc.
Profiles of the S1 potential energy surface of the Nile Red dye along the rotational coordinate of the amino group are computed using time‐dependent density functional theory (TDDFT) and XMCQDPT2/CASSCF. The calculated profiles exhibit two minima corresponding to a planar locally excited (LE) state and a twisted intramolecular charge transfer (TICT) state. The profiles calculated by time‐dependent density functional theory (TDDFT) depend on the weight of the hartree‐fock (HF) exchange in the functional: at 0% exchange, only the TICT minimum exists, whereas at 50% exchange and more there is only the LE minimum. The profiles obtained by TDDFT at 20–25% HF exchange are in qualitative agreement with that obtained by XMCQDPT2/CASSCF calculations. The energy of the charge transfer state is lowered due to the participation of doubly excited configurations and dynamic correlations, which is implicitly included in the density functionals. The solvent effects on the relative energies of the LE and TICT states and on the barrier height are studied using the polarizable continuum model. The effect of hydrogen bonds is studied for a complex of Nile Red with two water molecules. The solvatochromism of Nile Red fluorescence in aprotic polar solvents is explained by nonspecific solvation, which stabilizes the LE state and causes Nile Red fluorescence solvatochromism; in water and alcohols, it is explained by the formation of hydrogen bonds, which stabilize the TICT state and facilitate the LE‐to‐TICT transition. © 2012 Wiley Periodicals, Inc. The fluorescence of the Nile Red dye is highly sensitive to the environment. Time‐dependent DFT and second‐order multireference perturbation theory show that the S1 state of Nile Red has two minima, one corresponding to planar locally excited and the other to twisted intramolecular charge‐transfer states. The solvatofluorochromism of Nile Red is explained by the effect of nonspecific solvation in aprotic solvents or hydrogen bonding in protic solvents on both minima and on the barrier height.
Author Ya. Freidzon, Alexandra
Safonov, Andrei A.
Bagaturyants, Alexander A.
Alfimov, Michael V.
Author_xml – sequence: 1
  givenname: Alexandra
  surname: Ya. Freidzon
  fullname: Ya. Freidzon, Alexandra
  email: sanya@photonics.ru
  organization: Photochemistry Center, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 119421, Russia
– sequence: 2
  givenname: Andrei A.
  surname: Safonov
  fullname: Safonov, Andrei A.
  organization: Photochemistry Center, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 119421, Russia
– sequence: 3
  givenname: Alexander A.
  surname: Bagaturyants
  fullname: Bagaturyants, Alexander A.
  organization: Photochemistry Center, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 119421, Russia
– sequence: 4
  givenname: Michael V.
  surname: Alfimov
  fullname: Alfimov, Michael V.
  organization: Photochemistry Center, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 119421, Russia
BookMark eNp1kE9PAjEQxRuDiYAe_Aa9eliYbnfb5UiIignBGCQYL023f2R12Wq7iHx7F0EPRk-TzLzfy5vXQa3KVQahcwI9AhD339ayFycxpUeoTWDAo4SRhxZqNzeIOIPsBHVCeAYARhlvo8eZK99l7Wy5dt6ppXerIqywrDSuN0WojcZFVXu5cqVR61J6rJbSP5mo2VXBGo9DLWuDncX10uCqKA32DaS35hQdW1kGc3aYXTS_urwfjaPJ7fXNaDiJFOWURjYeaADDVcqAagssTcGajMUqhnRAWZYSpnLgmpKcZjpPMpIrrjJFeCNMNO2i_t5XeReCN1aooslUuF3uohQExK4a0VQjvqppiItfxKsvVtJv_9Qe3DfNa9v_heJuPvwmoj2xq-_jh5D-RTBOeSoW02tBFzOYsfFUTOgnhiuF0Q
CitedBy_id crossref_primary_10_1021_acs_chemrev_7b00422
crossref_primary_10_1016_j_dyepig_2019_108020
crossref_primary_10_1016_j_saa_2015_01_032
crossref_primary_10_1021_acsami_1c15116
crossref_primary_10_1016_j_micromeso_2017_08_011
crossref_primary_10_1021_acs_jpcb_4c06048
crossref_primary_10_1021_acs_jpcc_8b10726
crossref_primary_10_1016_j_jcis_2019_12_016
crossref_primary_10_3390_liquids4020015
crossref_primary_10_1021_acs_jcim_1c00635
crossref_primary_10_1021_acsami_8b04222
crossref_primary_10_1021_acs_jpca_6b07258
crossref_primary_10_1039_C6SC00839A
crossref_primary_10_1021_acs_nanolett_8b02916
crossref_primary_10_1039_d0pp00076k
crossref_primary_10_1021_acs_jpcb_3c01007
crossref_primary_10_1016_j_jphotochem_2021_113293
crossref_primary_10_1039_D4AN00663A
crossref_primary_10_1002_slct_202004763
crossref_primary_10_1063_1_5006043
crossref_primary_10_1021_acs_joc_5b01963
crossref_primary_10_1039_D3TC02276E
crossref_primary_10_1039_D0EN00951B
crossref_primary_10_1039_D3SC00375B
crossref_primary_10_1039_C5CP05855D
crossref_primary_10_1039_D2RA06454E
crossref_primary_10_1063_1_4979196
crossref_primary_10_1016_j_jlumin_2018_05_060
crossref_primary_10_1002_poc_3791
crossref_primary_10_1039_C4RA05574H
crossref_primary_10_1039_D3CP00709J
crossref_primary_10_3390_ijms20061316
crossref_primary_10_1002_cphc_201501065
crossref_primary_10_1021_acs_biomac_0c00685
crossref_primary_10_1021_acs_jpcc_5b02296
crossref_primary_10_1111_jnc_16203
crossref_primary_10_1021_jp4008398
crossref_primary_10_1021_acsami_8b15084
crossref_primary_10_1021_acs_jpcc_5b01323
crossref_primary_10_1021_acsami_3c02018
crossref_primary_10_1021_acs_joc_0c02346
crossref_primary_10_1021_jp505874m
crossref_primary_10_1016_j_saa_2014_12_095
crossref_primary_10_1021_acs_jpcc_5b10152
crossref_primary_10_1021_acsomega_7b01718
crossref_primary_10_3390_molecules27217602
crossref_primary_10_1016_j_snb_2017_01_039
crossref_primary_10_1016_j_saa_2018_05_104
crossref_primary_10_1021_cr5001157
crossref_primary_10_1021_acs_jpca_5b03877
crossref_primary_10_1039_C6CP00327C
crossref_primary_10_1016_j_dyepig_2018_12_008
Cites_doi 10.1039/C1CP23060C
10.1016/S1386-1425(99)00199-7
10.1021/ja0732126
10.1021/jp904660w
10.1002/anie.198609711
10.1021/ac00205a015
10.1016/j.cplett.2004.02.078
10.1021/jp074441h
10.1016/S0009-2614(99)00145-1
10.1016/S0009-2614(02)00784-4
10.1016/S0022-2275(20)34307-8
10.1021/jp020031b
10.1016/j.dyepig.2007.10.002
10.1016/B978-044451719-7/50084-6
10.1016/j.dyepig.2011.07.018
10.1007/s11182-011-9658-4
10.1063/1.2831900
10.1002/qua.21008
10.1002/qua.22655
10.1016/j.cplett.2008.08.088
10.1016/0009-2614(73)80367-7
10.1016/1010-6030(95)04140-0
10.1039/b927489h
10.1016/j.jcis.2003.10.021
10.1016/0009-2614(91)85040-4
10.1021/jp013047v
10.1016/0009-2614(96)00628-8
10.1002/cphc.200300801
10.1063/1.3596699
10.1039/b902528f
10.1021/cr0505627
10.1021/jp0486088
10.1016/j.cplett.2006.10.049
10.1021/ja000814f
10.1039/b316943j
10.1083/jcb.100.3.965
10.1134/S1990793108050023
10.1366/0003702041389328
10.1021/jp804183w
10.1021/jp810292n
10.1021/jp971576m
10.3762/bjoc.7.56
10.1021/jp111303a
10.1021/la00013a048
10.1002/jcc.540141112
10.1016/j.chemphys.2009.03.006
10.1021/cr00032a005
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/qua.24233
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-461X
EndPage 3067
ExternalDocumentID 10_1002_qua_24233
QUA24233
ark_67375_WNG_3WS0S6HN_L
Genre article
GrantInformation_xml – fundername: Russian Foundation for Basic Research
  funderid: 12‐03‐01103
– fundername: Ministry of Education and Science of the Russian Federation
  funderid: 16.523.11.3004
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
SUPJJ
TN5
TUS
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c3733-f29d00e7c5603df06550fe862c2059368516cb07d31b38db481bc7c8c1750f4d3
IEDL.DBID DR2
ISSN 0020-7608
IngestDate Tue Jul 01 02:38:03 EDT 2025
Thu Apr 24 23:00:54 EDT 2025
Wed Jan 22 16:44:00 EST 2025
Wed Oct 30 09:56:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-f29d00e7c5603df06550fe862c2059368516cb07d31b38db481bc7c8c1750f4d3
Notes ark:/67375/WNG-3WS0S6HN-L
Russian Foundation for Basic Research - No. 12-03-01103
istex:DBAC2766251EEE3F135CD4986356897FD5916564
ArticleID:QUA24233
Ministry of Education and Science of the Russian Federation - No. 16.523.11.3004
PageCount 9
ParticipantIDs crossref_citationtrail_10_1002_qua_24233
crossref_primary_10_1002_qua_24233
wiley_primary_10_1002_qua_24233_QUA24233
istex_primary_ark_67375_WNG_3WS0S6HN_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 September 2012
PublicationDateYYYYMMDD 2012-09-15
PublicationDate_xml – month: 09
  year: 2012
  text: 15 September 2012
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle International journal of quantum chemistry
PublicationTitleAlternate Int. J. Quantum Chem
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References N. Sarkar, K. Das, D. N. Nath, K. Bhattacharyya, Langmuir 1994, 10, 326.
C. A. Guido, B. Mennucci, D. Jacquemine, C. Adamo, Phys. Chem. Chem. Phys. 2010, 12, 8016.
H. Tajalli, A. Ghanadzadeh Gilani, M. S. Zakerhamidi, P. Tajalli, Dyes Pigments 2008, 78, 15.
N. A. Murugan, J. Kongsted, Z. Rinkevicius, H. Ågren, Phys. Chem. Chem. Phys. 2012, 14, 1107.
K. Rotkiewicz, K. H. Grellmann, Z. R. Grabowski, Chem. Phys. Lett. 1973, 19, 315.
A. K. Dutta, K. Kamada, K. Ohta, J. Photochem. Photobiol. A: Chemistry 1996, 93, 57.
P. Greenspan, S. D. Fowler J. Lipid Res. 1985, 26, 781.
J. F. Deye, T. A. Berger, A. G. Anderson, Anal. Chem. 1990, 62, 615.
W. Rettig, Angew. Chem. Int. Ed. Engl. 1986, 25, 971.
W.-G. Han, T. Liu, F. Himo, A. Toutchkine, D. Bashford, K. M. Hahn, L. Noodleman, ChemPhysChem 2003, 4, 1084.
M. J. G. Peach, P. Benfield, T. Helgaker, D. J. Tozer, J. Chem. Phys. 2008, 128, 044118.
S. Saha, P. K. Mandal, A. Samanta, Phys. Chem. Chem. Phys. 2004, 6, 3106.
A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
A. Datta, D. Mandal, S. K. Pal, K. Bhattacharyya, J. Phys. Chem. B 1997, 101, 10221.
A. K. Dutta, K. Kamada, K. Ohta, Chem. Phys. Lett. 1996, 258, 369.
L. C. Dias, Jr., R. Custodio, F. B. T. Pessine, Int. J. Quantum Chem. 2006, 106, 2624.
G. Hungerford, E. M. S. Castanheira, M. E. C. D. Real Oliveira, M. da Graca Miguel, H. D. Burrows, J. Phys. Chem. B 2002, 106, 4061.
A. Dreuw, M. Head-Gordon, Chem. Rev. 2005, 105, 4009.
P. Hazra, D. Chakrabarty, A. Chakraborty, N. Sarkar, Chem. Phys. Lett. 2004, 388, 150.
L. Cuiying, Zh. Jianxi, S. Li, Acta Chim. Sin. 2009, 67, 381.
H.-H. Kim, N. W. Song, T. S. Park, M. Yoon, Chem. Phys. Lett. 2006, 432, 200.
T. Rocha-Rinza, O. Christiansen, J. Rajput, A. Gopalan, D. B. Rahbek, L. H. Andersen, A. V. Bochenkova, A. A. Granovsky, K. B. Bravaya, A. V. Nemukhin, K. L. Christiansen, M. B. Nielsen, J. Phys. Chem. A 2009, 113, 9442.
P. O. Tuck, R. C. Mawhinney, M. Rappon, Phys. Chem. Chem. Phys. 2009, 11, 4471.
D. G. Yablon, A. M. Schilowitz, Appl. Spectrosc. 2004, 58, 843.
P. Greenspan, E. P. Mayer, S. D. Fowler, J. Cell Biol. 1985, 100, 965.
B. Mennucci, A. Toniolo, J. Tomasi, J. Am. Chem. Soc. 2000, 122, 10621.
K. Bravaya, A. Bochenkova, A. Granovsky, A. Nemukhin, J. Am. Chem. Soc. 2007, 129, 13035.
A. Kawski, P. Bojarski, B. Kuklinski, Chem. Phys. Lett. 2008, 463, 410.
L. C. Dias, Jr., R. Custodio, F. B. T. Pessine, Chem. Phys. Lett. 1999, 302, 505.
L. Kessel, I. B. Nielsen, A. V. Bochenkova, K. B. Bravaya, L. H. Andersen, J. Phys. Chem. A 2007, 111, 10537.
H. Nakatsuji, Chem. Phys. Lett. 1991, 177, 331.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347.
C. Reichardt, Chem. Rev. 1994, 94, 2319.
S. Fleming, A. Mills, T. Tuttle, Beilstein J. Org. Chem. 2011, 7, 432.
M. S. Gordon, M. W. Schmidt, In Theory and Applications of Computational Chemistry, the First Forty Years; C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria, Eds.; Elsevier: Amsterdam, 2005; p. 1167.
A. Kawski, B. Kuklinski, P. Bojarski, Chem. Phys. 2009, 359, 58.
R. S. Moog, D. D. Kim, J. J. Oberle, S. G. Ostrowski, J. Phys. Chem. A 2004, 108, 9294.
N. A. Murugan, Z. Rinkevicius, H. Ågren, Int. J. Quantum Chem. 2011, 111, 1521.
A. Cser, K. Nagy, L. Biczok, Chem. Phys. Lett. 2002, 360, 473.
K. B. Bravaya, A. V. Bochenkova, A. A. Granovsky, A. P. Savitsky, A. V. Nemukhin, J. Phys. Chem. A 2008, 112, 8804.
S. De, A. Girigoswami, J. Colloid Interface Sci. 2004, 271, 485.
K. B. Bravaya, A. V. Bochenkova, A. A. Granovsky, A. V. Nemukhin, Russ. J. Phys. Chem. B 2008, 2, 671.
B. Boldrini, E. Cavalli, A. Painelli, F. Terenziani, J. Phys. Chem. A 2002, 106, 6286.
A. Ya. Freidzon, A. V. Scherbinin, A. A. Bagaturyants, M. V. Alfimov, J. Phys. Chem. A 2011, 115, 4565.
A. Ghanadzadeh Gilani, M. Moghadam, M. S. Zakerhamidi, Dyes Pigments 2012, 92, 1052.
N. I. Selivanov, L. G. Samsonova, V. Ya. Artyukhov, T. N. Kopylova, Russ. Phys. J. 2011, 54, 601.
N. Ghoneim, Spectrochim. Acta A 2000, 56, 1003.
A. A. Granovsky, J. Chem. Phys. 2011, 134, 214113.
2009; 67
2010; 12
2011; 115
2007; 129
2004; 388
1991; 177
1973; 19
1996; 93
2008; 78
2004; 6
2011; 54
2008; 128
2009; 113
2005
2012; 14
2004; 108
2008; 463
2008; 2
1999; 302
1985; 26
2011; 134
2011; 111
2011; 7
2009; 359
1985; 100
2006; 432
1990; 62
2009; 11
1993; 14
2012; 92
2000; 56
2002; 360
2004; 58
2007; 111
2004; 271
1986; 25
2005; 105
1997; 101
2002; 106
2003; 4
2000; 122
1996; 258
2008; 112
1994; 94
2006; 106
1994; 10
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
Cuiying L. (e_1_2_6_25_2) 2009; 67
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_46_2
References_xml – reference: H. Nakatsuji, Chem. Phys. Lett. 1991, 177, 331.
– reference: S. Fleming, A. Mills, T. Tuttle, Beilstein J. Org. Chem. 2011, 7, 432.
– reference: N. A. Murugan, Z. Rinkevicius, H. Ågren, Int. J. Quantum Chem. 2011, 111, 1521.
– reference: A. A. Granovsky, J. Chem. Phys. 2011, 134, 214113.
– reference: K. Bravaya, A. Bochenkova, A. Granovsky, A. Nemukhin, J. Am. Chem. Soc. 2007, 129, 13035.
– reference: K. Rotkiewicz, K. H. Grellmann, Z. R. Grabowski, Chem. Phys. Lett. 1973, 19, 315.
– reference: A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
– reference: B. Boldrini, E. Cavalli, A. Painelli, F. Terenziani, J. Phys. Chem. A 2002, 106, 6286.
– reference: W.-G. Han, T. Liu, F. Himo, A. Toutchkine, D. Bashford, K. M. Hahn, L. Noodleman, ChemPhysChem 2003, 4, 1084.
– reference: A. Kawski, B. Kuklinski, P. Bojarski, Chem. Phys. 2009, 359, 58.
– reference: L. C. Dias, Jr., R. Custodio, F. B. T. Pessine, Int. J. Quantum Chem. 2006, 106, 2624.
– reference: S. Saha, P. K. Mandal, A. Samanta, Phys. Chem. Chem. Phys. 2004, 6, 3106.
– reference: A. K. Dutta, K. Kamada, K. Ohta, Chem. Phys. Lett. 1996, 258, 369.
– reference: T. Rocha-Rinza, O. Christiansen, J. Rajput, A. Gopalan, D. B. Rahbek, L. H. Andersen, A. V. Bochenkova, A. A. Granovsky, K. B. Bravaya, A. V. Nemukhin, K. L. Christiansen, M. B. Nielsen, J. Phys. Chem. A 2009, 113, 9442.
– reference: K. B. Bravaya, A. V. Bochenkova, A. A. Granovsky, A. V. Nemukhin, Russ. J. Phys. Chem. B 2008, 2, 671.
– reference: R. S. Moog, D. D. Kim, J. J. Oberle, S. G. Ostrowski, J. Phys. Chem. A 2004, 108, 9294.
– reference: L. Cuiying, Zh. Jianxi, S. Li, Acta Chim. Sin. 2009, 67, 381.
– reference: A. Dreuw, M. Head-Gordon, Chem. Rev. 2005, 105, 4009.
– reference: H.-H. Kim, N. W. Song, T. S. Park, M. Yoon, Chem. Phys. Lett. 2006, 432, 200.
– reference: A. Cser, K. Nagy, L. Biczok, Chem. Phys. Lett. 2002, 360, 473.
– reference: P. Greenspan, S. D. Fowler J. Lipid Res. 1985, 26, 781.
– reference: N. I. Selivanov, L. G. Samsonova, V. Ya. Artyukhov, T. N. Kopylova, Russ. Phys. J. 2011, 54, 601.
– reference: C. Reichardt, Chem. Rev. 1994, 94, 2319.
– reference: N. Ghoneim, Spectrochim. Acta A 2000, 56, 1003.
– reference: W. Rettig, Angew. Chem. Int. Ed. Engl. 1986, 25, 971.
– reference: M. J. G. Peach, P. Benfield, T. Helgaker, D. J. Tozer, J. Chem. Phys. 2008, 128, 044118.
– reference: P. Hazra, D. Chakrabarty, A. Chakraborty, N. Sarkar, Chem. Phys. Lett. 2004, 388, 150.
– reference: A. Kawski, P. Bojarski, B. Kuklinski, Chem. Phys. Lett. 2008, 463, 410.
– reference: M. S. Gordon, M. W. Schmidt, In Theory and Applications of Computational Chemistry, the First Forty Years; C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria, Eds.; Elsevier: Amsterdam, 2005; p. 1167.
– reference: L. Kessel, I. B. Nielsen, A. V. Bochenkova, K. B. Bravaya, L. H. Andersen, J. Phys. Chem. A 2007, 111, 10537.
– reference: P. Greenspan, E. P. Mayer, S. D. Fowler, J. Cell Biol. 1985, 100, 965.
– reference: C. A. Guido, B. Mennucci, D. Jacquemine, C. Adamo, Phys. Chem. Chem. Phys. 2010, 12, 8016.
– reference: S. De, A. Girigoswami, J. Colloid Interface Sci. 2004, 271, 485.
– reference: A. Ya. Freidzon, A. V. Scherbinin, A. A. Bagaturyants, M. V. Alfimov, J. Phys. Chem. A 2011, 115, 4565.
– reference: M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347.
– reference: L. C. Dias, Jr., R. Custodio, F. B. T. Pessine, Chem. Phys. Lett. 1999, 302, 505.
– reference: P. O. Tuck, R. C. Mawhinney, M. Rappon, Phys. Chem. Chem. Phys. 2009, 11, 4471.
– reference: D. G. Yablon, A. M. Schilowitz, Appl. Spectrosc. 2004, 58, 843.
– reference: B. Mennucci, A. Toniolo, J. Tomasi, J. Am. Chem. Soc. 2000, 122, 10621.
– reference: G. Hungerford, E. M. S. Castanheira, M. E. C. D. Real Oliveira, M. da Graca Miguel, H. D. Burrows, J. Phys. Chem. B 2002, 106, 4061.
– reference: N. A. Murugan, J. Kongsted, Z. Rinkevicius, H. Ågren, Phys. Chem. Chem. Phys. 2012, 14, 1107.
– reference: A. Datta, D. Mandal, S. K. Pal, K. Bhattacharyya, J. Phys. Chem. B 1997, 101, 10221.
– reference: K. B. Bravaya, A. V. Bochenkova, A. A. Granovsky, A. P. Savitsky, A. V. Nemukhin, J. Phys. Chem. A 2008, 112, 8804.
– reference: A. Ghanadzadeh Gilani, M. Moghadam, M. S. Zakerhamidi, Dyes Pigments 2012, 92, 1052.
– reference: H. Tajalli, A. Ghanadzadeh Gilani, M. S. Zakerhamidi, P. Tajalli, Dyes Pigments 2008, 78, 15.
– reference: N. Sarkar, K. Das, D. N. Nath, K. Bhattacharyya, Langmuir 1994, 10, 326.
– reference: A. K. Dutta, K. Kamada, K. Ohta, J. Photochem. Photobiol. A: Chemistry 1996, 93, 57.
– reference: J. F. Deye, T. A. Berger, A. G. Anderson, Anal. Chem. 1990, 62, 615.
– volume: 26
  start-page: 781
  year: 1985
  publication-title: J. Lipid Res.
– volume: 108
  start-page: 9294
  year: 2004
  publication-title: J. Phys. Chem. A
– volume: 67
  start-page: 381
  year: 2009
  publication-title: Acta Chim. Sin.
– volume: 106
  start-page: 6286
  year: 2002
  publication-title: J. Phys. Chem. A
– volume: 112
  start-page: 8804
  year: 2008
  publication-title: J. Phys. Chem. A
– volume: 122
  start-page: 10621
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 94
  start-page: 2319
  year: 1994
  publication-title: Chem. Rev.
– volume: 258
  start-page: 369
  year: 1996
  publication-title: Chem. Phys. Lett.
– volume: 432
  start-page: 200
  year: 2006
  publication-title: Chem. Phys. Lett.
– volume: 177
  start-page: 331
  year: 1991
  publication-title: Chem. Phys. Lett.
– volume: 93
  start-page: 57
  year: 1996
  publication-title: J. Photochem. Photobiol. A: Chemistry
– volume: 19
  start-page: 315
  year: 1973
  publication-title: Chem. Phys. Lett.
– volume: 12
  start-page: 8016
  year: 2010
  publication-title: Phys. Chem. Chem. Phys.
– volume: 134
  start-page: 214113
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 1084
  year: 2003
  publication-title: ChemPhysChem
– volume: 111
  start-page: 1521
  year: 2011
  publication-title: Int. J. Quantum Chem.
– volume: 360
  start-page: 473
  year: 2002
  publication-title: Chem. Phys. Lett.
– volume: 271
  start-page: 485
  year: 2004
  publication-title: J. Colloid Interface Sci.
– volume: 100
  start-page: 965
  year: 1985
  publication-title: J. Cell Biol.
– volume: 302
  start-page: 505
  year: 1999
  publication-title: Chem. Phys. Lett.
– volume: 7
  start-page: 432
  year: 2011
  publication-title: Beilstein J. Org. Chem.
– volume: 113
  start-page: 9442
  year: 2009
  publication-title: J. Phys. Chem. A
– volume: 92
  start-page: 1052
  year: 2012
  publication-title: Dyes Pigments
– start-page: 1167
  year: 2005
– volume: 2
  start-page: 671
  year: 2008
  publication-title: Russ. J. Phys. Chem. B
– volume: 359
  start-page: 58
  year: 2009
  publication-title: Chem. Phys.
– volume: 106
  start-page: 2624
  year: 2006
  publication-title: Int. J. Quantum Chem.
– volume: 14
  start-page: 1107
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 113
  start-page: 6378
  year: 2009
  publication-title: J. Phys. Chem. B
– volume: 129
  start-page: 13035
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3106
  year: 2004
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  start-page: 1347
  year: 1993
  publication-title: J. Comput. Chem.
– volume: 56
  start-page: 1003
  year: 2000
  publication-title: Spectrochim. Acta A
– volume: 10
  start-page: 326
  year: 1994
  publication-title: Langmuir
– volume: 111
  start-page: 10537
  year: 2007
  publication-title: J. Phys. Chem. A
– volume: 105
  start-page: 4009
  year: 2005
  publication-title: Chem. Rev.
– volume: 115
  start-page: 4565
  year: 2011
  publication-title: J. Phys. Chem. A
– volume: 25
  start-page: 971
  year: 1986
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 106
  start-page: 4061
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 58
  start-page: 843
  year: 2004
  publication-title: Appl. Spectrosc.
– volume: 101
  start-page: 10221
  year: 1997
  publication-title: J. Phys. Chem. B
– volume: 388
  start-page: 150
  year: 2004
  publication-title: Chem. Phys. Lett.
– volume: 54
  start-page: 601
  year: 2011
  publication-title: Russ. Phys. J.
– volume: 463
  start-page: 410
  year: 2008
  publication-title: Chem. Phys. Lett.
– volume: 78
  start-page: 15
  year: 2008
  publication-title: Dyes Pigments
– volume: 62
  start-page: 615
  year: 1990
  publication-title: Anal. Chem.
– volume: 128
  start-page: 044118
  year: 2008
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 4471
  year: 2009
  publication-title: Phys. Chem. Chem. Phys.
– ident: e_1_2_6_30_2
  doi: 10.1039/C1CP23060C
– ident: e_1_2_6_11_2
  doi: 10.1016/S1386-1425(99)00199-7
– ident: e_1_2_6_48_2
  doi: 10.1021/ja0732126
– ident: e_1_2_6_46_2
  doi: 10.1021/jp904660w
– ident: e_1_2_6_33_2
  doi: 10.1002/anie.198609711
– ident: e_1_2_6_5_2
  doi: 10.1021/ac00205a015
– ident: e_1_2_6_17_2
  doi: 10.1016/j.cplett.2004.02.078
– ident: e_1_2_6_47_2
  doi: 10.1021/jp074441h
– ident: e_1_2_6_26_2
  doi: 10.1016/S0009-2614(99)00145-1
– ident: e_1_2_6_14_2
  doi: 10.1016/S0009-2614(02)00784-4
– ident: e_1_2_6_20_2
  doi: 10.1016/S0022-2275(20)34307-8
– ident: e_1_2_6_4_2
  doi: 10.1021/jp020031b
– ident: e_1_2_6_7_2
  doi: 10.1016/j.dyepig.2007.10.002
– ident: e_1_2_6_39_2
  doi: 10.1016/B978-044451719-7/50084-6
– volume: 67
  start-page: 381
  year: 2009
  ident: e_1_2_6_25_2
  publication-title: Acta Chim. Sin.
– ident: e_1_2_6_6_2
  doi: 10.1016/j.dyepig.2011.07.018
– ident: e_1_2_6_31_2
  doi: 10.1007/s11182-011-9658-4
– ident: e_1_2_6_35_2
  doi: 10.1063/1.2831900
– ident: e_1_2_6_27_2
  doi: 10.1002/qua.21008
– ident: e_1_2_6_29_2
  doi: 10.1002/qua.22655
– ident: e_1_2_6_13_2
  doi: 10.1016/j.cplett.2008.08.088
– ident: e_1_2_6_32_2
  doi: 10.1016/0009-2614(73)80367-7
– ident: e_1_2_6_3_2
  doi: 10.1016/1010-6030(95)04140-0
– ident: e_1_2_6_28_2
  doi: 10.1039/b927489h
– ident: e_1_2_6_18_2
  doi: 10.1016/j.jcis.2003.10.021
– ident: e_1_2_6_36_2
  doi: 10.1016/0009-2614(91)85040-4
– ident: e_1_2_6_19_2
  doi: 10.1021/jp013047v
– ident: e_1_2_6_24_2
  doi: 10.1016/0009-2614(96)00628-8
– ident: e_1_2_6_16_2
  doi: 10.1002/cphc.200300801
– ident: e_1_2_6_41_2
  doi: 10.1063/1.3596699
– ident: e_1_2_6_8_2
  doi: 10.1039/b902528f
– ident: e_1_2_6_43_2
  doi: 10.1021/cr0505627
– ident: e_1_2_6_1_2
  doi: 10.1021/jp0486088
– ident: e_1_2_6_23_2
  doi: 10.1016/j.cplett.2006.10.049
– ident: e_1_2_6_37_2
  doi: 10.1021/ja000814f
– ident: e_1_2_6_15_2
  doi: 10.1039/b316943j
– ident: e_1_2_6_21_2
  doi: 10.1083/jcb.100.3.965
– ident: e_1_2_6_45_2
  doi: 10.1134/S1990793108050023
– ident: e_1_2_6_10_2
  doi: 10.1366/0003702041389328
– ident: e_1_2_6_44_2
  doi: 10.1021/jp804183w
– ident: e_1_2_6_40_2
  doi: 10.1021/jp810292n
– ident: e_1_2_6_2_2
  doi: 10.1021/jp971576m
– ident: e_1_2_6_42_2
– ident: e_1_2_6_34_2
  doi: 10.3762/bjoc.7.56
– ident: e_1_2_6_49_2
  doi: 10.1021/jp111303a
– ident: e_1_2_6_22_2
  doi: 10.1021/la00013a048
– ident: e_1_2_6_38_2
  doi: 10.1002/jcc.540141112
– ident: e_1_2_6_12_2
  doi: 10.1016/j.chemphys.2009.03.006
– ident: e_1_2_6_9_2
  doi: 10.1021/cr00032a005
SSID ssj0006367
Score 2.2366452
Snippet Profiles of the S1 potential energy surface of the Nile Red dye along the rotational coordinate of the amino group are computed using time‐dependent density...
Profiles of the S 1 potential energy surface of the Nile Red dye along the rotational coordinate of the amino group are computed using time‐dependent density...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 3059
SubjectTerms fluorescence solvatochromism
Nile Red dye
SMD solvation model
TDDFT
twisted intramolecular charge transfer
XMCQDPT2/CASSCF
Title Solvatofluorochromism and twisted intramolecular charge-transfer state of the nile red dye
URI https://api.istex.fr/ark:/67375/WNG-3WS0S6HN-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqua.24233
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTttAEMdXERzKhUILAgpoVaGKi8PGa3tjcULQNKoghwYEByTL-yWhBLsYp0BPfQSekSdhZh0nCgIJ9WbJs_ZoP-zfrmb-Q8gO06ZllW1hRk_oAREHXpym1osDw6XgOtQ-Jjif9KLuWfDzIrxokP06F6bSh5gcuOHKcN9rXOCpvN2biobejNImwgAqfWKsFgLRr6l0VMSjcblW5omItWtVIebvTVrO_IvmsVvvZxnV_WQ6H8ll7V4VWzJojkrZVH9fKDf-p_9LZHEMn_Sgmi3LpGGyT-TDYV3z7TO57OfDP7ANt8NRjrW0ihzuXNM007S8Q881vcLT4Ou6qC51Skvm6d9j6QjYFNSlKNHcUkBLmoFrtIBm-sGskLPO99PDrjeuv-ApLjj3rB9rxoxQQEVcW4CVkFkDWyDlu0KAAGuRkkxo3pK8rWUACKyEaitAEmYDzVfJXJZnZo1Qhpo6caRlHKoANdllLEwc-zrVXEhh18luPRKJGouTY42MYVLJKvsJdFfiumudfJ2Y_q4UOV4z-uaGc2KRFgMMYRNhct77kfDzPutH3V5yDC92g_T2oxLYWriLjfebfiELAFY-xpW0wk0yVxYjswXwUsptMn9wdHLc33az9Rl0zu16
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONAL5alCeVgVqrhk8cZJvJF6QQjYtsseuiA4UFnxS6pYEoiyLe2pP4HfyC9h7GwWgYpU9RYp42TiseNvLM_3AWxTbdpW2bar6IkDRMRRkGaZDdLIMMmZjnXoCpyP-0n3NPp8Hp9PwcemFqbmh5hsuLmZ4f_XboK7DendR9bQm1HWcmiAvYIZp-jtE6qvj-RRCUvGgq004AntNLxCNNydNH2yGs24jr19ilL9MnP4Br41DtanSy5bo0q21O9n3I3_-wXzMDfGn2SvHjALMGXyRZjdb2TfluBiUAx_YCZuh6PCyWmVBd65IlmuSfXTua7Jd7chfNXo6hJPtmTu_9xVHgSbkvgqJVJYguiS5OgbKbGZ_mWW4fTw4GS_G4wlGALFOGOBDVNNqeEKgRHTFvFKTK3BLEiFXgsQ8VqiJOWatSXraBkhClZcdRSiEmojzVZgOi9y8xYIdbQ6aaJlGqvI0bLLlJs0DXWmGZfcrsJOEwqhxvzkTiZjKGpm5VBgdwnfXavwfmJ6XZNy_M3og4_nxCIrL90pNh6Ls_6RYGcDOki6fdHDF_sovfwogdmFv1j7d9MtmO2eHPdE71P_yzt4jTgrdMdM2vE6TFflyGwglqnkph-yD8dz8AE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RkGgvpVAQtNBaFUJcsnjjJN6IE4JutxRWiAXBAcmKv6SKJaFRth-c-An8Rn4JY2eziKqVqt4ieZzYnnH8bHneA1in2rStsm2X0RMHiIijIM0yG6SRYZIzHevQJTgf9pPeabR_Hp9PwXaTC1PzQ0wO3NzM8P9rN8Gvtd16JA39NspaDgywZzATJbTjQnrv-JE7KmHJWK-VBhzLG1ohGm5Nqj5ZjGbcuP58ClL9KtOdg4umffXlksvWqJItdfMbdeN_duAVvByjT7JTh8s8TJl8AZ7vNqJvr-FiUAy_4z7cDkeFE9MqCyy5IlmuSfXDtVyTr-44-KpR1SWeasnc395VHgKbkvgcJVJYgtiS5Ng0UmI1_csswmn348luLxgLMASKccYCG6aaUsMVwiKmLaKVmFqDeyAVeiVARGuJkpRr1paso2WEGFhx1VGISaiNNFuC6bzIzTIQ6kh10kTLNFaRI2WXKTdpGupMMy65XYHNxhNCjdnJnUjGUNS8yqHA4RJ-uFbgw8T0uqbk-JPRhnfnxCIrL90dNh6Ls_4nwc4GdJD0-uIAP-yd9PdXCdxb-Ic3_276HmaP9rri4HP_y1t4gSArdHdM2vEqTFflyKwhkKnkOx-wDyVp7rk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solvatofluorochromism+and+twisted+intramolecular+charge%E2%80%90transfer+state+of+the+nile+red+dye&rft.jtitle=International+journal+of+quantum+chemistry&rft.au=Ya.+Freidzon%2C+Alexandra&rft.au=Safonov%2C+Andrei+A.&rft.au=Bagaturyants%2C+Alexander+A.&rft.au=Alfimov%2C+Michael+V.&rft.date=2012-09-15&rft.issn=0020-7608&rft.eissn=1097-461X&rft.volume=112&rft.issue=18&rft.spage=3059&rft.epage=3067&rft_id=info:doi/10.1002%2Fqua.24233&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qua_24233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7608&client=summon