Copper‐Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp3)−H/C(sp)−H Cross‐Coupling with Rationally Designed Oxazoline‐Derived N,N,P(O)‐Ligands

The intermolecular asymmetric radical oxidative C(sp3)−C(sp) cross‐coupling of C(sp3)−H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp3)−C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper‐catalyzed asym...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 51; pp. 26710 - 26717
Main Authors Liu, Lin, Guo, Kai‐Xin, Tian, Yu, Yang, Chang‐Jiang, Gu, Qiang‐Shuai, Li, Zhong‐Liang, Ye, Liu, Liu, Xin‐Yuan
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 13.12.2021
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The intermolecular asymmetric radical oxidative C(sp3)−C(sp) cross‐coupling of C(sp3)−H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp3)−C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper‐catalyzed asymmetric C(sp3)−C(sp) cross‐coupling of (hetero)benzylic and (cyclic)allylic C−H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline‐derived N,N,P(O)‐ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom ion (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4‐enynes, high site‐selectivity among similar C(sp3)−H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive. Chiral benzylic alkynes and 1,4‐enynes can be obtained in a straightforward approach from commercially available terminal alkynes and a diverse range of compounds containing benzylic and allylic C−H bonds by using the title reaction. The success of this approach lies in newly designed anionic N,N,P(O)‐ligands bearing a stable chiral oxazoline and a pentavalent phosphine oxide that are generated in situ.
AbstractList The intermolecular asymmetric radical oxidative C(sp(3))-C(sp) cross-coupling of C(sp(3))-H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp(3))-C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper-catalyzed asymmetric C(sp(3))-C(sp) cross-coupling of (hetero)benzylic and (cyclic)allylic C-H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline-derived N,N,P(O)-ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom abstraction (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4-enynes, high site-selectivity among similar C(sp(3))-H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive.
The intermolecular asymmetric radical oxidative C(sp )-C(sp) cross-coupling of C(sp )-H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp )-C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper-catalyzed asymmetric C(sp )-C(sp) cross-coupling of (hetero)benzylic and (cyclic)allylic C-H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline-derived N,N,P(O)-ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom abstraction (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4-enynes, high site-selectivity among similar C(sp )-H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive.
The intermolecular asymmetric radical oxidative C(sp3 )-C(sp) cross-coupling of C(sp3 )-H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp3 )-C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper-catalyzed asymmetric C(sp3 )-C(sp) cross-coupling of (hetero)benzylic and (cyclic)allylic C-H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline-derived N,N,P(O)-ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom abstraction (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4-enynes, high site-selectivity among similar C(sp3 )-H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive.The intermolecular asymmetric radical oxidative C(sp3 )-C(sp) cross-coupling of C(sp3 )-H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp3 )-C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper-catalyzed asymmetric C(sp3 )-C(sp) cross-coupling of (hetero)benzylic and (cyclic)allylic C-H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline-derived N,N,P(O)-ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom abstraction (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4-enynes, high site-selectivity among similar C(sp3 )-H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive.
The intermolecular asymmetric radical oxidative C(sp3)−C(sp) cross‐coupling of C(sp3)−H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp3)−C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper‐catalyzed asymmetric C(sp3)−C(sp) cross‐coupling of (hetero)benzylic and (cyclic)allylic C−H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline‐derived N,N,P(O)‐ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom abstraction (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4‐enynes, high site‐selectivity among similar C(sp3)−H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive.
The intermolecular asymmetric radical oxidative C(sp3)−C(sp) cross‐coupling of C(sp3)−H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp3)−C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper‐catalyzed asymmetric C(sp3)−C(sp) cross‐coupling of (hetero)benzylic and (cyclic)allylic C−H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline‐derived N,N,P(O)‐ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom ion (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4‐enynes, high site‐selectivity among similar C(sp3)−H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive. Chiral benzylic alkynes and 1,4‐enynes can be obtained in a straightforward approach from commercially available terminal alkynes and a diverse range of compounds containing benzylic and allylic C−H bonds by using the title reaction. The success of this approach lies in newly designed anionic N,N,P(O)‐ligands bearing a stable chiral oxazoline and a pentavalent phosphine oxide that are generated in situ.
The intermolecular asymmetric radical oxidative C(sp 3 )−C(sp) cross‐coupling of C(sp 3 )−H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp 3 )−C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper‐catalyzed asymmetric C(sp 3 )−C(sp) cross‐coupling of (hetero)benzylic and (cyclic)allylic C−H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline‐derived N,N,P(O)‐ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom abstraction (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4‐enynes, high site‐selectivity among similar C(sp 3 )−H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive.
Author Yang, Chang‐Jiang
Li, Zhong‐Liang
Liu, Xin‐Yuan
Ye, Liu
Gu, Qiang‐Shuai
Guo, Kai‐Xin
Tian, Yu
Liu, Lin
Author_xml – sequence: 1
  givenname: Lin
  surname: Liu
  fullname: Liu, Lin
  organization: Southern University of Science and Technology
– sequence: 2
  givenname: Kai‐Xin
  surname: Guo
  fullname: Guo, Kai‐Xin
  organization: Southern University of Science and Technology
– sequence: 3
  givenname: Yu
  surname: Tian
  fullname: Tian, Yu
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Chang‐Jiang
  surname: Yang
  fullname: Yang, Chang‐Jiang
  organization: Southern University of Science and Technology
– sequence: 5
  givenname: Qiang‐Shuai
  surname: Gu
  fullname: Gu, Qiang‐Shuai
  organization: Southern University of Science and Technology
– sequence: 6
  givenname: Zhong‐Liang
  surname: Li
  fullname: Li, Zhong‐Liang
  organization: Southern University of Science and Technology
– sequence: 7
  givenname: Liu
  surname: Ye
  fullname: Ye, Liu
  email: yel@sustech.edu.cn
  organization: Southern University of Science and Technology
– sequence: 8
  givenname: Xin‐Yuan
  orcidid: 0000-0002-6978-6465
  surname: Liu
  fullname: Liu, Xin‐Yuan
  email: liuxy3@sustech.edu.cn
  organization: Southern University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34606167$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhleoiH7AlSNaiUsqmtQfm7V9rLaBRooShOC88nq9wZXj3dq7tOmJI0fEz-Bn9Zcwm4QgVUJw8qvx887YM3McHbja6Sh6idEII0TOpTN6RBDBGBFKn0RHeEzwkDJGD0AnlA4ZH-PD6DiEa-A5R-mz6JAmKUpxyo6in1ndNNo_fP2eyVba9b0u46lrtV_VVqvOSh9PnHStqYOGQGu-6PiDLI2SNl7cmVJuItkgNPT04duPq_NeblSc-TqEPnHdNda4ZXxr2s9ghlxOWruOL3UwSwcFF3fyvgZEA32pPWQs4_nZ_Oz9YHEKoZlZSleG59HTStqgX-zOk-jT28nH7Go4W7ybZhezoaKs_29JEq0wrVKRSsEqxRARmPCUM8JRAdel4lhUOEWJwEVZFlRwrsaUCpGMFaEn0WCbt_H1TadDm69MUNpa6XTdhZyMmUA8RQgD-voRel13Hn4HFHRYYEF4AtSrHdUVK13mjTcr6df57ykAwLfArS7qKiijndJ7DCHEsIBZMlAIZ6bdtBDa6lqwvvl_K9CjLa362Xhd7UmM8n6f8n6f8v0-gSF5ZFC78q2Xxv7dJnavMlav_1Ekv5hPJ3-8vwCFEuIC
CitedBy_id crossref_primary_10_1002_ange_202205743
crossref_primary_10_1002_cjoc_202200435
crossref_primary_10_1021_jacs_3c02387
crossref_primary_10_1039_D3GC02793G
crossref_primary_10_1038_s41557_025_01747_6
crossref_primary_10_1002_ange_202219034
crossref_primary_10_6023_cjoc202211028
crossref_primary_10_1002_cjoc_202200074
crossref_primary_10_1021_acscatal_4c00818
crossref_primary_10_1002_ejoc_202300403
crossref_primary_10_1039_D1CS00556A
crossref_primary_10_1002_anie_202319850
crossref_primary_10_1039_D4SC04357J
crossref_primary_10_1002_ange_202308816
crossref_primary_10_1002_cctc_202400538
crossref_primary_10_3390_molecules28176252
crossref_primary_10_6023_cjoc202406042
crossref_primary_10_1002_anie_202304427
crossref_primary_10_1126_science_ado0875
crossref_primary_10_1038_s41557_023_01385_w
crossref_primary_10_1039_D2CC00975G
crossref_primary_10_1002_cjoc_202200521
crossref_primary_10_1021_jacs_3c00671
crossref_primary_10_1039_D3QO01122D
crossref_primary_10_1021_acs_orglett_2c01755
crossref_primary_10_1021_jacs_2c09572
crossref_primary_10_1039_D4GC00220B
crossref_primary_10_1021_acs_joc_4c01381
crossref_primary_10_1021_jacs_3c02776
crossref_primary_10_1002_anie_202411469
crossref_primary_10_1002_anie_202206577
crossref_primary_10_1021_acs_chemrev_4c00188
crossref_primary_10_1002_ange_202304427
crossref_primary_10_1021_jacs_4c13321
crossref_primary_10_1002_adsc_202400092
crossref_primary_10_1039_D2OB02192G
crossref_primary_10_1002_ange_202206577
crossref_primary_10_1021_jacs_2c07089
crossref_primary_10_1002_anie_202308816
crossref_primary_10_1039_D2OB01760A
crossref_primary_10_1021_jacs_4c12544
crossref_primary_10_1021_jacs_2c06718
crossref_primary_10_1021_jacs_4c09324
crossref_primary_10_1039_D5SC01453K
crossref_primary_10_1038_s44160_022_00176_4
crossref_primary_10_1021_acs_orglett_2c02507
crossref_primary_10_6023_cjoc202303020
crossref_primary_10_1002_anie_202219034
crossref_primary_10_1002_cjoc_202200108
crossref_primary_10_1021_jacs_3c01667
crossref_primary_10_1016_j_tetlet_2023_154866
crossref_primary_10_1002_anie_202205743
crossref_primary_10_1016_j_cclet_2022_108105
crossref_primary_10_1002_ange_202319850
crossref_primary_10_1016_j_jfluchem_2023_110107
crossref_primary_10_1039_D2QO00822J
crossref_primary_10_1002_ange_202411469
crossref_primary_10_1021_acscatal_4c03688
Cites_doi 10.1002/ange.201107427
10.1002/ange.202105594
10.1038/nature24641
10.1021/acs.chemrev.0c00844
10.1016/j.tet.2009.09.025
10.1038/s41557-018-0020-0
10.1016/j.checat.2021.04.008
10.1021/jacs.0c03130
10.1039/C9CS00681H
10.1021/jacs.9b10825
10.1002/ange.201912739
10.1021/ja8049996
10.1021/jacs.8b02745
10.1021/acs.accounts.8b00231
10.1002/ange.201309719
10.1021/ja5084333
10.1021/jacs.8b05668
10.1002/ange.201407083
10.1021/cr0505324
10.1002/adsc.201200683
10.1021/ol047814v
10.1021/ja054506z
10.1038/s41467-020-20770-4
10.1126/science.aal5175
10.1021/ja110534g
10.1021/acs.accounts.9b00381
10.1002/ange.201603576
10.1002/anie.201304268
10.1038/s41557-020-0436-1
10.1002/ange.201411852
10.1002/ange.202006317
10.1021/ar50082a006
10.1021/jacs.7b12806
10.1039/c0cs00217h
10.1002/chem.201000344
10.1021/jacs.9b01124
10.1055/s-0040-1706646
10.1021/jacs.0c03304
10.1038/s41586-019-1655-8
10.1021/acs.orglett.5b00447
10.1038/ncomms11676
10.1002/ange.202013022
10.1002/anie.201911742
10.1126/science.aao4798
10.1126/science.aat9750
10.1002/anie.202105594
10.1126/science.aaf7783
10.1002/anie.201300785
10.1002/ange.201612048
10.1002/anie.201603576
10.1021/jacs.0c07137
10.1021/ja508469u
10.1016/j.chempr.2020.07.007
10.1038/s41929-019-0357-9
10.1038/s41929-020-0460-y
10.1038/s41586-020-2831-6
10.1002/anie.201407083
10.1002/chem.201801772
10.1002/anie.201902191
10.1021/ja410756b
10.1002/anie.201411852
10.1038/s41467-019-09857-9
10.1021/acscentsci.6b00032
10.1039/c0cs00142b
10.1002/anie.201107427
10.1021/acscentsci.9b00916
10.1021/jacs.1c01556
10.1002/anie.201912739
10.1038/s41467-019-13705-1
10.1021/jo00069a040
10.1038/s41557-019-0346-2
10.1002/ange.201911742
10.1002/anie.202013022
10.1002/anie.201309719
10.1021/jacs.0c10471
10.1002/ange.201300785
10.1021/acscatal.7b01912
10.1002/anie.201612048
10.1021/jacs.0c10415
10.1201/9781420007282
10.1021/acs.orglett.6b01328
10.1038/s41467-019-11392-6
10.1002/ange.201304268
10.1021/acs.joc.9b01774
10.1002/anie.202006317
10.1021/jacs.0c05373
10.1021/acs.accounts.8b00265
10.1016/j.tetlet.2010.08.051
10.1021/jacs.0c05362
10.1021/ar9501434
10.1038/s41929-020-0425-1
10.1002/ange.201902191
10.2533/chimia.2020.23
10.1021/ar800164n
10.1002/anie.201900011
10.1039/c9cs00681h
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
1KN
BLEPL
DTL
EGQ
HGBXW
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202110233
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2021
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList Web of Science
PubMed
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 26717
ExternalDocumentID 34606167
000719143700001
10_1002_anie_202110233
ANIE202110233
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: china national funds for distinguished young scientists
  funderid: 22025103
– fundername: Guangdong Innovative Program
  funderid: 2019BT02Y335
– fundername: Shenzhen Special Funds
  funderid: JCYJ20200109141001789; JCYJ20180302174416591
– fundername: national natural science foundation of china
  funderid: 21831002
– fundername: Guangdong Provincial Key Laboratory of Catalysis
  funderid: 2020B121201002
– fundername: SUSTech Special Fund for the Construction of High-Level Universities
  funderid: G02216303
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 21831002; 22025103
– fundername: Guangdong Innovative Program
  grantid: 2019BT02Y335
– fundername: Shenzhen Special Funds
  grantid: JCYJ20200109141001789; JCYJ20180302174416591
– fundername: SUSTech Special Fund for the Construction of High-Level Universities
  grantid: G02216303
– fundername: Guangdong Provincial Key Laboratory of Catalysis
  grantid: 2020B121201002
– fundername: Shenzhen Special Funds
  grantid: JCYJ20200109141001789
– fundername: national natural science foundation of china
  grantid: 21831002
– fundername: china national funds for distinguished young scientists
  grantid: 22025103
– fundername: Shenzhen Special Funds
  grantid: JCYJ20180302174416591
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3733-7d24ec13f696a97fc7029128687280b7d2dc819f160491bddb3988c5339945c23
IEDL.DBID DR2
ISICitedReferencesCount 56
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000719143700001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:16:13 EDT 2025
Fri Jul 25 10:34:46 EDT 2025
Thu Apr 03 06:58:10 EDT 2025
Fri Aug 22 19:06:37 EDT 2025
Mon Jul 21 06:54:24 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Tue Jul 01 01:18:09 EDT 2025
Wed Jan 22 16:28:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords SUBSTITUTION
TETRAHYDROISOQUINOLINES
anionic N
ARYLATION
ALLYLIC ALKYLATION
alkynylation
H BOND FUNCTIONALIZATION
N
P(O)-ligands
copper catalysis
IODIDES
oxidative cross-coupling
LIGANDS
radical asymmetric chemistry
ARYL
anionic N,N,P(O)-ligands
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3733-7d24ec13f696a97fc7029128687280b7d2dc819f160491bddb3988c5339945c23
Notes Dedicated to the 100th anniversary of Chemistry at Nankai University
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6978-6465
0009-0004-9601-2563
0000-0003-3405-1546
PMID 34606167
PQID 2606919284
PQPubID 946352
PageCount 8
ParticipantIDs pubmed_primary_34606167
webofscience_primary_000719143700001CitationCount
crossref_primary_10_1002_anie_202110233
proquest_miscellaneous_2579086001
webofscience_primary_000719143700001
proquest_journals_2606919284
wiley_primary_10_1002_anie_202110233_ANIE202110233
crossref_citationtrail_10_1002_anie_202110233
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 13, 2021
PublicationDateYYYYMMDD 2021-12-13
PublicationDate_xml – month: 12
  year: 2021
  text: December 13, 2021
  day: 13
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2018; 361
2017; 7
2010; 16
2009; 42
2019; 11
2019; 10
2020 2020; 59 132
2004; 6
2020; 12
2021; 121
2017; 551
1974; 7
2017; 355
2014; 136
2013 2013; 52 125
2020; 6
2021; 32
2020; 3
2020; 53
2012 2012; 51 124
2020; 49
2016; 353
2015 2015; 54 127
2015; 17
2018; 140
2009; 65
2020; 142
2019; 2
2011; 40
2007
2005
2017 2017; 56 129
2020; 586
2021; 143
2016; 18
2021; 1
2019; 141
2019 2019; 58 131
2011; 133
2018; 24
1993; 58
2016; 7
2016 2016; 55 128
2016; 2
2021; 12
2019; 84
2012; 354
2018; 359
2020; 74
2005; 127
2021 2021; 60 133
1999; 32
2015
2018; 51
2018; 10
2006; 106
2008; 130
2019; 574
2010; 51
e_1_2_6_72_3
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_95_2
e_1_2_6_30_2
e_1_2_6_91_1
e_1_2_6_19_2
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_15_3
e_1_2_6_38_2
e_1_2_6_76_2
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_99_2
e_1_2_6_64_1
e_1_2_6_41_2
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_102_1
e_1_2_6_9_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_26_3
e_1_2_6_45_1
e_1_2_6_87_2
e_1_2_6_26_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_96_2
e_1_2_6_73_1
e_1_2_6_31_2
e_1_2_6_92_2
e_1_2_6_39_3
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_16_3
e_1_2_6_54_3
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_42_2
e_1_2_6_65_1
e_1_2_6_80_2
e_1_2_6_101_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_42_3
e_1_2_6_88_2
e_1_2_6_27_2
e_1_2_6_69_1
e_1_2_6_46_2
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_51_2
Trost B. M. (e_1_2_6_3_2) 2015
e_1_2_6_93_2
e_1_2_6_70_2
e_1_2_6_17_3
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_55_3
e_1_2_6_36_2
e_1_2_6_78_2
e_1_2_6_62_2
e_1_2_6_85_2
e_1_2_6_20_2
e_1_2_6_81_2
e_1_2_6_100_2
e_1_2_6_7_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_43_2
e_1_2_6_28_1
e_1_2_6_43_3
e_1_2_6_66_2
e_1_2_6_89_2
e_1_2_6_98_1
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_94_1
e_1_2_6_71_2
e_1_2_6_90_1
e_1_2_6_33_3
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_10_3
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_86_2
Diederich F. (e_1_2_6_2_2) 2005
e_1_2_6_82_2
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_29_2
e_1_2_6_4_1
e_1_2_6_48_2
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_44_3
e_1_2_6_67_2
e_1_2_6_25_2
e_1_2_6_67_3
Patten, TE (WOS:000083313200009) 1999; 32
Dong, XY (WOS:000498875700019) 2019; 11
Liu, SS (WOS:000537734000024) 2020; 142
Tierney, MM (WOS:000492118100026) 2019; 84
Zhang, ZH (WOS:000600598400001) 2021; 32
Shu, XM (WOS:000588273900011) 2020; 142
Saint-Denis, TG (WOS:000425116200036) 2018; 359
Sun, ST (WOS:000352463200017) 2015; 17
Ye, L (WOS:000499021600001) 2020; 59
(000719143700001.38) 2012; 124
Cao, H. (000719143700001.21) 2021; 1
Schmidt, VA (WOS:000343276900016) 2014; 136
Sladojevich, F (WOS:000287831800026) 2011; 133
Wang, F (WOS:000445441200016) 2018; 51
(000719143700001.71) 2016; 128
Arisawa, M (WOS:000259139900007) 2008; 130
Liu, W (WOS:000443654400006) 2018; 140
Wan, M (WOS:000345833100037) 2014; 53
Jin, LM (WOS:000599506900042) 2020; 142
Fu, L (WOS:000551495700065) 2020; 142
Wang, QA (WOS:000282734400022) 2010; 51
Snider, BB (WOS:000272918300002) 2009; 65
(000719143700001.66) 2013; 125
Li, FY (WOS:000464654700013) 2019; 10
Clark, JR (WOS:000432991800004) 2018; 10
(000719143700001.45) 2017; 129
Ni, ZK (WOS:000299416600030) 2012; 51
Suh, SE (WOS:000547329800010) 2020; 142
Dong, XY (WOS:000592473500001) 2021; 60
(000719143700001.41) 2014; 126
Tang, S (WOS:000432091700019) 2018; 140
Na, CG (WOS:000507144400007) 2020; 142
Liao, KB (WOS:000416520400039) 2017; 551
Dénès, F (WOS:000516779400004) 2020; 74
Zhang, ZH (WOS:000502257200001) 2019; 10
Li, CJ (WOS:000263428300012) 2009; 42
Zuidema, E (WOS:000277208900006) 2010; 16
Li, YJ (WOS:000496965000013) 2019; 2
(000719143700001.54) 2020; 132
Xia, HD (WOS:000561037300001) 2020; 59
Dong, XY (WOS:000537415600047) 2020; 142
Zhang, C (WOS:000613566500010) 2021; 12
Shu, C (WOS:000627757100001) 2020; 586
Davies, HML (WOS:000288609400002) 2011; 40
Harada, A (WOS:000342608800073) 2014; 136
(000719143700001.56) 2021; 133
Sarver, PJ (WOS:000519841500003) 2020; 12
Ortín, I (WOS:000333001500031) 2014; 53
Connon, R (WOS:000662080800003) 2021; 121
Zhang, GH (WOS:000330202300027) 2014; 136
KOCHI, JK (WOS:A1974U355800006) 1974; 7
Manzano, R (WOS:000400755800032) 2017; 56
Bakhoda, A (WOS:000582673500022) 2020; 142
Wang, ZH (WOS:000508222700001) 2020; 59
Wan, M. (000719143700001.14) 2014; 126
Wu, QF (WOS:000393183100039) 2017; 355
Tang, S (WOS:000379067300001) 2016; 7
Hong, BK (WOS:000537740300009) 2020; 6
Desimoni, G (WOS:000240463400003) 2006; 106
Diederich, F (WOS:000298079200001) 2005
OKURO, K (WOS:A1993LW05800040) 1993; 58
Sagadevan, A (WOS:000312302900006) 2012; 354
Che, CM (WOS:000288609400010) 2011; 40
Huang, TY (WOS:000410005700010) 2017; 7
Cheng, XK (WOS:000479030800007) 2019; 10
de la Campa, R (WOS:000352622400038) 2015; 54
Zhang, W (WOS:000382558900035) 2016; 353
Hu, HY (WOS:000515474200002) 2020; 3
Zhang, WP (WOS:000465413400045) 2019; 58
Girard, SA (WOS:000328714900008) 2014; 53
Liu, X. (000719143700001.18) 2021; 133
Börgel, J (WOS:000558679600008) 2020; 6
Li, JY (WOS:000492991700047) 2019; 574
Makida, Y (WOS:000318370200028) 2013; 52
Li, ZL (WOS:000508005100002) 2020; 49
Milan, M (WOS:000445441200011) 2018; 51
Cui, XY (WOS:000439009200019) 2018; 140
Yang, CJ (WOS:000533815300002) 2020; 3
(000719143700001.43) 2015; 127
Xie, ZY (WOS:000378303400049) 2016; 18
Almasalma, AA (WOS:000442491000019) 2018; 24
Luo, Y.-R. (000719143700001.63) 2007
Wang, Z. (000719143700001.16) 2020; 132
Hartwig, JF (WOS:000377825600006) 2016; 2
(WOS:000362781700015) 2015
Ye, L. (000719143700001.26) 2020; 132
Proctor, RSJ (WOS:000639019400010) 2021; 143
Macgregor, SA (WOS:000232933900078) 2005; 127
Liu, XG (WOS:000674246000001) 2021; 60
Hu, AH (WOS:000442818200036) 2018; 361
(000719143700001.8) 2014; 126
Han, YQ (WOS:000462260400012) 2019; 141
Ammann, SE (WOS:000383372700017) 2016; 55
Li, ZP (WOS:000225812300050) 2004; 6
Gu, QS (WOS:000509420300015) 2020; 53
References_xml – volume: 10
  start-page: 3549
  year: 2019
  publication-title: Nat. Commun.
– volume: 136
  start-page: 924
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 281
  year: 2016
  publication-title: ACS Cent. Sci.
– volume: 106
  start-page: 3561
  year: 2006
  publication-title: Chem. Rev.
– volume: 354
  start-page: 3421
  year: 2012
  publication-title: Adv. Synth. Catal.
– volume: 12
  start-page: 459
  year: 2020
  publication-title: Nat. Chem.
– year: 2005
– volume: 51
  start-page: 2036
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 586
  start-page: 714
  year: 2020
  publication-title: Nature
– volume: 6
  start-page: 4997
  year: 2004
  publication-title: Org. Lett.
– volume: 133
  start-page: 1710
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 4716
  year: 1993
  publication-title: J. Org. Chem.
– volume: 12
  start-page: 475
  year: 2021
  publication-title: Nat. Commun.
– volume: 361
  start-page: 668
  year: 2018
  publication-title: Science
– volume: 143
  start-page: 4928
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 32
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 60 133
  start-page: 2160 2188
  year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 84
  start-page: 12983
  year: 2019
  publication-title: J. Org. Chem.
– volume: 127
  start-page: 15304
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 10658
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1877
  year: 2020
  publication-title: Chem
– volume: 3
  start-page: 539
  year: 2020
  publication-title: Nat. Catal.
– volume: 51
  start-page: 5592
  year: 2010
  publication-title: Tetrahedron Lett.
– volume: 359
  year: 2018
  publication-title: Science
– volume: 140
  start-page: 8448
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 13845 14065
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 523
  year: 2021
  publication-title: Chem. Catal.
– volume: 59 132
  start-page: 1129 1145
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 74 76
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 583
  year: 2018
  publication-title: Nat. Chem.
– volume: 130
  start-page: 12214
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1684
  year: 2015
  publication-title: Org. Lett.
– volume: 10
  start-page: 5689
  year: 2019
  publication-title: Nat. Commun.
– year: 2015
– volume: 55 128
  start-page: 9571 9723
  year: 2016 2016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 74
  start-page: 23
  year: 2020
  publication-title: Chimia
– volume: 18
  start-page: 2982
  year: 2016
  publication-title: Org. Lett.
– volume: 59 132
  start-page: 3053 3077
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 353
  start-page: 1014
  year: 2016
  publication-title: Science
– volume: 140
  start-page: 6006
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1016
  year: 2019
  publication-title: Nat. Catal.
– year: 2007
– volume: 142
  start-page: 44
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 14389
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 20828
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 1950
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 58 131
  start-page: 6425 6491
  year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51 124
  start-page: 1244 1270
  year: 2012 2012
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 1984
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 53 126
  start-page: 3462 3530
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 16926 17074
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 11676
  year: 2016
  publication-title: Nat. Commun.
– volume: 142
  start-page: 9501
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 4181
  year: 2010
  publication-title: Chem. Eur. J.
– volume: 40
  start-page: 1857
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 32
  start-page: 895
  year: 1999
  publication-title: Acc. Chem. Res.
– volume: 142
  start-page: 12493
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 574
  start-page: 516
  year: 2019
  publication-title: Nature
– volume: 121
  start-page: 6373
  year: 2021
  publication-title: Chem. Rev.
– volume: 141
  start-page: 4558
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1774
  year: 2019
  publication-title: Nat. Commun.
– volume: 54 127
  start-page: 4895 4977
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 65
  start-page: 10738
  year: 2009
  publication-title: Tetrahedron
– volume: 6
  start-page: 622
  year: 2020
  publication-title: ACS Cent. Sci.
– volume: 42
  start-page: 335
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 32
  start-page: 362
  year: 2021
  publication-title: Synlett
– volume: 3
  start-page: 358
  year: 2020
  publication-title: Nat. Catal.
– volume: 7
  start-page: 5654
  year: 2017
  publication-title: ACS Catal.
– volume: 142
  start-page: 11388
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 19058
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 5834 5928
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 1158
  year: 2019
  publication-title: Nat. Chem.
– volume: 7
  start-page: 351
  year: 1974
  publication-title: Acc. Chem. Res.
– volume: 142
  start-page: 9785
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 18499 18647
  year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52 125
  start-page: 5350 5458
  year: 2013 2013
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 18483
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 170
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 24
  start-page: 12269
  year: 2018
  publication-title: Chem. Eur. J.
– volume: 355
  start-page: 499
  year: 2017
  publication-title: Science
– volume: 136
  start-page: 13932
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 551
  start-page: 609
  year: 2017
  publication-title: Nature
– ident: e_1_2_6_39_3
  doi: 10.1002/ange.201107427
– ident: e_1_2_6_17_3
  doi: 10.1002/ange.202105594
– ident: e_1_2_6_78_2
  doi: 10.1038/nature24641
– ident: e_1_2_6_62_2
  doi: 10.1021/acs.chemrev.0c00844
– ident: e_1_2_6_101_2
  doi: 10.1016/j.tet.2009.09.025
– ident: e_1_2_6_77_2
  doi: 10.1038/s41557-018-0020-0
– ident: e_1_2_6_45_1
– ident: e_1_2_6_21_2
  doi: 10.1016/j.checat.2021.04.008
– ident: e_1_2_6_53_2
  doi: 10.1021/jacs.0c03130
– ident: e_1_2_6_51_2
  doi: 10.1039/C9CS00681H
– ident: e_1_2_6_28_1
– ident: e_1_2_6_57_2
  doi: 10.1021/jacs.9b10825
– ident: e_1_2_6_16_3
  doi: 10.1002/ange.201912739
– ident: e_1_2_6_93_2
  doi: 10.1021/ja8049996
– ident: e_1_2_6_48_2
  doi: 10.1021/jacs.8b02745
– ident: e_1_2_6_20_2
  doi: 10.1021/acs.accounts.8b00231
– ident: e_1_2_6_42_3
  doi: 10.1002/ange.201309719
– ident: e_1_2_6_94_1
– ident: e_1_2_6_66_2
  doi: 10.1021/ja5084333
– ident: e_1_2_6_71_2
  doi: 10.1021/jacs.8b05668
– ident: e_1_2_6_15_3
  doi: 10.1002/ange.201407083
– ident: e_1_2_6_61_2
  doi: 10.1021/cr0505324
– ident: e_1_2_6_63_1
  doi: 10.1002/adsc.201200683
– ident: e_1_2_6_11_2
  doi: 10.1021/ol047814v
– ident: e_1_2_6_92_2
  doi: 10.1021/ja054506z
– ident: e_1_2_6_23_2
  doi: 10.1038/s41467-020-20770-4
– ident: e_1_2_6_5_2
  doi: 10.1126/science.aal5175
– ident: e_1_2_6_41_2
  doi: 10.1021/ja110534g
– ident: e_1_2_6_50_2
  doi: 10.1021/acs.accounts.9b00381
– ident: e_1_2_6_72_3
  doi: 10.1002/ange.201603576
– ident: e_1_2_6_10_2
  doi: 10.1002/anie.201304268
– ident: e_1_2_6_90_1
  doi: 10.1038/s41557-020-0436-1
– ident: e_1_2_6_43_3
  doi: 10.1002/ange.201411852
– ident: e_1_2_6_54_3
  doi: 10.1002/ange.202006317
– ident: e_1_2_6_99_2
  doi: 10.1021/ar50082a006
– ident: e_1_2_6_68_2
  doi: 10.1021/jacs.7b12806
– ident: e_1_2_6_65_1
– ident: e_1_2_6_75_2
  doi: 10.1039/c0cs00217h
– ident: e_1_2_6_34_1
– ident: e_1_2_6_95_2
  doi: 10.1002/chem.201000344
– ident: e_1_2_6_7_2
  doi: 10.1021/jacs.9b01124
– ident: e_1_2_6_18_1
– ident: e_1_2_6_24_2
  doi: 10.1055/s-0040-1706646
– ident: e_1_2_6_74_1
– ident: e_1_2_6_97_1
  doi: 10.1021/jacs.0c03304
– ident: e_1_2_6_31_2
  doi: 10.1038/s41586-019-1655-8
– ident: e_1_2_6_56_1
– ident: e_1_2_6_13_2
  doi: 10.1021/acs.orglett.5b00447
– ident: e_1_2_6_47_2
  doi: 10.1038/ncomms11676
– ident: e_1_2_6_55_3
  doi: 10.1002/ange.202013022
– ident: e_1_2_6_26_2
  doi: 10.1002/anie.201911742
– ident: e_1_2_6_91_1
– ident: e_1_2_6_6_2
  doi: 10.1126/science.aao4798
– ident: e_1_2_6_35_2
  doi: 10.1126/science.aat9750
– volume-title: Acetylene Chemistry: Chemistry, Biology, and Material Science
  year: 2005
  ident: e_1_2_6_2_2
– ident: e_1_2_6_17_2
  doi: 10.1002/anie.202105594
– ident: e_1_2_6_30_2
  doi: 10.1126/science.aaf7783
– ident: e_1_2_6_67_2
  doi: 10.1002/anie.201300785
– ident: e_1_2_6_44_3
  doi: 10.1002/ange.201612048
– ident: e_1_2_6_72_2
  doi: 10.1002/anie.201603576
– ident: e_1_2_6_46_2
  doi: 10.1021/jacs.0c07137
– ident: e_1_2_6_8_1
– ident: e_1_2_6_59_2
  doi: 10.1021/ja508469u
– ident: e_1_2_6_81_2
  doi: 10.1016/j.chempr.2020.07.007
– ident: e_1_2_6_49_1
– ident: e_1_2_6_85_2
  doi: 10.1038/s41929-019-0357-9
– ident: e_1_2_6_25_2
  doi: 10.1038/s41929-020-0460-y
– ident: e_1_2_6_84_2
  doi: 10.1038/s41586-020-2831-6
– ident: e_1_2_6_40_1
– ident: e_1_2_6_15_2
  doi: 10.1002/anie.201407083
– ident: e_1_2_6_70_2
  doi: 10.1002/chem.201801772
– ident: e_1_2_6_33_2
  doi: 10.1002/anie.201902191
– ident: e_1_2_6_98_1
– ident: e_1_2_6_102_1
  doi: 10.1021/ja410756b
– ident: e_1_2_6_22_1
– ident: e_1_2_6_43_2
  doi: 10.1002/anie.201411852
– ident: e_1_2_6_89_2
  doi: 10.1038/s41467-019-09857-9
– ident: e_1_2_6_4_1
– ident: e_1_2_6_19_2
  doi: 10.1021/acscentsci.6b00032
– ident: e_1_2_6_76_2
  doi: 10.1039/c0cs00142b
– ident: e_1_2_6_83_1
– ident: e_1_2_6_39_2
  doi: 10.1002/anie.201107427
– ident: e_1_2_6_82_2
  doi: 10.1021/acscentsci.9b00916
– ident: e_1_2_6_88_2
  doi: 10.1021/jacs.1c01556
– ident: e_1_2_6_69_1
– ident: e_1_2_6_16_2
  doi: 10.1002/anie.201912739
– ident: e_1_2_6_27_2
  doi: 10.1038/s41467-019-13705-1
– ident: e_1_2_6_96_2
  doi: 10.1021/jo00069a040
– ident: e_1_2_6_52_2
  doi: 10.1038/s41557-019-0346-2
– ident: e_1_2_6_26_3
  doi: 10.1002/ange.201911742
– ident: e_1_2_6_55_2
  doi: 10.1002/anie.202013022
– ident: e_1_2_6_42_2
  doi: 10.1002/anie.201309719
– ident: e_1_2_6_86_2
  doi: 10.1021/jacs.0c10471
– ident: e_1_2_6_79_1
– ident: e_1_2_6_1_1
– ident: e_1_2_6_67_3
  doi: 10.1002/ange.201300785
– ident: e_1_2_6_12_2
  doi: 10.1021/acscatal.7b01912
– ident: e_1_2_6_44_2
  doi: 10.1002/anie.201612048
– ident: e_1_2_6_37_2
  doi: 10.1021/jacs.0c10415
– ident: e_1_2_6_64_1
  doi: 10.1201/9781420007282
– ident: e_1_2_6_14_2
  doi: 10.1021/acs.orglett.6b01328
– ident: e_1_2_6_87_2
  doi: 10.1038/s41467-019-11392-6
– ident: e_1_2_6_10_3
  doi: 10.1002/ange.201304268
– ident: e_1_2_6_60_1
– ident: e_1_2_6_58_2
  doi: 10.1021/acs.joc.9b01774
– ident: e_1_2_6_54_2
  doi: 10.1002/anie.202006317
– ident: e_1_2_6_32_2
  doi: 10.1021/jacs.0c05373
– ident: e_1_2_6_29_2
  doi: 10.1021/acs.accounts.8b00265
– ident: e_1_2_6_73_1
  doi: 10.1016/j.tetlet.2010.08.051
– ident: e_1_2_6_38_2
  doi: 10.1021/jacs.0c05362
– ident: e_1_2_6_100_2
  doi: 10.1021/ar9501434
– ident: e_1_2_6_36_2
  doi: 10.1038/s41929-020-0425-1
– volume-title: Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations
  year: 2015
  ident: e_1_2_6_3_2
– ident: e_1_2_6_33_3
  doi: 10.1002/ange.201902191
– ident: e_1_2_6_80_2
  doi: 10.2533/chimia.2020.23
– ident: e_1_2_6_9_2
  doi: 10.1021/ar800164n
– volume: 6
  start-page: 622
  year: 2020
  ident: WOS:000537740300009
  article-title: Late-Stage Diversification of Natural Products
  publication-title: ACS CENTRAL SCIENCE
  doi: 10.1021/acscentsci.9b00916
– volume: 6
  start-page: 4997
  year: 2004
  ident: WOS:000225812300050
  article-title: Catalytic enantioselective alkynylation of prochiral sp3 C-H bonds adjacent to a nitrogen atom
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol047814v
– volume: 142
  start-page: 9785
  year: 2020
  ident: WOS:000537734000024
  article-title: C(sp3)-CF3 Reductive Elimination from a Five -Coordinate Neutral Copper(III) Complex
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c03304
– volume: 16
  start-page: 4181
  year: 2010
  ident: WOS:000277208900006
  article-title: Sub-Mol % Catalyst Loading and Ligand-Acceleration in the Copper-Catalyzed Coupling of Aryl Iodides and Terminal Alkyenes
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201000344
– volume: 11
  start-page: 1158
  year: 2019
  ident: WOS:000498875700019
  article-title: A general asymmetric copper-catalysed Sonogashira C(sp3)-C(sp) coupling
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-019-0346-2
– volume: 51
  start-page: 1244
  year: 2012
  ident: WOS:000299416600030
  article-title: Highly Regioselective Copper-Catalyzed Benzylic C?H Amination by N-Fluorobenzenesulfonimide
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201107427
– volume: 140
  start-page: 8448
  year: 2018
  ident: WOS:000439009200019
  article-title: (Guanidine)copper Complex-Catalyzed Enantioselective Dynamic Kinetic Allylic Alkynylation under Biphasic Condition
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b12806
– volume: 40
  start-page: 1950
  year: 2011
  ident: WOS:000288609400010
  article-title: Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c0cs00142b
– volume: 6
  start-page: 1877
  year: 2020
  ident: WOS:000558679600008
  article-title: Late-Stage Functionalization
  publication-title: CHEM
  doi: 10.1016/j.chempr.2020.07.007
– volume: 10
  start-page: ARTN 3549
  year: 2019
  ident: WOS:000479030800007
  article-title: Enantioselective benzylic C-H arylation via photoredox and nickel dual catalysis
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-11392-6
– volume: 142
  start-page: 19058
  year: 2020
  ident: WOS:000588273900011
  article-title: Direct Enantioselective C(sp3)-H Acylation for the Synthesis of α-Amino Ketones
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c10471
– volume: 359
  start-page: 759
  year: 2018
  ident: WOS:000425116200036
  article-title: Enantioselective C(sp3)-H bond activation by chiral transition metal catalysts
  publication-title: SCIENCE
  doi: 10.1126/science.aao4798
– volume: 127
  start-page: 4977
  year: 2015
  ident: 000719143700001.43
  publication-title: Angew. Chem
– volume: 32
  start-page: 362
  year: 2021
  ident: WOS:000600598400001
  article-title: Recent Advances in Radical-Involved Alkynylation of Unactivated C(sp3)-H Bonds by Hydrogen Atom Abstraction
  publication-title: SYNLETT
  doi: 10.1055/s-0040-1706646
– volume: 132
  start-page: 3077
  year: 2020
  ident: 000719143700001.16
  publication-title: Angew. Chem
– volume: 142
  start-page: 11388
  year: 2020
  ident: WOS:000547329800010
  article-title: Site-Selective Copper-Catalyzed Azidation of Benzylic C-H Bonds
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c05362
– volume: 12
  start-page: 459
  year: 2020
  ident: WOS:000519841500003
  article-title: The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)-H trifluoromethylation
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-020-0436-1
– volume: 130
  start-page: 12214
  year: 2008
  ident: WOS:000259139900007
  article-title: Rhodium-catalyzed substitution reaction of aryl fluorides with disulfides:: p-orientation in the polyarylthiolation of polyfluorobenzenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja8049996
– volume: 142
  start-page: 18483
  year: 2020
  ident: WOS:000582673500022
  article-title: Three-Coordinate Copper(II) Alkynyl Complex in C-C Bond Formation: The Sesquicentennial of the Glaser Coupling
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c07137
– volume: 129
  start-page: 5928
  year: 2017
  ident: 000719143700001.45
  publication-title: Angew. Chem
– volume: 355
  start-page: 499
  year: 2017
  ident: WOS:000393183100039
  article-title: Formation of α-chiral centers by asymmetric β-C(sp3)-H arylation, alkenylation, and alkynylation
  publication-title: SCIENCE
  doi: 10.1126/science.aal5175
– volume: 574
  start-page: 516
  year: 2019
  ident: WOS:000492991700047
  article-title: Site-specific allylic C-H bond functionalization with a copper-bound N-centred radical
  publication-title: NATURE
  doi: 10.1038/s41586-019-1655-8
– volume: 12
  start-page: ARTN 475
  year: 2021
  ident: WOS:000613566500010
  article-title: Catalytic enantioselective C(sp3)-H functionalization involving radical intermediates
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-020-20770-4
– year: 2007
  ident: 000719143700001.63
  publication-title: Comprehensive Handbook of Chemical Bond Energies
– volume: 133
  start-page: 18647
  year: 2021
  ident: 000719143700001.18
  publication-title: Angew. Chem
– volume: 7
  start-page: 5654
  year: 2017
  ident: WOS:000410005700010
  article-title: Asymmetric Aerobic Oxidative Cross-Coupling of Tetrahydroisoquinolines with Alkynes
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.7b01912
– volume: 1
  start-page: 523
  year: 2021
  ident: 000719143700001.21
  publication-title: Chem. Catal
– volume: 141
  start-page: 4558
  year: 2019
  ident: WOS:000462260400012
  article-title: Pd(II)-Catalyzed Enantioselective Alkynylation of Unbiased Methylene C(sp3)-H Bonds Using 3,3′-Fluorinated-BINOL as a Chiral Ligand
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b01124
– volume: 10
  start-page: ARTN 5689
  year: 2019
  ident: WOS:000502257200001
  article-title: Copper-catalyzed enantioselective Sonogashira-type oxidative cross-coupling of unactivated C(sp3)-H bonds with alkynes
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-13705-1
– volume: 17
  start-page: 1684
  year: 2015
  ident: WOS:000352463200017
  article-title: Highly Enantioselective Catalytic Cross-Dehydrogenative Coupling of N-Carbamoyl Tetrahydroisoquinolines and Terminal Alkynes
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.5b00447
– volume: 51
  start-page: 2036
  year: 2018
  ident: WOS:000445441200016
  article-title: Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.8b00265
– volume: 59
  start-page: 1129
  year: 2020
  ident: WOS:000499021600001
  article-title: Enantioselective Copper(I)/Chiral Phosphoric Acid Catalyzed Intramolecular Amination of Allylic and Benzylic C-H Bonds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201911742
– volume: 54
  start-page: 4895
  year: 2015
  ident: WOS:000352622400038
  article-title: Direct Catalytic Enantio- and Diastereoselective Ketone Aldol Reactions of Isocyanoacetates
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201411852
– volume: 24
  start-page: 12269
  year: 2018
  ident: WOS:000442491000019
  article-title: Copper-Catalyzed Allylic C-H Alkynylation by Cross-Dehydrogenative Coupling
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201801772
– volume: 53
  start-page: 170
  year: 2020
  ident: WOS:000509420300015
  article-title: Copper(I)-Catalyzed Asymmetric Reactions Involving Radicals
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00381
– volume: 58
  start-page: 6064
  year: 2019
  ident: WOS:000465413400045
  article-title: A Polymer Coating Transfer Enrichment Method for Direct Mass Spectrometry Analysis of Lipids in Biofluid Samples
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201900011
– volume: 127
  start-page: 15304
  year: 2005
  ident: WOS:000232933900078
  article-title: The F/Ph rearrangement reaction of [(Ph3P)3RhF], the fluoride congener of Wilkinson's catalyst
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja054506z
– volume: 74
  start-page: 23
  year: 2020
  ident: WOS:000516779400004
  article-title: Intermolecular Radical C-H Bond Activation: A Powerful Tool for Late Stage Functionalization
  publication-title: CHIMIA
  doi: 10.2533/chimia.2020.23
– volume: 18
  start-page: 2982
  year: 2016
  ident: WOS:000378303400049
  article-title: Copper-Catalyzed Aerobic Enantioselective Cross-Dehydrogenative Coupling of N-Aryl Glycine Esters with Terminal Alkynes
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.6b01328
– volume: 142
  start-page: 9501
  year: 2020
  ident: WOS:000537415600047
  article-title: Copper-Catalyzed Asymmetric Radical 1,2-Carboalkynylation of Alkenes with Alkyl Halides and Terminal Alkynes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c03130
– volume: 2
  start-page: 1016
  year: 2019
  ident: WOS:000496965000013
  article-title: Photocatalytic regio- and stereoselective C(sp3)-H functionalization of benzylic and allylic hydrocarbons as well as unactivated alkanes
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-019-0357-9
– volume: 7
  start-page: 351
  year: 1974
  ident: WOS:A1974U355800006
  article-title: ELECTRON-TRANSFER MECHANISMS FOR ORGANOMETALLIC INTERMEDIATES IN CATALYTIC REACTIONS
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
– volume: 53
  start-page: 13845
  year: 2014
  ident: WOS:000345833100037
  article-title: Practical and Highly Selective C-H Functionalization of Structurally Diverse Ethers
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201407083
– volume: 84
  start-page: 12983
  year: 2019
  ident: WOS:000492118100026
  article-title: Identifying Amidyl Radicals for Intermolecular C-H Functionalizations
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.9b01774
– volume: 7
  start-page: ARTN 11676
  year: 2016
  ident: WOS:000379067300001
  article-title: Multimetallic catalysed radical oxidative C(sp3)-H/C(sp)-H cross-coupling between unactivated alkanes and terminal alkynes
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms11676
– volume: 136
  start-page: 13932
  year: 2014
  ident: WOS:000342608800073
  article-title: Copper-Catalyzed Enantioselective Allylic Alkylation of Terminal Alkyne Pronucleophiles
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja5084333
– volume: 58
  start-page: 4716
  year: 1993
  ident: WOS:A1993LW05800040
  article-title: SYNTHESIS OF ARYLACETYLENE AND VINYLACETYLENE DERIVATIVES BY COPPER-CATALYZED REACTION OF ARYL AND VINYL IODIDES WITH TERMINAL ALKYNES
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
– volume: 142
  start-page: 12493
  year: 2020
  ident: WOS:000551495700065
  article-title: Enantioselective Copper-Catalyzed Alkynylation of Benzylic C-H Bonds via Radical Relay
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c05373
– volume: 125
  start-page: 5458
  year: 2013
  ident: 000719143700001.66
  publication-title: Angew. Chem
– volume: 361
  start-page: 668
  year: 2018
  ident: WOS:000442818200036
  article-title: Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis
  publication-title: SCIENCE
  doi: 10.1126/science.aat9750
– volume: 3
  start-page: 539
  year: 2020
  ident: WOS:000533815300002
  article-title: Cu-catalysed intramolecular radical enantioconvergent tertiary β-C(sp3)-H amination of racemic ketones
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-020-0460-y
– volume: 56
  start-page: 5834
  year: 2017
  ident: WOS:000400755800032
  article-title: Enantioselective Silver and Amine Co-catalyzed Desymmetrizing Cycloisomerization of Alkyne-Linked Cyclohexanones
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201612048
– volume: 133
  start-page: 2188
  year: 2021
  ident: 000719143700001.56
  publication-title: Angew. Chem
– volume: 51
  start-page: 5592
  year: 2010
  ident: WOS:000282734400022
  article-title: SN2-Selective allylic substitution of chiral γ-aryl substituted allylic picolinates with alkynylcopper reagents
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2010.08.051
– volume: 128
  start-page: 9723
  year: 2016
  ident: 000719143700001.71
  publication-title: Angew. Chem
– volume: 106
  start-page: 3561
  year: 2006
  ident: WOS:000240463400003
  article-title: C2-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr0505324
– volume: 59
  start-page: 16926
  year: 2020
  ident: WOS:000561037300001
  article-title: Photoinduced Copper-Catalyzed Asymmetric Decarboxylative Alkynylation with Terminal Alkynes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202006317
– volume: 143
  start-page: 4928
  year: 2021
  ident: WOS:000639019400010
  article-title: Hydrogen Atom Transfer-Driven Enantioselective Minisci Reaction of Amides
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c01556
– volume: 52
  start-page: 5350
  year: 2013
  ident: WOS:000318370200028
  article-title: Copper-Catalyzed γ-Selective and Stereospecific Direct Allylic Alkylation of Terminal Alkynes: Synthesis of Skipped Enynes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201300785
– volume: 3
  start-page: 358
  year: 2020
  ident: WOS:000515474200002
  article-title: Copper-catalysed benzylic C-H coupling with alcohols via radical relay enabled by redox buffering
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-020-0425-1
– volume: 586
  start-page: 714
  year: 2020
  ident: WOS:000627757100001
  article-title: Metal-free photoinduced C(sp3)-H borylation of alkanes
  publication-title: NATURE
  doi: 10.1038/s41586-020-2831-6
– volume: 136
  start-page: 14389
  year: 2014
  ident: WOS:000343276900016
  article-title: Site-Selective Aliphatic C-H Bromination Using N-Bromoamides and Visible Light
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja508469u
– volume: 136
  start-page: 924
  year: 2014
  ident: WOS:000330202300027
  article-title: Direct Observation of Reduction of Cu(II) to Cu(I) by Terminal Alkynes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja410756b
– volume: 53
  start-page: 3462
  year: 2014
  ident: WOS:000333001500031
  article-title: Direct Catalytic Enantio- and Diastereoselective Mannich Reaction of Isocyanoacetates and Ketimines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201309719
– volume: 126
  start-page: 14065
  year: 2014
  ident: 000719143700001.14
  publication-title: Angew. Chem
– volume: 140
  start-page: 6006
  year: 2018
  ident: WOS:000432091700019
  article-title: Multi-Metal-Catalyzed Oxidative Radical Alkynylation with Terminal Alkynes: A New Strategy for C(sp3)-C(sp) Bond Formation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b02745
– volume: 354
  start-page: 3421
  year: 2012
  ident: WOS:000312302900006
  article-title: Photo-Induced Sonogashira C-C Coupling Reaction Catalyzed by Simple Copper(I) Chloride Salt at Room Temperature
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.201200683
– volume: 142
  start-page: 20828
  year: 2020
  ident: WOS:000599506900042
  article-title: Enantioselective Intermolecular Radical C-H Amination
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c10415
– volume: 353
  start-page: 1014
  year: 2016
  ident: WOS:000382558900035
  article-title: Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay
  publication-title: SCIENCE
– volume: 10
  start-page: ARTN 1774
  year: 2019
  ident: WOS:000464654700013
  article-title: Chiral acid-catalysed enantioselective C-H functionalization of toluene and its derivatives driven by visible light
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-09857-9
– volume: 126
  start-page: 76
  year: 2014
  ident: 000719143700001.8
  publication-title: Angew. Chem
– volume: 55
  start-page: 9571
  year: 2016
  ident: WOS:000383372700017
  article-title: Enantioselective Allylic C-H Oxidation of Terminal Olefins to Isochromans by Palladium(II)/Chiral Sulfoxide Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201603576
– volume: 32
  start-page: 895
  year: 1999
  ident: WOS:000083313200009
  article-title: Copper(I)-catalyzed atom transfer radical polymerization
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
– volume: 60
  start-page: 18499
  year: 2021
  ident: WOS:000674246000001
  article-title: Construction of Vicinal Quaternary Carbon Stereocenters Through Diastereo- and Enantioselective Oxidative 1,6-Conjugate Addition
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202105594
– volume: 132
  start-page: 1145
  year: 2020
  ident: 000719143700001.26
  publication-title: Angew. Chem
– volume: 124
  start-page: 1270
  year: 2012
  ident: 000719143700001.38
  publication-title: Angew. Chem
– volume: 551
  start-page: 609
  year: 2017
  ident: WOS:000416520400039
  article-title: Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds
  publication-title: NATURE
  doi: 10.1038/nature24641
– volume: 121
  start-page: 6373
  year: 2021
  ident: WOS:000662080800003
  article-title: Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.0c00844
– volume: 59
  start-page: 3053
  year: 2020
  ident: WOS:000508222700001
  article-title: Synthesis of Chiral Triarylmethanes Bearing All-Carbon Quaternary Stereocenters: Catalytic Asymmetric Oxidative Cross-Coupling of 2,2-Diarylacetonitriles and (Hetero)arenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201912739
– volume: 140
  start-page: 10658
  year: 2018
  ident: WOS:000443654400006
  article-title: Asymmetric Allylic C-H Alkylation via Palladium(II)/cis-ArSOX Catalysis
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b05668
– volume: 133
  start-page: 1710
  year: 2011
  ident: WOS:000287831800026
  article-title: A New Family of Cinchona-Derived Amino Phosphine Precatalysts: Application to the Highly Enantio- and Diastereoselective Silver-Catalyzed Isocyanoacetate Aldol Reaction
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja110534g
– volume: 53
  start-page: 74
  year: 2014
  ident: WOS:000328714900008
  article-title: The Cross-Dehydrogenative Coupling of Csp3-H Bonds: A Versatile Strategy for C-C Bond Formations
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201304268
– volume: 42
  start-page: 335
  year: 2009
  ident: WOS:000263428300012
  article-title: Cross-Dehydrogenative Coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar800164n
– volume: 65
  start-page: 10738
  year: 2009
  ident: WOS:000272918300002
  article-title: Mechanisms of Mn(OAc)3-based oxidative free-radical additions and cyclizations
  publication-title: TETRAHEDRON
  doi: 10.1016/j.tet.2009.09.025
– volume: 51
  start-page: 1984
  year: 2018
  ident: WOS:000445441200011
  article-title: The Quest for Selectivity in Hydrogen Atom Transfer Based Aliphatic C-H Bond Oxygenation
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.8b00231
– volume: 10
  start-page: 583
  year: 2018
  ident: WOS:000432991800004
  article-title: Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-018-0020-0
– volume: 142
  start-page: 44
  year: 2020
  ident: WOS:000507144400007
  article-title: Direct Decarboxylative Functionalization of Carboxylic Acids via O-H Hydrogen Atom Transfer
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b10825
– volume: 40
  start-page: 1857
  year: 2011
  ident: WOS:000288609400002
  article-title: Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c0cs00217h
– start-page: V
  year: 2005
  ident: WOS:000298079200001
  article-title: Acetylene Chemistry Chemistry, Biology and Material Science Preface
  publication-title: ACETYLENE CHEMISTRY: CHEMISTRY, BIOLOGY AND MATERIAL SCIENCE
– volume: 126
  start-page: 3530
  year: 2014
  ident: 000719143700001.41
  publication-title: Angew. Chem
– volume: 60
  start-page: 2160
  year: 2021
  ident: WOS:000592473500001
  article-title: Copper-Catalyzed Asymmetric Coupling of Allenyl Radicals with Terminal Alkynes to Access Tetrasubstituted Allenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202013022
– start-page: 1
  year: 2015
  ident: WOS:000362781700015
  article-title: Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations
  publication-title: Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations
– volume: 132
  start-page: 17074
  year: 2020
  ident: 000719143700001.54
  publication-title: Angew. Chem
– volume: 2
  start-page: 281
  year: 2016
  ident: WOS:000377825600006
  article-title: Undirected, Homogeneous C-H Bond Functionalization: Challenges and Opportunities
  publication-title: ACS CENTRAL SCIENCE
  doi: 10.1021/acscentsci.6b00032
– volume: 49
  start-page: 32
  year: 2020
  ident: WOS:000508005100002
  article-title: Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c9cs00681h
SSID ssj0028806
Score 2.5723665
Snippet The intermolecular asymmetric radical oxidative C(sp3)−C(sp) cross‐coupling of C(sp3)−H bonds with readily available terminal alkynes is a promising method to...
The intermolecular asymmetric radical oxidative C(sp 3 )−C(sp) cross‐coupling of C(sp 3 )−H bonds with readily available terminal alkynes is a promising method...
The intermolecular asymmetric radical oxidative C(sp(3))-C(sp) cross-coupling of C(sp(3))-H bonds with readily available terminal alkynes is a promising method...
The intermolecular asymmetric radical oxidative C(sp )-C(sp) cross-coupling of C(sp )-H bonds with readily available terminal alkynes is a promising method to...
The intermolecular asymmetric radical oxidative C(sp3 )-C(sp) cross-coupling of C(sp3 )-H bonds with readily available terminal alkynes is a promising method...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26710
SubjectTerms Alkynes
alkynylation
anionic N,N,P(O)-ligands
Asymmetry
Chemical bonds
Chemistry
Chemistry, Multidisciplinary
Copper
copper catalysis
Cross coupling
Enantiomers
Ligands
oxidative cross-coupling
Physical Sciences
radical asymmetric chemistry
Radicals
Science & Technology
Selectivity
Title Copper‐Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp3)−H/C(sp)−H Cross‐Coupling with Rationally Designed Oxazoline‐Derived N,N,P(O)‐Ligands
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202110233
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000719143700001
https://www.ncbi.nlm.nih.gov/pubmed/34606167
https://www.proquest.com/docview/2606919284
https://www.proquest.com/docview/2579086001
Volume 60
WOS 000719143700001
WOSCitedRecordID wos000719143700001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuDC-xFakJEq0UpNdxN7k_hYpVstCO2iikq9RbbjVCvKZtXdrdo9ceSI-Bn8rP4SZpwH3SIEgpsTj2M5M7ZnxuNvADYLnsfCJMYvDEcDpbBdX8XkERNa9mKTcKsc2ucwGhyJt8e942u3-Ct8iNbhRjPDrdc0wZWedX6ChtINbLTvyIAJOcF9UsAWaUWHLX5UiMJZXS_i3Kcs9A1qYzfsrDZf3ZV-UTVv7EqriqzbiQ7ugWrGUAWgfNxdzPWuWd6Ad_yfQd6Hu7WayvYquXoAt-zkIdxOm-xwj-B7Wk6n9uzq89eUHECXS5sz51381OTbZX2KsRmXM5dpBxdVdqjcoRAbXYxzhzfO0q3ZlG9fffk26FDRlVhKv4g-XC7ouvAJI18xNq68lqeXbN9FnWCHowu1pKRDFqn3cSqd47vhznDn_dZoG1-9G5_QRebHcHTQ_5AO_Drvg294TJzKQ2FNwItIRkrGhYm7ocR9NEool5bG6tygIlMEEZo3gc5zzWWSGFRcpRQ9E_InsDYpJ_YZMC1ykQSBFlJHQooIrUGVBLxXKPyjubUe-A3fM1ODolNujtOsgnMOM-JA1nLAg9ct_bSCA_kt5UYjRlm9LMwyNB4jiTp1Ijx41VYj5-iURk1suUCaXizRzkT1wYOnlfi1XXGBHwii2IPN6_LY1juNUaK4x-7UxoPgb8jSeuCEgjD3IHQC-YfhZXvDN_326fm_NFqHO1Sm2KCAb8Da_GxhX6CGN9cv3Sz-AX92Stk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BeBgvjL8jY4CRJrFJy9rEzh8_TmmnDkqKpk3iLUocZ6oYTbW2aOsTjzwiPgYfa5-EO6cJdAiB4C2xz7GcO9t3Z9_vALYKngdChcouFEcDpdBtOw3IIyYy6QUq5Do1aJ-x3zsRr9559W1CioWp8CEahxvNDLNe0wQnh3TrB2oohWCjgUcWjMv5TbhFab0JPr9z1CBIuSieVYAR5zbloa9xG9tua7n98r70i7J5bV9aVmXNXnSwBlk9iuoKyvu92TTbU_NrAI__Ncy7cGehqbL9SrTuwQ09ug-rUZ0g7gF8i8rxWJ9fffoSkQ_ocq5zZhyMH-qUu6xL12yG5cQk28F1lR2l5lyIDS6GuYEcZ9H2ZMx3rj5_7bXo0TyxiP4RfbicUcTwKSN3MTauHJdnl6xjLp5gh4OLdE55hzRSd3A2fcSyeDfefbs92MGi_vCUYpkfwslB9zjq2YvUD7biAbEqd4VWDi986acyKFTQdiVupX5I6bQyrM4V6jKF46OF42R5nnEZhgp1VymFp1z-CFZG5Ug_BpaJXISOkwmZ-UIKHw3CNHS4V6T4R3OtLbBrxidqgYtO6TnOkgrR2U2IA0nDAQteNvTjChHkt5SbtRwli5VhkqD96EtUq0NhwYumGjlHBzXpSJczpPECiaYmahAWrFfy13TFBX7A8QMLtn4WyKbeKI0S5T0wBzcWOH9DFi0GTkAIUwtcI5F_GF6yHx92m7eNf2n0HFZ7x2_6Sf8wfv0EblM5XRVy-CasTM9n-ikqfNPsmZnS3wEGfk71
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BkIAX_sMCA4I0iU1a1iZ2nPhxSlt1MLXTxKS9RYnjTBVbG60t2vrEI4-Ij8HH2ifhzvnDOoRA8JbY51jOne27s-93AOs5ywKuQuXkiqGBkuu2kwTkEeOp9AMVMp0YtM-B6B_yd0f-0ZUo_hIfonG40cww6zVN8CLLWz9BQykCG-07MmA8xm7CLS7akpI3dA4aACkPpbOML2LMoTT0NWxj22stt1_eln7RNa9tS8uarNmKevchqQdR3kD5uD2fpdtqcQ3f8X9G-QDuVXqqvVMK1kO4oceP4E5Up4d7DN-jSVHos8vPXyPyAF0sdGYb9-JpnXDX7tIlm9FkalLt4KpqHyTmVMgeno8yAzhuRxvTgm1efvnWb9GjebIj-kX04cmc4oWPbXIWY-PSbXlyYXfMtRPscHieLCjrkEbqDs6lT1g22Bps7W8MN7Fob3RMkcxP4LDX_RD1nSrxg6NYQJzKPK6Vy3IhRSKDXAVtT-JGKkJKppVidaZQk8ldgfaNm2ZZymQYKtRcpeS-8thTWBlPxnoV7JRnPHTdlMtUcMkFmoNJ6DI_T_CPZlpb4NR8j1WFik7JOU7iEs_Zi4kDccMBC9429EWJB_JbyrVajOJqXZjGaD0KiUp1yC1401Qj5-iYJhnryRxp_ECioYn6gwXPSvFrumIo5MIVgQXrV-WxqTcqo0RxD8yxjQXu35BF1cAJBmFmgWcE8g_Di3cGu93m7fm_NHoNt_c7vXhvd_D-BdylYron5LI1WJmdzfVL1PZm6SszoX8A2vhNpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copper-Catalyzed+Intermolecular+Enantioselective+Radical+Oxidative+C%28sp3%29-H%2FC%28sp%29-H+Cross-Coupling+with+Rationally+Designed+Oxazoline-Derived+N%2CN%2CP%28O%29-Ligands&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Lin&rft.au=Guo%2C+Kai-Xin&rft.au=Tian%2C+Yu&rft.au=Yang%2C+Chang-Jiang&rft.date=2021-12-13&rft.pub=Wiley&rft.eissn=1521-3773&rft.volume=60&rft.issue=51&rft.spage=26710&rft.epage=26717&rft_id=info:doi/10.1002%2Fanie.202110233&rft_id=info%3Apmid%2F34606167&rft.externalDBID=n%2Fa&rft.externalDocID=000719143700001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon