Micro‐Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications

As a novel mobile nanodevice, micro‐nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio‐applications including precise drug delivery, bio‐sensing, and noninvasive surgery. Yet for pract...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 15; pp. e2106263 - n/a
Main Authors Gao, Chao, Feng, Ye, Wilson, Daniela A., Tu, Yingfeng, Peng, Fei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a novel mobile nanodevice, micro‐nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio‐applications including precise drug delivery, bio‐sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio‐environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target‐seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self‐targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in‐depth analysis of state‐of‐art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi‐disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field. Here, an overview of recent state‐of‐art advances in micro/nanomotors is presented with tactic behavior under different energy fields. The motion principles, designs, and potential biomedical applications are presented and discussed. In addition, this review discusses in detail the taxis behavior of motors in dynamic and 3D fluid environment. Biomedical applications ranging from drug delivery, cell manipulation, and biosensing are summarized.
AbstractList As a novel mobile nanodevice, micro‐nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio‐applications including precise drug delivery, bio‐sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio‐environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target‐seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self‐targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in‐depth analysis of state‐of‐art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi‐disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field.
As a novel mobile nanodevice, micro-nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio-applications including precise drug delivery, bio-sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio-environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target-seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self-targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in-depth analysis of state-of-art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi-disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field.As a novel mobile nanodevice, micro-nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio-applications including precise drug delivery, bio-sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio-environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target-seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self-targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in-depth analysis of state-of-art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi-disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field.
As a novel mobile nanodevice, micro‐nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio‐applications including precise drug delivery, bio‐sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio‐environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target‐seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self‐targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in‐depth analysis of state‐of‐art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi‐disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field. Here, an overview of recent state‐of‐art advances in micro/nanomotors is presented with tactic behavior under different energy fields. The motion principles, designs, and potential biomedical applications are presented and discussed. In addition, this review discusses in detail the taxis behavior of motors in dynamic and 3D fluid environment. Biomedical applications ranging from drug delivery, cell manipulation, and biosensing are summarized.
Author Wilson, Daniela A.
Tu, Yingfeng
Gao, Chao
Feng, Ye
Peng, Fei
Author_xml – sequence: 1
  givenname: Chao
  surname: Gao
  fullname: Gao, Chao
  organization: Sun Yat‐Sen University
– sequence: 2
  givenname: Ye
  surname: Feng
  fullname: Feng, Ye
  organization: Sun Yat‐Sen University
– sequence: 3
  givenname: Daniela A.
  surname: Wilson
  fullname: Wilson, Daniela A.
  organization: Radboud University
– sequence: 4
  givenname: Yingfeng
  surname: Tu
  fullname: Tu, Yingfeng
  email: tuyingfeng1@smu.edu.cn
  organization: Southern Medical University
– sequence: 5
  givenname: Fei
  orcidid: 0000-0001-8817-3472
  surname: Peng
  fullname: Peng, Fei
  email: pengf26@mail.sysu.edu.cn
  organization: Sun Yat‐Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35032145$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtPHDEUhS0ECo-kTRmNREOR3fg1Hg8dkAQi7ZJIgSKV5fVcByOvPdizIXT5CfmN_BIMy0NCQlT3FN-5uvecTbQaYgCE3hM8JhjTT3nu_ZhiSrCggq2gDSIIGwlJ29VHTfA62sz5HGNGKG_eoHVWY0YJrzfQr6kzKV7_-3-sQ6ymcYgpV5duOKtO9F-Xq304039cTLvVj-SCcb2H_LH6DNn9DkXo0FX7Ls6hc0b7aq_vfRGDiyG_RWtW-wzv7ucWOv365eTgaDT5fvjtYG8yMqxhbKQlt7yrWWssNuVgrluwtmbYAjeYEwOdnTGiyYw1IMCYVjYzAR2VWthOd2wL7Sz39ileLCAPau6yAe91gLjIigqKsZRYioJuP0PP4yKFcl2heCvbupG8UB_uqcWsPKb65OY6XamH0ArAl0BJLucEVhk33D09JO28IljddqNuu1GP3RTb-JntYfOLhnZpuHQerl6h1c_pZPLkvQF8QKKk
CitedBy_id crossref_primary_10_1002_adfm_202209883
crossref_primary_10_1002_adfm_202314084
crossref_primary_10_1038_s41545_023_00235_z
crossref_primary_10_3390_pharmaceutics16070856
crossref_primary_10_1021_acsanm_2c04298
crossref_primary_10_1002_smll_202404402
crossref_primary_10_1016_j_actbio_2024_03_016
crossref_primary_10_1088_2631_7990_ad720f
crossref_primary_10_1002_adfm_202212452
crossref_primary_10_1002_adhm_202300882
crossref_primary_10_1038_s44222_023_00025_9
crossref_primary_10_1039_D2TA07792B
crossref_primary_10_1007_s00604_025_07042_y
crossref_primary_10_1002_smll_202206153
crossref_primary_10_1002_ange_202214754
crossref_primary_10_1038_s41467_023_41301_x
crossref_primary_10_1002_smtd_202401388
crossref_primary_10_1039_D4QM00847B
crossref_primary_10_1016_j_ijpharm_2025_125471
crossref_primary_10_3390_nano14221796
crossref_primary_10_1002_advs_202301635
crossref_primary_10_1016_j_nantod_2024_102212
crossref_primary_10_3390_nano13081370
crossref_primary_10_1002_smll_202300409
crossref_primary_10_1140_epje_s10189_024_00466_z
crossref_primary_10_1002_adma_202416349
crossref_primary_10_1002_adhm_202404303
crossref_primary_10_3390_mi15121443
crossref_primary_10_1021_acsnano_2c12811
crossref_primary_10_1002_adhm_202401383
crossref_primary_10_1016_j_ijbiomac_2023_127153
crossref_primary_10_3390_nano15010013
crossref_primary_10_1002_anie_202214754
Cites_doi 10.1021/la502624f
10.1039/c2cc35671f
10.1021/jacs.6b11899
10.1002/adma.201404273
10.1126/sciadv.aao1755
10.1021/acsnano.8b01772
10.1002/anie.201807033
10.1021/acs.nanolett.5b00969
10.1021/acsnano.8b03494
10.1038/srep32135
10.1002/smll.202002732
10.1039/C6LC01272H
10.1103/PhysRevLett.120.188101
10.1021/acsnano.8b08276
10.1021/acs.nanolett.8b02572
10.1002/smll.201202312
10.1016/j.mib.2017.07.004
10.1021/acs.accounts.8b00249
10.1021/acs.nanolett.7b02383
10.1002/adma.201603374
10.1038/ncomms12828
10.1039/C2NR32554C
10.1002/adma.201604996
10.1016/j.apmt.2017.12.009
10.1021/la403450j
10.1038/nature04090
10.1038/srep21701
10.1021/acs.langmuir.0c01924
10.1039/C7CS00516D
10.3390/polym3031215
10.1103/PhysRevLett.98.068101
10.1002/adhm.202001788
10.1021/ja806689p
10.1088/0034-4885/73/12/126601
10.1021/jp205018u
10.1039/C8NR10257K
10.1002/adfm.201706660
10.1021/acsnano.7b06107
10.1021/ja209206c
10.1002/adfm.201910108
10.1002/adfm.202008667
10.1103/PhysRevLett.105.268302
10.1146/annurev-bioeng-010510-103409
10.1038/s41467-017-01778-9
10.1038/ncomms8240
10.1039/C4CC06952H
10.1038/ncomms5829
10.1002/anie.201706570
10.1039/C6CC09680H
10.1002/adfm.202101648
10.1103/PhysRevLett.99.178103
10.1038/nmat3461
10.1038/ncomms9999
10.1002/anie.201301460
10.1002/anie.200300636
10.1039/C5SM01088H
10.1039/C5SM00939A
10.1063/1.3079655
10.1002/adma.201103818
10.1016/j.inoche.2018.02.021
10.1002/adfm.201400596
10.1021/acsnano.7b00441
10.1002/smll.201601846
10.1002/anie.200804704
10.1002/adfm.201908602
10.1021/jacs.8b05762
10.1021/acsami.0c19606
10.1038/239500a0
10.1017/jfm.2017.381
10.1021/acsnano.7b03207
10.1063/1.4998605
10.1021/nl900186w
10.1039/D1SM00554E
10.1016/j.apmt.2018.08.004
10.2174/138920105774370607
10.1021/acs.chemrev.9b00401
10.1021/ja9076793
10.1021/acs.langmuir.7b04301
10.1126/science.288.5475.2335
10.1088/0953-8984/24/6/065101
10.1021/acsnano.7b07183
10.1021/ja1072349
10.1021/acs.nanolett.6b01601
10.1002/adma.201703660
10.1002/adfm.201707228
10.1088/2516-1091/ab22d5
10.1126/sciadv.1400214
10.1002/adma.201503095
10.1039/C3MH00003F
10.1021/acs.nanolett.5b01981
10.1002/adfm.201403891
10.1038/nnano.2016.187
10.1039/C4CS90059F
10.1038/s41598-018-28102-9
10.1103/PhysRevLett.123.178004
10.1021/acsnano.1c01573
10.1002/adfm.201705872
10.1038/s41557-020-00575-0
10.1002/adfm.201802110
10.1002/anie.201504186
10.1039/C4LC00431K
10.1038/ncomms10598
10.1002/bit.25007
10.1126/scirobotics.aam6431
10.1016/j.bpj.2012.03.001
10.1002/adfm.201910323
10.1002/smll.201502391
10.1039/C7NR05896A
10.1021/acsanm.9b02505
10.1002/adbi.201700160
10.1021/acsami.0c11443
10.1039/D0TB00789G
10.1021/acs.nanolett.1c02441
10.1126/scirobotics.aav4317
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202106263
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 35032145
10_1002_smll_202106263
SMLL202106263
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Pearl Youth Scholar Funded Scheme
– fundername: Chinese 1000‐Talent Young Program
– fundername: Education Talents in Universities
  funderid: G61908043
– fundername: National Natural Science Foundation of China
  funderid: 21805318; 51973241; 31800835
– fundername: Guangdong Provincial Science Foundation for Distinguished Young Scholars
  funderid: 2018B030306007
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3733-a84f4d539cf0c1614a9eff530fe4c041cedfb31a1b37e6ecc987b6ed28a6fdad3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 00:59:06 EDT 2025
Fri Jul 25 12:12:30 EDT 2025
Wed Feb 19 02:26:12 EST 2025
Tue Jul 01 02:54:07 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Wed Jan 22 16:26:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords biological applications
micro/nano-motors
moving principle
design
taxis behavior
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-a84f4d539cf0c1614a9eff530fe4c041cedfb31a1b37e6ecc987b6ed28a6fdad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8817-3472
PMID 35032145
PQID 2649895784
PQPubID 1046358
PageCount 21
ParticipantIDs proquest_miscellaneous_2620088086
proquest_journals_2649895784
pubmed_primary_35032145
crossref_citationtrail_10_1002_smll_202106263
crossref_primary_10_1002_smll_202106263
wiley_primary_10_1002_smll_202106263_SMLL202106263
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 116
2013; 29
2021; 21
2017; 2
2019; 11
2010; 105
2012 2015 2007 2012; 24 11 98 102
2019; 13
2016 2017; 7 29
2020; 16
2020; 12
2013; 5
2017; 9
2019; 123
2020; 8
2014; 1
2018; 8
2014; 5
2021; 31
2020; 3
2018; 4
2017; 39
2013; 52
2009 2010 2014 2015; 9 132 24 27
2018; 34
2012; 24
2010; 73
2014 2010 2014; 30 132 14
2015; 1
2016 2013; 6 9
2015; 15
2018; 28
1972; 239
2015; 6
2019; 4
2018; 140
2015; 11
2015; 54
2005; 437
2004 2014; 43 43
2007
2020; 36
2017; 29
2014; 111
2011; 3
2007; 99
2011; 133
2016; 12
2016; 11
2017 2020 2018; 17 30 120
2021; 13
2020 2009 2020 2017 2017; 31 48 120 46 8
2018; 18
2016; 6
2021; 15
2015 2012 2017 2014; 27 11 139 50
2016; 7
2015; 25
2018 2015 2017; 10 6 53
2000 2010 2017 2018 2018 2018 2019 2021; 288 12 2 28 30 28 1 10
2020; 30
2017; 11
2021; 17
2017; 56
2005; 6
2018; 51
2012; 48
2016 2017 2017 2018 2017; 16 825 17 91 11
2018; 12
2008; 131
2017; 147
2020 2009; 30 94
2018; 13
2018; 57
e_1_2_8_26_3
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_1_2
e_1_2_8_1_5
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_1_7
e_1_2_8_5_3
e_1_2_8_1_6
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_1_8
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_38_3
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_63_4
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_63_2
e_1_2_8_44_1
e_1_2_8_63_3
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_2
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_43_4
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_3_3
e_1_2_8_3_2
e_1_2_8_3_5
e_1_2_8_7_1
e_1_2_8_3_4
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_43_3
e_1_2_8_43_2
e_1_2_8_62_1
e_1_2_8_17_1
e_1_2_8_36_4
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_36_3
e_1_2_8_36_2
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_4_3
e_1_2_8_4_5
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 15
  start-page: 4019
  year: 2015
  publication-title: Nano Lett.
– volume: 6
  start-page: 373
  year: 2005
  publication-title: Curr. Pharm. Biotechnol.
– volume: 30 94
  year: 2020 2009
  publication-title: Adv. Funct. Mater. Appl. Phys. Lett.
– volume: 13
  start-page: 4064
  year: 2019
  publication-title: ACS Nano
– volume: 51
  start-page: 1940
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 7 29
  year: 2016 2017
  publication-title: Nat. Commun. Adv. Mater.
– volume: 239
  start-page: 500
  year: 1972
  publication-title: Nature
– volume: 12
  start-page: 4877
  year: 2018
  publication-title: ACS Nano
– volume: 48
  year: 2012
  publication-title: Chem. Commun.
– volume: 25
  start-page: 1666
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 45
  year: 2018
  publication-title: Appl. Mater. Today
– volume: 288 12 2 28 30 28 1 10
  start-page: 2335 55
  year: 2000 2010 2017 2018 2018 2018 2019 2021
  publication-title: Science Annu. Rev. Biomed. Eng. Sci. Robot. Adv. Funct. Mater. Adv. Mater. Adv. Funct. Mater. Prog. Biomed. Eng. Adv. Healthcare Mater.
– volume: 17 30 120
  start-page: 5092
  year: 2017 2020 2018
  publication-title: Nano Lett. Adv. Funct. Mater. Phys. Rev. Lett.
– volume: 8
  start-page: 5765
  year: 2020
  publication-title: J. Mater. Chem. B
– volume: 6 9
  start-page: 1916
  year: 2016 2013
  publication-title: Sci. Rep. Small
– volume: 30 132 14
  start-page: 1198 2818
  year: 2014 2010 2014
  publication-title: Langmuir J. Am. Chem. Soc. Lab Chip
– volume: 73
  year: 2010
  publication-title: Rep. Prog. Phys.
– volume: 5
  start-page: 1259
  year: 2013
  publication-title: Nanoscale
– volume: 16 825 17 91 11
  start-page: 4968 29 395 8
  year: 2016 2017 2017 2018 2017
  publication-title: Nano Lett. J. Fluid Mech. Lab Chip Inorg. Chem. Commun. ACS Nano
– volume: 36
  year: 2020
  publication-title: Langmuir
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 16
  year: 2020
  publication-title: Small
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 6
  start-page: 8999
  year: 2015
  publication-title: Nat. Commun.
– volume: 31 48 120 46 8
  start-page: 3308 269 6905 1438
  year: 2020 2009 2020 2017 2017
  publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. Engl. Chem. Rev. Chem. Soc. Rev. Nat. Commun.
– volume: 147
  year: 2017
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 3973
  year: 2017
  publication-title: ACS Nano
– volume: 12
  start-page: 7282
  year: 2018
  publication-title: ACS Nano
– volume: 24
  start-page: 811
  year: 2012
  publication-title: Adv. Mater.
– volume: 9 132 24 27
  start-page: 2243 5269 6644
  year: 2009 2010 2014 2015
  publication-title: Nano Lett. J. Am. Chem. Soc. Adv. Funct. Mater. Adv. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 4
  year: 2019
  publication-title: Sci. Robot.
– start-page: 1128
  year: 2007
– volume: 29
  year: 2013
  publication-title: Langmuir
– volume: 11
  start-page: 6613
  year: 2015
  publication-title: Soft Matter
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 24 11 98 102
  start-page: 6284 1514
  year: 2012 2015 2007 2012
  publication-title: J. Phys.: Condens. Matter Soft Matter Phys. Rev. Lett. Biophys. J.
– volume: 18
  start-page: 5345
  year: 2018
  publication-title: Nano Lett.
– volume: 10 6 53
  start-page: 93 7240 1249
  year: 2018 2015 2017
  publication-title: Appl. Mater. Today Nat. Commun. Chem. Commun.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 437
  start-page: 862
  year: 2005
  publication-title: Nature
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 116
  start-page: 592
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1136
  year: 2020
  publication-title: Nat. Chem.
– volume: 13
  start-page: 5406
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 6597
  year: 2021
  publication-title: Soft Matter
– volume: 5
  start-page: 4829
  year: 2014
  publication-title: Nat. Commun.
– volume: 12
  start-page: 446
  year: 2016
  publication-title: Small
– volume: 34
  start-page: 3289
  year: 2018
  publication-title: Langmuir
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 15
  start-page: 4829
  year: 2015
  publication-title: Nano Lett.
– volume: 8
  start-page: 9801
  year: 2018
  publication-title: Sci. Rep.
– volume: 52
  start-page: 5552
  year: 2013
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 2
  year: 2017
  publication-title: Adv. Biosyst.
– volume: 111
  start-page: 134
  year: 2014
  publication-title: Biotechnol. Bioeng.
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 140
  start-page: 9317
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 24
  year: 2017
  publication-title: Curr. Opin. Microbiol.
– volume: 1
  start-page: 65
  year: 2014
  publication-title: Mater. Horiz.
– volume: 43 43
  start-page: 3644 5415
  year: 2004 2014
  publication-title: Angew. Chem., Int. Ed. Engl. Chem. Soc. Rev.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1821
  year: 2020
  publication-title: ACS Appl. Nano Mater.
– volume: 12
  start-page: 6098
  year: 2016
  publication-title: Small
– volume: 11
  start-page: 8910
  year: 2017
  publication-title: ACS Nano
– volume: 21
  start-page: 8086
  year: 2021
  publication-title: Nano Lett.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 3
  start-page: 1215
  year: 2011
  publication-title: Polymers
– volume: 11
  start-page: 1087
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 12
  year: 2020
  publication-title: Appl. Mater. Interfaces
– volume: 131
  start-page: 5012
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 27 11 139 50
  start-page: 288 1081 611
  year: 2015 2012 2017 2014
  publication-title: Adv. Mater. Nat. Mater. J. Am. Chem. Soc. Chem. Commun.
– ident: e_1_2_8_26_1
  doi: 10.1021/la502624f
– ident: e_1_2_8_62_1
  doi: 10.1039/c2cc35671f
– ident: e_1_2_8_36_3
  doi: 10.1021/jacs.6b11899
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.201404273
– ident: e_1_2_8_46_1
  doi: 10.1126/sciadv.aao1755
– ident: e_1_2_8_81_1
  doi: 10.1021/acsnano.8b01772
– ident: e_1_2_8_57_1
  doi: 10.1002/anie.201807033
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.nanolett.5b00969
– ident: e_1_2_8_50_1
  doi: 10.1021/acsnano.8b03494
– ident: e_1_2_8_30_1
  doi: 10.1038/srep32135
– ident: e_1_2_8_40_1
  doi: 10.1002/smll.202002732
– ident: e_1_2_8_4_3
  doi: 10.1039/C6LC01272H
– ident: e_1_2_8_5_3
  doi: 10.1103/PhysRevLett.120.188101
– ident: e_1_2_8_75_1
  doi: 10.1021/acsnano.8b08276
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.nanolett.8b02572
– ident: e_1_2_8_21_2
  doi: 10.1002/smll.201202312
– ident: e_1_2_8_28_1
  doi: 10.1016/j.mib.2017.07.004
– ident: e_1_2_8_52_1
  doi: 10.1021/acs.accounts.8b00249
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.nanolett.7b02383
– ident: e_1_2_8_7_2
  doi: 10.1002/adma.201603374
– ident: e_1_2_8_7_1
  doi: 10.1038/ncomms12828
– ident: e_1_2_8_61_1
  doi: 10.1039/C2NR32554C
– ident: e_1_2_8_71_1
  doi: 10.1002/adma.201604996
– ident: e_1_2_8_38_1
  doi: 10.1016/j.apmt.2017.12.009
– ident: e_1_2_8_72_1
  doi: 10.1021/la403450j
– ident: e_1_2_8_69_1
  doi: 10.1038/nature04090
– ident: e_1_2_8_21_1
  doi: 10.1038/srep21701
– ident: e_1_2_8_47_1
  doi: 10.1021/acs.langmuir.0c01924
– ident: e_1_2_8_3_4
  doi: 10.1039/C7CS00516D
– ident: e_1_2_8_67_1
  doi: 10.3390/polym3031215
– ident: e_1_2_8_43_3
  doi: 10.1103/PhysRevLett.98.068101
– ident: e_1_2_8_1_8
  doi: 10.1002/adhm.202001788
– ident: e_1_2_8_22_1
  doi: 10.1021/ja806689p
– ident: e_1_2_8_55_1
  doi: 10.1088/0034-4885/73/12/126601
– ident: e_1_2_8_34_1
  doi: 10.1021/jp205018u
– ident: e_1_2_8_42_1
  doi: 10.1039/C8NR10257K
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.201706660
– ident: e_1_2_8_41_1
  doi: 10.1021/acsnano.7b06107
– ident: e_1_2_8_54_1
  doi: 10.1021/ja209206c
– ident: e_1_2_8_5_2
  doi: 10.1002/adfm.201910108
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.202008667
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevLett.105.268302
– ident: e_1_2_8_1_2
  doi: 10.1146/annurev-bioeng-010510-103409
– ident: e_1_2_8_3_5
  doi: 10.1038/s41467-017-01778-9
– ident: e_1_2_8_38_2
  doi: 10.1038/ncomms8240
– ident: e_1_2_8_36_4
  doi: 10.1039/C4CC06952H
– ident: e_1_2_8_77_1
  doi: 10.1038/ncomms5829
– ident: e_1_2_8_32_1
  doi: 10.1002/anie.201706570
– ident: e_1_2_8_38_3
  doi: 10.1039/C6CC09680H
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.202101648
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevLett.99.178103
– ident: e_1_2_8_36_2
  doi: 10.1038/nmat3461
– ident: e_1_2_8_48_1
  doi: 10.1038/ncomms9999
– ident: e_1_2_8_8_1
  doi: 10.1002/anie.201301460
– ident: e_1_2_8_37_1
  doi: 10.1002/anie.200300636
– ident: e_1_2_8_45_1
  doi: 10.1039/C5SM01088H
– ident: e_1_2_8_43_2
  doi: 10.1039/C5SM00939A
– ident: e_1_2_8_9_2
  doi: 10.1063/1.3079655
– ident: e_1_2_8_65_1
  doi: 10.1002/adma.201103818
– ident: e_1_2_8_4_4
  doi: 10.1016/j.inoche.2018.02.021
– ident: e_1_2_8_63_3
  doi: 10.1002/adfm.201400596
– ident: e_1_2_8_11_1
  doi: 10.1021/acsnano.7b00441
– ident: e_1_2_8_68_1
  doi: 10.1002/smll.201601846
– ident: e_1_2_8_3_2
  doi: 10.1002/anie.200804704
– ident: e_1_2_8_58_1
  doi: 10.1002/adfm.201908602
– ident: e_1_2_8_2_1
  doi: 10.1021/jacs.8b05762
– ident: e_1_2_8_59_1
  doi: 10.1021/acsami.0c19606
– ident: e_1_2_8_18_1
  doi: 10.1038/239500a0
– ident: e_1_2_8_4_2
  doi: 10.1017/jfm.2017.381
– ident: e_1_2_8_15_1
  doi: 10.1021/acsnano.7b03207
– ident: e_1_2_8_73_1
  doi: 10.1063/1.4998605
– ident: e_1_2_8_63_1
  doi: 10.1021/nl900186w
– ident: e_1_2_8_76_1
  doi: 10.1039/D1SM00554E
– ident: e_1_2_8_56_1
  doi: 10.1016/j.apmt.2018.08.004
– ident: e_1_2_8_64_1
– ident: e_1_2_8_79_1
  doi: 10.2174/138920105774370607
– ident: e_1_2_8_3_3
  doi: 10.1021/acs.chemrev.9b00401
– ident: e_1_2_8_26_2
  doi: 10.1021/ja9076793
– ident: e_1_2_8_74_1
  doi: 10.1021/acs.langmuir.7b04301
– ident: e_1_2_8_1_1
  doi: 10.1126/science.288.5475.2335
– ident: e_1_2_8_43_1
  doi: 10.1088/0953-8984/24/6/065101
– ident: e_1_2_8_4_5
  doi: 10.1021/acsnano.7b07183
– ident: e_1_2_8_63_2
  doi: 10.1021/ja1072349
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.nanolett.6b01601
– ident: e_1_2_8_1_5
  doi: 10.1002/adma.201703660
– ident: e_1_2_8_1_4
  doi: 10.1002/adfm.201707228
– ident: e_1_2_8_1_7
  doi: 10.1088/2516-1091/ab22d5
– ident: e_1_2_8_12_1
  doi: 10.1126/sciadv.1400214
– ident: e_1_2_8_63_4
  doi: 10.1002/adma.201503095
– ident: e_1_2_8_33_1
  doi: 10.1039/C3MH00003F
– ident: e_1_2_8_70_1
  doi: 10.1021/acs.nanolett.5b01981
– ident: e_1_2_8_80_1
  doi: 10.1002/adfm.201403891
– ident: e_1_2_8_6_1
  doi: 10.1038/nnano.2016.187
– ident: e_1_2_8_37_2
  doi: 10.1039/C4CS90059F
– ident: e_1_2_8_29_1
  doi: 10.1038/s41598-018-28102-9
– ident: e_1_2_8_44_1
  doi: 10.1103/PhysRevLett.123.178004
– ident: e_1_2_8_23_1
  doi: 10.1021/acsnano.1c01573
– ident: e_1_2_8_1_6
  doi: 10.1002/adfm.201705872
– ident: e_1_2_8_25_1
  doi: 10.1038/s41557-020-00575-0
– ident: e_1_2_8_66_1
  doi: 10.1002/adfm.201802110
– ident: e_1_2_8_35_1
  doi: 10.1002/anie.201504186
– ident: e_1_2_8_26_3
  doi: 10.1039/C4LC00431K
– ident: e_1_2_8_49_1
  doi: 10.1038/ncomms10598
– ident: e_1_2_8_31_1
  doi: 10.1002/bit.25007
– ident: e_1_2_8_1_3
  doi: 10.1126/scirobotics.aam6431
– ident: e_1_2_8_43_4
  doi: 10.1016/j.bpj.2012.03.001
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.201910323
– ident: e_1_2_8_13_1
  doi: 10.1002/smll.201502391
– ident: e_1_2_8_53_1
  doi: 10.1039/C7NR05896A
– ident: e_1_2_8_60_1
  doi: 10.1021/acsanm.9b02505
– ident: e_1_2_8_27_1
  doi: 10.1002/adbi.201700160
– ident: e_1_2_8_10_1
  doi: 10.1021/acsami.0c11443
– ident: e_1_2_8_17_1
  doi: 10.1039/D0TB00789G
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.nanolett.1c02441
– ident: e_1_2_8_78_1
  doi: 10.1126/scirobotics.aav4317
SSID ssj0031247
Score 2.5515087
SecondaryResourceType review_article
Snippet As a novel mobile nanodevice, micro‐nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability,...
As a novel mobile nanodevice, micro-nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2106263
SubjectTerms Ablation
biological applications
Biomedical materials
Blood flow
design
Drug Delivery Systems
Humans
micro/nano‐motors
Motion
Motors
moving principle
Nanostructures
Nanotechnology
Nanotechnology devices
Neoplasms
Rheological properties
taxis behavior
Transplantation
Title Micro‐Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202106263
https://www.ncbi.nlm.nih.gov/pubmed/35032145
https://www.proquest.com/docview/2649895784
https://www.proquest.com/docview/2620088086
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hTnAor7aELshISL00kMROYnNbaBFCbFW1INFTZDu2hEqzFdmVqp74CfxGfgke59HdVqhSuSWKrST2PD57xt8A7DGrOJechg6LYpgx1qEUXIelTaVyeCRWniRp9DE7vWRnV-nVzCn-hh-i33BDzfD2GhVcqvrgN2lo_f0GQwduyYKEKs4IY8IWoqLPPX8Udc7LV1dxPitE4q2OtTFKDua7z3ulv6DmPHL1rudkBWT30U3Gybf96UTt619_8Dk-569W4UWLS8mwEaQ1WDDVOizPsBVuwNcRJu893N07izwmozHW6SG4j0su5M_rmrRUi7eH5FO3g1-_I-99ioi7kFVJjvxhf5QLMpyJnL-Ey5MPF8enYVuZIdQ0pzSUnFlWplRoG2k3ukwKY21KI2uYjlisTWkVjWWsaG4yJyWC5yozZcJlZktZ0lewWI0rswmEG1HGKY9NYgxz-EPlmgnLM55zJbNUBBB2M1PolrYcq2fcFA3hclLgkBX9kAXwtm__oyHseLLloJvoolXcunD4UHDhzBgLYLd_7FQO4yiyMuMptsGkEe4WgwG8bgSkfxVNIyz9lAaQ-Gn-xzcUX0bn5_3d1v90egNLCR7J8NlEA1ic3E7NtgNKE7XjleERgM4LEQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZQEseEMDBYwEYkPaJHYyDhKLwlBN6aRCMJXaVbAdW6ooGdTMiMeKT-BX-BU-gS_h3rzogBASUhfsEsVJ_LiPY_v6XIB7wmkpleQ-YlHaZgyNr1Jp_MLFSiMeCXVNkpTtJKNd8Xwv3luCr91ZmIYfol9wI82o7TUpOC1Ir_9kDa3eHtLeAc5ZiFGljavcth_f46yterw1xCG-H0WbzyZPR36bWMA3fMC5r6Rwooh5alxgEPIIlVrnYh44K0wgQmMLp3moQs0HNsFG4sRcJ7aIpEpcoQqO3z0FpymNONH1D1_2jFUc3WWdzwW9pE9UXx1PZBCtL9Z30Q_-Bm4XsXLt7DYvwLeum5oYlzdr85leM59-YZD8r_rxIpxvoTfbaHTlEizZ8jKcO0bIeAX2M4pP_P75CzqdKcumlIqI0VI1m6gPBxVr2SSPHrEX3SZF9ZAN6ygYvFBlwZ7UfAYk-mzjWHDAVdg9kbZdg-VyWtoVYNKmRRjL0EbWCoRYemBE6mQiB1KrJE498DtRyE3LzE4JQg7zhlM6ymmI8n6IPHjQl3_XcJL8seRqJ1l5a5uqHCFwKlO01MKDu_1jtCq0VaRKO51TGYqLkTjf9eB6I5H9r3gcUHar2IOolqu_1CF_lY3H_d2Nf3npDpwZTbJxPt7a2b4JZyM6gVIHT63C8uxobm8hLpzp27UmMnh90iL7A--NbMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKwKG-aUsBIIDakTWIn4yCxKAyjls5UFbRSuwp-ShUlUzUz4rHiE_gUfoVf6Jf02nnQASEkpC7YJYqT-HEfx_b1uQCPmJWcC05DxKJumzFWoci5CrVNhUQ8EktPkjTaytZ32eu9dG8OvrdnYWp-iG7BzWmGt9dOwY-0Xf1JGlp9OHRbBzhlcYQqTVjlpvn8ESdt1fONPo7w4yQZvNp5uR42eQVCRXuUhoIzy3RKc2UjhYiHidxYm9LIGqYiFiujraSxiCXtmQzbiPNymRmdcJFZLTTF716AiyyLcpcsov-mI6yi6C19Ohd0kqFj-mppIqNkdba-s27wN2w7C5W9rxtchR9tL9UhLu9XphO5or78QiD5P3XjNVhogDdZqzXlOsyZ8gZcOUPHeBP2Ry468eTrN3Q5YzIau0RExC1Ukx3x6aAiDZfk8TOy3W5RVE9J38fA4IUoNXnh2Qyc4JO1M6EBt2D3XNp2G-bLcWkWgXCT6zjlsUmMYQiwZE-x3PKM97gUWZoHELaSUKiGl92lBzksakbppHBDVHRDFMCTrvxRzUjyx5LLrWAVjWWqCgTAOc_RTrMAHnaP0aa4jSJRmvHUlXFRMRxnuwHcqQWy-xVNI5fbKg0g8WL1lzoUb0fDYXe39C8vPYBL2_1BMdzY2rwLlxN3_MRHTi3D_OR4au4hKJzI-14PCbw7b4k9BSuRa3c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micro%E2%80%90Nano+Motors+with+Taxis+Behavior%3A+Principles%2C+Designs%2C+and+Biomedical+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Gao%2C+Chao&rft.au=Ye%2C+Feng&rft.au=Wilson%2C+Daniela+A&rft.au=Tu%2C+Yingfeng&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=15&rft_id=info:doi/10.1002%2Fsmll.202106263&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon