Isolating Fe Atoms in N‐Doped Carbon Hollow Nanorods through a ZIF‐Phase‐Transition Strategy for Efficient Oxygen Reduction

Transition metal–nitrogen–carbon (TM–N–C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF‐L nanorods as self‐sacrifice templates, a ZIF‐phase‐tra...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 49; pp. e2205033 - n/a
Main Authors Ma, Fei‐Xiang, Liu, Zheng‐Qi, Zhang, Guobin, Xiong, Yu‐Xuan, Zhang, Meng‐Tian, Zheng, Lirong, Zhen, Liang, Xu, Cheng‐Yan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition metal–nitrogen–carbon (TM–N–C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF‐L nanorods as self‐sacrifice templates, a ZIF‐phase‐transition strategy is developed to fabricate ZIF‐8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe‐N‐C hollow nanorods (denoted as Fe1–N–C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X‐ray absorption fine structure analysis confirm abundant Fe–N4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe‐N4 active sites provided by the highly porous and open carbon hollow architecture, the Fe1‐N‐C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half‐wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (JK) of Fe1‐N‐C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm−2, 21 times higher than that of Pt/C. The assembled Zn‐air battery using Fe1–N–C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm−2. By using solid ZIF‐L nanorods as self‐sacrifice templates, a unique ZIF‐phase‐transition strategy is developed to fabricate atomically dispersed Fe–N–C hollow nanorods (Fe1–N–C HNRs) with highly open architecture and abundant exposed Fe–N4 active sites, which can be utilized as efficient oxygen reduction reaction electrocatalysts in both alkaline and acid conditions.
AbstractList Transition metal–nitrogen–carbon (TM–N–C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF‐L nanorods as self‐sacrifice templates, a ZIF‐phase‐transition strategy is developed to fabricate ZIF‐8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe‐N‐C hollow nanorods (denoted as Fe 1 –N–C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X‐ray absorption fine structure analysis confirm abundant Fe–N 4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe‐N 4 active sites provided by the highly porous and open carbon hollow architecture, the Fe 1 ‐N‐C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half‐wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density ( J K ) of Fe 1 ‐N‐C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm −2 , 21 times higher than that of Pt/C. The assembled Zn‐air battery using Fe 1 –N–C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm −2 .
Transition metal–nitrogen–carbon (TM–N–C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF‐L nanorods as self‐sacrifice templates, a ZIF‐phase‐transition strategy is developed to fabricate ZIF‐8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe‐N‐C hollow nanorods (denoted as Fe1–N–C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X‐ray absorption fine structure analysis confirm abundant Fe–N4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe‐N4 active sites provided by the highly porous and open carbon hollow architecture, the Fe1‐N‐C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half‐wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (JK) of Fe1‐N‐C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm−2, 21 times higher than that of Pt/C. The assembled Zn‐air battery using Fe1–N–C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm−2.
Transition metal-nitrogen-carbon (TM-N-C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF-L nanorods as self-sacrifice templates, a ZIF-phase-transition strategy is developed to fabricate ZIF-8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe-N-C hollow nanorods (denoted as Fe1 -N-C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X-ray absorption fine structure analysis confirm abundant Fe-N4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe-N4 active sites provided by the highly porous and open carbon hollow architecture, the Fe1 -N-C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half-wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (JK ) of Fe1 -N-C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm-2 , 21 times higher than that of Pt/C. The assembled Zn-air battery using Fe1 -N-C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm-2 .Transition metal-nitrogen-carbon (TM-N-C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF-L nanorods as self-sacrifice templates, a ZIF-phase-transition strategy is developed to fabricate ZIF-8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe-N-C hollow nanorods (denoted as Fe1 -N-C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X-ray absorption fine structure analysis confirm abundant Fe-N4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe-N4 active sites provided by the highly porous and open carbon hollow architecture, the Fe1 -N-C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half-wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (JK ) of Fe1 -N-C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm-2 , 21 times higher than that of Pt/C. The assembled Zn-air battery using Fe1 -N-C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm-2 .
Transition metal–nitrogen–carbon (TM–N–C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF‐L nanorods as self‐sacrifice templates, a ZIF‐phase‐transition strategy is developed to fabricate ZIF‐8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe‐N‐C hollow nanorods (denoted as Fe1–N–C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X‐ray absorption fine structure analysis confirm abundant Fe–N4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe‐N4 active sites provided by the highly porous and open carbon hollow architecture, the Fe1‐N‐C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half‐wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (JK) of Fe1‐N‐C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm−2, 21 times higher than that of Pt/C. The assembled Zn‐air battery using Fe1–N–C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm−2. By using solid ZIF‐L nanorods as self‐sacrifice templates, a unique ZIF‐phase‐transition strategy is developed to fabricate atomically dispersed Fe–N–C hollow nanorods (Fe1–N–C HNRs) with highly open architecture and abundant exposed Fe–N4 active sites, which can be utilized as efficient oxygen reduction reaction electrocatalysts in both alkaline and acid conditions.
Transition metal-nitrogen-carbon (TM-N-C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF-L nanorods as self-sacrifice templates, a ZIF-phase-transition strategy is developed to fabricate ZIF-8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe-N-C hollow nanorods (denoted as Fe -N-C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X-ray absorption fine structure analysis confirm abundant Fe-N active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe-N active sites provided by the highly porous and open carbon hollow architecture, the Fe -N-C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half-wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (J ) of Fe -N-C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm , 21 times higher than that of Pt/C. The assembled Zn-air battery using Fe -N-C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm .
Author Ma, Fei‐Xiang
Liu, Zheng‐Qi
Zheng, Lirong
Zhang, Guobin
Zhen, Liang
Xiong, Yu‐Xuan
Xu, Cheng‐Yan
Zhang, Meng‐Tian
Author_xml – sequence: 1
  givenname: Fei‐Xiang
  orcidid: 0000-0002-2449-9139
  surname: Ma
  fullname: Ma, Fei‐Xiang
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 2
  givenname: Zheng‐Qi
  surname: Liu
  fullname: Liu, Zheng‐Qi
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 3
  givenname: Guobin
  surname: Zhang
  fullname: Zhang, Guobin
  organization: Tsinghua Shenzhen International Graduate School
– sequence: 4
  givenname: Yu‐Xuan
  surname: Xiong
  fullname: Xiong, Yu‐Xuan
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 5
  givenname: Meng‐Tian
  surname: Zhang
  fullname: Zhang, Meng‐Tian
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 6
  givenname: Lirong
  surname: Zheng
  fullname: Zheng, Lirong
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Liang
  surname: Zhen
  fullname: Zhen, Liang
  organization: Harbin Institute of Technology
– sequence: 8
  givenname: Cheng‐Yan
  orcidid: 0000-0002-7835-6635
  surname: Xu
  fullname: Xu, Cheng‐Yan
  email: cy_xu@hit.edu.cn
  organization: Harbin Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36285776$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URC-wZYkssWGT4MuM7VlWoaGRQoto2bAZeWbOJK48drA9KtnBG_CMPAmOUoJUCbE6Xnyfz9H_n6Ij5x0g9JKSKSWEvY2DtVNGGCMl4fwJOqGC8olQrDo6vCk5Rqcx3hHCKSvkM3TMBVOllOIE_VhEb3UyboXngM-THyI2Dl_9-v7znd9Ah2c6NN7hS2-tv8dX2vngu4jTOvhxtcYaf1nMM_xxrSPkeRu0iyaZrNykoBOstrj3AV_0vWkNuISvv21X4PAn6MZ2xz1HT3ttI7x4mGfo8_zidnY5WV6_X8zOl5OWS84npWiAgoJK9Z3qCyq7RnJCupZKzkD2BTAFuhWCyLKTLTSCEKq1UBWITomKn6E3-383wX8dIaZ6MLEFa7UDP8aaSVYRJqhSGX39CL3zY3D5ukwVspIl4yxTrx6osRmgqzfBDDps6z_hZmC6B9rgYwzQHxBK6l179a69-tBeFopHQmuS3oWUozT231q11-6Nhe1_ltQ3H5bLv-5vyv-x9w
CitedBy_id crossref_primary_10_1016_j_nanoen_2023_108570
crossref_primary_10_1039_D2NJ06359J
crossref_primary_10_1002_aenm_202203609
crossref_primary_10_1016_j_jcis_2023_06_127
crossref_primary_10_1016_j_cjsc_2023_100097
crossref_primary_10_1002_cnma_202300334
crossref_primary_10_1016_j_ijhydene_2024_08_192
crossref_primary_10_1002_smll_202302925
crossref_primary_10_1016_j_est_2023_109343
crossref_primary_10_1007_s11426_024_2027_2
crossref_primary_10_1007_s10562_023_04547_0
crossref_primary_10_1016_j_seppur_2024_129977
crossref_primary_10_1007_s12598_024_02676_y
crossref_primary_10_1007_s40843_023_2464_8
crossref_primary_10_1016_j_cej_2023_146963
crossref_primary_10_1039_D3NJ03711H
crossref_primary_10_1021_acsanm_4c02087
crossref_primary_10_1016_j_cej_2023_146900
crossref_primary_10_1002_adfm_202401484
crossref_primary_10_1002_smll_202310637
crossref_primary_10_1007_s10853_024_09719_w
crossref_primary_10_1021_acsaem_3c00929
crossref_primary_10_1039_D2QM01288J
crossref_primary_10_1016_j_mtener_2024_101594
crossref_primary_10_1016_j_est_2024_111058
crossref_primary_10_3390_molecules29040771
crossref_primary_10_1039_D3SE01183F
crossref_primary_10_1016_j_jallcom_2024_174204
crossref_primary_10_1016_j_apsusc_2025_162572
crossref_primary_10_1002_smll_202207991
crossref_primary_10_1002_smll_202307863
crossref_primary_10_1021_acssuschemeng_4c05575
crossref_primary_10_1002_smll_202308956
crossref_primary_10_1002_smll_202305700
Cites_doi 10.1038/ncomms9668
10.1002/adfm.202105021
10.1002/adma.201905622
10.1016/j.cej.2020.127270
10.1126/science.aao3403
10.1021/acscatal.6b02966
10.1039/D0CC05520D
10.1002/anie.202002665
10.1039/D1TA05039G
10.1039/C8EE01481G
10.1038/ncomms16160
10.1016/j.scib.2020.06.020
10.1002/anie.201912986
10.1126/science.aah6133
10.1016/j.apcatb.2019.01.083
10.1039/C9TA04954A
10.1039/C4CP01455C
10.1016/j.jechem.2020.07.012
10.1007/s12274-021-3885-y
10.1002/anie.201909312
10.1038/s41467-018-07850-2
10.1002/advs.201801490
10.1021/jacs.6b00757
10.1002/anie.202003917
10.1002/aenm.201801226
10.1002/aenm.201601979
10.1039/C9CS00813F
10.1038/s41586-019-1603-7
10.1021/acs.nanolett.0c00081
10.1038/s41560-022-01062-1
10.1021/jacs.7b06514
10.1038/s41467-020-16715-6
10.1002/adma.202202544
10.1016/j.apcatb.2019.03.046
10.1016/j.nanoen.2019.04.033
10.1002/adma.201606534
10.1002/adfm.202008085
10.1002/adfm.201802596
10.1016/j.jcis.2022.04.002
10.1126/science.aan2255
10.1002/anie.201804349
10.1002/adma.201800939
10.1021/acsnano.9b01953
10.1021/acscatal.8b00138
10.1021/acs.accounts.6b00480
10.1016/j.jcat.2019.02.023
10.1021/acs.chemrev.5b00462
10.1002/smll.201805325
10.1039/D0CC07767D
10.1016/j.apcatb.2020.119411
10.1002/adma.202101038
10.1002/adma.202004670
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202205033
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36285776
10_1002_smll_202205033
SMLL202205033
Genre article
Journal Article
GrantInformation_xml – fundername: Shenzhen Science and Technology Innovation Committee
  funderid: JCYJ20200109113212238
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2021A1515111154
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021A1515111154
– fundername: Shenzhen Science and Technology Innovation Committee
  grantid: JCYJ20200109113212238
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3733-56be1e8e98fd8f417db7300dc1732e7f4e28eac66075d7ceb6001aa689e6d8693
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 01:31:20 EDT 2025
Fri Jul 25 12:14:07 EDT 2025
Wed Feb 19 02:26:34 EST 2025
Tue Jul 01 02:54:19 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Wed Jan 22 16:22:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords phase-transition
carbon hollow structures
Fe-N 4
oxygen reduction reaction
ZIF
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-56be1e8e98fd8f417db7300dc1732e7f4e28eac66075d7ceb6001aa689e6d8693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2449-9139
0000-0002-7835-6635
PMID 36285776
PQID 2747975232
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2729026188
proquest_journals_2747975232
pubmed_primary_36285776
crossref_primary_10_1002_smll_202205033
crossref_citationtrail_10_1002_smll_202205033
wiley_primary_10_1002_smll_202205033_SMLL202205033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 8
2021; 408
2020; 20
2019; 13
2019; 59
2019; 15
2019; 58
2021; 280
2020; 59
2019; 246
2020; 56
2020; 11
2017; 357
2018; 9
2018; 8
2021; 31
2019; 61
2021; 33
2022; 34
2014; 16
2016; 354
2018; 30
2016; 116
2021; 9
2019; 7
2018; 28
2015; 6
2019; 6
2019; 31
2017; 29
2020; 32
2021; 50
2017; 139
2021; 57
2017; 50
2021; 15
2021; 55
2018; 359
2022; 7
2016; 138
2020; 65
2021; 60
2019; 372
2019; 251
2018; 11
2019; 574
2022; 620
2018; 57
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 357
  start-page: 479
  year: 2017
  publication-title: Science
– volume: 11
  start-page: 2348
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 116
  start-page: 3594
  year: 2016
  publication-title: Chem. Rev.
– volume: 280
  year: 2021
  publication-title: Appl. Catal., B
– volume: 138
  start-page: 3570
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 5639
  year: 2020
  publication-title: Nano Lett.
– volume: 59
  start-page: 7384
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8668
  year: 2015
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 246
  start-page: 322
  year: 2019
  publication-title: Appl. Catal., B
– volume: 7
  start-page: 1655
  year: 2017
  publication-title: ACS Catal.
– volume: 50
  start-page: 2927
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 5422
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 574
  start-page: 81
  year: 2019
  publication-title: Nature
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 359
  start-page: 206
  year: 2018
  publication-title: Science
– volume: 65
  start-page: 1743
  year: 2020
  publication-title: Sci. Bull.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 408
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 60
  start-page: 4448
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 7800
  year: 2019
  publication-title: ACS Nano
– volume: 372
  start-page: 174
  year: 2019
  publication-title: J. Catal.
– volume: 61
  start-page: 60
  year: 2019
  publication-title: Nano Energy
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 620
  start-page: 67
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 8
  start-page: 2824
  year: 2018
  publication-title: ACS Catal.
– volume: 11
  start-page: 2831
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 652
  year: 2022
  publication-title: Nat. Energy
– volume: 56
  year: 2020
  publication-title: Chem. Comm.
– volume: 59
  start-page: 1327
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 354
  start-page: 1410
  year: 2016
  publication-title: Science
– volume: 15
  start-page: 2887
  year: 2021
  publication-title: Nano Res.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 8614
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 2049
  year: 2021
  publication-title: Chem. Comm.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 50
  start-page: 293
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 55
  start-page: 183
  year: 2021
  publication-title: J. Energy Chem.
– volume: 251
  start-page: 240
  year: 2019
  publication-title: Appl. Catal., B
– ident: e_1_2_8_49_1
  doi: 10.1038/ncomms9668
– ident: e_1_2_8_2_1
  doi: 10.1002/adfm.202105021
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.201905622
– ident: e_1_2_8_26_1
  doi: 10.1016/j.cej.2020.127270
– ident: e_1_2_8_15_1
  doi: 10.1126/science.aao3403
– ident: e_1_2_8_19_1
  doi: 10.1021/acscatal.6b02966
– ident: e_1_2_8_13_1
  doi: 10.1039/D0CC05520D
– ident: e_1_2_8_9_1
  doi: 10.1002/anie.202002665
– ident: e_1_2_8_31_1
  doi: 10.1039/D1TA05039G
– ident: e_1_2_8_54_1
  doi: 10.1039/C8EE01481G
– ident: e_1_2_8_5_1
  doi: 10.1038/ncomms16160
– ident: e_1_2_8_40_1
  doi: 10.1016/j.scib.2020.06.020
– ident: e_1_2_8_39_1
  doi: 10.1002/anie.201912986
– ident: e_1_2_8_6_1
  doi: 10.1126/science.aah6133
– ident: e_1_2_8_7_1
  doi: 10.1016/j.apcatb.2019.01.083
– ident: e_1_2_8_18_1
  doi: 10.1039/C9TA04954A
– ident: e_1_2_8_48_1
  doi: 10.1039/C4CP01455C
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jechem.2020.07.012
– ident: e_1_2_8_36_1
  doi: 10.1007/s12274-021-3885-y
– ident: e_1_2_8_17_1
  doi: 10.1002/anie.201909312
– ident: e_1_2_8_30_1
  doi: 10.1038/s41467-018-07850-2
– ident: e_1_2_8_27_1
  doi: 10.1002/advs.201801490
– ident: e_1_2_8_42_1
  doi: 10.1021/jacs.6b00757
– ident: e_1_2_8_14_1
  doi: 10.1002/anie.202003917
– ident: e_1_2_8_29_1
  doi: 10.1002/anie.202002665
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.201909312
– ident: e_1_2_8_11_1
  doi: 10.1002/aenm.201801226
– ident: e_1_2_8_32_1
  doi: 10.1002/aenm.201601979
– ident: e_1_2_8_37_1
  doi: 10.1039/C9CS00813F
– ident: e_1_2_8_1_1
  doi: 10.1038/s41586-019-1603-7
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.nanolett.0c00081
– ident: e_1_2_8_47_1
  doi: 10.1038/s41560-022-01062-1
– ident: e_1_2_8_43_1
  doi: 10.1021/jacs.7b06514
– ident: e_1_2_8_50_1
  doi: 10.1038/s41467-020-16715-6
– ident: e_1_2_8_44_1
  doi: 10.1002/adma.202202544
– ident: e_1_2_8_41_1
  doi: 10.1016/j.apcatb.2019.03.046
– ident: e_1_2_8_20_1
  doi: 10.1016/j.nanoen.2019.04.033
– ident: e_1_2_8_10_1
  doi: 10.1021/jacs.7b06514
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.201606534
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.202008085
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.201802596
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jcis.2022.04.002
– ident: e_1_2_8_3_1
  doi: 10.1126/science.aan2255
– ident: e_1_2_8_46_1
  doi: 10.1002/anie.201804349
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.201800939
– ident: e_1_2_8_16_1
  doi: 10.1021/acsnano.9b01953
– ident: e_1_2_8_23_1
  doi: 10.1021/acscatal.8b00138
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.accounts.6b00480
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jcat.2019.02.023
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.chemrev.5b00462
– ident: e_1_2_8_45_1
  doi: 10.1002/smll.201805325
– ident: e_1_2_8_12_1
  doi: 10.1039/D0CC07767D
– ident: e_1_2_8_53_1
  doi: 10.1016/j.apcatb.2020.119411
– ident: e_1_2_8_51_1
  doi: 10.1002/adma.202101038
– ident: e_1_2_8_52_1
  doi: 10.1002/adma.202004670
SSID ssj0031247
Score 2.5533953
Snippet Transition metal–nitrogen–carbon (TM–N–C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient...
Transition metal-nitrogen-carbon (TM-N-C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2205033
SubjectTerms Accessibility
Carbon
carbon hollow structures
Catalysts
Chemical reduction
Electrolytes
Fe–N 4
Fine structure
Iron
Metal air batteries
Nanorods
Nanotechnology
Nitrogen
oxygen reduction reaction
Oxygen reduction reactions
phase‐transition
Structural analysis
Transition metals
ZIF
Zinc-oxygen batteries
Title Isolating Fe Atoms in N‐Doped Carbon Hollow Nanorods through a ZIF‐Phase‐Transition Strategy for Efficient Oxygen Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202205033
https://www.ncbi.nlm.nih.gov/pubmed/36285776
https://www.proquest.com/docview/2747975232
https://www.proquest.com/docview/2729026188
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQT3Dgo3wttNUgIXFKm40T2zlWbVdbVAoqVKq4RLYzEYg2qZpdQTnBP-A38kuYcbKhC0JIcEqijBUneTPznIyfhXiKxlWpkzZy_P0tLR3FQWKuUU5h0lWJjb0Pap-HanqcPj_JTq7M4u_0IYYPbuwZIV6zg1vXbv0UDW3PTvnXAU8UjSXLfXLBFrOio0E_SlLyCqurUM6KWHhrodoYJ1vLzZez0m9Uc5m5htQzuSXsotNdxcmHzfnMbfrPv-g5_s9d3RY3e14K2x2Q7ohrWK-KG1fUCu-Kr_uEU8tl0jBB2J41Zy28r-Hw-5dvu805lrBjL1xTw5Sg1XwEitsNRecW-qWAwMLb_QkZv3pHmZO2IU2GijHoNXIvgSg07AVVC0qG8PLTJeEbjlhelu3uiePJ3pudadSv4BB5qaWMMuVwjAZzU5WmSseasCDjuPRjLRPUVYqJocivFBGXUnt0TL-sVSZHVRqVy_tipW5qfCggyyqtS3Sxr1xKTQhRBKYYfZaiQq9GIlq8wcL38ua8ysZp0QkzJwU_2mJ4tCPxbLA_74Q9_mi5tgBE0Tt4W_BgPtc0ik9G4slwmlyT_7fYGps52yQ5D3GNGYkHHZCGS0meuqo1dTsJcPhLH4rXLw4OhqNH_9LosbjO-10pzppYmV3McZ0I1cxtBKf5AVKAG3I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V5QAcSvltoMAigTi5dfy39oFD1TRKaBpQaaWKi_GuxwLR2lWdqIRTeQNehVfpI_RJmFn_QEAICakHTpHjsbzanW_m2_XuNwBPMVSZp9zEUrz-5qWK4iAxVyuiMKkyJ7G1Nmqf42Cw77088A8W4FtzFqbSh2gX3BgZJl4zwHlBev2Hamh5dMjfDvikqO029au3cXZKs7byxbBHQ_zMcfpbe5sDqy4sYGlXuq7lBwq7GGIUZmmYeV1JTXRtO9Vd6TooMw-dkAJSEFA-TaVGxawgSYIwwiANA9Zfoqh_hcuIs1x_b7dVrHIpXZp6LpQlLZb6anQibWd9vr3zefA3cjvPlU2y69-A86abqj0uH9emE7WmP_-iIPlf9eMyLNXUW2xUWLkJC5jfgus_CTLehi9DgmLCO8FFH8XGpDgqxYdcjC_OvvaKY0zFZnKiilwMCD3FqaDUVFACKkVd7Ugk4u2wT8av3xM5oF_DBMymOFHLAM8EzRLElhHuoHwvXn2aEYTFLivost0d2L-UPrgLi3mR4woI38-kTFHZOlMePUKgIbzYqH0PA9RBB6zGZWJdK7hzIZHDuNKedmIeyrgdyg48b-2PK-2SP1quNh4Y1zGsjHm9IpI-Ue4OPGlvU_ThT0pJjsWUbZyIZ_Fh2IF7lee2r3L5dK6U1GzH-N9f2hC_2RmN2qv7__LQY7g62NsZxaPhePsBXOP_q51Hq7A4OZniQ-KPE_XIIFbAu8t27e_yWXmN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VRUJw4P8nUGCRQJzcOv7ZtQ8cqqZWQkOoCpUqLq53PRaI1o7qRCWc4A14FF6FV-BJmPEfBISQkHrgFDkey6vd-Wa-Xe9-A_AIA5152k0szetvXqopDhJztUIKkzpzEtuYSu1zIof73rMD_2AFvrRnYWp9iG7BjZFRxWsG-DTNNn6IhpbHR_zpgA-K2m5bvnoHF6c0aSufjgY0wo8dJ9p-tTW0mroClnGV61q-1NjHAMMgS4PM6ytqoWvbqekr10GVeegEFI-kpHSaKoOaSUGSyCBEmQaS5Zco6J_zpB1ysYjBXidY5VK2rMq5UJK0WOmrlYm0nY3l9i6nwd-47TJVrnJddBm-tr1Ub3F5tz6f6XXz4RcByf-pG6_ApYZ4i80aKVdhBfNrcPEnOcbr8GlEQEx4H7iIUGzOiuNSvM3F5NvHz4NiiqnYSk50kYshYac4FZSYCko_pWhqHYlEvB5FZLz7hqgB_VY8oNoSJxoR4IWgOYLYrmQ7KNuLF-8XBGCxx_q5bHcD9s-kD27Cal7keBuE72dKpahtk2mPHiHIEFpsNL6HEo3sgdV6TGwa_XYuI3IU18rTTsxDGXdD2YMnnf20Vi75o-Va64BxE8HKmFcrQuUT4e7Bw-42xR7-oJTkWMzZxgl5Dh8EPbhVO273KpfP5ipFzXYq9_tLG-KXz8fj7urOvzz0AM7vDqJ4PJrs3IUL_He97WgNVmcnc7xH5HGm71d4FXB41p79HfrieDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isolating+Fe+Atoms+in+N-Doped+Carbon+Hollow+Nanorods+through+a+ZIF-Phase-Transition+Strategy+for+Efficient+Oxygen+Reduction&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ma%2C+Fei-Xiang&rft.au=Liu%2C+Zheng-Qi&rft.au=Zhang%2C+Guobin&rft.au=Xiong%2C+Yu-Xuan&rft.date=2022-12-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=18&rft.issue=49&rft.spage=e2205033&rft_id=info:doi/10.1002%2Fsmll.202205033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon