Solvatofluorochromism and twisted intramolecular charge-transfer state of the nile red dye
Profiles of the S1 potential energy surface of the Nile Red dye along the rotational coordinate of the amino group are computed using time‐dependent density functional theory (TDDFT) and XMCQDPT2/CASSCF. The calculated profiles exhibit two minima corresponding to a planar locally excited (LE) state...
Saved in:
Published in | International journal of quantum chemistry Vol. 112; no. 18; pp. 3059 - 3067 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15.09.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Profiles of the S1 potential energy surface of the Nile Red dye along the rotational coordinate of the amino group are computed using time‐dependent density functional theory (TDDFT) and XMCQDPT2/CASSCF. The calculated profiles exhibit two minima corresponding to a planar locally excited (LE) state and a twisted intramolecular charge transfer (TICT) state. The profiles calculated by time‐dependent density functional theory (TDDFT) depend on the weight of the hartree‐fock (HF) exchange in the functional: at 0% exchange, only the TICT minimum exists, whereas at 50% exchange and more there is only the LE minimum. The profiles obtained by TDDFT at 20–25% HF exchange are in qualitative agreement with that obtained by XMCQDPT2/CASSCF calculations. The energy of the charge transfer state is lowered due to the participation of doubly excited configurations and dynamic correlations, which is implicitly included in the density functionals. The solvent effects on the relative energies of the LE and TICT states and on the barrier height are studied using the polarizable continuum model. The effect of hydrogen bonds is studied for a complex of Nile Red with two water molecules. The solvatochromism of Nile Red fluorescence in aprotic polar solvents is explained by nonspecific solvation, which stabilizes the LE state and causes Nile Red fluorescence solvatochromism; in water and alcohols, it is explained by the formation of hydrogen bonds, which stabilize the TICT state and facilitate the LE‐to‐TICT transition. © 2012 Wiley Periodicals, Inc.
The fluorescence of the Nile Red dye is highly sensitive to the environment. Time‐dependent DFT and second‐order multireference perturbation theory show that the S1 state of Nile Red has two minima, one corresponding to planar locally excited and the other to twisted intramolecular charge‐transfer states. The solvatofluorochromism of Nile Red is explained by the effect of nonspecific solvation in aprotic solvents or hydrogen bonding in protic solvents on both minima and on the barrier height. |
---|---|
AbstractList | Profiles of the S
1
potential energy surface of the Nile Red dye along the rotational coordinate of the amino group are computed using time‐dependent density functional theory (TDDFT) and XMCQDPT2/CASSCF. The calculated profiles exhibit two minima corresponding to a planar locally excited (LE) state and a twisted intramolecular charge transfer (TICT) state. The profiles calculated by time‐dependent density functional theory (TDDFT) depend on the weight of the hartree‐fock (HF) exchange in the functional: at 0% exchange, only the TICT minimum exists, whereas at 50% exchange and more there is only the LE minimum. The profiles obtained by TDDFT at 20–25% HF exchange are in qualitative agreement with that obtained by XMCQDPT2/CASSCF calculations. The energy of the charge transfer state is lowered due to the participation of doubly excited configurations and dynamic correlations, which is implicitly included in the density functionals. The solvent effects on the relative energies of the LE and TICT states and on the barrier height are studied using the polarizable continuum model. The effect of hydrogen bonds is studied for a complex of Nile Red with two water molecules. The solvatochromism of Nile Red fluorescence in aprotic polar solvents is explained by nonspecific solvation, which stabilizes the LE state and causes Nile Red fluorescence solvatochromism; in water and alcohols, it is explained by the formation of hydrogen bonds, which stabilize the TICT state and facilitate the LE‐to‐TICT transition. © 2012 Wiley Periodicals, Inc. Profiles of the S1 potential energy surface of the Nile Red dye along the rotational coordinate of the amino group are computed using time‐dependent density functional theory (TDDFT) and XMCQDPT2/CASSCF. The calculated profiles exhibit two minima corresponding to a planar locally excited (LE) state and a twisted intramolecular charge transfer (TICT) state. The profiles calculated by time‐dependent density functional theory (TDDFT) depend on the weight of the hartree‐fock (HF) exchange in the functional: at 0% exchange, only the TICT minimum exists, whereas at 50% exchange and more there is only the LE minimum. The profiles obtained by TDDFT at 20–25% HF exchange are in qualitative agreement with that obtained by XMCQDPT2/CASSCF calculations. The energy of the charge transfer state is lowered due to the participation of doubly excited configurations and dynamic correlations, which is implicitly included in the density functionals. The solvent effects on the relative energies of the LE and TICT states and on the barrier height are studied using the polarizable continuum model. The effect of hydrogen bonds is studied for a complex of Nile Red with two water molecules. The solvatochromism of Nile Red fluorescence in aprotic polar solvents is explained by nonspecific solvation, which stabilizes the LE state and causes Nile Red fluorescence solvatochromism; in water and alcohols, it is explained by the formation of hydrogen bonds, which stabilize the TICT state and facilitate the LE‐to‐TICT transition. © 2012 Wiley Periodicals, Inc. The fluorescence of the Nile Red dye is highly sensitive to the environment. Time‐dependent DFT and second‐order multireference perturbation theory show that the S1 state of Nile Red has two minima, one corresponding to planar locally excited and the other to twisted intramolecular charge‐transfer states. The solvatofluorochromism of Nile Red is explained by the effect of nonspecific solvation in aprotic solvents or hydrogen bonding in protic solvents on both minima and on the barrier height. |
Author | Ya. Freidzon, Alexandra Safonov, Andrei A. Bagaturyants, Alexander A. Alfimov, Michael V. |
Author_xml | – sequence: 1 givenname: Alexandra surname: Ya. Freidzon fullname: Ya. Freidzon, Alexandra email: sanya@photonics.ru organization: Photochemistry Center, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 119421, Russia – sequence: 2 givenname: Andrei A. surname: Safonov fullname: Safonov, Andrei A. organization: Photochemistry Center, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 119421, Russia – sequence: 3 givenname: Alexander A. surname: Bagaturyants fullname: Bagaturyants, Alexander A. organization: Photochemistry Center, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 119421, Russia – sequence: 4 givenname: Michael V. surname: Alfimov fullname: Alfimov, Michael V. organization: Photochemistry Center, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 119421, Russia |
BookMark | eNp1kE9PAjEQxRuDiYAe_Aa9eliYbnfb5UiIignBGCQYL023f2R12Wq7iHx7F0EPRk-TzLzfy5vXQa3KVQahcwI9AhD339ayFycxpUeoTWDAo4SRhxZqNzeIOIPsBHVCeAYARhlvo8eZK99l7Wy5dt6ppXerIqywrDSuN0WojcZFVXu5cqVR61J6rJbSP5mo2VXBGo9DLWuDncX10uCqKA32DaS35hQdW1kGc3aYXTS_urwfjaPJ7fXNaDiJFOWURjYeaADDVcqAagssTcGajMUqhnRAWZYSpnLgmpKcZjpPMpIrrjJFeCNMNO2i_t5XeReCN1aooslUuF3uohQExK4a0VQjvqppiItfxKsvVtJv_9Qe3DfNa9v_heJuPvwmoj2xq-_jh5D-RTBOeSoW02tBFzOYsfFUTOgnhiuF0Q |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_7b00422 crossref_primary_10_1016_j_dyepig_2019_108020 crossref_primary_10_1016_j_saa_2015_01_032 crossref_primary_10_1021_acsami_1c15116 crossref_primary_10_1016_j_micromeso_2017_08_011 crossref_primary_10_1021_acs_jpcb_4c06048 crossref_primary_10_1021_acs_jpcc_8b10726 crossref_primary_10_1016_j_jcis_2019_12_016 crossref_primary_10_3390_liquids4020015 crossref_primary_10_1021_acs_jcim_1c00635 crossref_primary_10_1021_acsami_8b04222 crossref_primary_10_1021_acs_jpca_6b07258 crossref_primary_10_1039_C6SC00839A crossref_primary_10_1021_acs_nanolett_8b02916 crossref_primary_10_1039_d0pp00076k crossref_primary_10_1021_acs_jpcb_3c01007 crossref_primary_10_1016_j_jphotochem_2021_113293 crossref_primary_10_1039_D4AN00663A crossref_primary_10_1002_slct_202004763 crossref_primary_10_1063_1_5006043 crossref_primary_10_1021_acs_joc_5b01963 crossref_primary_10_1039_D3TC02276E crossref_primary_10_1039_D0EN00951B crossref_primary_10_1039_D3SC00375B crossref_primary_10_1039_C5CP05855D crossref_primary_10_1039_D2RA06454E crossref_primary_10_1063_1_4979196 crossref_primary_10_1016_j_jlumin_2018_05_060 crossref_primary_10_1002_poc_3791 crossref_primary_10_1039_C4RA05574H crossref_primary_10_1039_D3CP00709J crossref_primary_10_3390_ijms20061316 crossref_primary_10_1002_cphc_201501065 crossref_primary_10_1021_acs_biomac_0c00685 crossref_primary_10_1021_acs_jpcc_5b02296 crossref_primary_10_1111_jnc_16203 crossref_primary_10_1021_jp4008398 crossref_primary_10_1021_acsami_8b15084 crossref_primary_10_1021_acs_jpcc_5b01323 crossref_primary_10_1021_acsami_3c02018 crossref_primary_10_1021_acs_joc_0c02346 crossref_primary_10_1021_jp505874m crossref_primary_10_1016_j_saa_2014_12_095 crossref_primary_10_1021_acs_jpcc_5b10152 crossref_primary_10_1021_acsomega_7b01718 crossref_primary_10_3390_molecules27217602 crossref_primary_10_1016_j_snb_2017_01_039 crossref_primary_10_1016_j_saa_2018_05_104 crossref_primary_10_1021_cr5001157 crossref_primary_10_1021_acs_jpca_5b03877 crossref_primary_10_1039_C6CP00327C crossref_primary_10_1016_j_dyepig_2018_12_008 |
Cites_doi | 10.1039/C1CP23060C 10.1016/S1386-1425(99)00199-7 10.1021/ja0732126 10.1021/jp904660w 10.1002/anie.198609711 10.1021/ac00205a015 10.1016/j.cplett.2004.02.078 10.1021/jp074441h 10.1016/S0009-2614(99)00145-1 10.1016/S0009-2614(02)00784-4 10.1016/S0022-2275(20)34307-8 10.1021/jp020031b 10.1016/j.dyepig.2007.10.002 10.1016/B978-044451719-7/50084-6 10.1016/j.dyepig.2011.07.018 10.1007/s11182-011-9658-4 10.1063/1.2831900 10.1002/qua.21008 10.1002/qua.22655 10.1016/j.cplett.2008.08.088 10.1016/0009-2614(73)80367-7 10.1016/1010-6030(95)04140-0 10.1039/b927489h 10.1016/j.jcis.2003.10.021 10.1016/0009-2614(91)85040-4 10.1021/jp013047v 10.1016/0009-2614(96)00628-8 10.1002/cphc.200300801 10.1063/1.3596699 10.1039/b902528f 10.1021/cr0505627 10.1021/jp0486088 10.1016/j.cplett.2006.10.049 10.1021/ja000814f 10.1039/b316943j 10.1083/jcb.100.3.965 10.1134/S1990793108050023 10.1366/0003702041389328 10.1021/jp804183w 10.1021/jp810292n 10.1021/jp971576m 10.3762/bjoc.7.56 10.1021/jp111303a 10.1021/la00013a048 10.1002/jcc.540141112 10.1016/j.chemphys.2009.03.006 10.1021/cr00032a005 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/qua.24233 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1097-461X |
EndPage | 3067 |
ExternalDocumentID | 10_1002_qua_24233 QUA24233 ark_67375_WNG_3WS0S6HN_L |
Genre | article |
GrantInformation_xml | – fundername: Russian Foundation for Basic Research funderid: 12‐03‐01103 – fundername: Ministry of Education and Science of the Russian Federation funderid: 16.523.11.3004 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 SUPJJ TN5 TUS UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c3733-f29d00e7c5603df06550fe862c2059368516cb07d31b38db481bc7c8c1750f4d3 |
IEDL.DBID | DR2 |
ISSN | 0020-7608 |
IngestDate | Tue Jul 01 02:38:03 EDT 2025 Thu Apr 24 23:00:54 EDT 2025 Wed Jan 22 16:44:00 EST 2025 Wed Oct 30 09:56:33 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-f29d00e7c5603df06550fe862c2059368516cb07d31b38db481bc7c8c1750f4d3 |
Notes | ark:/67375/WNG-3WS0S6HN-L Russian Foundation for Basic Research - No. 12-03-01103 istex:DBAC2766251EEE3F135CD4986356897FD5916564 ArticleID:QUA24233 Ministry of Education and Science of the Russian Federation - No. 16.523.11.3004 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1002_qua_24233 crossref_primary_10_1002_qua_24233 wiley_primary_10_1002_qua_24233_QUA24233 istex_primary_ark_67375_WNG_3WS0S6HN_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 September 2012 |
PublicationDateYYYYMMDD | 2012-09-15 |
PublicationDate_xml | – month: 09 year: 2012 text: 15 September 2012 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | International journal of quantum chemistry |
PublicationTitleAlternate | Int. J. Quantum Chem |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | N. Sarkar, K. Das, D. N. Nath, K. Bhattacharyya, Langmuir 1994, 10, 326. C. A. Guido, B. Mennucci, D. Jacquemine, C. Adamo, Phys. Chem. Chem. Phys. 2010, 12, 8016. H. Tajalli, A. Ghanadzadeh Gilani, M. S. Zakerhamidi, P. Tajalli, Dyes Pigments 2008, 78, 15. N. A. Murugan, J. Kongsted, Z. Rinkevicius, H. Ågren, Phys. Chem. Chem. Phys. 2012, 14, 1107. K. Rotkiewicz, K. H. Grellmann, Z. R. Grabowski, Chem. Phys. Lett. 1973, 19, 315. A. K. Dutta, K. Kamada, K. Ohta, J. Photochem. Photobiol. A: Chemistry 1996, 93, 57. P. Greenspan, S. D. Fowler J. Lipid Res. 1985, 26, 781. J. F. Deye, T. A. Berger, A. G. Anderson, Anal. Chem. 1990, 62, 615. W. Rettig, Angew. Chem. Int. Ed. Engl. 1986, 25, 971. W.-G. Han, T. Liu, F. Himo, A. Toutchkine, D. Bashford, K. M. Hahn, L. Noodleman, ChemPhysChem 2003, 4, 1084. M. J. G. Peach, P. Benfield, T. Helgaker, D. J. Tozer, J. Chem. Phys. 2008, 128, 044118. S. Saha, P. K. Mandal, A. Samanta, Phys. Chem. Chem. Phys. 2004, 6, 3106. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378. A. Datta, D. Mandal, S. K. Pal, K. Bhattacharyya, J. Phys. Chem. B 1997, 101, 10221. A. K. Dutta, K. Kamada, K. Ohta, Chem. Phys. Lett. 1996, 258, 369. L. C. Dias, Jr., R. Custodio, F. B. T. Pessine, Int. J. Quantum Chem. 2006, 106, 2624. G. Hungerford, E. M. S. Castanheira, M. E. C. D. Real Oliveira, M. da Graca Miguel, H. D. Burrows, J. Phys. Chem. B 2002, 106, 4061. A. Dreuw, M. Head-Gordon, Chem. Rev. 2005, 105, 4009. P. Hazra, D. Chakrabarty, A. Chakraborty, N. Sarkar, Chem. Phys. Lett. 2004, 388, 150. L. Cuiying, Zh. Jianxi, S. Li, Acta Chim. Sin. 2009, 67, 381. H.-H. Kim, N. W. Song, T. S. Park, M. Yoon, Chem. Phys. Lett. 2006, 432, 200. T. Rocha-Rinza, O. Christiansen, J. Rajput, A. Gopalan, D. B. Rahbek, L. H. Andersen, A. V. Bochenkova, A. A. Granovsky, K. B. Bravaya, A. V. Nemukhin, K. L. Christiansen, M. B. Nielsen, J. Phys. Chem. A 2009, 113, 9442. P. O. Tuck, R. C. Mawhinney, M. Rappon, Phys. Chem. Chem. Phys. 2009, 11, 4471. D. G. Yablon, A. M. Schilowitz, Appl. Spectrosc. 2004, 58, 843. P. Greenspan, E. P. Mayer, S. D. Fowler, J. Cell Biol. 1985, 100, 965. B. Mennucci, A. Toniolo, J. Tomasi, J. Am. Chem. Soc. 2000, 122, 10621. K. Bravaya, A. Bochenkova, A. Granovsky, A. Nemukhin, J. Am. Chem. Soc. 2007, 129, 13035. A. Kawski, P. Bojarski, B. Kuklinski, Chem. Phys. Lett. 2008, 463, 410. L. C. Dias, Jr., R. Custodio, F. B. T. Pessine, Chem. Phys. Lett. 1999, 302, 505. L. Kessel, I. B. Nielsen, A. V. Bochenkova, K. B. Bravaya, L. H. Andersen, J. Phys. Chem. A 2007, 111, 10537. H. Nakatsuji, Chem. Phys. Lett. 1991, 177, 331. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347. C. Reichardt, Chem. Rev. 1994, 94, 2319. S. Fleming, A. Mills, T. Tuttle, Beilstein J. Org. Chem. 2011, 7, 432. M. S. Gordon, M. W. Schmidt, In Theory and Applications of Computational Chemistry, the First Forty Years; C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria, Eds.; Elsevier: Amsterdam, 2005; p. 1167. A. Kawski, B. Kuklinski, P. Bojarski, Chem. Phys. 2009, 359, 58. R. S. Moog, D. D. Kim, J. J. Oberle, S. G. Ostrowski, J. Phys. Chem. A 2004, 108, 9294. N. A. Murugan, Z. Rinkevicius, H. Ågren, Int. J. Quantum Chem. 2011, 111, 1521. A. Cser, K. Nagy, L. Biczok, Chem. Phys. Lett. 2002, 360, 473. K. B. Bravaya, A. V. Bochenkova, A. A. Granovsky, A. P. Savitsky, A. V. Nemukhin, J. Phys. Chem. A 2008, 112, 8804. S. De, A. Girigoswami, J. Colloid Interface Sci. 2004, 271, 485. K. B. Bravaya, A. V. Bochenkova, A. A. Granovsky, A. V. Nemukhin, Russ. J. Phys. Chem. B 2008, 2, 671. B. Boldrini, E. Cavalli, A. Painelli, F. Terenziani, J. Phys. Chem. A 2002, 106, 6286. A. Ya. Freidzon, A. V. Scherbinin, A. A. Bagaturyants, M. V. Alfimov, J. Phys. Chem. A 2011, 115, 4565. A. Ghanadzadeh Gilani, M. Moghadam, M. S. Zakerhamidi, Dyes Pigments 2012, 92, 1052. N. I. Selivanov, L. G. Samsonova, V. Ya. Artyukhov, T. N. Kopylova, Russ. Phys. J. 2011, 54, 601. N. Ghoneim, Spectrochim. Acta A 2000, 56, 1003. A. A. Granovsky, J. Chem. Phys. 2011, 134, 214113. 2009; 67 2010; 12 2011; 115 2007; 129 2004; 388 1991; 177 1973; 19 1996; 93 2008; 78 2004; 6 2011; 54 2008; 128 2009; 113 2005 2012; 14 2004; 108 2008; 463 2008; 2 1999; 302 1985; 26 2011; 134 2011; 111 2011; 7 2009; 359 1985; 100 2006; 432 1990; 62 2009; 11 1993; 14 2012; 92 2000; 56 2002; 360 2004; 58 2007; 111 2004; 271 1986; 25 2005; 105 1997; 101 2002; 106 2003; 4 2000; 122 1996; 258 2008; 112 1994; 94 2006; 106 1994; 10 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 Cuiying L. (e_1_2_6_25_2) 2009; 67 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_46_2 |
References_xml | – reference: H. Nakatsuji, Chem. Phys. Lett. 1991, 177, 331. – reference: S. Fleming, A. Mills, T. Tuttle, Beilstein J. Org. Chem. 2011, 7, 432. – reference: N. A. Murugan, Z. Rinkevicius, H. Ågren, Int. J. Quantum Chem. 2011, 111, 1521. – reference: A. A. Granovsky, J. Chem. Phys. 2011, 134, 214113. – reference: K. Bravaya, A. Bochenkova, A. Granovsky, A. Nemukhin, J. Am. Chem. Soc. 2007, 129, 13035. – reference: K. Rotkiewicz, K. H. Grellmann, Z. R. Grabowski, Chem. Phys. Lett. 1973, 19, 315. – reference: A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378. – reference: B. Boldrini, E. Cavalli, A. Painelli, F. Terenziani, J. Phys. Chem. A 2002, 106, 6286. – reference: W.-G. Han, T. Liu, F. Himo, A. Toutchkine, D. Bashford, K. M. Hahn, L. Noodleman, ChemPhysChem 2003, 4, 1084. – reference: A. Kawski, B. Kuklinski, P. Bojarski, Chem. Phys. 2009, 359, 58. – reference: L. C. Dias, Jr., R. Custodio, F. B. T. Pessine, Int. J. Quantum Chem. 2006, 106, 2624. – reference: S. Saha, P. K. Mandal, A. Samanta, Phys. Chem. Chem. Phys. 2004, 6, 3106. – reference: A. K. Dutta, K. Kamada, K. Ohta, Chem. Phys. Lett. 1996, 258, 369. – reference: T. Rocha-Rinza, O. Christiansen, J. Rajput, A. Gopalan, D. B. Rahbek, L. H. Andersen, A. V. Bochenkova, A. A. Granovsky, K. B. Bravaya, A. V. Nemukhin, K. L. Christiansen, M. B. Nielsen, J. Phys. Chem. A 2009, 113, 9442. – reference: K. B. Bravaya, A. V. Bochenkova, A. A. Granovsky, A. V. Nemukhin, Russ. J. Phys. Chem. B 2008, 2, 671. – reference: R. S. Moog, D. D. Kim, J. J. Oberle, S. G. Ostrowski, J. Phys. Chem. A 2004, 108, 9294. – reference: L. Cuiying, Zh. Jianxi, S. Li, Acta Chim. Sin. 2009, 67, 381. – reference: A. Dreuw, M. Head-Gordon, Chem. Rev. 2005, 105, 4009. – reference: H.-H. Kim, N. W. Song, T. S. Park, M. Yoon, Chem. Phys. Lett. 2006, 432, 200. – reference: A. Cser, K. Nagy, L. Biczok, Chem. Phys. Lett. 2002, 360, 473. – reference: P. Greenspan, S. D. Fowler J. Lipid Res. 1985, 26, 781. – reference: N. I. Selivanov, L. G. Samsonova, V. Ya. Artyukhov, T. N. Kopylova, Russ. Phys. J. 2011, 54, 601. – reference: C. Reichardt, Chem. Rev. 1994, 94, 2319. – reference: N. Ghoneim, Spectrochim. Acta A 2000, 56, 1003. – reference: W. Rettig, Angew. Chem. Int. Ed. Engl. 1986, 25, 971. – reference: M. J. G. Peach, P. Benfield, T. Helgaker, D. J. Tozer, J. Chem. Phys. 2008, 128, 044118. – reference: P. Hazra, D. Chakrabarty, A. Chakraborty, N. Sarkar, Chem. Phys. Lett. 2004, 388, 150. – reference: A. Kawski, P. Bojarski, B. Kuklinski, Chem. Phys. Lett. 2008, 463, 410. – reference: M. S. Gordon, M. W. Schmidt, In Theory and Applications of Computational Chemistry, the First Forty Years; C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria, Eds.; Elsevier: Amsterdam, 2005; p. 1167. – reference: L. Kessel, I. B. Nielsen, A. V. Bochenkova, K. B. Bravaya, L. H. Andersen, J. Phys. Chem. A 2007, 111, 10537. – reference: P. Greenspan, E. P. Mayer, S. D. Fowler, J. Cell Biol. 1985, 100, 965. – reference: C. A. Guido, B. Mennucci, D. Jacquemine, C. Adamo, Phys. Chem. Chem. Phys. 2010, 12, 8016. – reference: S. De, A. Girigoswami, J. Colloid Interface Sci. 2004, 271, 485. – reference: A. Ya. Freidzon, A. V. Scherbinin, A. A. Bagaturyants, M. V. Alfimov, J. Phys. Chem. A 2011, 115, 4565. – reference: M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347. – reference: L. C. Dias, Jr., R. Custodio, F. B. T. Pessine, Chem. Phys. Lett. 1999, 302, 505. – reference: P. O. Tuck, R. C. Mawhinney, M. Rappon, Phys. Chem. Chem. Phys. 2009, 11, 4471. – reference: D. G. Yablon, A. M. Schilowitz, Appl. Spectrosc. 2004, 58, 843. – reference: B. Mennucci, A. Toniolo, J. Tomasi, J. Am. Chem. Soc. 2000, 122, 10621. – reference: G. Hungerford, E. M. S. Castanheira, M. E. C. D. Real Oliveira, M. da Graca Miguel, H. D. Burrows, J. Phys. Chem. B 2002, 106, 4061. – reference: N. A. Murugan, J. Kongsted, Z. Rinkevicius, H. Ågren, Phys. Chem. Chem. Phys. 2012, 14, 1107. – reference: A. Datta, D. Mandal, S. K. Pal, K. Bhattacharyya, J. Phys. Chem. B 1997, 101, 10221. – reference: K. B. Bravaya, A. V. Bochenkova, A. A. Granovsky, A. P. Savitsky, A. V. Nemukhin, J. Phys. Chem. A 2008, 112, 8804. – reference: A. Ghanadzadeh Gilani, M. Moghadam, M. S. Zakerhamidi, Dyes Pigments 2012, 92, 1052. – reference: H. Tajalli, A. Ghanadzadeh Gilani, M. S. Zakerhamidi, P. Tajalli, Dyes Pigments 2008, 78, 15. – reference: N. Sarkar, K. Das, D. N. Nath, K. Bhattacharyya, Langmuir 1994, 10, 326. – reference: A. K. Dutta, K. Kamada, K. Ohta, J. Photochem. Photobiol. A: Chemistry 1996, 93, 57. – reference: J. F. Deye, T. A. Berger, A. G. Anderson, Anal. Chem. 1990, 62, 615. – volume: 26 start-page: 781 year: 1985 publication-title: J. Lipid Res. – volume: 108 start-page: 9294 year: 2004 publication-title: J. Phys. Chem. A – volume: 67 start-page: 381 year: 2009 publication-title: Acta Chim. Sin. – volume: 106 start-page: 6286 year: 2002 publication-title: J. Phys. Chem. A – volume: 112 start-page: 8804 year: 2008 publication-title: J. Phys. Chem. A – volume: 122 start-page: 10621 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 94 start-page: 2319 year: 1994 publication-title: Chem. Rev. – volume: 258 start-page: 369 year: 1996 publication-title: Chem. Phys. Lett. – volume: 432 start-page: 200 year: 2006 publication-title: Chem. Phys. Lett. – volume: 177 start-page: 331 year: 1991 publication-title: Chem. Phys. Lett. – volume: 93 start-page: 57 year: 1996 publication-title: J. Photochem. Photobiol. A: Chemistry – volume: 19 start-page: 315 year: 1973 publication-title: Chem. Phys. Lett. – volume: 12 start-page: 8016 year: 2010 publication-title: Phys. Chem. Chem. Phys. – volume: 134 start-page: 214113 year: 2011 publication-title: J. Chem. Phys. – volume: 4 start-page: 1084 year: 2003 publication-title: ChemPhysChem – volume: 111 start-page: 1521 year: 2011 publication-title: Int. J. Quantum Chem. – volume: 360 start-page: 473 year: 2002 publication-title: Chem. Phys. Lett. – volume: 271 start-page: 485 year: 2004 publication-title: J. Colloid Interface Sci. – volume: 100 start-page: 965 year: 1985 publication-title: J. Cell Biol. – volume: 302 start-page: 505 year: 1999 publication-title: Chem. Phys. Lett. – volume: 7 start-page: 432 year: 2011 publication-title: Beilstein J. Org. Chem. – volume: 113 start-page: 9442 year: 2009 publication-title: J. Phys. Chem. A – volume: 92 start-page: 1052 year: 2012 publication-title: Dyes Pigments – start-page: 1167 year: 2005 – volume: 2 start-page: 671 year: 2008 publication-title: Russ. J. Phys. Chem. B – volume: 359 start-page: 58 year: 2009 publication-title: Chem. Phys. – volume: 106 start-page: 2624 year: 2006 publication-title: Int. J. Quantum Chem. – volume: 14 start-page: 1107 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 113 start-page: 6378 year: 2009 publication-title: J. Phys. Chem. B – volume: 129 start-page: 13035 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3106 year: 2004 publication-title: Phys. Chem. Chem. Phys. – volume: 14 start-page: 1347 year: 1993 publication-title: J. Comput. Chem. – volume: 56 start-page: 1003 year: 2000 publication-title: Spectrochim. Acta A – volume: 10 start-page: 326 year: 1994 publication-title: Langmuir – volume: 111 start-page: 10537 year: 2007 publication-title: J. Phys. Chem. A – volume: 105 start-page: 4009 year: 2005 publication-title: Chem. Rev. – volume: 115 start-page: 4565 year: 2011 publication-title: J. Phys. Chem. A – volume: 25 start-page: 971 year: 1986 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 106 start-page: 4061 year: 2002 publication-title: J. Phys. Chem. B – volume: 58 start-page: 843 year: 2004 publication-title: Appl. Spectrosc. – volume: 101 start-page: 10221 year: 1997 publication-title: J. Phys. Chem. B – volume: 388 start-page: 150 year: 2004 publication-title: Chem. Phys. Lett. – volume: 54 start-page: 601 year: 2011 publication-title: Russ. Phys. J. – volume: 463 start-page: 410 year: 2008 publication-title: Chem. Phys. Lett. – volume: 78 start-page: 15 year: 2008 publication-title: Dyes Pigments – volume: 62 start-page: 615 year: 1990 publication-title: Anal. Chem. – volume: 128 start-page: 044118 year: 2008 publication-title: J. Chem. Phys. – volume: 11 start-page: 4471 year: 2009 publication-title: Phys. Chem. Chem. Phys. – ident: e_1_2_6_30_2 doi: 10.1039/C1CP23060C – ident: e_1_2_6_11_2 doi: 10.1016/S1386-1425(99)00199-7 – ident: e_1_2_6_48_2 doi: 10.1021/ja0732126 – ident: e_1_2_6_46_2 doi: 10.1021/jp904660w – ident: e_1_2_6_33_2 doi: 10.1002/anie.198609711 – ident: e_1_2_6_5_2 doi: 10.1021/ac00205a015 – ident: e_1_2_6_17_2 doi: 10.1016/j.cplett.2004.02.078 – ident: e_1_2_6_47_2 doi: 10.1021/jp074441h – ident: e_1_2_6_26_2 doi: 10.1016/S0009-2614(99)00145-1 – ident: e_1_2_6_14_2 doi: 10.1016/S0009-2614(02)00784-4 – ident: e_1_2_6_20_2 doi: 10.1016/S0022-2275(20)34307-8 – ident: e_1_2_6_4_2 doi: 10.1021/jp020031b – ident: e_1_2_6_7_2 doi: 10.1016/j.dyepig.2007.10.002 – ident: e_1_2_6_39_2 doi: 10.1016/B978-044451719-7/50084-6 – volume: 67 start-page: 381 year: 2009 ident: e_1_2_6_25_2 publication-title: Acta Chim. Sin. – ident: e_1_2_6_6_2 doi: 10.1016/j.dyepig.2011.07.018 – ident: e_1_2_6_31_2 doi: 10.1007/s11182-011-9658-4 – ident: e_1_2_6_35_2 doi: 10.1063/1.2831900 – ident: e_1_2_6_27_2 doi: 10.1002/qua.21008 – ident: e_1_2_6_29_2 doi: 10.1002/qua.22655 – ident: e_1_2_6_13_2 doi: 10.1016/j.cplett.2008.08.088 – ident: e_1_2_6_32_2 doi: 10.1016/0009-2614(73)80367-7 – ident: e_1_2_6_3_2 doi: 10.1016/1010-6030(95)04140-0 – ident: e_1_2_6_28_2 doi: 10.1039/b927489h – ident: e_1_2_6_18_2 doi: 10.1016/j.jcis.2003.10.021 – ident: e_1_2_6_36_2 doi: 10.1016/0009-2614(91)85040-4 – ident: e_1_2_6_19_2 doi: 10.1021/jp013047v – ident: e_1_2_6_24_2 doi: 10.1016/0009-2614(96)00628-8 – ident: e_1_2_6_16_2 doi: 10.1002/cphc.200300801 – ident: e_1_2_6_41_2 doi: 10.1063/1.3596699 – ident: e_1_2_6_8_2 doi: 10.1039/b902528f – ident: e_1_2_6_43_2 doi: 10.1021/cr0505627 – ident: e_1_2_6_1_2 doi: 10.1021/jp0486088 – ident: e_1_2_6_23_2 doi: 10.1016/j.cplett.2006.10.049 – ident: e_1_2_6_37_2 doi: 10.1021/ja000814f – ident: e_1_2_6_15_2 doi: 10.1039/b316943j – ident: e_1_2_6_21_2 doi: 10.1083/jcb.100.3.965 – ident: e_1_2_6_45_2 doi: 10.1134/S1990793108050023 – ident: e_1_2_6_10_2 doi: 10.1366/0003702041389328 – ident: e_1_2_6_44_2 doi: 10.1021/jp804183w – ident: e_1_2_6_40_2 doi: 10.1021/jp810292n – ident: e_1_2_6_2_2 doi: 10.1021/jp971576m – ident: e_1_2_6_42_2 – ident: e_1_2_6_34_2 doi: 10.3762/bjoc.7.56 – ident: e_1_2_6_49_2 doi: 10.1021/jp111303a – ident: e_1_2_6_22_2 doi: 10.1021/la00013a048 – ident: e_1_2_6_38_2 doi: 10.1002/jcc.540141112 – ident: e_1_2_6_12_2 doi: 10.1016/j.chemphys.2009.03.006 – ident: e_1_2_6_9_2 doi: 10.1021/cr00032a005 |
SSID | ssj0006367 |
Score | 2.2366452 |
Snippet | Profiles of the S1 potential energy surface of the Nile Red dye along the rotational coordinate of the amino group are computed using time‐dependent density... Profiles of the S 1 potential energy surface of the Nile Red dye along the rotational coordinate of the amino group are computed using time‐dependent density... |
SourceID | crossref wiley istex |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3059 |
SubjectTerms | fluorescence solvatochromism Nile Red dye SMD solvation model TDDFT twisted intramolecular charge transfer XMCQDPT2/CASSCF |
Title | Solvatofluorochromism and twisted intramolecular charge-transfer state of the nile red dye |
URI | https://api.istex.fr/ark:/67375/WNG-3WS0S6HN-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqua.24233 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTttAEMdXERzKhUILAgpoVaGKi8PGa3tjcULQNKoghwYEByTL-yWhBLsYp0BPfQSekSdhZh0nCgIJ9WbJs_ZoP-zfrmb-Q8gO06ZllW1hRk_oAREHXpym1osDw6XgOtQ-Jjif9KLuWfDzIrxokP06F6bSh5gcuOHKcN9rXOCpvN2biobejNImwgAqfWKsFgLRr6l0VMSjcblW5omItWtVIebvTVrO_IvmsVvvZxnV_WQ6H8ll7V4VWzJojkrZVH9fKDf-p_9LZHEMn_Sgmi3LpGGyT-TDYV3z7TO57OfDP7ANt8NRjrW0ihzuXNM007S8Q881vcLT4Ou6qC51Skvm6d9j6QjYFNSlKNHcUkBLmoFrtIBm-sGskLPO99PDrjeuv-ApLjj3rB9rxoxQQEVcW4CVkFkDWyDlu0KAAGuRkkxo3pK8rWUACKyEaitAEmYDzVfJXJZnZo1Qhpo6caRlHKoANdllLEwc-zrVXEhh18luPRKJGouTY42MYVLJKvsJdFfiumudfJ2Y_q4UOV4z-uaGc2KRFgMMYRNhct77kfDzPutH3V5yDC92g_T2oxLYWriLjfebfiELAFY-xpW0wk0yVxYjswXwUsptMn9wdHLc33az9Rl0zu16 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONAL5alCeVgVqrhk8cZJvJF6QQjYtsseuiA4UFnxS6pYEoiyLe2pP4HfyC9h7GwWgYpU9RYp42TiseNvLM_3AWxTbdpW2bar6IkDRMRRkGaZDdLIMMmZjnXoCpyP-0n3NPp8Hp9PwcemFqbmh5hsuLmZ4f_XboK7DendR9bQm1HWcmiAvYIZp-jtE6qvj-RRCUvGgq004AntNLxCNNydNH2yGs24jr19ilL9MnP4Br41DtanSy5bo0q21O9n3I3_-wXzMDfGn2SvHjALMGXyRZjdb2TfluBiUAx_YCZuh6PCyWmVBd65IlmuSfXTua7Jd7chfNXo6hJPtmTu_9xVHgSbkvgqJVJYguiS5OgbKbGZ_mWW4fTw4GS_G4wlGALFOGOBDVNNqeEKgRHTFvFKTK3BLEiFXgsQ8VqiJOWatSXraBkhClZcdRSiEmojzVZgOi9y8xYIdbQ6aaJlGqvI0bLLlJs0DXWmGZfcrsJOEwqhxvzkTiZjKGpm5VBgdwnfXavwfmJ6XZNy_M3og4_nxCIrL90pNh6Ls_6RYGcDOki6fdHDF_sovfwogdmFv1j7d9MtmO2eHPdE71P_yzt4jTgrdMdM2vE6TFflyGwglqnkph-yD8dz8AE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RkGgvpVAQtNBaFUJcsnjjJN6IE4JutxRWiAXBAcmKv6SKJaFRth-c-An8Rn4JY2eziKqVqt4ieZzYnnH8bHneA1in2rStsm2X0RMHiIijIM0yG6SRYZIzHevQJTgf9pPeabR_Hp9PwXaTC1PzQ0wO3NzM8P9rN8Gvtd16JA39NspaDgywZzATJbTjQnrv-JE7KmHJWK-VBhzLG1ohGm5Nqj5ZjGbcuP58ClL9KtOdg4umffXlksvWqJItdfMbdeN_duAVvByjT7JTh8s8TJl8AZ7vNqJvr-FiUAy_4z7cDkeFE9MqCyy5IlmuSfXDtVyTr-44-KpR1SWeasnc395VHgKbkvgcJVJYgtiS5Ng0UmI1_csswmn348luLxgLMASKccYCG6aaUsMVwiKmLaKVmFqDeyAVeiVARGuJkpRr1paso2WEGFhx1VGISaiNNFuC6bzIzTIQ6kh10kTLNFaRI2WXKTdpGupMMy65XYHNxhNCjdnJnUjGUNS8yqHA4RJ-uFbgw8T0uqbk-JPRhnfnxCIrL90dNh6Ls_4nwc4GdJD0-uIAP-yd9PdXCdxb-Ic3_276HmaP9rri4HP_y1t4gSArdHdM2vEqTFflyKwhkKnkOx-wDyVp7rk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solvatofluorochromism+and+twisted+intramolecular+charge%E2%80%90transfer+state+of+the+nile+red+dye&rft.jtitle=International+journal+of+quantum+chemistry&rft.au=Ya.+Freidzon%2C+Alexandra&rft.au=Safonov%2C+Andrei+A.&rft.au=Bagaturyants%2C+Alexander+A.&rft.au=Alfimov%2C+Michael+V.&rft.date=2012-09-15&rft.issn=0020-7608&rft.eissn=1097-461X&rft.volume=112&rft.issue=18&rft.spage=3059&rft.epage=3067&rft_id=info:doi/10.1002%2Fqua.24233&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qua_24233 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7608&client=summon |