Quasi‐Parallel NiFe Layered Double Hydroxide Nanosheet Arrays for Large‐Current‐Density Oxygen Evolution Electrocatalysis

Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm−2) is critical to practical water splitting applications. Herein, a novel quasi‐parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The ini...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 15; no. 3; pp. e202101873 - n/a
Main Authors Ye, Qinglan, Li, Lingfeng, Li, Hangyang, Gu, Xiangyang, Han, Boming, Xu, Xuetang, Wang, Fan, Li, Bin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 08.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm−2) is critical to practical water splitting applications. Herein, a novel quasi‐parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α‐Ni(OH)2 layer induced effective coprecipitation between Ni2+ and Fe3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi‐parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec−1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm−2 in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm−2. This work presents a new strategy towards fabricating electrode materials with exceptional performance. Oxygen evolution: Quasi‐parallel NiFe layered double hydroxide nanosheet arrays with domain patterns are formed on Ni foam. Benefiting from the enhanced interaction between active materials and substrate, the electrode delivers high electrocatalytic activity for the oxygen evolution reaction (overpotentials of 196, 255, and 284 mV at 10, 500, and 1000 mA cm−2) and excellent long‐term stability.
AbstractList Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm-2 ) is critical to practical water splitting applications. Herein, a novel quasi-parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α-Ni(OH)2 layer induced effective coprecipitation between Ni2+ and Fe3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi-parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec-1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm-2 in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm-2 . This work presents a new strategy towards fabricating electrode materials with exceptional performance.Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm-2 ) is critical to practical water splitting applications. Herein, a novel quasi-parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α-Ni(OH)2 layer induced effective coprecipitation between Ni2+ and Fe3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi-parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec-1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm-2 in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm-2 . This work presents a new strategy towards fabricating electrode materials with exceptional performance.
Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm ) is critical to practical water splitting applications. Herein, a novel quasi-parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α-Ni(OH) layer induced effective coprecipitation between Ni and Fe for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi-parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm . This work presents a new strategy towards fabricating electrode materials with exceptional performance.
Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm−2) is critical to practical water splitting applications. Herein, a novel quasi‐parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α‐Ni(OH)2 layer induced effective coprecipitation between Ni2+ and Fe3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi‐parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec−1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm−2 in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm−2. This work presents a new strategy towards fabricating electrode materials with exceptional performance.
Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm −2 ) is critical to practical water splitting applications. Herein, a novel quasi‐parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α‐Ni(OH) 2 layer induced effective coprecipitation between Ni 2+ and Fe 3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi‐parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec −1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm −2 in 1.0  m KOH solution, respectively, and high stability over 40 h at 750 mA cm −2 . This work presents a new strategy towards fabricating electrode materials with exceptional performance.
Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm−2) is critical to practical water splitting applications. Herein, a novel quasi‐parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α‐Ni(OH)2 layer induced effective coprecipitation between Ni2+ and Fe3+ for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity. Quasi‐parallel NiFe LDH nanoarrays exhibited outstanding oxygen evolution activity with a small Tafel slope of 30.1 mV dec−1 and overpotentials of 196, 255, and 284 mV at a current density of 10, 500, and 1000 mA cm−2 in 1.0 m KOH solution, respectively, and high stability over 40 h at 750 mA cm−2. This work presents a new strategy towards fabricating electrode materials with exceptional performance. Oxygen evolution: Quasi‐parallel NiFe layered double hydroxide nanosheet arrays with domain patterns are formed on Ni foam. Benefiting from the enhanced interaction between active materials and substrate, the electrode delivers high electrocatalytic activity for the oxygen evolution reaction (overpotentials of 196, 255, and 284 mV at 10, 500, and 1000 mA cm−2) and excellent long‐term stability.
Author Ye, Qinglan
Li, Lingfeng
Gu, Xiangyang
Han, Boming
Li, Bin
Li, Hangyang
Xu, Xuetang
Wang, Fan
Author_xml – sequence: 1
  givenname: Qinglan
  surname: Ye
  fullname: Ye, Qinglan
  organization: Guangxi University
– sequence: 2
  givenname: Lingfeng
  surname: Li
  fullname: Li, Lingfeng
  organization: Guangxi University
– sequence: 3
  givenname: Hangyang
  surname: Li
  fullname: Li, Hangyang
  organization: Guangxi University
– sequence: 4
  givenname: Xiangyang
  surname: Gu
  fullname: Gu, Xiangyang
  organization: Guangxi University
– sequence: 5
  givenname: Boming
  surname: Han
  fullname: Han, Boming
  organization: Guangxi University
– sequence: 6
  givenname: Xuetang
  surname: Xu
  fullname: Xu, Xuetang
  organization: Guangxi University
– sequence: 7
  givenname: Fan
  orcidid: 0000-0002-6106-4724
  surname: Wang
  fullname: Wang, Fan
  email: fanwang@gxu.edu.cn
  organization: Guangxi University
– sequence: 8
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  email: binli@gxu.edu.cn
  organization: Guangxi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34716664$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9PFTEUxRuDkT-ydWkmccPmPft_OksygJi8gAZI2DV9nTtY0jfFtqPMSj-Cn9FPYl8eYEJiXPUsfufc3nt20dYQBkDoDcFzgjF9b1Oyc4opwUTV7AXaIUrymZD8eutJM7KNdlO6xVjiRspXaJvxmkgp-Q768Xk0yf3--euTicZ78NWZO4FqYSaI0FVHYVx6qE6nLoZ710F1ZoaQvgDk6jBGM6WqD7HQ8QZKRjvGCEMu6giG5PJUnd9PNzBUx9-CH7MLRXmwOQZrsvFTcuk1etkbn2D_4d1DVyfHl-3pbHH-4WN7uJhZVjM2U9AbaBQ3FCuielACOqYYE6q2gpZVpC170qaTRjDgVhpem45ZKnpB6bJhe-hgk3sXw9cRUtYrlyx4bwYIY9JUNJgwKYgo6Ltn6G0Y41B-p6ksszAXEhfq7QM1LlfQ6bvoViZO-vG0BeAbwMaQUoReW5fN-gg5Guc1wXrdoF43qJ8aLLb5M9tj8j8Nzcbw3XmY_kPr9uKi_ev9A_xtsdM
CitedBy_id crossref_primary_10_1002_adma_202307925
crossref_primary_10_1016_j_jallcom_2022_167612
crossref_primary_10_1021_acs_energyfuels_3c00315
crossref_primary_10_1002_advs_202202442
crossref_primary_10_1016_j_electacta_2022_140254
crossref_primary_10_1002_inf2_12639
crossref_primary_10_1016_j_apsusc_2023_158184
crossref_primary_10_1016_j_jallcom_2023_169325
crossref_primary_10_12677_NAT_2022_123013
crossref_primary_10_1016_j_jcis_2024_12_046
crossref_primary_10_1002_slct_202300111
crossref_primary_10_1002_cnma_202200509
crossref_primary_10_1002_cssc_202401582
crossref_primary_10_1016_j_seppur_2024_130220
crossref_primary_10_3390_catal11111394
crossref_primary_10_1016_j_pmatsci_2024_101410
crossref_primary_10_1016_j_jpowsour_2022_232564
crossref_primary_10_1002_smll_202409959
crossref_primary_10_1016_j_jpowsour_2024_235302
crossref_primary_10_1002_cssc_202201205
crossref_primary_10_1002_aenm_202303730
crossref_primary_10_1016_j_cej_2023_147443
crossref_primary_10_1016_j_jcis_2022_09_053
Cites_doi 10.1016/j.matchemphys.2020.123496
10.1002/anie.201910716
10.1002/smll.201803783
10.1002/adma.201806326
10.1039/C7NR04187J
10.1039/C9TA01531K
10.1002/cssc.202002782
10.1021/acsami.8b16425
10.1002/aenm.201500091
10.1016/j.est.2021.102858
10.1016/j.jpowsour.2018.10.075
10.1002/adfm.201900315
10.1016/j.jpowsour.2019.227375
10.1002/cssc.201902841
10.1039/C8EE00927A
10.1038/ncomms5477
10.1002/adfm.201804361
10.1039/C9TA04568F
10.1039/D0NR07262A
10.1149/2.0481815jes
10.1002/smll.201902551
10.1016/j.electacta.2020.137680
10.1021/acssuschemeng.1c02293
10.1039/C9NR09959J
10.1039/C9EE02380A
10.1021/acs.nanolett.8b04466
10.1021/acsami.1c01428
10.1002/adma.201900883
10.1002/advs.201600343
10.1002/smll.202007334
10.1039/C7CC04604A
10.1016/j.cej.2020.125738
10.1002/advs.201800949
10.1016/j.ces.2021.116774
10.1021/acssuschemeng.0c08147
10.1002/aenm.201803358
10.1039/D0TA01680B
10.1021/ja502379c
10.1039/C8TA07869F
10.1016/j.jcat.2016.01.027
10.1039/C5TA07047C
10.1073/pnas.1620787114
10.1002/chem.202000209
10.1002/ange.201909939
10.1016/j.nanoen.2017.05.022
10.1002/adma.201808167
10.1021/acsnano.7b03431
10.1021/acscatal.9b05445
10.1039/C9EE02388G
10.1021/acsami.1c09084
10.1002/ange.201910716
10.1002/advs.201700687
10.1021/acs.chemmater.6b02796
10.1002/celc.201900857
10.1016/j.nanoen.2019.04.014
10.1002/aenm.201900954
10.1021/acs.nanolett.0c03950
10.1039/C7CC08340H
10.1002/anie.201909939
10.1039/C8TA11273H
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202101873
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage n/a
ExternalDocumentID 34716664
10_1002_cssc_202101873
CSSC202101873
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51862002; 22065003
– fundername: Innovation Project of Guangxi Graduate Education
  funderid: YCBZ2020009
– fundername: Innovative Scientists and Technicians Program for Undergraduates of Guangxi
  funderid: 202110593183
– fundername: Natural Science Foundation of Guangxi Province
  funderid: 2018GXNSFAA294049
– fundername: National Natural Science Foundation of China
  grantid: 22065003
– fundername: Natural Science Foundation of Guangxi Province
  grantid: 2018GXNSFAA294049
– fundername: Innovation Project of Guangxi Graduate Education
  grantid: YCBZ2020009
– fundername: National Natural Science Foundation of China
  grantid: 51862002
– fundername: Innovative Scientists and Technicians Program for Undergraduates of Guangxi
  grantid: 202110593183
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGYGG
CITATION
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
K9.
7X8
ID FETCH-LOGICAL-c3733-8efae984a20818fe85ed3833587c526666c56329d6a53e4c6a47ad3c25f522b93
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 03:24:18 EDT 2025
Sun Jul 20 06:41:45 EDT 2025
Wed Feb 19 02:27:21 EST 2025
Tue Jul 01 00:36:18 EDT 2025
Thu Apr 24 23:04:44 EDT 2025
Wed Jan 22 16:27:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords oxygen evolution reaction
layered double hydroxides
hydrothermal synthesis
water oxidation
electrocatalysis
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-8efae984a20818fe85ed3833587c526666c56329d6a53e4c6a47ad3c25f522b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6106-4724
PMID 34716664
PQID 2626604560
PQPubID 986333
PageCount 9
ParticipantIDs proquest_miscellaneous_2590136515
proquest_journals_2626604560
pubmed_primary_34716664
crossref_citationtrail_10_1002_cssc_202101873
crossref_primary_10_1002_cssc_202101873
wiley_primary_10_1002_cssc_202101873_CSSC202101873
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 8, 2022
PublicationDateYYYYMMDD 2022-02-08
PublicationDate_xml – month: 02
  year: 2022
  text: February 8, 2022
  day: 08
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2019; 7
2019; 9
2018; 28
2018; 165
2021; 21
2015; 5
2015; 4
2019; 6
2017; 4
2019; 5
2019; 31
2019; 15
2020; 369
2020; 448
2019; 19
2020; 13
2020; 12
2017; 29
2021; 243
2020; 10
2020; 32
2017; 114
2017; 9
2014; 136
2019 2019; 58 131
2021; 14
2020; 8
2021; 13
2018; 6
2017; 53
2014; 5
2019; 60
2018; 5
2017; 37
2016; 338
2021; 17
2019; 412
2020; 26
2019; 29
2020; 254
2020; 399
2018; 12
2018; 11
2018; 10
2021; 41
2018; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_52_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_53_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 26
  start-page: 6423
  year: 2020
  end-page: 6436
  publication-title: Chem. Eur. J.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 58 131
  start-page: 17458 17619
  year: 2019 2019
  end-page: 17464 17625
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 24717
  year: 2018
  end-page: 24727
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 4426
  year: 2020
  end-page: 4434
  publication-title: Nanoscale
– volume: 13
  start-page: 1807
  year: 2021
  end-page: 1812
  publication-title: Nanoscale
– volume: 14
  year: 2018
  publication-title: Small
– volume: 13
  start-page: 41545
  year: 2021
  end-page: 41554
  publication-title: ACS Appl. Mater. Interfaces
– volume: 369
  year: 2020
  publication-title: Electrochim. Acta
– volume: 21
  start-page: 492
  year: 2021
  end-page: 499
  publication-title: Nano Lett.
– volume: 10
  start-page: 4019
  year: 2020
  end-page: 4047
  publication-title: ACS Catal.
– volume: 9
  start-page: 8249
  year: 2021
  end-page: 8256
  publication-title: ACS Sustainable Chem. Eng.
– volume: 254
  year: 2020
  publication-title: Mater. Chem. Phys.
– volume: 29
  start-page: 120
  year: 2017
  end-page: 140
  publication-title: Chem. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 811
  year: 2020
  end-page: 818
  publication-title: ChemSusChem
– volume: 243
  year: 2021
  publication-title: Chem. Eng. Sci.
– volume: 5
  start-page: 4477
  year: 2014
  publication-title: Nat. Commun.
– volume: 4
  start-page: 167
  year: 2015
  end-page: 172
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 3488
  year: 2019
  end-page: 3498
  publication-title: ChemElectroChem
– volume: 7
  start-page: 5069
  year: 2019
  end-page: 5089
  publication-title: J. Mater. Chem. A
– volume: 448
  year: 2020
  publication-title: J. Power Sources
– volume: 60
  start-page: 661
  year: 2019
  end-page: 666
  publication-title: Nano Energy
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 412
  start-page: 10
  year: 2019
  end-page: 17
  publication-title: J. Power Sources
– volume: 41
  year: 2021
  publication-title: J. Energy Storage
– volume: 13
  start-page: 174
  year: 2020
  end-page: 182
  publication-title: Energy Environ. Sci.
– volume: 19
  start-page: 530
  year: 2019
  end-page: 537
  publication-title: Nano Lett.
– volume: 53
  start-page: 8010
  year: 2017
  end-page: 8013
  publication-title: Chem. Commun.
– volume: 7
  start-page: 19589
  year: 2019
  end-page: 19596
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 13130
  year: 2019
  end-page: 13141
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 8
  start-page: 10096
  year: 2020
  end-page: 10129
  publication-title: J. Mater. Chem. A
– volume: 17
  year: 2021
  publication-title: Small
– volume: 338
  start-page: 21
  year: 2016
  end-page: 29
  publication-title: J. Catal.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2858
  year: 2018
  end-page: 2864
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 42453
  year: 2018
  end-page: 42468
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 12231
  year: 2017
  end-page: 12247
  publication-title: Nanoscale
– volume: 399
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 1033
  year: 2018
  end-page: 1042
  publication-title: ACS Nano
– volume: 9
  start-page: 1826
  year: 2021
  end-page: 1836
  publication-title: ACS Sustainable Chem. Eng.
– volume: 13
  start-page: 86
  year: 2020
  end-page: 95
  publication-title: Energy Environ. Sci.
– volume: 53
  start-page: 13153
  year: 2017
  end-page: 13156
  publication-title: Chem. Commun.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 114
  start-page: 1486
  year: 2017
  end-page: 1491
  publication-title: Proc. Nat. Acad. Sci.
– volume: 5
  year: 2019
  publication-title: Adv. Sci.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 13
  start-page: 18772
  year: 2021
  end-page: 18783
  publication-title: ACS Appl. Mater. Interfaces
– volume: 37
  start-page: 136
  year: 2017
  end-page: 157
  publication-title: Nano Energy
– volume: 14
  start-page: 1595
  year: 2021
  end-page: 1601
  publication-title: ChemSusChem
– volume: 165
  start-page: J3395
  year: 2018
  end-page: J3404
  publication-title: J. Electrochem. Soc.
– volume: 136
  start-page: 6744
  year: 2014
  end-page: 6753
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 15772 15919
  year: 2019 2019
  end-page: 15777 15924
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_7_32_1
  doi: 10.1016/j.matchemphys.2020.123496
– ident: e_1_2_7_52_1
  doi: 10.1002/anie.201910716
– ident: e_1_2_7_54_1
  doi: 10.1002/smll.201803783
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201806326
– ident: e_1_2_7_14_1
  doi: 10.1039/C7NR04187J
– ident: e_1_2_7_21_1
  doi: 10.1039/C9TA01531K
– ident: e_1_2_7_48_1
  doi: 10.1002/cssc.202002782
– ident: e_1_2_7_30_1
  doi: 10.1021/acsami.8b16425
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.201500091
– ident: e_1_2_7_36_1
  doi: 10.1016/j.est.2021.102858
– ident: e_1_2_7_27_1
  doi: 10.1016/j.jpowsour.2018.10.075
– ident: e_1_2_7_55_1
  doi: 10.1002/adfm.201900315
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jpowsour.2019.227375
– ident: e_1_2_7_11_1
  doi: 10.1002/cssc.201902841
– ident: e_1_2_7_17_1
  doi: 10.1039/C8EE00927A
– ident: e_1_2_7_7_1
  doi: 10.1038/ncomms5477
– ident: e_1_2_7_25_1
  doi: 10.1002/adfm.201804361
– ident: e_1_2_7_44_1
  doi: 10.1039/C9TA04568F
– ident: e_1_2_7_41_1
  doi: 10.1039/D0NR07262A
– ident: e_1_2_7_57_1
  doi: 10.1149/2.0481815jes
– ident: e_1_2_7_38_1
  doi: 10.1002/smll.201902551
– ident: e_1_2_7_20_1
  doi: 10.1016/j.electacta.2020.137680
– ident: e_1_2_7_42_1
  doi: 10.1021/acssuschemeng.1c02293
– ident: e_1_2_7_24_1
  doi: 10.1039/C9NR09959J
– ident: e_1_2_7_35_1
  doi: 10.1039/C9EE02380A
– ident: e_1_2_7_51_1
  doi: 10.1021/acs.nanolett.8b04466
– ident: e_1_2_7_22_1
  doi: 10.1021/acsami.1c01428
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201900883
– ident: e_1_2_7_15_1
  doi: 10.1002/advs.201600343
– ident: e_1_2_7_19_1
  doi: 10.1002/smll.202007334
– ident: e_1_2_7_33_1
  doi: 10.1039/C7CC04604A
– ident: e_1_2_7_10_1
  doi: 10.1016/j.cej.2020.125738
– ident: e_1_2_7_18_1
  doi: 10.1002/advs.201800949
– ident: e_1_2_7_40_1
  doi: 10.1016/j.ces.2021.116774
– ident: e_1_2_7_13_1
  doi: 10.1021/acssuschemeng.0c08147
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.201803358
– ident: e_1_2_7_50_1
  doi: 10.1039/D0TA01680B
– ident: e_1_2_7_47_1
  doi: 10.1021/ja502379c
– ident: e_1_2_7_28_1
  doi: 10.1039/C8TA07869F
– ident: e_1_2_7_37_1
  doi: 10.1016/j.jcat.2016.01.027
– ident: e_1_2_7_31_1
  doi: 10.1039/C5TA07047C
– ident: e_1_2_7_46_1
  doi: 10.1073/pnas.1620787114
– ident: e_1_2_7_4_1
  doi: 10.1002/chem.202000209
– ident: e_1_2_7_53_2
  doi: 10.1002/ange.201909939
– ident: e_1_2_7_1_1
  doi: 10.1016/j.nanoen.2017.05.022
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201808167
– ident: e_1_2_7_29_1
  doi: 10.1021/acsnano.7b03431
– ident: e_1_2_7_2_1
  doi: 10.1021/acscatal.9b05445
– ident: e_1_2_7_23_1
  doi: 10.1039/C9EE02388G
– ident: e_1_2_7_58_1
  doi: 10.1021/acsami.1c09084
– ident: e_1_2_7_52_2
  doi: 10.1002/ange.201910716
– ident: e_1_2_7_26_1
  doi: 10.1002/advs.201700687
– ident: e_1_2_7_56_1
  doi: 10.1021/acs.chemmater.6b02796
– ident: e_1_2_7_45_1
  doi: 10.1002/celc.201900857
– ident: e_1_2_7_34_1
  doi: 10.1016/j.nanoen.2019.04.014
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.201900954
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.nanolett.0c03950
– ident: e_1_2_7_39_1
  doi: 10.1039/C7CC08340H
– ident: e_1_2_7_53_1
  doi: 10.1002/anie.201909939
– ident: e_1_2_7_6_1
  doi: 10.1039/C8TA11273H
SSID ssj0060966
Score 2.4682539
Snippet Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm−2) is critical to practical water splitting applications. Herein,...
Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm −2 ) is critical to practical water splitting applications....
Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm ) is critical to practical water splitting applications. Herein,...
Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm-2 ) is critical to practical water splitting applications....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202101873
SubjectTerms Arrays
Chemical evolution
Current density
Electrical resistivity
electrocatalysis
Electrocatalysts
Electrode materials
hydrothermal synthesis
Hydroxides
Intermetallic compounds
Iron compounds
layered double hydroxides
Metal foams
Nanosheets
Nickel compounds
Oxygen
oxygen evolution reaction
Substrates
water oxidation
Water splitting
Title Quasi‐Parallel NiFe Layered Double Hydroxide Nanosheet Arrays for Large‐Current‐Density Oxygen Evolution Electrocatalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202101873
https://www.ncbi.nlm.nih.gov/pubmed/34716664
https://www.proquest.com/docview/2626604560
https://www.proquest.com/docview/2590136515
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JjtQwELXQXODCvjQzICMhcfIs3uIcUdOtFoJhGUaaW2Q7FWjR6kad9IhwgU_gG_kSqrJBgxAS3LKUHS9V9rPjesXYQ3wqUwlHAhcXidDKgXDeGqG9LBSOmraQ5OD8_NjOTvXTM3P2kxd_yw8xbLiRZTTjNRm4D-XBD9LQWJZEQSiJciohuk86sEWo6PXAH2URnzfuRc5qYaw66lkbD-XBdvLtWek3qLmNXJupZ3qF-b7Q7YmT9_ubKuzHT7_wOf5Pra6yyx0u5Y9bRbrGLsDyOrs47sPB3WCfX218Of_25etLv6b4Kwt-PJ8Cf-ZrivbJEYiHBfBZnWMp5zlwHLZX5TuACvNc-7rkiI5Rev0WMI-OFQqvntAB-qrmLz7WqMp8ct6ZAp-08Xma7SViTbnJTqeTN-OZ6KI3iKgSpYSDwkPqsNOJNa8AZyBX5OLlkmgQFlgbsUtkmltvFOhovU58rqI0BWLCkKpbbGe5WsIdxpUk3n2d6mCsRoAYTKKCUjHF5WJwoEdM9L2XxY7anCJsLLKWlFlm1KzZ0Kwj9miQ_9CSevxRcq9Xhqwz7jKTuAi0BIUPR-zB8Bq7g_61-CWsNihDPr2K4syP2O1WiYZPKQQEWH0stmxU4S9lyMYnJ-Ph7u6_JNpllyS5bdBpc7fHdqr1Bu4hmKrC_cZgvgOS-xgQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1F4RAu7MtAgEYCcXKW3mwfOKBZNCGTYUki5ea0220YMZpBYw9gLvAJ_Aq_wifwJVR5QwNCSEg5cPPSbvdS1VXVdr0H8ACv8pC7XQ-DC9-TInBeYLTypOGpwFVTp5wSnA_Gengsn56okzX42uTCVPgQ7YYbaUa5XpOC04b09k_UUJtlhEHICXPKb_ir913xHqO27PFeD6f4IeeD_lF36NXEAp4VvhBe4FLjwgDbQ4BuqQuUSwRlHwW-VWixtLZKCx4m2ijhpNVG-iYRlqsU3ZWY8Jdw1T9HNOIE19972SJWaYwIyoSmQEsP69htcCJ3-PZqe1ft4G_O7aqvXBq7wUX41gxT9Y_Lm61lHm_Zj78gSP5X43gJLtSuN3tS6cplWHOzK7DRbRjvrsKnF0uTTb5__vLcLIhiZsrGk4FjI1MQoSnDWCOeOjYsEhyWSeIYWqZ59tq5HOtcmCJjGABg6cUrh3XUwFd41KMcgbxgzz4UqK2s_67WdtavKIjKHTQChrkGx2fS_-uwPpvP3E1gghO1gAxlrLREHzhWvoiFsCFGxHHgZAe8RlwiW6O3E4nINKpwp3lE0xi109iBR235txVuyR9LbjbSF9XrVxZxjHM1efs7Hbjf3sbpoM9JZubmSyxDacsCdUB14EYlte2rBPo82H1sNi9l7y9tiLqHh9327Na_PHQPNoZHB6NotDfevw3nOWWp0M_1wSas54ulu4O-Yx7fLbWVwelZi_UPzLJz9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qigRseD8CBQYJxMptMjMe2wsWKA-ltIRCqdSdO7avadQoqeIEMBv4BD6FX-EX-BLu9QsFhJCQumDnx3g8nrl35lzb9xyAR3RUBhI7DgUXnqOVj45vjetoK1NFs6ZJJSc4vxiZ4YF-fugersHXOhem5IdoXrixZxTzNTv4aZJu_SQNjbOMKQglU055tXz1DubvKWjLnm73aIQfSznov-kOnUpXwImVp5TjY2ox8Kk5zOeWou9iojj5yPdilxYsY2LXKBkkxroKdWys9myiYummhFYipl-iSf-cNu2AxSJ6rxvCKjpSfB3t-EY7VEenpolsy63V9q4ug79h21WoXKx1g8vwre6l8heXk83lItqMP_5CIPk_deMVuFQBb_Gs9JSrsIbTa3ChW-vdXYdPr5Y2G3___GXPzllgZiJG4wGKXZuznKmgSCOaoBjmCfXKOEFB69IsO0ZcUJ1zm2eC4D-Vnr9FqqOivaKtHmcILHLx8kNOvir67ypfF_1SgKh4f8a0MDfg4Eye_yasT2dTvA1CSRYW0IGOXKMJAUeupyKl4oDi4chH3QKntpYwrrjbWUJkEpas0zLkYQybYWzBk6b8acla8seSG7XxhdXslYWSolzDWL_dgofNaRoO_phkpzhbUhlOWlaG4HALbpVG29xKEeKhx6dmy8L0_tKGsLu_32327vzLRQ_g_F5vEO5uj3buwkXJKSr8Z72_AeuL-RLvEXBcRPcLXxVwdNZW_QPfo3Km
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-Parallel+NiFe+Layered+Double+Hydroxide+Nanosheet+Arrays+for+Large-Current-Density+Oxygen+Evolution+Electrocatalysis&rft.jtitle=ChemSusChem&rft.au=Ye%2C+Qinglan&rft.au=Li%2C+Lingfeng&rft.au=Li%2C+Hangyang&rft.au=Gu%2C+Xiangyang&rft.date=2022-02-08&rft.issn=1864-564X&rft.eissn=1864-564X&rft.volume=15&rft.issue=3&rft.spage=e202101873&rft_id=info:doi/10.1002%2Fcssc.202101873&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon