Isolating Fe Atoms in N‐Doped Carbon Hollow Nanorods through a ZIF‐Phase‐Transition Strategy for Efficient Oxygen Reduction
Transition metal–nitrogen–carbon (TM–N–C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF‐L nanorods as self‐sacrifice templates, a ZIF‐phase‐tra...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 49; pp. e2205033 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition metal–nitrogen–carbon (TM–N–C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF‐L nanorods as self‐sacrifice templates, a ZIF‐phase‐transition strategy is developed to fabricate ZIF‐8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe‐N‐C hollow nanorods (denoted as Fe1–N–C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X‐ray absorption fine structure analysis confirm abundant Fe–N4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe‐N4 active sites provided by the highly porous and open carbon hollow architecture, the Fe1‐N‐C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half‐wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (JK) of Fe1‐N‐C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm−2, 21 times higher than that of Pt/C. The assembled Zn‐air battery using Fe1–N–C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm−2.
By using solid ZIF‐L nanorods as self‐sacrifice templates, a unique ZIF‐phase‐transition strategy is developed to fabricate atomically dispersed Fe–N–C hollow nanorods (Fe1–N–C HNRs) with highly open architecture and abundant exposed Fe–N4 active sites, which can be utilized as efficient oxygen reduction reaction electrocatalysts in both alkaline and acid conditions. |
---|---|
AbstractList | Transition metal–nitrogen–carbon (TM–N–C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF‐L nanorods as self‐sacrifice templates, a ZIF‐phase‐transition strategy is developed to fabricate ZIF‐8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe‐N‐C hollow nanorods (denoted as Fe
1
–N–C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X‐ray absorption fine structure analysis confirm abundant Fe–N
4
active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe‐N
4
active sites provided by the highly porous and open carbon hollow architecture, the Fe
1
‐N‐C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half‐wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (
J
K
) of Fe
1
‐N‐C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm
−2
, 21 times higher than that of Pt/C. The assembled Zn‐air battery using Fe
1
–N–C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm
−2
. Transition metal–nitrogen–carbon (TM–N–C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF‐L nanorods as self‐sacrifice templates, a ZIF‐phase‐transition strategy is developed to fabricate ZIF‐8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe‐N‐C hollow nanorods (denoted as Fe1–N–C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X‐ray absorption fine structure analysis confirm abundant Fe–N4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe‐N4 active sites provided by the highly porous and open carbon hollow architecture, the Fe1‐N‐C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half‐wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (JK) of Fe1‐N‐C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm−2, 21 times higher than that of Pt/C. The assembled Zn‐air battery using Fe1–N–C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm−2. Transition metal-nitrogen-carbon (TM-N-C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF-L nanorods as self-sacrifice templates, a ZIF-phase-transition strategy is developed to fabricate ZIF-8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe-N-C hollow nanorods (denoted as Fe1 -N-C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X-ray absorption fine structure analysis confirm abundant Fe-N4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe-N4 active sites provided by the highly porous and open carbon hollow architecture, the Fe1 -N-C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half-wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (JK ) of Fe1 -N-C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm-2 , 21 times higher than that of Pt/C. The assembled Zn-air battery using Fe1 -N-C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm-2 .Transition metal-nitrogen-carbon (TM-N-C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF-L nanorods as self-sacrifice templates, a ZIF-phase-transition strategy is developed to fabricate ZIF-8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe-N-C hollow nanorods (denoted as Fe1 -N-C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X-ray absorption fine structure analysis confirm abundant Fe-N4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe-N4 active sites provided by the highly porous and open carbon hollow architecture, the Fe1 -N-C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half-wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (JK ) of Fe1 -N-C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm-2 , 21 times higher than that of Pt/C. The assembled Zn-air battery using Fe1 -N-C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm-2 . Transition metal–nitrogen–carbon (TM–N–C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF‐L nanorods as self‐sacrifice templates, a ZIF‐phase‐transition strategy is developed to fabricate ZIF‐8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe‐N‐C hollow nanorods (denoted as Fe1–N–C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X‐ray absorption fine structure analysis confirm abundant Fe–N4 active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe‐N4 active sites provided by the highly porous and open carbon hollow architecture, the Fe1‐N‐C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half‐wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (JK) of Fe1‐N‐C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm−2, 21 times higher than that of Pt/C. The assembled Zn‐air battery using Fe1–N–C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm−2. By using solid ZIF‐L nanorods as self‐sacrifice templates, a unique ZIF‐phase‐transition strategy is developed to fabricate atomically dispersed Fe–N–C hollow nanorods (Fe1–N–C HNRs) with highly open architecture and abundant exposed Fe–N4 active sites, which can be utilized as efficient oxygen reduction reaction electrocatalysts in both alkaline and acid conditions. Transition metal-nitrogen-carbon (TM-N-C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient accessibility of the active sites limits their performance. Here, by using solid ZIF-L nanorods as self-sacrifice templates, a ZIF-phase-transition strategy is developed to fabricate ZIF-8 hollow nanorods with open cavities, which can be subsequently converted to atomically dispersed Fe-N-C hollow nanorods (denoted as Fe -N-C HNRs) through rational carbonization and following fixation of iron atoms. The microstructure observation and X-ray absorption fine structure analysis confirm abundant Fe-N active sites are evenly distributed in the carbon skeleton. Thanks to the highly accessible Fe-N active sites provided by the highly porous and open carbon hollow architecture, the Fe -N-C HNRs exhibit superior ORR activity and stability in alkaline and acidic electrolytes with very positive half-wave potentials of 0.91 and 0.8 V versus RHE, respectively, both of which surpass those of commercial Pt/C. Remarkably, the dynamic current density (J ) of Fe -N-C HNRs at 0.85 V versus RHE in alkaline media delivers a record value of 148 mA cm , 21 times higher than that of Pt/C. The assembled Zn-air battery using Fe -N-C HNRs as cathode catalyst exhibits a high peak power density of 208 mW cm . |
Author | Ma, Fei‐Xiang Liu, Zheng‐Qi Zheng, Lirong Zhang, Guobin Zhen, Liang Xiong, Yu‐Xuan Xu, Cheng‐Yan Zhang, Meng‐Tian |
Author_xml | – sequence: 1 givenname: Fei‐Xiang orcidid: 0000-0002-2449-9139 surname: Ma fullname: Ma, Fei‐Xiang organization: Harbin Institute of Technology (Shenzhen) – sequence: 2 givenname: Zheng‐Qi surname: Liu fullname: Liu, Zheng‐Qi organization: Harbin Institute of Technology (Shenzhen) – sequence: 3 givenname: Guobin surname: Zhang fullname: Zhang, Guobin organization: Tsinghua Shenzhen International Graduate School – sequence: 4 givenname: Yu‐Xuan surname: Xiong fullname: Xiong, Yu‐Xuan organization: Harbin Institute of Technology (Shenzhen) – sequence: 5 givenname: Meng‐Tian surname: Zhang fullname: Zhang, Meng‐Tian organization: Harbin Institute of Technology (Shenzhen) – sequence: 6 givenname: Lirong surname: Zheng fullname: Zheng, Lirong organization: Chinese Academy of Sciences – sequence: 7 givenname: Liang surname: Zhen fullname: Zhen, Liang organization: Harbin Institute of Technology – sequence: 8 givenname: Cheng‐Yan orcidid: 0000-0002-7835-6635 surname: Xu fullname: Xu, Cheng‐Yan email: cy_xu@hit.edu.cn organization: Harbin Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36285776$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URC-wZYkssWGT4MuM7VlWoaGRQoto2bAZeWbOJK48drA9KtnBG_CMPAmOUoJUCbE6Xnyfz9H_n6Ij5x0g9JKSKSWEvY2DtVNGGCMl4fwJOqGC8olQrDo6vCk5Rqcx3hHCKSvkM3TMBVOllOIE_VhEb3UyboXngM-THyI2Dl_9-v7znd9Ah2c6NN7hS2-tv8dX2vngu4jTOvhxtcYaf1nMM_xxrSPkeRu0iyaZrNykoBOstrj3AV_0vWkNuISvv21X4PAn6MZ2xz1HT3ttI7x4mGfo8_zidnY5WV6_X8zOl5OWS84npWiAgoJK9Z3qCyq7RnJCupZKzkD2BTAFuhWCyLKTLTSCEKq1UBWITomKn6E3-383wX8dIaZ6MLEFa7UDP8aaSVYRJqhSGX39CL3zY3D5ukwVspIl4yxTrx6osRmgqzfBDDps6z_hZmC6B9rgYwzQHxBK6l179a69-tBeFopHQmuS3oWUozT231q11-6Nhe1_ltQ3H5bLv-5vyv-x9w |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2023_108570 crossref_primary_10_1039_D2NJ06359J crossref_primary_10_1002_aenm_202203609 crossref_primary_10_1016_j_jcis_2023_06_127 crossref_primary_10_1016_j_cjsc_2023_100097 crossref_primary_10_1002_cnma_202300334 crossref_primary_10_1016_j_ijhydene_2024_08_192 crossref_primary_10_1002_smll_202302925 crossref_primary_10_1016_j_est_2023_109343 crossref_primary_10_1007_s11426_024_2027_2 crossref_primary_10_1007_s10562_023_04547_0 crossref_primary_10_1016_j_seppur_2024_129977 crossref_primary_10_1007_s12598_024_02676_y crossref_primary_10_1007_s40843_023_2464_8 crossref_primary_10_1016_j_cej_2023_146963 crossref_primary_10_1039_D3NJ03711H crossref_primary_10_1021_acsanm_4c02087 crossref_primary_10_1016_j_cej_2023_146900 crossref_primary_10_1002_adfm_202401484 crossref_primary_10_1002_smll_202310637 crossref_primary_10_1007_s10853_024_09719_w crossref_primary_10_1021_acsaem_3c00929 crossref_primary_10_1039_D2QM01288J crossref_primary_10_1016_j_mtener_2024_101594 crossref_primary_10_1016_j_est_2024_111058 crossref_primary_10_3390_molecules29040771 crossref_primary_10_1039_D3SE01183F crossref_primary_10_1016_j_jallcom_2024_174204 crossref_primary_10_1016_j_apsusc_2025_162572 crossref_primary_10_1002_smll_202207991 crossref_primary_10_1002_smll_202307863 crossref_primary_10_1021_acssuschemeng_4c05575 crossref_primary_10_1002_smll_202308956 crossref_primary_10_1002_smll_202305700 |
Cites_doi | 10.1038/ncomms9668 10.1002/adfm.202105021 10.1002/adma.201905622 10.1016/j.cej.2020.127270 10.1126/science.aao3403 10.1021/acscatal.6b02966 10.1039/D0CC05520D 10.1002/anie.202002665 10.1039/D1TA05039G 10.1039/C8EE01481G 10.1038/ncomms16160 10.1016/j.scib.2020.06.020 10.1002/anie.201912986 10.1126/science.aah6133 10.1016/j.apcatb.2019.01.083 10.1039/C9TA04954A 10.1039/C4CP01455C 10.1016/j.jechem.2020.07.012 10.1007/s12274-021-3885-y 10.1002/anie.201909312 10.1038/s41467-018-07850-2 10.1002/advs.201801490 10.1021/jacs.6b00757 10.1002/anie.202003917 10.1002/aenm.201801226 10.1002/aenm.201601979 10.1039/C9CS00813F 10.1038/s41586-019-1603-7 10.1021/acs.nanolett.0c00081 10.1038/s41560-022-01062-1 10.1021/jacs.7b06514 10.1038/s41467-020-16715-6 10.1002/adma.202202544 10.1016/j.apcatb.2019.03.046 10.1016/j.nanoen.2019.04.033 10.1002/adma.201606534 10.1002/adfm.202008085 10.1002/adfm.201802596 10.1016/j.jcis.2022.04.002 10.1126/science.aan2255 10.1002/anie.201804349 10.1002/adma.201800939 10.1021/acsnano.9b01953 10.1021/acscatal.8b00138 10.1021/acs.accounts.6b00480 10.1016/j.jcat.2019.02.023 10.1021/acs.chemrev.5b00462 10.1002/smll.201805325 10.1039/D0CC07767D 10.1016/j.apcatb.2020.119411 10.1002/adma.202101038 10.1002/adma.202004670 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202205033 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36285776 10_1002_smll_202205033 SMLL202205033 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Shenzhen Science and Technology Innovation Committee funderid: JCYJ20200109113212238 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2021A1515111154 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2021A1515111154 – fundername: Shenzhen Science and Technology Innovation Committee grantid: JCYJ20200109113212238 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3733-56be1e8e98fd8f417db7300dc1732e7f4e28eac66075d7ceb6001aa689e6d8693 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 01:31:20 EDT 2025 Fri Jul 25 12:14:07 EDT 2025 Wed Feb 19 02:26:34 EST 2025 Tue Jul 01 02:54:19 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Wed Jan 22 16:22:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | phase-transition carbon hollow structures Fe-N 4 oxygen reduction reaction ZIF |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-56be1e8e98fd8f417db7300dc1732e7f4e28eac66075d7ceb6001aa689e6d8693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2449-9139 0000-0002-7835-6635 |
PMID | 36285776 |
PQID | 2747975232 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2729026188 proquest_journals_2747975232 pubmed_primary_36285776 crossref_primary_10_1002_smll_202205033 crossref_citationtrail_10_1002_smll_202205033 wiley_primary_10_1002_smll_202205033_SMLL202205033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2017; 8 2021; 408 2020; 20 2019; 13 2019; 59 2019; 15 2019; 58 2021; 280 2020; 59 2019; 246 2020; 56 2020; 11 2017; 357 2018; 9 2018; 8 2021; 31 2019; 61 2021; 33 2022; 34 2014; 16 2016; 354 2018; 30 2016; 116 2021; 9 2019; 7 2018; 28 2015; 6 2019; 6 2019; 31 2017; 29 2020; 32 2021; 50 2017; 139 2021; 57 2017; 50 2021; 15 2021; 55 2018; 359 2022; 7 2016; 138 2020; 65 2021; 60 2019; 372 2019; 251 2018; 11 2019; 574 2022; 620 2018; 57 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 357 start-page: 479 year: 2017 publication-title: Science – volume: 11 start-page: 2348 year: 2018 publication-title: Energy Environ. Sci. – volume: 116 start-page: 3594 year: 2016 publication-title: Chem. Rev. – volume: 280 year: 2021 publication-title: Appl. Catal., B – volume: 138 start-page: 3570 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 5639 year: 2020 publication-title: Nano Lett. – volume: 59 start-page: 7384 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 6 start-page: 8668 year: 2015 publication-title: Nat. Commun. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 246 start-page: 322 year: 2019 publication-title: Appl. Catal., B – volume: 7 start-page: 1655 year: 2017 publication-title: ACS Catal. – volume: 50 start-page: 2927 year: 2021 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 5422 year: 2018 publication-title: Nat. Commun. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 574 start-page: 81 year: 2019 publication-title: Nature – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 359 start-page: 206 year: 2018 publication-title: Science – volume: 65 start-page: 1743 year: 2020 publication-title: Sci. Bull. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 408 year: 2021 publication-title: Chem. Eng. J. – volume: 60 start-page: 4448 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 7800 year: 2019 publication-title: ACS Nano – volume: 372 start-page: 174 year: 2019 publication-title: J. Catal. – volume: 61 start-page: 60 year: 2019 publication-title: Nano Energy – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 620 start-page: 67 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 8 start-page: 2824 year: 2018 publication-title: ACS Catal. – volume: 11 start-page: 2831 year: 2020 publication-title: Nat. Commun. – volume: 7 start-page: 652 year: 2022 publication-title: Nat. Energy – volume: 56 year: 2020 publication-title: Chem. Comm. – volume: 59 start-page: 1327 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 354 start-page: 1410 year: 2016 publication-title: Science – volume: 15 start-page: 2887 year: 2021 publication-title: Nano Res. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 57 start-page: 8614 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 2049 year: 2021 publication-title: Chem. Comm. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 50 start-page: 293 year: 2017 publication-title: Acc. Chem. Res. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 55 start-page: 183 year: 2021 publication-title: J. Energy Chem. – volume: 251 start-page: 240 year: 2019 publication-title: Appl. Catal., B – ident: e_1_2_8_49_1 doi: 10.1038/ncomms9668 – ident: e_1_2_8_2_1 doi: 10.1002/adfm.202105021 – ident: e_1_2_8_25_1 doi: 10.1002/adma.201905622 – ident: e_1_2_8_26_1 doi: 10.1016/j.cej.2020.127270 – ident: e_1_2_8_15_1 doi: 10.1126/science.aao3403 – ident: e_1_2_8_19_1 doi: 10.1021/acscatal.6b02966 – ident: e_1_2_8_13_1 doi: 10.1039/D0CC05520D – ident: e_1_2_8_9_1 doi: 10.1002/anie.202002665 – ident: e_1_2_8_31_1 doi: 10.1039/D1TA05039G – ident: e_1_2_8_54_1 doi: 10.1039/C8EE01481G – ident: e_1_2_8_5_1 doi: 10.1038/ncomms16160 – ident: e_1_2_8_40_1 doi: 10.1016/j.scib.2020.06.020 – ident: e_1_2_8_39_1 doi: 10.1002/anie.201912986 – ident: e_1_2_8_6_1 doi: 10.1126/science.aah6133 – ident: e_1_2_8_7_1 doi: 10.1016/j.apcatb.2019.01.083 – ident: e_1_2_8_18_1 doi: 10.1039/C9TA04954A – ident: e_1_2_8_48_1 doi: 10.1039/C4CP01455C – ident: e_1_2_8_34_1 doi: 10.1016/j.jechem.2020.07.012 – ident: e_1_2_8_36_1 doi: 10.1007/s12274-021-3885-y – ident: e_1_2_8_17_1 doi: 10.1002/anie.201909312 – ident: e_1_2_8_30_1 doi: 10.1038/s41467-018-07850-2 – ident: e_1_2_8_27_1 doi: 10.1002/advs.201801490 – ident: e_1_2_8_42_1 doi: 10.1021/jacs.6b00757 – ident: e_1_2_8_14_1 doi: 10.1002/anie.202003917 – ident: e_1_2_8_29_1 doi: 10.1002/anie.202002665 – ident: e_1_2_8_22_1 doi: 10.1002/anie.201909312 – ident: e_1_2_8_11_1 doi: 10.1002/aenm.201801226 – ident: e_1_2_8_32_1 doi: 10.1002/aenm.201601979 – ident: e_1_2_8_37_1 doi: 10.1039/C9CS00813F – ident: e_1_2_8_1_1 doi: 10.1038/s41586-019-1603-7 – ident: e_1_2_8_8_1 doi: 10.1021/acs.nanolett.0c00081 – ident: e_1_2_8_47_1 doi: 10.1038/s41560-022-01062-1 – ident: e_1_2_8_43_1 doi: 10.1021/jacs.7b06514 – ident: e_1_2_8_50_1 doi: 10.1038/s41467-020-16715-6 – ident: e_1_2_8_44_1 doi: 10.1002/adma.202202544 – ident: e_1_2_8_41_1 doi: 10.1016/j.apcatb.2019.03.046 – ident: e_1_2_8_20_1 doi: 10.1016/j.nanoen.2019.04.033 – ident: e_1_2_8_10_1 doi: 10.1021/jacs.7b06514 – ident: e_1_2_8_33_1 doi: 10.1002/adma.201606534 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.202008085 – ident: e_1_2_8_24_1 doi: 10.1002/adfm.201802596 – ident: e_1_2_8_28_1 doi: 10.1016/j.jcis.2022.04.002 – ident: e_1_2_8_3_1 doi: 10.1126/science.aan2255 – ident: e_1_2_8_46_1 doi: 10.1002/anie.201804349 – ident: e_1_2_8_38_1 doi: 10.1002/adma.201800939 – ident: e_1_2_8_16_1 doi: 10.1021/acsnano.9b01953 – ident: e_1_2_8_23_1 doi: 10.1021/acscatal.8b00138 – ident: e_1_2_8_35_1 doi: 10.1021/acs.accounts.6b00480 – ident: e_1_2_8_21_1 doi: 10.1016/j.jcat.2019.02.023 – ident: e_1_2_8_4_1 doi: 10.1021/acs.chemrev.5b00462 – ident: e_1_2_8_45_1 doi: 10.1002/smll.201805325 – ident: e_1_2_8_12_1 doi: 10.1039/D0CC07767D – ident: e_1_2_8_53_1 doi: 10.1016/j.apcatb.2020.119411 – ident: e_1_2_8_51_1 doi: 10.1002/adma.202101038 – ident: e_1_2_8_52_1 doi: 10.1002/adma.202004670 |
SSID | ssj0031247 |
Score | 2.5533953 |
Snippet | Transition metal–nitrogen–carbon (TM–N–C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient... Transition metal-nitrogen-carbon (TM-N-C) catalysts have been intensely investigated to tackle the sluggish oxygen reduction reactions (ORRs), but insufficient... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2205033 |
SubjectTerms | Accessibility Carbon carbon hollow structures Catalysts Chemical reduction Electrolytes Fe–N 4 Fine structure Iron Metal air batteries Nanorods Nanotechnology Nitrogen oxygen reduction reaction Oxygen reduction reactions phase‐transition Structural analysis Transition metals ZIF Zinc-oxygen batteries |
Title | Isolating Fe Atoms in N‐Doped Carbon Hollow Nanorods through a ZIF‐Phase‐Transition Strategy for Efficient Oxygen Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202205033 https://www.ncbi.nlm.nih.gov/pubmed/36285776 https://www.proquest.com/docview/2747975232 https://www.proquest.com/docview/2729026188 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQT3Dgo3wttNUgIXFKm40T2zlWbVdbVAoqVKq4RLYzEYg2qZpdQTnBP-A38kuYcbKhC0JIcEqijBUneTPznIyfhXiKxlWpkzZy_P0tLR3FQWKuUU5h0lWJjb0Pap-HanqcPj_JTq7M4u_0IYYPbuwZIV6zg1vXbv0UDW3PTvnXAU8UjSXLfXLBFrOio0E_SlLyCqurUM6KWHhrodoYJ1vLzZez0m9Uc5m5htQzuSXsotNdxcmHzfnMbfrPv-g5_s9d3RY3e14K2x2Q7ohrWK-KG1fUCu-Kr_uEU8tl0jBB2J41Zy28r-Hw-5dvu805lrBjL1xTw5Sg1XwEitsNRecW-qWAwMLb_QkZv3pHmZO2IU2GijHoNXIvgSg07AVVC0qG8PLTJeEbjlhelu3uiePJ3pudadSv4BB5qaWMMuVwjAZzU5WmSseasCDjuPRjLRPUVYqJocivFBGXUnt0TL-sVSZHVRqVy_tipW5qfCggyyqtS3Sxr1xKTQhRBKYYfZaiQq9GIlq8wcL38ua8ysZp0QkzJwU_2mJ4tCPxbLA_74Q9_mi5tgBE0Tt4W_BgPtc0ik9G4slwmlyT_7fYGps52yQ5D3GNGYkHHZCGS0meuqo1dTsJcPhLH4rXLw4OhqNH_9LosbjO-10pzppYmV3McZ0I1cxtBKf5AVKAG3I |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V5QAcSvltoMAigTi5dfy39oFD1TRKaBpQaaWKi_GuxwLR2lWdqIRTeQNehVfpI_RJmFn_QEAICakHTpHjsbzanW_m2_XuNwBPMVSZp9zEUrz-5qWK4iAxVyuiMKkyJ7G1Nmqf42Cw77088A8W4FtzFqbSh2gX3BgZJl4zwHlBev2Hamh5dMjfDvikqO029au3cXZKs7byxbBHQ_zMcfpbe5sDqy4sYGlXuq7lBwq7GGIUZmmYeV1JTXRtO9Vd6TooMw-dkAJSEFA-TaVGxawgSYIwwiANA9Zfoqh_hcuIs1x_b7dVrHIpXZp6LpQlLZb6anQibWd9vr3zefA3cjvPlU2y69-A86abqj0uH9emE7WmP_-iIPlf9eMyLNXUW2xUWLkJC5jfgus_CTLehi9DgmLCO8FFH8XGpDgqxYdcjC_OvvaKY0zFZnKiilwMCD3FqaDUVFACKkVd7Ugk4u2wT8av3xM5oF_DBMymOFHLAM8EzRLElhHuoHwvXn2aEYTFLivost0d2L-UPrgLi3mR4woI38-kTFHZOlMePUKgIbzYqH0PA9RBB6zGZWJdK7hzIZHDuNKedmIeyrgdyg48b-2PK-2SP1quNh4Y1zGsjHm9IpI-Ue4OPGlvU_ThT0pJjsWUbZyIZ_Fh2IF7lee2r3L5dK6U1GzH-N9f2hC_2RmN2qv7__LQY7g62NsZxaPhePsBXOP_q51Hq7A4OZniQ-KPE_XIIFbAu8t27e_yWXmN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VRUJw4P8nUGCRQJzcOv7ZtQ8cqqZWQkOoCpUqLq53PRaI1o7qRCWc4A14FF6FV-BJmPEfBISQkHrgFDkey6vd-Wa-Xe9-A_AIA5152k0szetvXqopDhJztUIKkzpzEtuYSu1zIof73rMD_2AFvrRnYWp9iG7BjZFRxWsG-DTNNn6IhpbHR_zpgA-K2m5bvnoHF6c0aSufjgY0wo8dJ9p-tTW0mroClnGV61q-1NjHAMMgS4PM6ytqoWvbqekr10GVeegEFI-kpHSaKoOaSUGSyCBEmQaS5Zco6J_zpB1ysYjBXidY5VK2rMq5UJK0WOmrlYm0nY3l9i6nwd-47TJVrnJddBm-tr1Ub3F5tz6f6XXz4RcByf-pG6_ApYZ4i80aKVdhBfNrcPEnOcbr8GlEQEx4H7iIUGzOiuNSvM3F5NvHz4NiiqnYSk50kYshYac4FZSYCko_pWhqHYlEvB5FZLz7hqgB_VY8oNoSJxoR4IWgOYLYrmQ7KNuLF-8XBGCxx_q5bHcD9s-kD27Cal7keBuE72dKpahtk2mPHiHIEFpsNL6HEo3sgdV6TGwa_XYuI3IU18rTTsxDGXdD2YMnnf20Vi75o-Va64BxE8HKmFcrQuUT4e7Bw-42xR7-oJTkWMzZxgl5Dh8EPbhVO273KpfP5ipFzXYq9_tLG-KXz8fj7urOvzz0AM7vDqJ4PJrs3IUL_He97WgNVmcnc7xH5HGm71d4FXB41p79HfrieDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isolating+Fe+Atoms+in+N-Doped+Carbon+Hollow+Nanorods+through+a+ZIF-Phase-Transition+Strategy+for+Efficient+Oxygen+Reduction&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ma%2C+Fei-Xiang&rft.au=Liu%2C+Zheng-Qi&rft.au=Zhang%2C+Guobin&rft.au=Xiong%2C+Yu-Xuan&rft.date=2022-12-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=18&rft.issue=49&rft.spage=e2205033&rft_id=info:doi/10.1002%2Fsmll.202205033&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |