Quasi‐Parallel NiFe Layered Double Hydroxide Nanosheet Arrays for Large‐Current‐Density Oxygen Evolution Electrocatalysis
Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm−2) is critical to practical water splitting applications. Herein, a novel quasi‐parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The ini...
Saved in:
Published in | ChemSusChem Vol. 15; no. 3; pp. e202101873 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
08.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm−2) is critical to practical water splitting applications. Herein, a novel quasi‐parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α‐Ni(OH)2 layer induced effective coprecipitation between Ni2+ and Fe3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi‐parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec−1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm−2 in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm−2. This work presents a new strategy towards fabricating electrode materials with exceptional performance.
Oxygen evolution: Quasi‐parallel NiFe layered double hydroxide nanosheet arrays with domain patterns are formed on Ni foam. Benefiting from the enhanced interaction between active materials and substrate, the electrode delivers high electrocatalytic activity for the oxygen evolution reaction (overpotentials of 196, 255, and 284 mV at 10, 500, and 1000 mA cm−2) and excellent long‐term stability. |
---|---|
AbstractList | Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm-2 ) is critical to practical water splitting applications. Herein, a novel quasi-parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α-Ni(OH)2 layer induced effective coprecipitation between Ni2+ and Fe3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi-parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec-1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm-2 in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm-2 . This work presents a new strategy towards fabricating electrode materials with exceptional performance.Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm-2 ) is critical to practical water splitting applications. Herein, a novel quasi-parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α-Ni(OH)2 layer induced effective coprecipitation between Ni2+ and Fe3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi-parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec-1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm-2 in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm-2 . This work presents a new strategy towards fabricating electrode materials with exceptional performance. Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm ) is critical to practical water splitting applications. Herein, a novel quasi-parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α-Ni(OH) layer induced effective coprecipitation between Ni and Fe for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi-parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm . This work presents a new strategy towards fabricating electrode materials with exceptional performance. Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm−2) is critical to practical water splitting applications. Herein, a novel quasi‐parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α‐Ni(OH)2 layer induced effective coprecipitation between Ni2+ and Fe3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi‐parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec−1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm−2 in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm−2. This work presents a new strategy towards fabricating electrode materials with exceptional performance. Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm −2 ) is critical to practical water splitting applications. Herein, a novel quasi‐parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α‐Ni(OH) 2 layer induced effective coprecipitation between Ni 2+ and Fe 3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi‐parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec −1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm −2 in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm −2 . This work presents a new strategy towards fabricating electrode materials with exceptional performance. Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm−2) is critical to practical water splitting applications. Herein, a novel quasi‐parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α‐Ni(OH)2 layer induced effective coprecipitation between Ni2+ and Fe3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi‐parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec−1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm−2 in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm−2. This work presents a new strategy towards fabricating electrode materials with exceptional performance. Oxygen evolution: Quasi‐parallel NiFe layered double hydroxide nanosheet arrays with domain patterns are formed on Ni foam. Benefiting from the enhanced interaction between active materials and substrate, the electrode delivers high electrocatalytic activity for the oxygen evolution reaction (overpotentials of 196, 255, and 284 mV at 10, 500, and 1000 mA cm−2) and excellent long‐term stability. |
Author | Ye, Qinglan Li, Lingfeng Gu, Xiangyang Han, Boming Li, Bin Li, Hangyang Xu, Xuetang Wang, Fan |
Author_xml | – sequence: 1 givenname: Qinglan surname: Ye fullname: Ye, Qinglan organization: Guangxi University – sequence: 2 givenname: Lingfeng surname: Li fullname: Li, Lingfeng organization: Guangxi University – sequence: 3 givenname: Hangyang surname: Li fullname: Li, Hangyang organization: Guangxi University – sequence: 4 givenname: Xiangyang surname: Gu fullname: Gu, Xiangyang organization: Guangxi University – sequence: 5 givenname: Boming surname: Han fullname: Han, Boming organization: Guangxi University – sequence: 6 givenname: Xuetang surname: Xu fullname: Xu, Xuetang organization: Guangxi University – sequence: 7 givenname: Fan orcidid: 0000-0002-6106-4724 surname: Wang fullname: Wang, Fan email: fanwang@gxu.edu.cn organization: Guangxi University – sequence: 8 givenname: Bin surname: Li fullname: Li, Bin email: binli@gxu.edu.cn organization: Guangxi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34716664$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9PFTEUxRuDkT-ydWkmccPmPft_OksygJi8gAZI2DV9nTtY0jfFtqPMSj-Cn9FPYl8eYEJiXPUsfufc3nt20dYQBkDoDcFzgjF9b1Oyc4opwUTV7AXaIUrymZD8eutJM7KNdlO6xVjiRspXaJvxmkgp-Q768Xk0yf3--euTicZ78NWZO4FqYSaI0FVHYVx6qE6nLoZ710F1ZoaQvgDk6jBGM6WqD7HQ8QZKRjvGCEMu6giG5PJUnd9PNzBUx9-CH7MLRXmwOQZrsvFTcuk1etkbn2D_4d1DVyfHl-3pbHH-4WN7uJhZVjM2U9AbaBQ3FCuielACOqYYE6q2gpZVpC170qaTRjDgVhpem45ZKnpB6bJhe-hgk3sXw9cRUtYrlyx4bwYIY9JUNJgwKYgo6Ltn6G0Y41B-p6ksszAXEhfq7QM1LlfQ6bvoViZO-vG0BeAbwMaQUoReW5fN-gg5Guc1wXrdoF43qJ8aLLb5M9tj8j8Nzcbw3XmY_kPr9uKi_ev9A_xtsdM |
CitedBy_id | crossref_primary_10_1002_adma_202307925 crossref_primary_10_1016_j_jallcom_2022_167612 crossref_primary_10_1021_acs_energyfuels_3c00315 crossref_primary_10_1002_advs_202202442 crossref_primary_10_1016_j_electacta_2022_140254 crossref_primary_10_1002_inf2_12639 crossref_primary_10_1016_j_apsusc_2023_158184 crossref_primary_10_1016_j_jallcom_2023_169325 crossref_primary_10_12677_NAT_2022_123013 crossref_primary_10_1016_j_jcis_2024_12_046 crossref_primary_10_1002_slct_202300111 crossref_primary_10_1002_cnma_202200509 crossref_primary_10_1002_cssc_202401582 crossref_primary_10_1016_j_seppur_2024_130220 crossref_primary_10_3390_catal11111394 crossref_primary_10_1016_j_pmatsci_2024_101410 crossref_primary_10_1016_j_jpowsour_2022_232564 crossref_primary_10_1002_smll_202409959 crossref_primary_10_1016_j_jpowsour_2024_235302 crossref_primary_10_1002_cssc_202201205 crossref_primary_10_1002_aenm_202303730 crossref_primary_10_1016_j_cej_2023_147443 crossref_primary_10_1016_j_jcis_2022_09_053 |
Cites_doi | 10.1016/j.matchemphys.2020.123496 10.1002/anie.201910716 10.1002/smll.201803783 10.1002/adma.201806326 10.1039/C7NR04187J 10.1039/C9TA01531K 10.1002/cssc.202002782 10.1021/acsami.8b16425 10.1002/aenm.201500091 10.1016/j.est.2021.102858 10.1016/j.jpowsour.2018.10.075 10.1002/adfm.201900315 10.1016/j.jpowsour.2019.227375 10.1002/cssc.201902841 10.1039/C8EE00927A 10.1038/ncomms5477 10.1002/adfm.201804361 10.1039/C9TA04568F 10.1039/D0NR07262A 10.1149/2.0481815jes 10.1002/smll.201902551 10.1016/j.electacta.2020.137680 10.1021/acssuschemeng.1c02293 10.1039/C9NR09959J 10.1039/C9EE02380A 10.1021/acs.nanolett.8b04466 10.1021/acsami.1c01428 10.1002/adma.201900883 10.1002/advs.201600343 10.1002/smll.202007334 10.1039/C7CC04604A 10.1016/j.cej.2020.125738 10.1002/advs.201800949 10.1016/j.ces.2021.116774 10.1021/acssuschemeng.0c08147 10.1002/aenm.201803358 10.1039/D0TA01680B 10.1021/ja502379c 10.1039/C8TA07869F 10.1016/j.jcat.2016.01.027 10.1039/C5TA07047C 10.1073/pnas.1620787114 10.1002/chem.202000209 10.1002/ange.201909939 10.1016/j.nanoen.2017.05.022 10.1002/adma.201808167 10.1021/acsnano.7b03431 10.1021/acscatal.9b05445 10.1039/C9EE02388G 10.1021/acsami.1c09084 10.1002/ange.201910716 10.1002/advs.201700687 10.1021/acs.chemmater.6b02796 10.1002/celc.201900857 10.1016/j.nanoen.2019.04.014 10.1002/aenm.201900954 10.1021/acs.nanolett.0c03950 10.1039/C7CC08340H 10.1002/anie.201909939 10.1039/C8TA11273H |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.202101873 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | n/a |
ExternalDocumentID | 34716664 10_1002_cssc_202101873 CSSC202101873 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51862002; 22065003 – fundername: Innovation Project of Guangxi Graduate Education funderid: YCBZ2020009 – fundername: Innovative Scientists and Technicians Program for Undergraduates of Guangxi funderid: 202110593183 – fundername: Natural Science Foundation of Guangxi Province funderid: 2018GXNSFAA294049 – fundername: National Natural Science Foundation of China grantid: 22065003 – fundername: Natural Science Foundation of Guangxi Province grantid: 2018GXNSFAA294049 – fundername: Innovation Project of Guangxi Graduate Education grantid: YCBZ2020009 – fundername: National Natural Science Foundation of China grantid: 51862002 – fundername: Innovative Scientists and Technicians Program for Undergraduates of Guangxi grantid: 202110593183 |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX AEYWJ AGYGG CITATION NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3733-8efae984a20818fe85ed3833587c526666c56329d6a53e4c6a47ad3c25f522b93 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 03:24:18 EDT 2025 Sun Jul 20 06:41:45 EDT 2025 Wed Feb 19 02:27:21 EST 2025 Tue Jul 01 00:36:18 EDT 2025 Thu Apr 24 23:04:44 EDT 2025 Wed Jan 22 16:27:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | oxygen evolution reaction layered double hydroxides hydrothermal synthesis water oxidation electrocatalysis |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-8efae984a20818fe85ed3833587c526666c56329d6a53e4c6a47ad3c25f522b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6106-4724 |
PMID | 34716664 |
PQID | 2626604560 |
PQPubID | 986333 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2590136515 proquest_journals_2626604560 pubmed_primary_34716664 crossref_citationtrail_10_1002_cssc_202101873 crossref_primary_10_1002_cssc_202101873 wiley_primary_10_1002_cssc_202101873_CSSC202101873 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 8, 2022 |
PublicationDateYYYYMMDD | 2022-02-08 |
PublicationDate_xml | – month: 02 year: 2022 text: February 8, 2022 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2019; 7 2019; 9 2018; 28 2018; 165 2021; 21 2015; 5 2015; 4 2019; 6 2017; 4 2019; 5 2019; 31 2019; 15 2020; 369 2020; 448 2019; 19 2020; 13 2020; 12 2017; 29 2021; 243 2020; 10 2020; 32 2017; 114 2017; 9 2014; 136 2019 2019; 58 131 2021; 14 2020; 8 2021; 13 2018; 6 2017; 53 2014; 5 2019; 60 2018; 5 2017; 37 2016; 338 2021; 17 2019; 412 2020; 26 2019; 29 2020; 254 2020; 399 2018; 12 2018; 11 2018; 10 2021; 41 2018; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_52_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_53_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 26 start-page: 6423 year: 2020 end-page: 6436 publication-title: Chem. Eur. J. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 58 131 start-page: 17458 17619 year: 2019 2019 end-page: 17464 17625 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 24717 year: 2018 end-page: 24727 publication-title: J. Mater. Chem. A – volume: 12 start-page: 4426 year: 2020 end-page: 4434 publication-title: Nanoscale – volume: 13 start-page: 1807 year: 2021 end-page: 1812 publication-title: Nanoscale – volume: 14 year: 2018 publication-title: Small – volume: 13 start-page: 41545 year: 2021 end-page: 41554 publication-title: ACS Appl. Mater. Interfaces – volume: 369 year: 2020 publication-title: Electrochim. Acta – volume: 21 start-page: 492 year: 2021 end-page: 499 publication-title: Nano Lett. – volume: 10 start-page: 4019 year: 2020 end-page: 4047 publication-title: ACS Catal. – volume: 9 start-page: 8249 year: 2021 end-page: 8256 publication-title: ACS Sustainable Chem. Eng. – volume: 254 year: 2020 publication-title: Mater. Chem. Phys. – volume: 29 start-page: 120 year: 2017 end-page: 140 publication-title: Chem. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 811 year: 2020 end-page: 818 publication-title: ChemSusChem – volume: 243 year: 2021 publication-title: Chem. Eng. Sci. – volume: 5 start-page: 4477 year: 2014 publication-title: Nat. Commun. – volume: 4 start-page: 167 year: 2015 end-page: 172 publication-title: J. Mater. Chem. A – volume: 6 start-page: 3488 year: 2019 end-page: 3498 publication-title: ChemElectroChem – volume: 7 start-page: 5069 year: 2019 end-page: 5089 publication-title: J. Mater. Chem. A – volume: 448 year: 2020 publication-title: J. Power Sources – volume: 60 start-page: 661 year: 2019 end-page: 666 publication-title: Nano Energy – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 412 start-page: 10 year: 2019 end-page: 17 publication-title: J. Power Sources – volume: 41 year: 2021 publication-title: J. Energy Storage – volume: 13 start-page: 174 year: 2020 end-page: 182 publication-title: Energy Environ. Sci. – volume: 19 start-page: 530 year: 2019 end-page: 537 publication-title: Nano Lett. – volume: 53 start-page: 8010 year: 2017 end-page: 8013 publication-title: Chem. Commun. – volume: 7 start-page: 19589 year: 2019 end-page: 19596 publication-title: J. Mater. Chem. A – volume: 7 start-page: 13130 year: 2019 end-page: 13141 publication-title: J. Mater. Chem. A – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 8 start-page: 10096 year: 2020 end-page: 10129 publication-title: J. Mater. Chem. A – volume: 17 year: 2021 publication-title: Small – volume: 338 start-page: 21 year: 2016 end-page: 29 publication-title: J. Catal. – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 11 start-page: 2858 year: 2018 end-page: 2864 publication-title: Energy Environ. Sci. – volume: 10 start-page: 42453 year: 2018 end-page: 42468 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 9 start-page: 12231 year: 2017 end-page: 12247 publication-title: Nanoscale – volume: 399 year: 2020 publication-title: Chem. Eng. J. – volume: 12 start-page: 1033 year: 2018 end-page: 1042 publication-title: ACS Nano – volume: 9 start-page: 1826 year: 2021 end-page: 1836 publication-title: ACS Sustainable Chem. Eng. – volume: 13 start-page: 86 year: 2020 end-page: 95 publication-title: Energy Environ. Sci. – volume: 53 start-page: 13153 year: 2017 end-page: 13156 publication-title: Chem. Commun. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 114 start-page: 1486 year: 2017 end-page: 1491 publication-title: Proc. Nat. Acad. Sci. – volume: 5 year: 2019 publication-title: Adv. Sci. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 13 start-page: 18772 year: 2021 end-page: 18783 publication-title: ACS Appl. Mater. Interfaces – volume: 37 start-page: 136 year: 2017 end-page: 157 publication-title: Nano Energy – volume: 14 start-page: 1595 year: 2021 end-page: 1601 publication-title: ChemSusChem – volume: 165 start-page: J3395 year: 2018 end-page: J3404 publication-title: J. Electrochem. Soc. – volume: 136 start-page: 6744 year: 2014 end-page: 6753 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 15772 15919 year: 2019 2019 end-page: 15777 15924 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_7_32_1 doi: 10.1016/j.matchemphys.2020.123496 – ident: e_1_2_7_52_1 doi: 10.1002/anie.201910716 – ident: e_1_2_7_54_1 doi: 10.1002/smll.201803783 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201806326 – ident: e_1_2_7_14_1 doi: 10.1039/C7NR04187J – ident: e_1_2_7_21_1 doi: 10.1039/C9TA01531K – ident: e_1_2_7_48_1 doi: 10.1002/cssc.202002782 – ident: e_1_2_7_30_1 doi: 10.1021/acsami.8b16425 – ident: e_1_2_7_49_1 doi: 10.1002/aenm.201500091 – ident: e_1_2_7_36_1 doi: 10.1016/j.est.2021.102858 – ident: e_1_2_7_27_1 doi: 10.1016/j.jpowsour.2018.10.075 – ident: e_1_2_7_55_1 doi: 10.1002/adfm.201900315 – ident: e_1_2_7_8_1 doi: 10.1016/j.jpowsour.2019.227375 – ident: e_1_2_7_11_1 doi: 10.1002/cssc.201902841 – ident: e_1_2_7_17_1 doi: 10.1039/C8EE00927A – ident: e_1_2_7_7_1 doi: 10.1038/ncomms5477 – ident: e_1_2_7_25_1 doi: 10.1002/adfm.201804361 – ident: e_1_2_7_44_1 doi: 10.1039/C9TA04568F – ident: e_1_2_7_41_1 doi: 10.1039/D0NR07262A – ident: e_1_2_7_57_1 doi: 10.1149/2.0481815jes – ident: e_1_2_7_38_1 doi: 10.1002/smll.201902551 – ident: e_1_2_7_20_1 doi: 10.1016/j.electacta.2020.137680 – ident: e_1_2_7_42_1 doi: 10.1021/acssuschemeng.1c02293 – ident: e_1_2_7_24_1 doi: 10.1039/C9NR09959J – ident: e_1_2_7_35_1 doi: 10.1039/C9EE02380A – ident: e_1_2_7_51_1 doi: 10.1021/acs.nanolett.8b04466 – ident: e_1_2_7_22_1 doi: 10.1021/acsami.1c01428 – ident: e_1_2_7_43_1 doi: 10.1002/adma.201900883 – ident: e_1_2_7_15_1 doi: 10.1002/advs.201600343 – ident: e_1_2_7_19_1 doi: 10.1002/smll.202007334 – ident: e_1_2_7_33_1 doi: 10.1039/C7CC04604A – ident: e_1_2_7_10_1 doi: 10.1016/j.cej.2020.125738 – ident: e_1_2_7_18_1 doi: 10.1002/advs.201800949 – ident: e_1_2_7_40_1 doi: 10.1016/j.ces.2021.116774 – ident: e_1_2_7_13_1 doi: 10.1021/acssuschemeng.0c08147 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.201803358 – ident: e_1_2_7_50_1 doi: 10.1039/D0TA01680B – ident: e_1_2_7_47_1 doi: 10.1021/ja502379c – ident: e_1_2_7_28_1 doi: 10.1039/C8TA07869F – ident: e_1_2_7_37_1 doi: 10.1016/j.jcat.2016.01.027 – ident: e_1_2_7_31_1 doi: 10.1039/C5TA07047C – ident: e_1_2_7_46_1 doi: 10.1073/pnas.1620787114 – ident: e_1_2_7_4_1 doi: 10.1002/chem.202000209 – ident: e_1_2_7_53_2 doi: 10.1002/ange.201909939 – ident: e_1_2_7_1_1 doi: 10.1016/j.nanoen.2017.05.022 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201808167 – ident: e_1_2_7_29_1 doi: 10.1021/acsnano.7b03431 – ident: e_1_2_7_2_1 doi: 10.1021/acscatal.9b05445 – ident: e_1_2_7_23_1 doi: 10.1039/C9EE02388G – ident: e_1_2_7_58_1 doi: 10.1021/acsami.1c09084 – ident: e_1_2_7_52_2 doi: 10.1002/ange.201910716 – ident: e_1_2_7_26_1 doi: 10.1002/advs.201700687 – ident: e_1_2_7_56_1 doi: 10.1021/acs.chemmater.6b02796 – ident: e_1_2_7_45_1 doi: 10.1002/celc.201900857 – ident: e_1_2_7_34_1 doi: 10.1016/j.nanoen.2019.04.014 – ident: e_1_2_7_5_1 doi: 10.1002/aenm.201900954 – ident: e_1_2_7_16_1 doi: 10.1021/acs.nanolett.0c03950 – ident: e_1_2_7_39_1 doi: 10.1039/C7CC08340H – ident: e_1_2_7_53_1 doi: 10.1002/anie.201909939 – ident: e_1_2_7_6_1 doi: 10.1039/C8TA11273H |
SSID | ssj0060966 |
Score | 2.4682539 |
Snippet | Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm−2) is critical to practical water splitting applications. Herein,... Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm −2 ) is critical to practical water splitting applications.... Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm ) is critical to practical water splitting applications. Herein,... Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm-2 ) is critical to practical water splitting applications.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202101873 |
SubjectTerms | Arrays Chemical evolution Current density Electrical resistivity electrocatalysis Electrocatalysts Electrode materials hydrothermal synthesis Hydroxides Intermetallic compounds Iron compounds layered double hydroxides Metal foams Nanosheets Nickel compounds Oxygen oxygen evolution reaction Substrates water oxidation Water splitting |
Title | Quasi‐Parallel NiFe Layered Double Hydroxide Nanosheet Arrays for Large‐Current‐Density Oxygen Evolution Electrocatalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202101873 https://www.ncbi.nlm.nih.gov/pubmed/34716664 https://www.proquest.com/docview/2626604560 https://www.proquest.com/docview/2590136515 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JjtQwELXQXODCvjQzICMhcfIs3uIcUdOtFoJhGUaaW2Q7FWjR6kad9IhwgU_gG_kSqrJBgxAS3LKUHS9V9rPjesXYQ3wqUwlHAhcXidDKgXDeGqG9LBSOmraQ5OD8_NjOTvXTM3P2kxd_yw8xbLiRZTTjNRm4D-XBD9LQWJZEQSiJciohuk86sEWo6PXAH2URnzfuRc5qYaw66lkbD-XBdvLtWek3qLmNXJupZ3qF-b7Q7YmT9_ubKuzHT7_wOf5Pra6yyx0u5Y9bRbrGLsDyOrs47sPB3WCfX218Of_25etLv6b4Kwt-PJ8Cf-ZrivbJEYiHBfBZnWMp5zlwHLZX5TuACvNc-7rkiI5Rev0WMI-OFQqvntAB-qrmLz7WqMp8ct6ZAp-08Xma7SViTbnJTqeTN-OZ6KI3iKgSpYSDwkPqsNOJNa8AZyBX5OLlkmgQFlgbsUtkmltvFOhovU58rqI0BWLCkKpbbGe5WsIdxpUk3n2d6mCsRoAYTKKCUjHF5WJwoEdM9L2XxY7anCJsLLKWlFlm1KzZ0Kwj9miQ_9CSevxRcq9Xhqwz7jKTuAi0BIUPR-zB8Bq7g_61-CWsNihDPr2K4syP2O1WiYZPKQQEWH0stmxU4S9lyMYnJ-Ph7u6_JNpllyS5bdBpc7fHdqr1Bu4hmKrC_cZgvgOS-xgQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1F4RAu7MtAgEYCcXKW3mwfOKBZNCGTYUki5ea0220YMZpBYw9gLvAJ_Aq_wifwJVR5QwNCSEg5cPPSbvdS1VXVdr0H8ACv8pC7XQ-DC9-TInBeYLTypOGpwFVTp5wSnA_Gengsn56okzX42uTCVPgQ7YYbaUa5XpOC04b09k_UUJtlhEHICXPKb_ir913xHqO27PFeD6f4IeeD_lF36NXEAp4VvhBe4FLjwgDbQ4BuqQuUSwRlHwW-VWixtLZKCx4m2ijhpNVG-iYRlqsU3ZWY8Jdw1T9HNOIE19972SJWaYwIyoSmQEsP69htcCJ3-PZqe1ft4G_O7aqvXBq7wUX41gxT9Y_Lm61lHm_Zj78gSP5X43gJLtSuN3tS6cplWHOzK7DRbRjvrsKnF0uTTb5__vLcLIhiZsrGk4FjI1MQoSnDWCOeOjYsEhyWSeIYWqZ59tq5HOtcmCJjGABg6cUrh3XUwFd41KMcgbxgzz4UqK2s_67WdtavKIjKHTQChrkGx2fS_-uwPpvP3E1gghO1gAxlrLREHzhWvoiFsCFGxHHgZAe8RlwiW6O3E4nINKpwp3lE0xi109iBR235txVuyR9LbjbSF9XrVxZxjHM1efs7Hbjf3sbpoM9JZubmSyxDacsCdUB14EYlte2rBPo82H1sNi9l7y9tiLqHh9327Na_PHQPNoZHB6NotDfevw3nOWWp0M_1wSas54ulu4O-Yx7fLbWVwelZi_UPzLJz9w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qigRseD8CBQYJxMptMjMe2wsWKA-ltIRCqdSdO7avadQoqeIEMBv4BD6FX-EX-BLu9QsFhJCQumDnx3g8nrl35lzb9xyAR3RUBhI7DgUXnqOVj45vjetoK1NFs6ZJJSc4vxiZ4YF-fugersHXOhem5IdoXrixZxTzNTv4aZJu_SQNjbOMKQglU055tXz1DubvKWjLnm73aIQfSznov-kOnUpXwImVp5TjY2ox8Kk5zOeWou9iojj5yPdilxYsY2LXKBkkxroKdWys9myiYummhFYipl-iSf-cNu2AxSJ6rxvCKjpSfB3t-EY7VEenpolsy63V9q4ug79h21WoXKx1g8vwre6l8heXk83lItqMP_5CIPk_deMVuFQBb_Gs9JSrsIbTa3ChW-vdXYdPr5Y2G3___GXPzllgZiJG4wGKXZuznKmgSCOaoBjmCfXKOEFB69IsO0ZcUJ1zm2eC4D-Vnr9FqqOivaKtHmcILHLx8kNOvir67ypfF_1SgKh4f8a0MDfg4Eye_yasT2dTvA1CSRYW0IGOXKMJAUeupyKl4oDi4chH3QKntpYwrrjbWUJkEpas0zLkYQybYWzBk6b8acla8seSG7XxhdXslYWSolzDWL_dgofNaRoO_phkpzhbUhlOWlaG4HALbpVG29xKEeKhx6dmy8L0_tKGsLu_32327vzLRQ_g_F5vEO5uj3buwkXJKSr8Z72_AeuL-RLvEXBcRPcLXxVwdNZW_QPfo3Km |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-Parallel+NiFe+Layered+Double+Hydroxide+Nanosheet+Arrays+for+Large-Current-Density+Oxygen+Evolution+Electrocatalysis&rft.jtitle=ChemSusChem&rft.au=Ye%2C+Qinglan&rft.au=Li%2C+Lingfeng&rft.au=Li%2C+Hangyang&rft.au=Gu%2C+Xiangyang&rft.date=2022-02-08&rft.issn=1864-564X&rft.eissn=1864-564X&rft.volume=15&rft.issue=3&rft.spage=e202101873&rft_id=info:doi/10.1002%2Fcssc.202101873&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |