Micro‐Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications
As a novel mobile nanodevice, micro‐nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio‐applications including precise drug delivery, bio‐sensing, and noninvasive surgery. Yet for pract...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 15; pp. e2106263 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a novel mobile nanodevice, micro‐nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio‐applications including precise drug delivery, bio‐sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio‐environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target‐seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self‐targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in‐depth analysis of state‐of‐art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi‐disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field.
Here, an overview of recent state‐of‐art advances in micro/nanomotors is presented with tactic behavior under different energy fields. The motion principles, designs, and potential biomedical applications are presented and discussed. In addition, this review discusses in detail the taxis behavior of motors in dynamic and 3D fluid environment. Biomedical applications ranging from drug delivery, cell manipulation, and biosensing are summarized. |
---|---|
AbstractList | As a novel mobile nanodevice, micro‐nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio‐applications including precise drug delivery, bio‐sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio‐environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target‐seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self‐targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in‐depth analysis of state‐of‐art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi‐disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field. As a novel mobile nanodevice, micro-nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio-applications including precise drug delivery, bio-sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio-environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target-seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self-targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in-depth analysis of state-of-art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi-disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field.As a novel mobile nanodevice, micro-nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio-applications including precise drug delivery, bio-sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio-environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target-seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self-targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in-depth analysis of state-of-art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi-disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field. As a novel mobile nanodevice, micro‐nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability, they promise revolutionary potential in bio‐applications including precise drug delivery, bio‐sensing, and noninvasive surgery. Yet for practically reaching the target and fulfilling these tasks in dynamically changing bio‐environment, environment adaptivity beyond propulsion is important yet challenging. MNMs with taxis behavior/autonomous target‐seeking ability offer a desirable solution. These motors can adaptively move to the target location and complete the task. Thanks to the persistent efforts of researchers, tactic MNMs have shown automatic navigation to target under various energy fields, not only in static environments, but also in shear rheological conditions that simulate blood flow. Therefore, tactic motors with self‐targeting capability lay a concrete foundation for targeted drug delivery, cell transplantation, and thrombus ablation. This review systematically presents the moving principle, design, and biological applications of tactic MNMs under different energy fields. Through in‐depth analysis of state‐of‐art progress, the obstacles of the field and possible solutions are discussed. With the continuous innovation and breakthroughs of multi‐disciplinary researchers, MNMs with taxis behavior are expected to provide a revolutionary solution for cancer and other major diseases in the biomedical field. Here, an overview of recent state‐of‐art advances in micro/nanomotors is presented with tactic behavior under different energy fields. The motion principles, designs, and potential biomedical applications are presented and discussed. In addition, this review discusses in detail the taxis behavior of motors in dynamic and 3D fluid environment. Biomedical applications ranging from drug delivery, cell manipulation, and biosensing are summarized. |
Author | Wilson, Daniela A. Tu, Yingfeng Gao, Chao Feng, Ye Peng, Fei |
Author_xml | – sequence: 1 givenname: Chao surname: Gao fullname: Gao, Chao organization: Sun Yat‐Sen University – sequence: 2 givenname: Ye surname: Feng fullname: Feng, Ye organization: Sun Yat‐Sen University – sequence: 3 givenname: Daniela A. surname: Wilson fullname: Wilson, Daniela A. organization: Radboud University – sequence: 4 givenname: Yingfeng surname: Tu fullname: Tu, Yingfeng email: tuyingfeng1@smu.edu.cn organization: Southern Medical University – sequence: 5 givenname: Fei orcidid: 0000-0001-8817-3472 surname: Peng fullname: Peng, Fei email: pengf26@mail.sysu.edu.cn organization: Sun Yat‐Sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35032145$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtPHDEUhS0ECo-kTRmNREOR3fg1Hg8dkAQi7ZJIgSKV5fVcByOvPdizIXT5CfmN_BIMy0NCQlT3FN-5uvecTbQaYgCE3hM8JhjTT3nu_ZhiSrCggq2gDSIIGwlJ29VHTfA62sz5HGNGKG_eoHVWY0YJrzfQr6kzKV7_-3-sQ6ymcYgpV5duOKtO9F-Xq304039cTLvVj-SCcb2H_LH6DNn9DkXo0FX7Ls6hc0b7aq_vfRGDiyG_RWtW-wzv7ucWOv365eTgaDT5fvjtYG8yMqxhbKQlt7yrWWssNuVgrluwtmbYAjeYEwOdnTGiyYw1IMCYVjYzAR2VWthOd2wL7Sz39ileLCAPau6yAe91gLjIigqKsZRYioJuP0PP4yKFcl2heCvbupG8UB_uqcWsPKb65OY6XamH0ArAl0BJLucEVhk33D09JO28IljddqNuu1GP3RTb-JntYfOLhnZpuHQerl6h1c_pZPLkvQF8QKKk |
CitedBy_id | crossref_primary_10_1002_adfm_202209883 crossref_primary_10_1002_adfm_202314084 crossref_primary_10_1038_s41545_023_00235_z crossref_primary_10_3390_pharmaceutics16070856 crossref_primary_10_1021_acsanm_2c04298 crossref_primary_10_1002_smll_202404402 crossref_primary_10_1016_j_actbio_2024_03_016 crossref_primary_10_1088_2631_7990_ad720f crossref_primary_10_1002_adfm_202212452 crossref_primary_10_1002_adhm_202300882 crossref_primary_10_1038_s44222_023_00025_9 crossref_primary_10_1039_D2TA07792B crossref_primary_10_1007_s00604_025_07042_y crossref_primary_10_1002_smll_202206153 crossref_primary_10_1002_ange_202214754 crossref_primary_10_1038_s41467_023_41301_x crossref_primary_10_1002_smtd_202401388 crossref_primary_10_1039_D4QM00847B crossref_primary_10_1016_j_ijpharm_2025_125471 crossref_primary_10_3390_nano14221796 crossref_primary_10_1002_advs_202301635 crossref_primary_10_1016_j_nantod_2024_102212 crossref_primary_10_3390_nano13081370 crossref_primary_10_1002_smll_202300409 crossref_primary_10_1140_epje_s10189_024_00466_z crossref_primary_10_1002_adma_202416349 crossref_primary_10_1002_adhm_202404303 crossref_primary_10_3390_mi15121443 crossref_primary_10_1021_acsnano_2c12811 crossref_primary_10_1002_adhm_202401383 crossref_primary_10_1016_j_ijbiomac_2023_127153 crossref_primary_10_3390_nano15010013 crossref_primary_10_1002_anie_202214754 |
Cites_doi | 10.1021/la502624f 10.1039/c2cc35671f 10.1021/jacs.6b11899 10.1002/adma.201404273 10.1126/sciadv.aao1755 10.1021/acsnano.8b01772 10.1002/anie.201807033 10.1021/acs.nanolett.5b00969 10.1021/acsnano.8b03494 10.1038/srep32135 10.1002/smll.202002732 10.1039/C6LC01272H 10.1103/PhysRevLett.120.188101 10.1021/acsnano.8b08276 10.1021/acs.nanolett.8b02572 10.1002/smll.201202312 10.1016/j.mib.2017.07.004 10.1021/acs.accounts.8b00249 10.1021/acs.nanolett.7b02383 10.1002/adma.201603374 10.1038/ncomms12828 10.1039/C2NR32554C 10.1002/adma.201604996 10.1016/j.apmt.2017.12.009 10.1021/la403450j 10.1038/nature04090 10.1038/srep21701 10.1021/acs.langmuir.0c01924 10.1039/C7CS00516D 10.3390/polym3031215 10.1103/PhysRevLett.98.068101 10.1002/adhm.202001788 10.1021/ja806689p 10.1088/0034-4885/73/12/126601 10.1021/jp205018u 10.1039/C8NR10257K 10.1002/adfm.201706660 10.1021/acsnano.7b06107 10.1021/ja209206c 10.1002/adfm.201910108 10.1002/adfm.202008667 10.1103/PhysRevLett.105.268302 10.1146/annurev-bioeng-010510-103409 10.1038/s41467-017-01778-9 10.1038/ncomms8240 10.1039/C4CC06952H 10.1038/ncomms5829 10.1002/anie.201706570 10.1039/C6CC09680H 10.1002/adfm.202101648 10.1103/PhysRevLett.99.178103 10.1038/nmat3461 10.1038/ncomms9999 10.1002/anie.201301460 10.1002/anie.200300636 10.1039/C5SM01088H 10.1039/C5SM00939A 10.1063/1.3079655 10.1002/adma.201103818 10.1016/j.inoche.2018.02.021 10.1002/adfm.201400596 10.1021/acsnano.7b00441 10.1002/smll.201601846 10.1002/anie.200804704 10.1002/adfm.201908602 10.1021/jacs.8b05762 10.1021/acsami.0c19606 10.1038/239500a0 10.1017/jfm.2017.381 10.1021/acsnano.7b03207 10.1063/1.4998605 10.1021/nl900186w 10.1039/D1SM00554E 10.1016/j.apmt.2018.08.004 10.2174/138920105774370607 10.1021/acs.chemrev.9b00401 10.1021/ja9076793 10.1021/acs.langmuir.7b04301 10.1126/science.288.5475.2335 10.1088/0953-8984/24/6/065101 10.1021/acsnano.7b07183 10.1021/ja1072349 10.1021/acs.nanolett.6b01601 10.1002/adma.201703660 10.1002/adfm.201707228 10.1088/2516-1091/ab22d5 10.1126/sciadv.1400214 10.1002/adma.201503095 10.1039/C3MH00003F 10.1021/acs.nanolett.5b01981 10.1002/adfm.201403891 10.1038/nnano.2016.187 10.1039/C4CS90059F 10.1038/s41598-018-28102-9 10.1103/PhysRevLett.123.178004 10.1021/acsnano.1c01573 10.1002/adfm.201705872 10.1038/s41557-020-00575-0 10.1002/adfm.201802110 10.1002/anie.201504186 10.1039/C4LC00431K 10.1038/ncomms10598 10.1002/bit.25007 10.1126/scirobotics.aam6431 10.1016/j.bpj.2012.03.001 10.1002/adfm.201910323 10.1002/smll.201502391 10.1039/C7NR05896A 10.1021/acsanm.9b02505 10.1002/adbi.201700160 10.1021/acsami.0c11443 10.1039/D0TB00789G 10.1021/acs.nanolett.1c02441 10.1126/scirobotics.aav4317 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202106263 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 35032145 10_1002_smll_202106263 SMLL202106263 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Pearl Youth Scholar Funded Scheme – fundername: Chinese 1000‐Talent Young Program – fundername: Education Talents in Universities funderid: G61908043 – fundername: National Natural Science Foundation of China funderid: 21805318; 51973241; 31800835 – fundername: Guangdong Provincial Science Foundation for Distinguished Young Scholars funderid: 2018B030306007 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3733-a84f4d539cf0c1614a9eff530fe4c041cedfb31a1b37e6ecc987b6ed28a6fdad3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 00:59:06 EDT 2025 Fri Jul 25 12:12:30 EDT 2025 Wed Feb 19 02:26:12 EST 2025 Tue Jul 01 02:54:07 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Wed Jan 22 16:26:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | biological applications micro/nano-motors moving principle design taxis behavior |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-a84f4d539cf0c1614a9eff530fe4c041cedfb31a1b37e6ecc987b6ed28a6fdad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8817-3472 |
PMID | 35032145 |
PQID | 2649895784 |
PQPubID | 1046358 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2620088086 proquest_journals_2649895784 pubmed_primary_35032145 crossref_citationtrail_10_1002_smll_202106263 crossref_primary_10_1002_smll_202106263 wiley_primary_10_1002_smll_202106263_SMLL202106263 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 116 2013; 29 2021; 21 2017; 2 2019; 11 2010; 105 2012 2015 2007 2012; 24 11 98 102 2019; 13 2016 2017; 7 29 2020; 16 2020; 12 2013; 5 2017; 9 2019; 123 2020; 8 2014; 1 2018; 8 2014; 5 2021; 31 2020; 3 2018; 4 2017; 39 2013; 52 2009 2010 2014 2015; 9 132 24 27 2018; 34 2012; 24 2010; 73 2014 2010 2014; 30 132 14 2015; 1 2016 2013; 6 9 2015; 15 2018; 28 1972; 239 2015; 6 2019; 4 2018; 140 2015; 11 2015; 54 2005; 437 2004 2014; 43 43 2007 2020; 36 2017; 29 2014; 111 2011; 3 2007; 99 2011; 133 2016; 12 2016; 11 2017 2020 2018; 17 30 120 2021; 13 2020 2009 2020 2017 2017; 31 48 120 46 8 2018; 18 2016; 6 2021; 15 2015 2012 2017 2014; 27 11 139 50 2016; 7 2015; 25 2018 2015 2017; 10 6 53 2000 2010 2017 2018 2018 2018 2019 2021; 288 12 2 28 30 28 1 10 2020; 30 2017; 11 2021; 17 2017; 56 2005; 6 2018; 51 2012; 48 2016 2017 2017 2018 2017; 16 825 17 91 11 2018; 12 2008; 131 2017; 147 2020 2009; 30 94 2018; 13 2018; 57 e_1_2_8_26_3 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_1_7 e_1_2_8_5_3 e_1_2_8_1_6 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_1_8 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_38_3 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_63_4 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_63_2 e_1_2_8_44_1 e_1_2_8_63_3 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_2 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_43_4 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_3_3 e_1_2_8_3_2 e_1_2_8_3_5 e_1_2_8_7_1 e_1_2_8_3_4 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_43_3 e_1_2_8_43_2 e_1_2_8_62_1 e_1_2_8_17_1 e_1_2_8_36_4 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_36_3 e_1_2_8_36_2 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_4_3 e_1_2_8_4_5 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – volume: 15 start-page: 4019 year: 2015 publication-title: Nano Lett. – volume: 6 start-page: 373 year: 2005 publication-title: Curr. Pharm. Biotechnol. – volume: 30 94 year: 2020 2009 publication-title: Adv. Funct. Mater. Appl. Phys. Lett. – volume: 13 start-page: 4064 year: 2019 publication-title: ACS Nano – volume: 51 start-page: 1940 year: 2018 publication-title: Acc. Chem. Res. – volume: 7 29 year: 2016 2017 publication-title: Nat. Commun. Adv. Mater. – volume: 239 start-page: 500 year: 1972 publication-title: Nature – volume: 12 start-page: 4877 year: 2018 publication-title: ACS Nano – volume: 48 year: 2012 publication-title: Chem. Commun. – volume: 25 start-page: 1666 year: 2015 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 45 year: 2018 publication-title: Appl. Mater. Today – volume: 288 12 2 28 30 28 1 10 start-page: 2335 55 year: 2000 2010 2017 2018 2018 2018 2019 2021 publication-title: Science Annu. Rev. Biomed. Eng. Sci. Robot. Adv. Funct. Mater. Adv. Mater. Adv. Funct. Mater. Prog. Biomed. Eng. Adv. Healthcare Mater. – volume: 17 30 120 start-page: 5092 year: 2017 2020 2018 publication-title: Nano Lett. Adv. Funct. Mater. Phys. Rev. Lett. – volume: 8 start-page: 5765 year: 2020 publication-title: J. Mater. Chem. B – volume: 6 9 start-page: 1916 year: 2016 2013 publication-title: Sci. Rep. Small – volume: 30 132 14 start-page: 1198 2818 year: 2014 2010 2014 publication-title: Langmuir J. Am. Chem. Soc. Lab Chip – volume: 73 year: 2010 publication-title: Rep. Prog. Phys. – volume: 5 start-page: 1259 year: 2013 publication-title: Nanoscale – volume: 16 825 17 91 11 start-page: 4968 29 395 8 year: 2016 2017 2017 2018 2017 publication-title: Nano Lett. J. Fluid Mech. Lab Chip Inorg. Chem. Commun. ACS Nano – volume: 36 year: 2020 publication-title: Langmuir – volume: 11 year: 2017 publication-title: ACS Nano – volume: 16 year: 2020 publication-title: Small – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 6 start-page: 8999 year: 2015 publication-title: Nat. Commun. – volume: 31 48 120 46 8 start-page: 3308 269 6905 1438 year: 2020 2009 2020 2017 2017 publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. Engl. Chem. Rev. Chem. Soc. Rev. Nat. Commun. – volume: 147 year: 2017 publication-title: J. Chem. Phys. – volume: 11 start-page: 3973 year: 2017 publication-title: ACS Nano – volume: 12 start-page: 7282 year: 2018 publication-title: ACS Nano – volume: 24 start-page: 811 year: 2012 publication-title: Adv. Mater. – volume: 9 132 24 27 start-page: 2243 5269 6644 year: 2009 2010 2014 2015 publication-title: Nano Lett. J. Am. Chem. Soc. Adv. Funct. Mater. Adv. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 4 year: 2019 publication-title: Sci. Robot. – start-page: 1128 year: 2007 – volume: 29 year: 2013 publication-title: Langmuir – volume: 11 start-page: 6613 year: 2015 publication-title: Soft Matter – volume: 9 year: 2017 publication-title: Nanoscale – volume: 24 11 98 102 start-page: 6284 1514 year: 2012 2015 2007 2012 publication-title: J. Phys.: Condens. Matter Soft Matter Phys. Rev. Lett. Biophys. J. – volume: 18 start-page: 5345 year: 2018 publication-title: Nano Lett. – volume: 10 6 53 start-page: 93 7240 1249 year: 2018 2015 2017 publication-title: Appl. Mater. Today Nat. Commun. Chem. Commun. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 437 start-page: 862 year: 2005 publication-title: Nature – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 116 start-page: 592 year: 2011 publication-title: J. Phys. Chem. C – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 12 start-page: 1136 year: 2020 publication-title: Nat. Chem. – volume: 13 start-page: 5406 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 17 start-page: 6597 year: 2021 publication-title: Soft Matter – volume: 5 start-page: 4829 year: 2014 publication-title: Nat. Commun. – volume: 12 start-page: 446 year: 2016 publication-title: Small – volume: 34 start-page: 3289 year: 2018 publication-title: Langmuir – volume: 15 year: 2021 publication-title: ACS Nano – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 15 start-page: 4829 year: 2015 publication-title: Nano Lett. – volume: 8 start-page: 9801 year: 2018 publication-title: Sci. Rep. – volume: 52 start-page: 5552 year: 2013 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 2 year: 2017 publication-title: Adv. Biosyst. – volume: 111 start-page: 134 year: 2014 publication-title: Biotechnol. Bioeng. – volume: 99 year: 2007 publication-title: Phys. Rev. Lett. – volume: 140 start-page: 9317 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 24 year: 2017 publication-title: Curr. Opin. Microbiol. – volume: 1 start-page: 65 year: 2014 publication-title: Mater. Horiz. – volume: 43 43 start-page: 3644 5415 year: 2004 2014 publication-title: Angew. Chem., Int. Ed. Engl. Chem. Soc. Rev. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1821 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 12 start-page: 6098 year: 2016 publication-title: Small – volume: 11 start-page: 8910 year: 2017 publication-title: ACS Nano – volume: 21 start-page: 8086 year: 2021 publication-title: Nano Lett. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 3 start-page: 1215 year: 2011 publication-title: Polymers – volume: 11 start-page: 1087 year: 2016 publication-title: Nat. Nanotechnol. – volume: 12 year: 2020 publication-title: Appl. Mater. Interfaces – volume: 131 start-page: 5012 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – volume: 27 11 139 50 start-page: 288 1081 611 year: 2015 2012 2017 2014 publication-title: Adv. Mater. Nat. Mater. J. Am. Chem. Soc. Chem. Commun. – ident: e_1_2_8_26_1 doi: 10.1021/la502624f – ident: e_1_2_8_62_1 doi: 10.1039/c2cc35671f – ident: e_1_2_8_36_3 doi: 10.1021/jacs.6b11899 – ident: e_1_2_8_36_1 doi: 10.1002/adma.201404273 – ident: e_1_2_8_46_1 doi: 10.1126/sciadv.aao1755 – ident: e_1_2_8_81_1 doi: 10.1021/acsnano.8b01772 – ident: e_1_2_8_57_1 doi: 10.1002/anie.201807033 – ident: e_1_2_8_39_1 doi: 10.1021/acs.nanolett.5b00969 – ident: e_1_2_8_50_1 doi: 10.1021/acsnano.8b03494 – ident: e_1_2_8_30_1 doi: 10.1038/srep32135 – ident: e_1_2_8_40_1 doi: 10.1002/smll.202002732 – ident: e_1_2_8_4_3 doi: 10.1039/C6LC01272H – ident: e_1_2_8_5_3 doi: 10.1103/PhysRevLett.120.188101 – ident: e_1_2_8_75_1 doi: 10.1021/acsnano.8b08276 – ident: e_1_2_8_19_1 doi: 10.1021/acs.nanolett.8b02572 – ident: e_1_2_8_21_2 doi: 10.1002/smll.201202312 – ident: e_1_2_8_28_1 doi: 10.1016/j.mib.2017.07.004 – ident: e_1_2_8_52_1 doi: 10.1021/acs.accounts.8b00249 – ident: e_1_2_8_5_1 doi: 10.1021/acs.nanolett.7b02383 – ident: e_1_2_8_7_2 doi: 10.1002/adma.201603374 – ident: e_1_2_8_7_1 doi: 10.1038/ncomms12828 – ident: e_1_2_8_61_1 doi: 10.1039/C2NR32554C – ident: e_1_2_8_71_1 doi: 10.1002/adma.201604996 – ident: e_1_2_8_38_1 doi: 10.1016/j.apmt.2017.12.009 – ident: e_1_2_8_72_1 doi: 10.1021/la403450j – ident: e_1_2_8_69_1 doi: 10.1038/nature04090 – ident: e_1_2_8_21_1 doi: 10.1038/srep21701 – ident: e_1_2_8_47_1 doi: 10.1021/acs.langmuir.0c01924 – ident: e_1_2_8_3_4 doi: 10.1039/C7CS00516D – ident: e_1_2_8_67_1 doi: 10.3390/polym3031215 – ident: e_1_2_8_43_3 doi: 10.1103/PhysRevLett.98.068101 – ident: e_1_2_8_1_8 doi: 10.1002/adhm.202001788 – ident: e_1_2_8_22_1 doi: 10.1021/ja806689p – ident: e_1_2_8_55_1 doi: 10.1088/0034-4885/73/12/126601 – ident: e_1_2_8_34_1 doi: 10.1021/jp205018u – ident: e_1_2_8_42_1 doi: 10.1039/C8NR10257K – ident: e_1_2_8_14_1 doi: 10.1002/adfm.201706660 – ident: e_1_2_8_41_1 doi: 10.1021/acsnano.7b06107 – ident: e_1_2_8_54_1 doi: 10.1021/ja209206c – ident: e_1_2_8_5_2 doi: 10.1002/adfm.201910108 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.202008667 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevLett.105.268302 – ident: e_1_2_8_1_2 doi: 10.1146/annurev-bioeng-010510-103409 – ident: e_1_2_8_3_5 doi: 10.1038/s41467-017-01778-9 – ident: e_1_2_8_38_2 doi: 10.1038/ncomms8240 – ident: e_1_2_8_36_4 doi: 10.1039/C4CC06952H – ident: e_1_2_8_77_1 doi: 10.1038/ncomms5829 – ident: e_1_2_8_32_1 doi: 10.1002/anie.201706570 – ident: e_1_2_8_38_3 doi: 10.1039/C6CC09680H – ident: e_1_2_8_16_1 doi: 10.1002/adfm.202101648 – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevLett.99.178103 – ident: e_1_2_8_36_2 doi: 10.1038/nmat3461 – ident: e_1_2_8_48_1 doi: 10.1038/ncomms9999 – ident: e_1_2_8_8_1 doi: 10.1002/anie.201301460 – ident: e_1_2_8_37_1 doi: 10.1002/anie.200300636 – ident: e_1_2_8_45_1 doi: 10.1039/C5SM01088H – ident: e_1_2_8_43_2 doi: 10.1039/C5SM00939A – ident: e_1_2_8_9_2 doi: 10.1063/1.3079655 – ident: e_1_2_8_65_1 doi: 10.1002/adma.201103818 – ident: e_1_2_8_4_4 doi: 10.1016/j.inoche.2018.02.021 – ident: e_1_2_8_63_3 doi: 10.1002/adfm.201400596 – ident: e_1_2_8_11_1 doi: 10.1021/acsnano.7b00441 – ident: e_1_2_8_68_1 doi: 10.1002/smll.201601846 – ident: e_1_2_8_3_2 doi: 10.1002/anie.200804704 – ident: e_1_2_8_58_1 doi: 10.1002/adfm.201908602 – ident: e_1_2_8_2_1 doi: 10.1021/jacs.8b05762 – ident: e_1_2_8_59_1 doi: 10.1021/acsami.0c19606 – ident: e_1_2_8_18_1 doi: 10.1038/239500a0 – ident: e_1_2_8_4_2 doi: 10.1017/jfm.2017.381 – ident: e_1_2_8_15_1 doi: 10.1021/acsnano.7b03207 – ident: e_1_2_8_73_1 doi: 10.1063/1.4998605 – ident: e_1_2_8_63_1 doi: 10.1021/nl900186w – ident: e_1_2_8_76_1 doi: 10.1039/D1SM00554E – ident: e_1_2_8_56_1 doi: 10.1016/j.apmt.2018.08.004 – ident: e_1_2_8_64_1 – ident: e_1_2_8_79_1 doi: 10.2174/138920105774370607 – ident: e_1_2_8_3_3 doi: 10.1021/acs.chemrev.9b00401 – ident: e_1_2_8_26_2 doi: 10.1021/ja9076793 – ident: e_1_2_8_74_1 doi: 10.1021/acs.langmuir.7b04301 – ident: e_1_2_8_1_1 doi: 10.1126/science.288.5475.2335 – ident: e_1_2_8_43_1 doi: 10.1088/0953-8984/24/6/065101 – ident: e_1_2_8_4_5 doi: 10.1021/acsnano.7b07183 – ident: e_1_2_8_63_2 doi: 10.1021/ja1072349 – ident: e_1_2_8_4_1 doi: 10.1021/acs.nanolett.6b01601 – ident: e_1_2_8_1_5 doi: 10.1002/adma.201703660 – ident: e_1_2_8_1_4 doi: 10.1002/adfm.201707228 – ident: e_1_2_8_1_7 doi: 10.1088/2516-1091/ab22d5 – ident: e_1_2_8_12_1 doi: 10.1126/sciadv.1400214 – ident: e_1_2_8_63_4 doi: 10.1002/adma.201503095 – ident: e_1_2_8_33_1 doi: 10.1039/C3MH00003F – ident: e_1_2_8_70_1 doi: 10.1021/acs.nanolett.5b01981 – ident: e_1_2_8_80_1 doi: 10.1002/adfm.201403891 – ident: e_1_2_8_6_1 doi: 10.1038/nnano.2016.187 – ident: e_1_2_8_37_2 doi: 10.1039/C4CS90059F – ident: e_1_2_8_29_1 doi: 10.1038/s41598-018-28102-9 – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevLett.123.178004 – ident: e_1_2_8_23_1 doi: 10.1021/acsnano.1c01573 – ident: e_1_2_8_1_6 doi: 10.1002/adfm.201705872 – ident: e_1_2_8_25_1 doi: 10.1038/s41557-020-00575-0 – ident: e_1_2_8_66_1 doi: 10.1002/adfm.201802110 – ident: e_1_2_8_35_1 doi: 10.1002/anie.201504186 – ident: e_1_2_8_26_3 doi: 10.1039/C4LC00431K – ident: e_1_2_8_49_1 doi: 10.1038/ncomms10598 – ident: e_1_2_8_31_1 doi: 10.1002/bit.25007 – ident: e_1_2_8_1_3 doi: 10.1126/scirobotics.aam6431 – ident: e_1_2_8_43_4 doi: 10.1016/j.bpj.2012.03.001 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.201910323 – ident: e_1_2_8_13_1 doi: 10.1002/smll.201502391 – ident: e_1_2_8_53_1 doi: 10.1039/C7NR05896A – ident: e_1_2_8_60_1 doi: 10.1021/acsanm.9b02505 – ident: e_1_2_8_27_1 doi: 10.1002/adbi.201700160 – ident: e_1_2_8_10_1 doi: 10.1021/acsami.0c11443 – ident: e_1_2_8_17_1 doi: 10.1039/D0TB00789G – ident: e_1_2_8_24_1 doi: 10.1021/acs.nanolett.1c02441 – ident: e_1_2_8_78_1 doi: 10.1126/scirobotics.aav4317 |
SSID | ssj0031247 |
Score | 2.5515087 |
SecondaryResourceType | review_article |
Snippet | As a novel mobile nanodevice, micro‐nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability,... As a novel mobile nanodevice, micro-nano motors (MNMs) can convert the energy of the surrounding environment into mechanical motion. With this unique ability,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2106263 |
SubjectTerms | Ablation biological applications Biomedical materials Blood flow design Drug Delivery Systems Humans micro/nano‐motors Motion Motors moving principle Nanostructures Nanotechnology Nanotechnology devices Neoplasms Rheological properties taxis behavior Transplantation |
Title | Micro‐Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202106263 https://www.ncbi.nlm.nih.gov/pubmed/35032145 https://www.proquest.com/docview/2649895784 https://www.proquest.com/docview/2620088086 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hTnAor7aELshISL00kMROYnNbaBFCbFW1INFTZDu2hEqzFdmVqp74CfxGfgke59HdVqhSuSWKrST2PD57xt8A7DGrOJechg6LYpgx1qEUXIelTaVyeCRWniRp9DE7vWRnV-nVzCn-hh-i33BDzfD2GhVcqvrgN2lo_f0GQwduyYKEKs4IY8IWoqLPPX8Udc7LV1dxPitE4q2OtTFKDua7z3ulv6DmPHL1rudkBWT30U3Gybf96UTt619_8Dk-569W4UWLS8mwEaQ1WDDVOizPsBVuwNcRJu893N07izwmozHW6SG4j0su5M_rmrRUi7eH5FO3g1-_I-99ioi7kFVJjvxhf5QLMpyJnL-Ey5MPF8enYVuZIdQ0pzSUnFlWplRoG2k3ukwKY21KI2uYjlisTWkVjWWsaG4yJyWC5yozZcJlZktZ0lewWI0rswmEG1HGKY9NYgxz-EPlmgnLM55zJbNUBBB2M1PolrYcq2fcFA3hclLgkBX9kAXwtm__oyHseLLloJvoolXcunD4UHDhzBgLYLd_7FQO4yiyMuMptsGkEe4WgwG8bgSkfxVNIyz9lAaQ-Gn-xzcUX0bn5_3d1v90egNLCR7J8NlEA1ic3E7NtgNKE7XjleERgM4LEQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZQEseEMDBYwEYkPaJHYyDhKLwlBN6aRCMJXaVbAdW6ooGdTMiMeKT-BX-BU-gS_h3rzogBASUhfsEsVJ_LiPY_v6XIB7wmkpleQ-YlHaZgyNr1Jp_MLFSiMeCXVNkpTtJKNd8Xwv3luCr91ZmIYfol9wI82o7TUpOC1Ir_9kDa3eHtLeAc5ZiFGljavcth_f46yterw1xCG-H0WbzyZPR36bWMA3fMC5r6Rwooh5alxgEPIIlVrnYh44K0wgQmMLp3moQs0HNsFG4sRcJ7aIpEpcoQqO3z0FpymNONH1D1_2jFUc3WWdzwW9pE9UXx1PZBCtL9Z30Q_-Bm4XsXLt7DYvwLeum5oYlzdr85leM59-YZD8r_rxIpxvoTfbaHTlEizZ8jKcO0bIeAX2M4pP_P75CzqdKcumlIqI0VI1m6gPBxVr2SSPHrEX3SZF9ZAN6ygYvFBlwZ7UfAYk-mzjWHDAVdg9kbZdg-VyWtoVYNKmRRjL0EbWCoRYemBE6mQiB1KrJE498DtRyE3LzE4JQg7zhlM6ymmI8n6IPHjQl3_XcJL8seRqJ1l5a5uqHCFwKlO01MKDu_1jtCq0VaRKO51TGYqLkTjf9eB6I5H9r3gcUHar2IOolqu_1CF_lY3H_d2Nf3npDpwZTbJxPt7a2b4JZyM6gVIHT63C8uxobm8hLpzp27UmMnh90iL7A--NbMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKwKG-aUsBIIDakTWIn4yCxKAyjls5UFbRSuwp-ShUlUzUz4rHiE_gUfoVf6Jf02nnQASEkpC7YJYqT-HEfx_b1uQCPmJWcC05DxKJumzFWoci5CrVNhUQ8EktPkjTaytZ32eu9dG8OvrdnYWp-iG7BzWmGt9dOwY-0Xf1JGlp9OHRbBzhlcYQqTVjlpvn8ESdt1fONPo7w4yQZvNp5uR42eQVCRXuUhoIzy3RKc2UjhYiHidxYm9LIGqYiFiujraSxiCXtmQzbiPNymRmdcJFZLTTF716AiyyLcpcsov-mI6yi6C19Ohd0kqFj-mppIqNkdba-s27wN2w7C5W9rxtchR9tL9UhLu9XphO5or78QiD5P3XjNVhogDdZqzXlOsyZ8gZcOUPHeBP2Ry468eTrN3Q5YzIau0RExC1Ukx3x6aAiDZfk8TOy3W5RVE9J38fA4IUoNXnh2Qyc4JO1M6EBt2D3XNp2G-bLcWkWgXCT6zjlsUmMYQiwZE-x3PKM97gUWZoHELaSUKiGl92lBzksakbppHBDVHRDFMCTrvxRzUjyx5LLrWAVjWWqCgTAOc_RTrMAHnaP0aa4jSJRmvHUlXFRMRxnuwHcqQWy-xVNI5fbKg0g8WL1lzoUb0fDYXe39C8vPYBL2_1BMdzY2rwLlxN3_MRHTi3D_OR4au4hKJzI-14PCbw7b4k9BSuRa3c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micro%E2%80%90Nano+Motors+with+Taxis+Behavior%3A+Principles%2C+Designs%2C+and+Biomedical+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Gao%2C+Chao&rft.au=Ye%2C+Feng&rft.au=Wilson%2C+Daniela+A&rft.au=Tu%2C+Yingfeng&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=15&rft_id=info:doi/10.1002%2Fsmll.202106263&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |