Versatile Light‐Mediated Synthesis of Degradable Bottlebrush Polymers Using α‐Lipoic Acid
Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self‐assembly. However, the translation of bottlebrushes to real‐world applications is limited by complex, multi‐step synthetic pathways and polym...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 48; pp. e202409323 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
25.11.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self‐assembly. However, the translation of bottlebrushes to real‐world applications is limited by complex, multi‐step synthetic pathways and polymerization reactions that rely on air‐sensitive catalysts. Additionally, most bottlebrushes are non‐degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the “grafting‐through” polymerization of α‐lipoic acid (LA)‐functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst‐free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side‐chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA‐functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA‐functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side‐chain chemistries and provides insight into the light‐mediated grafting‐through polymerization of dithiolane‐functionalized macromonomers.
Two‐step approach to bottlebrush synthesis using α‐lipoic acid (LA) enables control over side‐chain chemistry and catalyst‐free synthesis of degradable bottlebrush polymers. |
---|---|
AbstractList | Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self‐assembly. However, the translation of bottlebrushes to real‐world applications is limited by complex, multi‐step synthetic pathways and polymerization reactions that rely on air‐sensitive catalysts. Additionally, most bottlebrushes are non‐degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the “grafting‐through” polymerization of α‐lipoic acid (LA)‐functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst‐free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side‐chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA‐functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA‐functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side‐chain chemistries and provides insight into the light‐mediated grafting‐through polymerization of dithiolane‐functionalized macromonomers. Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self‐assembly. However, the translation of bottlebrushes to real‐world applications is limited by complex, multi‐step synthetic pathways and polymerization reactions that rely on air‐sensitive catalysts. Additionally, most bottlebrushes are non‐degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the “grafting‐through” polymerization of α‐lipoic acid (LA)‐functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst‐free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side‐chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA‐functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA‐functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side‐chain chemistries and provides insight into the light‐mediated grafting‐through polymerization of dithiolane‐functionalized macromonomers. Two‐step approach to bottlebrush synthesis using α‐lipoic acid (LA) enables control over side‐chain chemistry and catalyst‐free synthesis of degradable bottlebrush polymers. Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self-assembly. However, the translation of bottlebrushes to real-world applications is limited by complex, multi-step synthetic pathways and polymerization reactions that rely on air-sensitive catalysts. Additionally, most bottlebrushes are non-degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the "grafting-through" polymerization of α-lipoic acid (LA)-functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst-free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side-chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA-functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA-functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side-chain chemistries and provides insight into the light-mediated grafting-through polymerization of dithiolane-functionalized macromonomers.Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self-assembly. However, the translation of bottlebrushes to real-world applications is limited by complex, multi-step synthetic pathways and polymerization reactions that rely on air-sensitive catalysts. Additionally, most bottlebrushes are non-degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the "grafting-through" polymerization of α-lipoic acid (LA)-functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst-free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side-chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA-functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA-functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side-chain chemistries and provides insight into the light-mediated grafting-through polymerization of dithiolane-functionalized macromonomers. |
Author | Jiang, Shu‐Yan Verduzco, Rafael Lee, Dongjoo Wang, Hanqing |
Author_xml | – sequence: 1 givenname: Dongjoo orcidid: 0000-0002-8319-7878 surname: Lee fullname: Lee, Dongjoo organization: Rice University – sequence: 2 givenname: Hanqing orcidid: 0009-0005-4875-9352 surname: Wang fullname: Wang, Hanqing organization: Rice University – sequence: 3 givenname: Shu‐Yan orcidid: 0000-0003-0159-8385 surname: Jiang fullname: Jiang, Shu‐Yan organization: Rice University – sequence: 4 givenname: Rafael orcidid: 0000-0002-3649-3455 surname: Verduzco fullname: Verduzco, Rafael email: rafaelv@rice.edu organization: Rice University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39150823$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1OGzEUhS1ERYCyZVmNxKabBNvXM2Mv0zRQpACV2rDEcjyexGgyTm2Pqux4BF6lL9KH6JNgGn4kJMTKXnzf0dU5e2i7da1B6JDgAcGYHqvWmgHFlGEBFLbQLskp6UNZwnb6M4B-yXPSQ3sh3CSec1zsoB4IkmNOYRddXxkfVLSNySZ2voj_bu_OTWVVNFX2Y93GhQk2ZK7Ovpq5V5WaJfCLi7ExM9-FRfbdNetlisimwbbz7O-fFDCxK2d1NtS2-og-1KoJ5uDx3UfTk_HP0bf-5PL0bDSc9DWU6cYaA5uBwozXZVEDx4IqwfJC4YKUjKqCEc1FWZTA87oSOK-F0pomhWJhcAX76PMmd-Xdr86EKJc2aNM0qjWuCxJSPVzknBUJPXqF3rjOt-k6CYQKEFT8pz49Ut1saSq58nap_Fo-NZcAtgG0dyF4U0ttYyrStdEr20iC5cNA8mEg-TxQ0gavtKfkNwWxEX6njdbv0HJ4cTZ-ce8Bk3yj1A |
CitedBy_id | crossref_primary_10_1021_acsmacrolett_4c00600 crossref_primary_10_1021_acsmacrolett_4c00839 |
Cites_doi | 10.1126/sciadv.abc6900 10.1021/ma1021506 10.1038/s41557-019-0352-4 10.1021/acs.macromol.0c02519 10.1021/jacs.9b08957 10.1002/macp.202100445 10.1021/acs.macromol.7b02288 10.1002/adfm.202200883 10.1039/C4PY01567C 10.1021/jacs.1c03661 10.1021/acs.biomac.8b01171 10.3390/sym13071223 10.1039/C7CP06350D 10.1039/C9MH00951E 10.1021/ja108441d 10.1021/acsmacrolett.3c00345 10.1002/adma.201502771 10.1002/pola.24325 10.1021/ma0702041 10.1038/nmat4508 10.1021/acsami.8b08480 10.1295/polymj.37.512 10.1039/D1CC03648C 10.1021/jacs.1c03686 10.1021/jo01262a072 10.1039/C4CS00329B 10.1002/anie.202116632 10.1021/jacs.1c10359 10.1039/D1SM01146D 10.1021/acs.macromol.2c01234 10.1021/acs.chemmater.0c04659 10.1038/s41557-021-00810-2 10.1021/acsami.1c11679 10.1073/pnas.1213055109 10.1039/C7PY01741C 10.1002/pol.20200765 10.1021/jacs.3c08248 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202409323 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 39150823 10_1002_anie_202409323 ANIE202409323 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Welch Foundation funderid: C-2124 – fundername: Division of Chemistry funderid: CHE - 2247729 – fundername: Division of Civil, Mechanical and Manufacturing Innovation funderid: CMMI-1934045 – fundername: Division of Chemistry grantid: CHE - 2247729 – fundername: Division of Civil, Mechanical and Manufacturing Innovation grantid: CMMI-1934045 – fundername: Welch Foundation grantid: C-2124 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3733-f034b3a048f76f38092a9456a061742a641c89767385fd905f9acc2b3a209e0d3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:34:52 EDT 2025 Fri Jul 25 12:02:00 EDT 2025 Mon Jul 21 05:59:27 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Tue Jul 01 01:47:47 EDT 2025 Wed Aug 20 07:27:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Keywords | Polymers Photopolymerization Polymer degradation Bottlebrush polymers Radical polymerization |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-f034b3a048f76f38092a9456a061742a641c89767385fd905f9acc2b3a209e0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0005-4875-9352 0000-0002-8319-7878 0000-0002-3649-3455 0000-0003-0159-8385 |
PMID | 39150823 |
PQID | 3129392946 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3093895846 proquest_journals_3129392946 pubmed_primary_39150823 crossref_citationtrail_10_1002_anie_202409323 crossref_primary_10_1002_anie_202409323 wiley_primary_10_1002_anie_202409323_ANIE202409323 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 25, 2024 |
PublicationDateYYYYMMDD | 2024-11-25 |
PublicationDate_xml | – month: 11 year: 2024 text: November 25, 2024 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2015; 6 2019; 11 2023; 145 1969; 34 2023; 224 2021; 143 2019; 141 2016; 15 2018; 20 2011; 133 2012; 109 2022; 144 2020; 7 2021; 13 2021; 57 2020; 6 2010; 43 2021; 59 2021; 54 2015; 27 2010; 48 2021; 33 2019; 20 2023 2022 2022; 61 2023; 135 2021; 17 2015; 44 2022; 14 2018; 51 2022; 32 2007; 40 2022; 55 2005; 37 2018; 10 Wang B. (e_1_2_3_22_1) 2023; 135 e_1_2_3_1_1 e_1_2_3_2_1 e_1_2_3_6_1 e_1_2_3_16_1 e_1_2_3_39_1 e_1_2_3_5_1 e_1_2_3_17_1 e_1_2_3_38_1 e_1_2_3_4_1 e_1_2_3_18_1 e_1_2_3_19_1 e_1_2_3_12_1 e_1_2_3_35_1 Lee D. (e_1_2_3_9_1) 2022 e_1_2_3_13_1 e_1_2_3_34_1 Pan T. (e_1_2_3_3_1) 2022 e_1_2_3_8_1 e_1_2_3_14_1 e_1_2_3_37_1 e_1_2_3_7_1 e_1_2_3_15_1 e_1_2_3_36_1 e_1_2_3_30_1 e_1_2_3_31_1 e_1_2_3_10_1 e_1_2_3_33_1 e_1_2_3_11_1 e_1_2_3_32_1 e_1_2_3_40_1 e_1_2_3_27_1 e_1_2_3_28_1 e_1_2_3_29_1 e_1_2_3_23_1 e_1_2_3_24_1 e_1_2_3_25_1 e_1_2_3_26_1 e_1_2_3_20_1 e_1_2_3_21_1 |
References_xml | – volume: 57 start-page: 9838 year: 2021 end-page: 9841 publication-title: Chem. Commun. – volume: 144 start-page: 2022 year: 2022 end-page: 2033 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2022 publication-title: Adv Funct Materials – volume: 145 start-page: 22728 year: 2023 end-page: 22734 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2395 year: 2018 end-page: 2400 publication-title: Macromolecules – volume: 20 start-page: 3895 year: 2018 end-page: 3902 publication-title: Phys. Chem. Chem. Phys. – start-page: 2c01418 year: 2022 publication-title: Macromolecules – volume: 224 year: 2023 publication-title: Macromolecular Chemistry and Physics – volume: 33 start-page: 2436 year: 2021 end-page: 2445 publication-title: Chem. Mater. – volume: 14 start-page: 53 year: 2022 end-page: 58 publication-title: Nat. Chem. – volume: 17 start-page: 9028 year: 2021 end-page: 9039 publication-title: Soft Matter – volume: 48 start-page: 5247 year: 2010 end-page: 5253 publication-title: J. Polym. Sci. A Polym. Chem. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 61 year: 2022 publication-title: Angew Chem Int Ed – volume: 27 start-page: 5132 year: 2015 end-page: 5140 publication-title: Adv. Mater. – volume: 34 start-page: 3131 year: 1969 end-page: 3135 publication-title: J. Org. Chem. – volume: 7 start-page: 181 year: 2020 end-page: 187 publication-title: Mater. Horiz. – volume: 6 start-page: 5643 year: 2015 end-page: 5652 publication-title: Polym. Chem. – volume: 135 year: 2023 publication-title: Angewandte Chemie – volume: 143 start-page: 12543 year: 2021 end-page: 12551 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 559 year: 2011 end-page: 566 publication-title: J. Am. Chem. Soc. – start-page: 955 year: 2023 end-page: 960 publication-title: ACS Macro Lett. – volume: 55 start-page: 9715 year: 2022 end-page: 9725 publication-title: Macromolecules – volume: 37 start-page: 512 year: 2005 end-page: 516 publication-title: Polym J – volume: 20 start-page: 27 year: 2019 end-page: 54 publication-title: Biomacromolecules – volume: 15 start-page: 183 year: 2016 end-page: 189 publication-title: Nature Mater – volume: 43 start-page: 10326 year: 2010 end-page: 10335 publication-title: Macromolecules – volume: 54 start-page: 3075 year: 2021 end-page: 3083 publication-title: Macromolecules – volume: 109 start-page: 14332 year: 2012 end-page: 14336 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 59 start-page: 675 year: 2021 end-page: 684 publication-title: Journal of Polymer Science – volume: 13 start-page: 44860 year: 2021 end-page: 44867 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 1223 year: 2021 publication-title: Symmetry – volume: 141 start-page: 17075 year: 2019 end-page: 17080 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 26662 year: 2018 end-page: 26668 publication-title: ACS Appl. Mater. Interfaces – start-page: 1c04030 year: 2022 publication-title: Chem. Mater. – volume: 44 start-page: 2405 year: 2015 end-page: 2420 publication-title: Chem. Soc. Rev. – volume: 40 start-page: 1789 year: 2007 end-page: 1791 publication-title: Macromolecules – volume: 8 start-page: 7452 year: 2017 end-page: 7456 publication-title: Polym. Chem. – volume: 11 start-page: 1124 year: 2019 end-page: 1132 publication-title: Nat. Chem. – volume: 143 start-page: 9866 year: 2021 end-page: 9871 publication-title: J. Am. Chem. Soc. – ident: e_1_2_3_13_1 doi: 10.1126/sciadv.abc6900 – ident: e_1_2_3_14_1 doi: 10.1021/ma1021506 – ident: e_1_2_3_19_1 doi: 10.1038/s41557-019-0352-4 – ident: e_1_2_3_31_1 doi: 10.1021/acs.macromol.0c02519 – ident: e_1_2_3_24_1 doi: 10.1021/jacs.9b08957 – ident: e_1_2_3_38_1 doi: 10.1002/macp.202100445 – ident: e_1_2_3_7_1 doi: 10.1021/acs.macromol.7b02288 – ident: e_1_2_3_26_1 doi: 10.1002/adfm.202200883 – volume: 135 year: 2023 ident: e_1_2_3_22_1 publication-title: Angewandte Chemie – ident: e_1_2_3_16_1 doi: 10.1039/C4PY01567C – ident: e_1_2_3_39_1 doi: 10.1021/jacs.1c03661 – ident: e_1_2_3_2_1 doi: 10.1021/acs.biomac.8b01171 – ident: e_1_2_3_37_1 doi: 10.3390/sym13071223 – ident: e_1_2_3_36_1 doi: 10.1039/C7CP06350D – start-page: 2c01418 year: 2022 ident: e_1_2_3_9_1 publication-title: Macromolecules – ident: e_1_2_3_11_1 doi: 10.1039/C9MH00951E – ident: e_1_2_3_15_1 doi: 10.1021/ja108441d – ident: e_1_2_3_23_1 doi: 10.1021/acsmacrolett.3c00345 – ident: e_1_2_3_5_1 doi: 10.1002/adma.201502771 – ident: e_1_2_3_29_1 doi: 10.1002/pola.24325 – ident: e_1_2_3_32_1 doi: 10.1021/ma0702041 – ident: e_1_2_3_4_1 doi: 10.1038/nmat4508 – ident: e_1_2_3_10_1 doi: 10.1021/acsami.8b08480 – ident: e_1_2_3_34_1 doi: 10.1295/polymj.37.512 – ident: e_1_2_3_33_1 doi: 10.1039/D1CC03648C – ident: e_1_2_3_25_1 doi: 10.1021/jacs.1c03686 – ident: e_1_2_3_35_1 doi: 10.1021/jo01262a072 – ident: e_1_2_3_1_1 doi: 10.1039/C4CS00329B – ident: e_1_2_3_40_1 doi: 10.1002/anie.202116632 – ident: e_1_2_3_20_1 doi: 10.1021/jacs.1c10359 – ident: e_1_2_3_8_1 doi: 10.1039/D1SM01146D – ident: e_1_2_3_27_1 doi: 10.1021/acs.macromol.2c01234 – ident: e_1_2_3_12_1 doi: 10.1021/acs.chemmater.0c04659 – ident: e_1_2_3_18_1 doi: 10.1038/s41557-021-00810-2 – ident: e_1_2_3_30_1 doi: 10.1021/acsami.1c11679 – ident: e_1_2_3_6_1 doi: 10.1073/pnas.1213055109 – ident: e_1_2_3_17_1 doi: 10.1039/C7PY01741C – start-page: 1c04030 year: 2022 ident: e_1_2_3_3_1 publication-title: Chem. Mater. – ident: e_1_2_3_21_1 doi: 10.1002/pol.20200765 – ident: e_1_2_3_28_1 doi: 10.1021/jacs.3c08248 |
SSID | ssj0028806 |
Score | 2.491262 |
Snippet | Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202409323 |
SubjectTerms | Acrylates Addition polymerization Bottlebrush polymers Catalysts Chains (polymeric) Chemical bonds Chemical synthesis Copolymerization Depolymerization Entanglement Graft copolymers Lipoic acid Mechanical properties Modulus of elasticity Molecular weight Photodegradation Photopolymerization Polymer degradation Polymerization Polymers Radical polymerization Self-assembly |
Title | Versatile Light‐Mediated Synthesis of Degradable Bottlebrush Polymers Using α‐Lipoic Acid |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202409323 https://www.ncbi.nlm.nih.gov/pubmed/39150823 https://www.proquest.com/docview/3129392946 https://www.proquest.com/docview/3093895846 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hLnChUH4afiojIfUUSO0kGx-3_GhBsKqgSJyIHNsRK1YJ2uwetqc-Aq_Ci_QheBJmkk1gixBSuSWKx3FmPPHnn_kGYEdG1iovwdlJ4nPXNy3hSttSropCE6jAGBVScPJZN-xc-idXwdWLKP6KH6JZcCPPKP_X5OAqKfaeSUMpAhvndzgiIQQhuk86sEWo6Lzhj-LYOavwIiFcykJfszZ6fG9afHpUegU1p5FrOfQcfQJVN7o6cXK7Oxomu_r3P3yOH_mqRViY4FLWrjrSEszY7DPM7dfp4JbhmlbW0Ix9y05pQv_45_6sTPNhDbsYZ4gji17B8pQdEP2EoYgs9iMnhuRkMCpu2M-8P6Y1clYeUmB_H7CC095d3tOsrXtmBS6PDn_td9xJcgZXixaqM_WEnwiFP4C0FaYi8iRXEtGYIkzkcxX633WEWIfYclIjvSCVSmuOItyT1jNiFWazPLNfgCWhNTzVSgpt_IBjtUahkESsiEOs1Q64tXFiPWEupwQa_bjiXOYxaS1utObAt6b8XcXZ8WbJzdrW8cR3i1gQBELU6IcObDePUdu0laIym4-wDIpHksCbA2tVH2leRZT7tH_pAC8t_U4b4nb3-LC5W_8foQ2Yp2sKkeTBJswOByO7hVhpmHwt_eEJrTcMfg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VciiXQsufoS2LBOLk1uzajvfAITStEppECFqpJ8x6d61GRHZVJ0Lh1Efoq_RFOPAIPEln7NgoVAgJqQeOtvfPuzM73_7MNwAvZGSt8hJcnSQ-d33TEq60LeWqKDSBCoxRITknD4Zh98h_dxwcL8Fl7QtT8UM0G26kGeV8TQpOG9I7v1hDyQUbF3hokhCD1PGrD-zsK67aije9Dg7xS8739w53u-48sICrRUsIN_WEnwiFwpu2wlREnuRKIpJQZM99rkL_tY7QThPTS2qkF6RSac0xC_ek9YzAcm_BbQojTnT9nQ8NYxVHdagcmrAaintf80R6fGexvYt28Bq4XcTKpbHbvws_6m6q7rh82Z5Okm397TcGyf-qH-_B6hx6s3alK2uwZLN1WNmtI97dh0-0eYiSOrasT3sWP88vBmUkE2vYx1mGULkYFSxPWYcYNgw5nbG3OZFAJ2fT4oS9z8czOgZg5T0M9v0SC-iPTvORZm09Mg_g6EZ-7yEsZ3lmHwNLQmt4qpUU2vgBx2KNwkwS4TCiCKsdcGtpiPWcnJ1ihIzjilaaxzRKcTNKDrxq0p9WtCR_TLlRC1c8n56KWBDKQ2Dshw48bz5jb9NpkcpsPsU0mD2ShE8deFQJZVMVRRWgI1oHeClaf2lD3B729pqnJ_-S6RmsdA8H_bjfGx48hTv0njxCebABy5Ozqd1EaDhJtkplZPD5pqX2CtN0Zvo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIgEX_n8MBRYJxMmt2V073gOH0DRqaBpVQKWeMOvdtRo1sqM6EQonHoFHgRdB4hV4Embs2CgghITUA0fb--fdmZ1vf-YbgMcqdk4HKa5OUsl9aTvCV66jfR1HNtShtToi5-T9UbR7KF8ehUdr8Lnxhan5IdoNN9KMar4mBZ_abOsnaSh5YOP6Di0SQpAmfPWeW7zHRVv5fNDDEX7CeX_nzfauv4wr4BvREcLPAiFToVF2s06UiThQXCsEEprMueQ6ks9MjGaaiF4yq4IwU9oYjll4oFxgBZZ7Ds7LKFAULKL3qiWs4qgNtT8TVkNh7xuayIBvrbZ31Qz-hm1XoXJl6_pX4FvTS_UVl5PN-SzdNB9-IZD8n7rxKlxeAm_WrTXlGqy5_Dpc3G7i3d2At7R1iHI6cWxIOxbfP37ar-KYOMteL3IEyuW4ZEXGesSvYcnljL0oiAI6PZ2Xx-ygmCzoEIBVtzDY1y9YwHA8LcaGdc3Y3oTDM_m9W7CeF7m7AyyNnOWZ0UoYK0OOxVqNmRSCYcQQznjgN8KQmCU1O0UImSQ1qTRPaJSSdpQ8eNqmn9akJH9MudHIVrKcnMpEEMZDWCwjDx61n7G36axI566YYxrMHitCpx7crmWyrYpiCtABrQe8kqy_tCHpjgY77dPdf8n0EC4c9PrJcDDauweX6DW5g_JwA9Znp3N3H3HhLH1QqSKDd2cttD8AETRlqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Versatile+Light-Mediated+Synthesis+of+Degradable+Bottlebrush+Polymers+Using+%CE%B1-Lipoic+Acid&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lee%2C+Dongjoo&rft.au=Wang%2C+Hanqing&rft.au=Jiang%2C+Shu-Yan&rft.au=Verduzco%2C+Rafael&rft.date=2024-11-25&rft.eissn=1521-3773&rft.volume=63&rft.issue=48&rft.spage=e202409323&rft_id=info:doi/10.1002%2Fanie.202409323&rft_id=info%3Apmid%2F39150823&rft.externalDocID=39150823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |