Versatile Light‐Mediated Synthesis of Degradable Bottlebrush Polymers Using α‐Lipoic Acid

Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self‐assembly. However, the translation of bottlebrushes to real‐world applications is limited by complex, multi‐step synthetic pathways and polym...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 48; pp. e202409323 - n/a
Main Authors Lee, Dongjoo, Wang, Hanqing, Jiang, Shu‐Yan, Verduzco, Rafael
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 25.11.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self‐assembly. However, the translation of bottlebrushes to real‐world applications is limited by complex, multi‐step synthetic pathways and polymerization reactions that rely on air‐sensitive catalysts. Additionally, most bottlebrushes are non‐degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the “grafting‐through” polymerization of α‐lipoic acid (LA)‐functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst‐free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side‐chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA‐functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA‐functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side‐chain chemistries and provides insight into the light‐mediated grafting‐through polymerization of dithiolane‐functionalized macromonomers. Two‐step approach to bottlebrush synthesis using α‐lipoic acid (LA) enables control over side‐chain chemistry and catalyst‐free synthesis of degradable bottlebrush polymers.
AbstractList Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self‐assembly. However, the translation of bottlebrushes to real‐world applications is limited by complex, multi‐step synthetic pathways and polymerization reactions that rely on air‐sensitive catalysts. Additionally, most bottlebrushes are non‐degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the “grafting‐through” polymerization of α‐lipoic acid (LA)‐functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst‐free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side‐chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA‐functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA‐functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side‐chain chemistries and provides insight into the light‐mediated grafting‐through polymerization of dithiolane‐functionalized macromonomers.
Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self‐assembly. However, the translation of bottlebrushes to real‐world applications is limited by complex, multi‐step synthetic pathways and polymerization reactions that rely on air‐sensitive catalysts. Additionally, most bottlebrushes are non‐degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the “grafting‐through” polymerization of α‐lipoic acid (LA)‐functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst‐free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side‐chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA‐functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA‐functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side‐chain chemistries and provides insight into the light‐mediated grafting‐through polymerization of dithiolane‐functionalized macromonomers. Two‐step approach to bottlebrush synthesis using α‐lipoic acid (LA) enables control over side‐chain chemistry and catalyst‐free synthesis of degradable bottlebrush polymers.
Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self-assembly. However, the translation of bottlebrushes to real-world applications is limited by complex, multi-step synthetic pathways and polymerization reactions that rely on air-sensitive catalysts. Additionally, most bottlebrushes are non-degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the "grafting-through" polymerization of α-lipoic acid (LA)-functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst-free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side-chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA-functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA-functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side-chain chemistries and provides insight into the light-mediated grafting-through polymerization of dithiolane-functionalized macromonomers.Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self-assembly. However, the translation of bottlebrushes to real-world applications is limited by complex, multi-step synthetic pathways and polymerization reactions that rely on air-sensitive catalysts. Additionally, most bottlebrushes are non-degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the "grafting-through" polymerization of α-lipoic acid (LA)-functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst-free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side-chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA-functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA-functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side-chain chemistries and provides insight into the light-mediated grafting-through polymerization of dithiolane-functionalized macromonomers.
Author Jiang, Shu‐Yan
Verduzco, Rafael
Lee, Dongjoo
Wang, Hanqing
Author_xml – sequence: 1
  givenname: Dongjoo
  orcidid: 0000-0002-8319-7878
  surname: Lee
  fullname: Lee, Dongjoo
  organization: Rice University
– sequence: 2
  givenname: Hanqing
  orcidid: 0009-0005-4875-9352
  surname: Wang
  fullname: Wang, Hanqing
  organization: Rice University
– sequence: 3
  givenname: Shu‐Yan
  orcidid: 0000-0003-0159-8385
  surname: Jiang
  fullname: Jiang, Shu‐Yan
  organization: Rice University
– sequence: 4
  givenname: Rafael
  orcidid: 0000-0002-3649-3455
  surname: Verduzco
  fullname: Verduzco, Rafael
  email: rafaelv@rice.edu
  organization: Rice University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39150823$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1OGzEUhS1ERYCyZVmNxKabBNvXM2Mv0zRQpACV2rDEcjyexGgyTm2Pqux4BF6lL9KH6JNgGn4kJMTKXnzf0dU5e2i7da1B6JDgAcGYHqvWmgHFlGEBFLbQLskp6UNZwnb6M4B-yXPSQ3sh3CSec1zsoB4IkmNOYRddXxkfVLSNySZ2voj_bu_OTWVVNFX2Y93GhQk2ZK7Ovpq5V5WaJfCLi7ExM9-FRfbdNetlisimwbbz7O-fFDCxK2d1NtS2-og-1KoJ5uDx3UfTk_HP0bf-5PL0bDSc9DWU6cYaA5uBwozXZVEDx4IqwfJC4YKUjKqCEc1FWZTA87oSOK-F0pomhWJhcAX76PMmd-Xdr86EKJc2aNM0qjWuCxJSPVzknBUJPXqF3rjOt-k6CYQKEFT8pz49Ut1saSq58nap_Fo-NZcAtgG0dyF4U0ttYyrStdEr20iC5cNA8mEg-TxQ0gavtKfkNwWxEX6njdbv0HJ4cTZ-ce8Bk3yj1A
CitedBy_id crossref_primary_10_1021_acsmacrolett_4c00600
crossref_primary_10_1021_acsmacrolett_4c00839
Cites_doi 10.1126/sciadv.abc6900
10.1021/ma1021506
10.1038/s41557-019-0352-4
10.1021/acs.macromol.0c02519
10.1021/jacs.9b08957
10.1002/macp.202100445
10.1021/acs.macromol.7b02288
10.1002/adfm.202200883
10.1039/C4PY01567C
10.1021/jacs.1c03661
10.1021/acs.biomac.8b01171
10.3390/sym13071223
10.1039/C7CP06350D
10.1039/C9MH00951E
10.1021/ja108441d
10.1021/acsmacrolett.3c00345
10.1002/adma.201502771
10.1002/pola.24325
10.1021/ma0702041
10.1038/nmat4508
10.1021/acsami.8b08480
10.1295/polymj.37.512
10.1039/D1CC03648C
10.1021/jacs.1c03686
10.1021/jo01262a072
10.1039/C4CS00329B
10.1002/anie.202116632
10.1021/jacs.1c10359
10.1039/D1SM01146D
10.1021/acs.macromol.2c01234
10.1021/acs.chemmater.0c04659
10.1038/s41557-021-00810-2
10.1021/acsami.1c11679
10.1073/pnas.1213055109
10.1039/C7PY01741C
10.1002/pol.20200765
10.1021/jacs.3c08248
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202409323
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 39150823
10_1002_anie_202409323
ANIE202409323
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Welch Foundation
  funderid: C-2124
– fundername: Division of Chemistry
  funderid: CHE - 2247729
– fundername: Division of Civil, Mechanical and Manufacturing Innovation
  funderid: CMMI-1934045
– fundername: Division of Chemistry
  grantid: CHE - 2247729
– fundername: Division of Civil, Mechanical and Manufacturing Innovation
  grantid: CMMI-1934045
– fundername: Welch Foundation
  grantid: C-2124
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3733-f034b3a048f76f38092a9456a061742a641c89767385fd905f9acc2b3a209e0d3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:34:52 EDT 2025
Fri Jul 25 12:02:00 EDT 2025
Mon Jul 21 05:59:27 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Tue Jul 01 01:47:47 EDT 2025
Wed Aug 20 07:27:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords Polymers
Photopolymerization
Polymer degradation
Bottlebrush polymers
Radical polymerization
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-f034b3a048f76f38092a9456a061742a641c89767385fd905f9acc2b3a209e0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0005-4875-9352
0000-0002-8319-7878
0000-0002-3649-3455
0000-0003-0159-8385
PMID 39150823
PQID 3129392946
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_3093895846
proquest_journals_3129392946
pubmed_primary_39150823
crossref_citationtrail_10_1002_anie_202409323
crossref_primary_10_1002_anie_202409323
wiley_primary_10_1002_anie_202409323_ANIE202409323
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 25, 2024
PublicationDateYYYYMMDD 2024-11-25
PublicationDate_xml – month: 11
  year: 2024
  text: November 25, 2024
  day: 25
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2015; 6
2019; 11
2023; 145
1969; 34
2023; 224
2021; 143
2019; 141
2016; 15
2018; 20
2011; 133
2012; 109
2022; 144
2020; 7
2021; 13
2021; 57
2020; 6
2010; 43
2021; 59
2021; 54
2015; 27
2010; 48
2021; 33
2019; 20
2023
2022
2022; 61
2023; 135
2021; 17
2015; 44
2022; 14
2018; 51
2022; 32
2007; 40
2022; 55
2005; 37
2018; 10
Wang B. (e_1_2_3_22_1) 2023; 135
e_1_2_3_1_1
e_1_2_3_2_1
e_1_2_3_6_1
e_1_2_3_16_1
e_1_2_3_39_1
e_1_2_3_5_1
e_1_2_3_17_1
e_1_2_3_38_1
e_1_2_3_4_1
e_1_2_3_18_1
e_1_2_3_19_1
e_1_2_3_12_1
e_1_2_3_35_1
Lee D. (e_1_2_3_9_1) 2022
e_1_2_3_13_1
e_1_2_3_34_1
Pan T. (e_1_2_3_3_1) 2022
e_1_2_3_8_1
e_1_2_3_14_1
e_1_2_3_37_1
e_1_2_3_7_1
e_1_2_3_15_1
e_1_2_3_36_1
e_1_2_3_30_1
e_1_2_3_31_1
e_1_2_3_10_1
e_1_2_3_33_1
e_1_2_3_11_1
e_1_2_3_32_1
e_1_2_3_40_1
e_1_2_3_27_1
e_1_2_3_28_1
e_1_2_3_29_1
e_1_2_3_23_1
e_1_2_3_24_1
e_1_2_3_25_1
e_1_2_3_26_1
e_1_2_3_20_1
e_1_2_3_21_1
References_xml – volume: 57
  start-page: 9838
  year: 2021
  end-page: 9841
  publication-title: Chem. Commun.
– volume: 144
  start-page: 2022
  year: 2022
  end-page: 2033
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2022
  publication-title: Adv Funct Materials
– volume: 145
  start-page: 22728
  year: 2023
  end-page: 22734
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2395
  year: 2018
  end-page: 2400
  publication-title: Macromolecules
– volume: 20
  start-page: 3895
  year: 2018
  end-page: 3902
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 2c01418
  year: 2022
  publication-title: Macromolecules
– volume: 224
  year: 2023
  publication-title: Macromolecular Chemistry and Physics
– volume: 33
  start-page: 2436
  year: 2021
  end-page: 2445
  publication-title: Chem. Mater.
– volume: 14
  start-page: 53
  year: 2022
  end-page: 58
  publication-title: Nat. Chem.
– volume: 17
  start-page: 9028
  year: 2021
  end-page: 9039
  publication-title: Soft Matter
– volume: 48
  start-page: 5247
  year: 2010
  end-page: 5253
  publication-title: J. Polym. Sci. A Polym. Chem.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 61
  year: 2022
  publication-title: Angew Chem Int Ed
– volume: 27
  start-page: 5132
  year: 2015
  end-page: 5140
  publication-title: Adv. Mater.
– volume: 34
  start-page: 3131
  year: 1969
  end-page: 3135
  publication-title: J. Org. Chem.
– volume: 7
  start-page: 181
  year: 2020
  end-page: 187
  publication-title: Mater. Horiz.
– volume: 6
  start-page: 5643
  year: 2015
  end-page: 5652
  publication-title: Polym. Chem.
– volume: 135
  year: 2023
  publication-title: Angewandte Chemie
– volume: 143
  start-page: 12543
  year: 2021
  end-page: 12551
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 559
  year: 2011
  end-page: 566
  publication-title: J. Am. Chem. Soc.
– start-page: 955
  year: 2023
  end-page: 960
  publication-title: ACS Macro Lett.
– volume: 55
  start-page: 9715
  year: 2022
  end-page: 9725
  publication-title: Macromolecules
– volume: 37
  start-page: 512
  year: 2005
  end-page: 516
  publication-title: Polym J
– volume: 20
  start-page: 27
  year: 2019
  end-page: 54
  publication-title: Biomacromolecules
– volume: 15
  start-page: 183
  year: 2016
  end-page: 189
  publication-title: Nature Mater
– volume: 43
  start-page: 10326
  year: 2010
  end-page: 10335
  publication-title: Macromolecules
– volume: 54
  start-page: 3075
  year: 2021
  end-page: 3083
  publication-title: Macromolecules
– volume: 109
  start-page: 14332
  year: 2012
  end-page: 14336
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 59
  start-page: 675
  year: 2021
  end-page: 684
  publication-title: Journal of Polymer Science
– volume: 13
  start-page: 44860
  year: 2021
  end-page: 44867
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 1223
  year: 2021
  publication-title: Symmetry
– volume: 141
  start-page: 17075
  year: 2019
  end-page: 17080
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 26662
  year: 2018
  end-page: 26668
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 1c04030
  year: 2022
  publication-title: Chem. Mater.
– volume: 44
  start-page: 2405
  year: 2015
  end-page: 2420
  publication-title: Chem. Soc. Rev.
– volume: 40
  start-page: 1789
  year: 2007
  end-page: 1791
  publication-title: Macromolecules
– volume: 8
  start-page: 7452
  year: 2017
  end-page: 7456
  publication-title: Polym. Chem.
– volume: 11
  start-page: 1124
  year: 2019
  end-page: 1132
  publication-title: Nat. Chem.
– volume: 143
  start-page: 9866
  year: 2021
  end-page: 9871
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_3_13_1
  doi: 10.1126/sciadv.abc6900
– ident: e_1_2_3_14_1
  doi: 10.1021/ma1021506
– ident: e_1_2_3_19_1
  doi: 10.1038/s41557-019-0352-4
– ident: e_1_2_3_31_1
  doi: 10.1021/acs.macromol.0c02519
– ident: e_1_2_3_24_1
  doi: 10.1021/jacs.9b08957
– ident: e_1_2_3_38_1
  doi: 10.1002/macp.202100445
– ident: e_1_2_3_7_1
  doi: 10.1021/acs.macromol.7b02288
– ident: e_1_2_3_26_1
  doi: 10.1002/adfm.202200883
– volume: 135
  year: 2023
  ident: e_1_2_3_22_1
  publication-title: Angewandte Chemie
– ident: e_1_2_3_16_1
  doi: 10.1039/C4PY01567C
– ident: e_1_2_3_39_1
  doi: 10.1021/jacs.1c03661
– ident: e_1_2_3_2_1
  doi: 10.1021/acs.biomac.8b01171
– ident: e_1_2_3_37_1
  doi: 10.3390/sym13071223
– ident: e_1_2_3_36_1
  doi: 10.1039/C7CP06350D
– start-page: 2c01418
  year: 2022
  ident: e_1_2_3_9_1
  publication-title: Macromolecules
– ident: e_1_2_3_11_1
  doi: 10.1039/C9MH00951E
– ident: e_1_2_3_15_1
  doi: 10.1021/ja108441d
– ident: e_1_2_3_23_1
  doi: 10.1021/acsmacrolett.3c00345
– ident: e_1_2_3_5_1
  doi: 10.1002/adma.201502771
– ident: e_1_2_3_29_1
  doi: 10.1002/pola.24325
– ident: e_1_2_3_32_1
  doi: 10.1021/ma0702041
– ident: e_1_2_3_4_1
  doi: 10.1038/nmat4508
– ident: e_1_2_3_10_1
  doi: 10.1021/acsami.8b08480
– ident: e_1_2_3_34_1
  doi: 10.1295/polymj.37.512
– ident: e_1_2_3_33_1
  doi: 10.1039/D1CC03648C
– ident: e_1_2_3_25_1
  doi: 10.1021/jacs.1c03686
– ident: e_1_2_3_35_1
  doi: 10.1021/jo01262a072
– ident: e_1_2_3_1_1
  doi: 10.1039/C4CS00329B
– ident: e_1_2_3_40_1
  doi: 10.1002/anie.202116632
– ident: e_1_2_3_20_1
  doi: 10.1021/jacs.1c10359
– ident: e_1_2_3_8_1
  doi: 10.1039/D1SM01146D
– ident: e_1_2_3_27_1
  doi: 10.1021/acs.macromol.2c01234
– ident: e_1_2_3_12_1
  doi: 10.1021/acs.chemmater.0c04659
– ident: e_1_2_3_18_1
  doi: 10.1038/s41557-021-00810-2
– ident: e_1_2_3_30_1
  doi: 10.1021/acsami.1c11679
– ident: e_1_2_3_6_1
  doi: 10.1073/pnas.1213055109
– ident: e_1_2_3_17_1
  doi: 10.1039/C7PY01741C
– start-page: 1c04030
  year: 2022
  ident: e_1_2_3_3_1
  publication-title: Chem. Mater.
– ident: e_1_2_3_21_1
  doi: 10.1002/pol.20200765
– ident: e_1_2_3_28_1
  doi: 10.1021/jacs.3c08248
SSID ssj0028806
Score 2.491262
Snippet Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202409323
SubjectTerms Acrylates
Addition polymerization
Bottlebrush polymers
Catalysts
Chains (polymeric)
Chemical bonds
Chemical synthesis
Copolymerization
Depolymerization
Entanglement
Graft copolymers
Lipoic acid
Mechanical properties
Modulus of elasticity
Molecular weight
Photodegradation
Photopolymerization
Polymer degradation
Polymerization
Polymers
Radical polymerization
Self-assembly
Title Versatile Light‐Mediated Synthesis of Degradable Bottlebrush Polymers Using α‐Lipoic Acid
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202409323
https://www.ncbi.nlm.nih.gov/pubmed/39150823
https://www.proquest.com/docview/3129392946
https://www.proquest.com/docview/3093895846
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hLnChUH4afiojIfUUSO0kGx-3_GhBsKqgSJyIHNsRK1YJ2uwetqc-Aq_Ci_QheBJmkk1gixBSuSWKx3FmPPHnn_kGYEdG1iovwdlJ4nPXNy3hSttSropCE6jAGBVScPJZN-xc-idXwdWLKP6KH6JZcCPPKP_X5OAqKfaeSUMpAhvndzgiIQQhuk86sEWo6Lzhj-LYOavwIiFcykJfszZ6fG9afHpUegU1p5FrOfQcfQJVN7o6cXK7Oxomu_r3P3yOH_mqRViY4FLWrjrSEszY7DPM7dfp4JbhmlbW0Ix9y05pQv_45_6sTPNhDbsYZ4gji17B8pQdEP2EoYgs9iMnhuRkMCpu2M-8P6Y1clYeUmB_H7CC095d3tOsrXtmBS6PDn_td9xJcgZXixaqM_WEnwiFP4C0FaYi8iRXEtGYIkzkcxX633WEWIfYclIjvSCVSmuOItyT1jNiFWazPLNfgCWhNTzVSgpt_IBjtUahkESsiEOs1Q64tXFiPWEupwQa_bjiXOYxaS1utObAt6b8XcXZ8WbJzdrW8cR3i1gQBELU6IcObDePUdu0laIym4-wDIpHksCbA2tVH2leRZT7tH_pAC8t_U4b4nb3-LC5W_8foQ2Yp2sKkeTBJswOByO7hVhpmHwt_eEJrTcMfg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VciiXQsufoS2LBOLk1uzajvfAITStEppECFqpJ8x6d61GRHZVJ0Lh1Efoq_RFOPAIPEln7NgoVAgJqQeOtvfPuzM73_7MNwAvZGSt8hJcnSQ-d33TEq60LeWqKDSBCoxRITknD4Zh98h_dxwcL8Fl7QtT8UM0G26kGeV8TQpOG9I7v1hDyQUbF3hokhCD1PGrD-zsK67aije9Dg7xS8739w53u-48sICrRUsIN_WEnwiFwpu2wlREnuRKIpJQZM99rkL_tY7QThPTS2qkF6RSac0xC_ek9YzAcm_BbQojTnT9nQ8NYxVHdagcmrAaintf80R6fGexvYt28Bq4XcTKpbHbvws_6m6q7rh82Z5Okm397TcGyf-qH-_B6hx6s3alK2uwZLN1WNmtI97dh0-0eYiSOrasT3sWP88vBmUkE2vYx1mGULkYFSxPWYcYNgw5nbG3OZFAJ2fT4oS9z8czOgZg5T0M9v0SC-iPTvORZm09Mg_g6EZ-7yEsZ3lmHwNLQmt4qpUU2vgBx2KNwkwS4TCiCKsdcGtpiPWcnJ1ihIzjilaaxzRKcTNKDrxq0p9WtCR_TLlRC1c8n56KWBDKQ2Dshw48bz5jb9NpkcpsPsU0mD2ShE8deFQJZVMVRRWgI1oHeClaf2lD3B729pqnJ_-S6RmsdA8H_bjfGx48hTv0njxCebABy5Ozqd1EaDhJtkplZPD5pqX2CtN0Zvo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIgEX_n8MBRYJxMmt2V073gOH0DRqaBpVQKWeMOvdtRo1sqM6EQonHoFHgRdB4hV4Embs2CgghITUA0fb--fdmZ1vf-YbgMcqdk4HKa5OUsl9aTvCV66jfR1HNtShtToi5-T9UbR7KF8ehUdr8Lnxhan5IdoNN9KMar4mBZ_abOsnaSh5YOP6Di0SQpAmfPWeW7zHRVv5fNDDEX7CeX_nzfauv4wr4BvREcLPAiFToVF2s06UiThQXCsEEprMueQ6ks9MjGaaiF4yq4IwU9oYjll4oFxgBZZ7Ds7LKFAULKL3qiWs4qgNtT8TVkNh7xuayIBvrbZ31Qz-hm1XoXJl6_pX4FvTS_UVl5PN-SzdNB9-IZD8n7rxKlxeAm_WrTXlGqy5_Dpc3G7i3d2At7R1iHI6cWxIOxbfP37ar-KYOMteL3IEyuW4ZEXGesSvYcnljL0oiAI6PZ2Xx-ygmCzoEIBVtzDY1y9YwHA8LcaGdc3Y3oTDM_m9W7CeF7m7AyyNnOWZ0UoYK0OOxVqNmRSCYcQQznjgN8KQmCU1O0UImSQ1qTRPaJSSdpQ8eNqmn9akJH9MudHIVrKcnMpEEMZDWCwjDx61n7G36axI566YYxrMHitCpx7crmWyrYpiCtABrQe8kqy_tCHpjgY77dPdf8n0EC4c9PrJcDDauweX6DW5g_JwA9Znp3N3H3HhLH1QqSKDd2cttD8AETRlqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Versatile+Light-Mediated+Synthesis+of+Degradable+Bottlebrush+Polymers+Using+%CE%B1-Lipoic+Acid&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lee%2C+Dongjoo&rft.au=Wang%2C+Hanqing&rft.au=Jiang%2C+Shu-Yan&rft.au=Verduzco%2C+Rafael&rft.date=2024-11-25&rft.eissn=1521-3773&rft.volume=63&rft.issue=48&rft.spage=e202409323&rft_id=info:doi/10.1002%2Fanie.202409323&rft_id=info%3Apmid%2F39150823&rft.externalDocID=39150823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon