Precise Molecular Sieving Architectures with Janus Pathways for Both Polar and Nonpolar Molecules

Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exh...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 11
Main Authors Liu, Jiangtao, Hua, Dan, Zhang, Yu, Japip, Susilo, Chung, Tai‐Shung
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exhibit exceptionally high permeances for both polar and nonpolar solvents. The precise molecular sieving functions are determined by the type of CD building blocks and the inner cavities of intrinsic 3D hollow bowls. Positron annihilation spectroscopy (PAS) confirms that a larger inner CD cavity tends to generate a larger free volume and higher microporosity. Based on the rejection ratio of various dyes, the estimated molecular weight cutoff of CD/TMC nanofilms follows the trend of α‐CD/TMC (320 Da) <β‐CD/TMC (400 Da) <γ‐CD/TMC (550 Da), which is in strict accordance with the orders of their free volumes measured by PAS and inner cavity sizes of α‐CD <β‐CD <γ‐CD. This kind of novel CD/TMC molecular sieving membrane with intrinsic microporosity containing tunable pore size and sharp pore‐size distribution can effectively discriminate molecules with different 3D sizes. Precise molecular sieving architectures with Janus pathways (both hydrophobic inner cavities and hydrophilic channels) exhibit high permeances for both polar and nonpolar solvents. The pore size can be accurately tuned by the intrinsic 3D hollow bowls of cyclodextrins. Clearly, the molecular sieving function is the most distinctive feature to discriminate small molecules based on their 3D structures.
AbstractList Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exhibit exceptionally high permeances for both polar and nonpolar solvents. The precise molecular sieving functions are determined by the type of CD building blocks and the inner cavities of intrinsic 3D hollow bowls. Positron annihilation spectroscopy (PAS) confirms that a larger inner CD cavity tends to generate a larger free volume and higher microporosity. Based on the rejection ratio of various dyes, the estimated molecular weight cutoff of CD/TMC nanofilms follows the trend of α‐CD/TMC (320 Da) <β‐CD/TMC (400 Da) <γ‐CD/TMC (550 Da), which is in strict accordance with the orders of their free volumes measured by PAS and inner cavity sizes of α‐CD <β‐CD <γ‐CD. This kind of novel CD/TMC molecular sieving membrane with intrinsic microporosity containing tunable pore size and sharp pore‐size distribution can effectively discriminate molecules with different 3D sizes.
Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exhibit exceptionally high permeances for both polar and nonpolar solvents. The precise molecular sieving functions are determined by the type of CD building blocks and the inner cavities of intrinsic 3D hollow bowls. Positron annihilation spectroscopy (PAS) confirms that a larger inner CD cavity tends to generate a larger free volume and higher microporosity. Based on the rejection ratio of various dyes, the estimated molecular weight cutoff of CD/TMC nanofilms follows the trend of α-CD/TMC (320 Da) <β-CD/TMC (400 Da) <γ-CD/TMC (550 Da), which is in strict accordance with the orders of their free volumes measured by PAS and inner cavity sizes of α-CD <β-CD <γ-CD. This kind of novel CD/TMC molecular sieving membrane with intrinsic microporosity containing tunable pore size and sharp pore-size distribution can effectively discriminate molecules with different 3D sizes.Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exhibit exceptionally high permeances for both polar and nonpolar solvents. The precise molecular sieving functions are determined by the type of CD building blocks and the inner cavities of intrinsic 3D hollow bowls. Positron annihilation spectroscopy (PAS) confirms that a larger inner CD cavity tends to generate a larger free volume and higher microporosity. Based on the rejection ratio of various dyes, the estimated molecular weight cutoff of CD/TMC nanofilms follows the trend of α-CD/TMC (320 Da) <β-CD/TMC (400 Da) <γ-CD/TMC (550 Da), which is in strict accordance with the orders of their free volumes measured by PAS and inner cavity sizes of α-CD <β-CD <γ-CD. This kind of novel CD/TMC molecular sieving membrane with intrinsic microporosity containing tunable pore size and sharp pore-size distribution can effectively discriminate molecules with different 3D sizes.
Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exhibit exceptionally high permeances for both polar and nonpolar solvents. The precise molecular sieving functions are determined by the type of CD building blocks and the inner cavities of intrinsic 3D hollow bowls. Positron annihilation spectroscopy (PAS) confirms that a larger inner CD cavity tends to generate a larger free volume and higher microporosity. Based on the rejection ratio of various dyes, the estimated molecular weight cutoff of CD/TMC nanofilms follows the trend of α‐CD/TMC (320 Da) <β‐CD/TMC (400 Da) <γ‐CD/TMC (550 Da), which is in strict accordance with the orders of their free volumes measured by PAS and inner cavity sizes of α‐CD <β‐CD <γ‐CD. This kind of novel CD/TMC molecular sieving membrane with intrinsic microporosity containing tunable pore size and sharp pore‐size distribution can effectively discriminate molecules with different 3D sizes. Precise molecular sieving architectures with Janus pathways (both hydrophobic inner cavities and hydrophilic channels) exhibit high permeances for both polar and nonpolar solvents. The pore size can be accurately tuned by the intrinsic 3D hollow bowls of cyclodextrins. Clearly, the molecular sieving function is the most distinctive feature to discriminate small molecules based on their 3D structures.
Author Chung, Tai‐Shung
Liu, Jiangtao
Hua, Dan
Zhang, Yu
Japip, Susilo
Author_xml – sequence: 1
  givenname: Jiangtao
  surname: Liu
  fullname: Liu, Jiangtao
  organization: National University of Singapore
– sequence: 2
  givenname: Dan
  surname: Hua
  fullname: Hua, Dan
  organization: National University of Singapore
– sequence: 3
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: National University of Singapore
– sequence: 4
  givenname: Susilo
  surname: Japip
  fullname: Japip, Susilo
  organization: National University of Singapore
– sequence: 5
  givenname: Tai‐Shung
  surname: Chung
  fullname: Chung, Tai‐Shung
  email: chencts@nus.edu.sg
  organization: National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29380439$$D View this record in MEDLINE/PubMed
BookMark eNqFkc-PEyEYholZ43ZXrx4NiRcvUz-GYRiOdf2dXW2inslXBiybKVSYsel_L7VdTTYxngjked7wfe8FOQsxWEKeMpgzgPol9huc18AkCMX5AzJjomZVA0qckRkoLirVNt05ucj5FgBUC-0jcl4r3kHD1YzgMlnjs6U3cbBmGjDRL97-9OE7XSSz9qM145Rspjs_rulHDFOmSxzXO9xn6mKir2J5X8aDiKGnn2LY_r6c8mx-TB46HLJ9cjovybe3b75eva-uP7_7cLW4rgyXnFeNZMKgc6zmsBLCWQdtmZBxVfc9NHbVS47CteCktEwVxbAVYNcoQGlQ8Evy4pi7TfHHZPOoNz4bOwwYbJyyZkpxACk6WdDn99DbOKVQfqfLKjkIJrq2UM9O1LTa2F5vk99g2uu75RWgOQImxZyTddr4EUcfw5jQD5qBPnSkDx3pPx0VbX5Pu0v-p6COws4Pdv8fWi9e3yz-ur8AhUai-g
CitedBy_id crossref_primary_10_1016_j_seppur_2020_117370
crossref_primary_10_1002_cplu_202100473
crossref_primary_10_1016_j_carbon_2021_08_068
crossref_primary_10_1016_j_seppur_2022_120781
crossref_primary_10_1016_j_cej_2021_129338
crossref_primary_10_1016_j_memsci_2023_121711
crossref_primary_10_1039_C9TA12670H
crossref_primary_10_1016_j_memsci_2022_120583
crossref_primary_10_1021_acsapm_0c00896
crossref_primary_10_1016_j_memsci_2022_120466
crossref_primary_10_1007_s11705_024_2510_5
crossref_primary_10_4236_acs_2021_112018
crossref_primary_10_1016_j_memsci_2021_120074
crossref_primary_10_1021_acs_nanolett_4c03606
crossref_primary_10_1016_j_ces_2024_120925
crossref_primary_10_1016_j_scitotenv_2023_166016
crossref_primary_10_1002_adfm_202406430
crossref_primary_10_1016_j_foodchem_2025_143253
crossref_primary_10_1126_sciadv_adp6666
crossref_primary_10_1016_j_cej_2023_141694
crossref_primary_10_1002_ange_202206144
crossref_primary_10_1016_j_cej_2022_137013
crossref_primary_10_1002_admi_202001050
crossref_primary_10_1002_pol_20240961
crossref_primary_10_1021_acs_nanolett_4c02403
crossref_primary_10_1016_j_seppur_2023_125282
crossref_primary_10_3390_membranes11030184
crossref_primary_10_1021_acssuschemeng_8b02021
crossref_primary_10_1007_s11705_018_1780_1
crossref_primary_10_1021_acsapm_9b01024
crossref_primary_10_1039_D2RA01491B
crossref_primary_10_3390_polym14081604
crossref_primary_10_1016_j_seppur_2022_121985
crossref_primary_10_1016_j_cej_2020_128198
crossref_primary_10_1016_j_desal_2024_117379
crossref_primary_10_1016_j_seppur_2023_124406
crossref_primary_10_1002_ange_202212816
crossref_primary_10_1016_j_xcrp_2020_100034
crossref_primary_10_1016_j_memsci_2024_122428
crossref_primary_10_1016_j_nanoen_2020_104610
crossref_primary_10_1016_j_advmem_2025_100129
crossref_primary_10_1007_s10118_023_3012_5
crossref_primary_10_1016_j_seppur_2023_125852
crossref_primary_10_1016_j_desal_2023_116459
crossref_primary_10_1039_C8TA03673J
crossref_primary_10_1016_j_cej_2023_142880
crossref_primary_10_1002_adma_202404164
crossref_primary_10_1016_j_seppur_2022_121520
crossref_primary_10_1002_solr_202400021
crossref_primary_10_1021_acs_chemmater_3c02448
crossref_primary_10_1016_j_seppur_2018_07_026
crossref_primary_10_1021_jacs_8b08788
crossref_primary_10_1016_j_memsci_2024_123504
crossref_primary_10_1126_sciadv_adg6134
crossref_primary_10_1016_j_cis_2023_102937
crossref_primary_10_1016_j_cjche_2022_01_027
crossref_primary_10_1016_j_memsci_2019_05_057
crossref_primary_10_1016_j_desal_2023_116685
crossref_primary_10_1002_adfm_202305815
crossref_primary_10_1002_aic_17795
crossref_primary_10_1002_anie_202402509
crossref_primary_10_1016_j_memsci_2018_10_052
crossref_primary_10_1021_acsami_0c16831
crossref_primary_10_1007_s11431_021_1895_y
crossref_primary_10_1016_j_cjche_2024_06_032
crossref_primary_10_1016_j_cej_2020_128206
crossref_primary_10_1039_D0TA10632A
crossref_primary_10_1016_j_memsci_2018_10_057
crossref_primary_10_1016_j_jhazmat_2021_126716
crossref_primary_10_1016_j_cej_2021_128609
crossref_primary_10_1126_science_abm7686
crossref_primary_10_1039_D3TA02683C
crossref_primary_10_1016_j_cej_2024_152165
crossref_primary_10_1016_j_desal_2025_118819
crossref_primary_10_1016_j_memsci_2019_05_021
crossref_primary_10_1016_j_memsci_2023_122052
crossref_primary_10_1002_anie_202200905
crossref_primary_10_1016_j_desal_2024_117967
crossref_primary_10_1039_D2TA05880D
crossref_primary_10_1021_acs_est_2c04772
crossref_primary_10_1039_D0CS00502A
crossref_primary_10_1016_j_seppur_2022_121541
crossref_primary_10_1016_j_jcis_2023_05_133
crossref_primary_10_1016_j_cej_2023_145339
crossref_primary_10_1016_j_cej_2021_130015
crossref_primary_10_1016_j_cej_2019_04_096
crossref_primary_10_1016_j_memsci_2019_05_038
crossref_primary_10_1039_C9TA06169J
crossref_primary_10_1002_smsc_202200026
crossref_primary_10_1016_j_cej_2022_136089
crossref_primary_10_1016_j_cis_2024_103269
crossref_primary_10_1021_acs_chemmater_8b02843
crossref_primary_10_1016_j_advmem_2024_100098
crossref_primary_10_1016_j_heliyon_2024_e24330
crossref_primary_10_1021_acsami_1c21862
crossref_primary_10_1016_j_desal_2021_114957
crossref_primary_10_1016_j_memsci_2020_118911
crossref_primary_10_1016_j_memsci_2019_117505
crossref_primary_10_1016_j_seppur_2022_122547
crossref_primary_10_1002_admi_202001671
crossref_primary_10_1016_j_memsci_2021_119867
crossref_primary_10_1016_j_ccr_2023_215613
crossref_primary_10_1016_j_seppur_2024_128431
crossref_primary_10_1016_j_memsci_2024_123432
crossref_primary_10_1016_j_memsci_2024_122463
crossref_primary_10_1021_acsami_3c17579
crossref_primary_10_1002_aic_17517
crossref_primary_10_1021_acs_est_9b06426
crossref_primary_10_1016_j_memsci_2023_122282
crossref_primary_10_1002_ange_202200905
crossref_primary_10_1021_acsami_0c20652
crossref_primary_10_1039_C8TA05687K
crossref_primary_10_1002_adsu_201800165
crossref_primary_10_1021_acsami_1c07737
crossref_primary_10_1016_j_memsci_2025_123737
crossref_primary_10_1039_D0SC00056F
crossref_primary_10_1021_acsami_1c06891
crossref_primary_10_1016_j_seppur_2022_120496
crossref_primary_10_1002_adma_202001383
crossref_primary_10_1021_acs_nanolett_4c02483
crossref_primary_10_1002_ange_202302809
crossref_primary_10_1016_j_cej_2020_127947
crossref_primary_10_1016_j_memsci_2023_121445
crossref_primary_10_1016_j_desal_2020_114387
crossref_primary_10_1002_anie_202206144
crossref_primary_10_1002_anie_202212816
crossref_primary_10_1016_j_memsci_2021_119375
crossref_primary_10_1002_admt_202201426
crossref_primary_10_1002_ange_202402509
crossref_primary_10_1039_D0TA01654C
crossref_primary_10_1016_j_cej_2023_146736
crossref_primary_10_1021_acsami_0c10272
crossref_primary_10_1016_j_jwpe_2024_106394
crossref_primary_10_1126_science_adh2404
crossref_primary_10_1016_j_memsci_2018_12_047
crossref_primary_10_1021_acs_nanolett_0c00344
crossref_primary_10_1007_s12633_022_01659_x
crossref_primary_10_1016_j_memsci_2023_122197
crossref_primary_10_1002_aic_16879
crossref_primary_10_1016_j_memsci_2023_122078
crossref_primary_10_1002_anie_202416050
crossref_primary_10_1039_D4GC00466C
crossref_primary_10_1016_j_desal_2023_117029
crossref_primary_10_1016_j_cej_2019_122462
crossref_primary_10_1039_D0EN00401D
crossref_primary_10_1002_adma_202309406
crossref_primary_10_1016_j_mattod_2021_07_001
crossref_primary_10_1016_j_mtcomm_2022_103438
crossref_primary_10_1021_acs_nanolett_0c03288
crossref_primary_10_1039_C8TA11372F
crossref_primary_10_1088_1361_6528_acbf56
crossref_primary_10_1039_C8TA08618D
crossref_primary_10_1002_advs_202412600
crossref_primary_10_1016_j_cej_2022_137316
crossref_primary_10_1016_j_cej_2018_07_156
crossref_primary_10_1016_j_desal_2023_117138
crossref_primary_10_1016_j_seppur_2022_120833
crossref_primary_10_1016_j_seppur_2021_119594
crossref_primary_10_1021_acsapm_2c01209
crossref_primary_10_1126_sciadv_abb1110
crossref_primary_10_1002_ange_202416050
crossref_primary_10_1016_j_memsci_2024_122605
crossref_primary_10_1039_D3SC05787A
crossref_primary_10_1021_acs_iecr_3c02779
crossref_primary_10_1002_anie_202302809
crossref_primary_10_1016_j_seppur_2024_126560
crossref_primary_10_1016_j_cej_2022_136113
crossref_primary_10_1002_adma_202405744
crossref_primary_10_1039_C8CC04080J
crossref_primary_10_1016_j_desal_2022_115941
crossref_primary_10_1016_j_memsci_2018_11_012
crossref_primary_10_1016_j_memsci_2019_04_077
crossref_primary_10_1021_acs_iecr_9b02408
crossref_primary_10_1021_acssuschemeng_0c02320
crossref_primary_10_1038_s41586_022_05032_1
crossref_primary_10_1038_s41467_024_47239_y
crossref_primary_10_1016_j_cej_2025_159244
crossref_primary_10_1016_j_jwpe_2023_104068
crossref_primary_10_1039_D0TA05337F
crossref_primary_10_1016_j_memsci_2025_123787
crossref_primary_10_1016_j_cej_2022_135159
crossref_primary_10_1016_j_jhazmat_2024_136632
crossref_primary_10_1016_j_arabjc_2020_10_021
crossref_primary_10_1016_j_jwpe_2022_102579
crossref_primary_10_1002_smll_202410900
crossref_primary_10_1007_s11270_024_06950_8
crossref_primary_10_1016_j_ces_2020_116001
crossref_primary_10_1016_j_seppur_2023_123983
crossref_primary_10_1016_j_apsusc_2020_148284
crossref_primary_10_1016_j_desal_2021_115531
crossref_primary_10_1016_j_seppur_2022_121941
crossref_primary_10_1016_j_seppur_2023_123759
crossref_primary_10_1039_D0CS00552E
crossref_primary_10_1021_acsami_9b03753
crossref_primary_10_1039_C9TA10190J
crossref_primary_10_3390_toxics10120783
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1016_j_memsci_2019_117347
crossref_primary_10_1016_j_seppur_2024_128962
crossref_primary_10_1016_j_memsci_2019_117227
crossref_primary_10_1016_j_memsci_2022_121061
crossref_primary_10_1126_sciadv_abm5899
crossref_primary_10_1016_j_memsci_2024_123041
crossref_primary_10_1021_acs_jpcb_4c02263
crossref_primary_10_1039_D0TA12283A
crossref_primary_10_1016_j_memsci_2021_119224
crossref_primary_10_3390_pr12030563
crossref_primary_10_1002_adma_202107401
crossref_primary_10_1002_eem2_12319
crossref_primary_10_1002_admi_201800823
crossref_primary_10_1016_j_cej_2020_126796
crossref_primary_10_1016_j_desal_2019_114178
crossref_primary_10_1039_D0TA02510K
crossref_primary_10_1016_j_jcis_2023_03_044
crossref_primary_10_1016_j_seppur_2022_121166
crossref_primary_10_1021_jacs_3c02711
crossref_primary_10_3724_SP_J_1123_2023_09001
crossref_primary_10_1021_acsami_0c14825
crossref_primary_10_1039_D1CS00545F
crossref_primary_10_1016_j_seppur_2020_117787
crossref_primary_10_1016_j_memsci_2024_122982
crossref_primary_10_1007_s12274_024_6560_1
crossref_primary_10_1016_j_seppur_2021_120217
crossref_primary_10_1038_s41467_023_38728_7
crossref_primary_10_1021_acsami_4c03688
crossref_primary_10_1039_D3QM00217A
crossref_primary_10_1016_j_seppur_2023_123884
crossref_primary_10_1016_j_seppur_2021_120336
Cites_doi 10.1016/j.carbon.2017.07.011
10.1126/science.1212101
10.1021/jacs.7b02381
10.1021/ie202999b
10.1016/S0043-1354(01)00318-9
10.1038/nature16185
10.1016/S0376-7388(00)80618-3
10.1126/science.1236686
10.1016/j.memsci.2006.12.016
10.1016/j.memsci.2011.03.012
10.1016/j.seppur.2017.06.021
10.1021/acssuschemeng.5b01292
10.1126/science.1254227
10.1080/15422119.2014.918884
10.1038/nchem.893
10.1016/j.cej.2015.12.062
10.1016/S0376-7388(97)00329-3
10.1016/j.memsci.2012.02.058
10.1016/j.memsci.2011.11.030
10.1016/j.memsci.2014.01.062
10.1016/j.progpolymsci.2012.06.005
10.1016/j.memsci.2017.08.024
10.1021/ie0202064
10.1016/j.coche.2015.01.009
10.1002/cite.201500084
10.1016/j.memsci.2008.10.005
10.1126/science.aaa5058
10.1126/science.1236098
10.1002/adma.201601606
10.1016/j.memsci.2003.07.016
10.1002/adma.201603945
10.1002/aic.14558
10.1039/B610848M
10.1016/j.memsci.2012.09.063
10.1002/3527608982
10.1038/nmat4638
10.1002/adma.200306053
10.1016/j.memsci.2016.10.001
10.1126/science.1228032
10.1126/science.1146744
10.1002/polb.10265
10.1021/acssuschemeng.5b00435
10.1039/C6TA09751K
10.1016/j.ejpb.2014.04.006
10.1002/adma.201500975
10.1002/adfm.201400400
10.1016/j.memsci.2012.02.008
10.1021/ja407665w
10.1021/cr500006j
10.1016/j.memsci.2016.12.026
10.1021/acs.est.7b00906
10.1126/science.aab0530
10.1002/adv.21455
10.1126/science.1232714
10.1002/adma.201606641
10.1021/acsami.7b02295
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201705933
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29380439
10_1002_adma_201705933
ADMA201705933
Genre article
Journal Article
GrantInformation_xml – fundername: National Research Foundation, Prime Minister's Office, Singapore
  funderid: NRF‐CRP14‐2014‐01; R‐279‐000‐466‐281
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3733-4715caff1230b55fef061001392dd04ebd73a5f60f77e19733c1b0a8490a7ca53
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 15:55:30 EDT 2025
Mon Jul 14 09:43:58 EDT 2025
Wed Feb 19 02:43:47 EST 2025
Tue Jul 01 00:44:39 EDT 2025
Thu Apr 24 22:57:14 EDT 2025
Wed Jan 22 16:18:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords molecular sieving nanofilms
membranes with intrinsic microporosity
cyclodextrin
Janus pathways
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-4715caff1230b55fef061001392dd04ebd73a5f60f77e19733c1b0a8490a7ca53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29380439
PQID 2013051586
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_1993007587
proquest_journals_2013051586
pubmed_primary_29380439
crossref_citationtrail_10_1002_adma_201705933
crossref_primary_10_1002_adma_201705933
wiley_primary_10_1002_adma_201705933_ADMA201705933
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Mar
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-Mar
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2014; 458
1990; 54
2008; 37
2014; 24
2015; 348
2012; 401
2017; 356
2014; 60
2017; 9
2012; 405
2017; 526
2002; 41
2002; 40
2015; 44
2013; 52
2016; 4638
2017; 122
2012; 335
2017; 523
2016; 88
2009; 326
2002; 36
2015; 3
2013; 428
2016; 529
2016; 289
2013; 342
2006
2017; 29
2007; 290
2011; 3
2015; 8
2014; 114
2011; 375
2017; 139
2014; 87
2017; 51
2015; 27
2013; 38
2013; 339
2004; 16
2013; 135
2012; 390–391
2017; 186
2003; 225
2016; 28
2007; 318
2017; 542
2014; 346
2014; 33
1998; 142
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_56_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_54_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_55_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 8
  start-page: 45
  year: 2015
  publication-title: Curr. Opin. Chem. Eng.
– volume: 290
  start-page: 78
  year: 2007
  publication-title: J. Membr. Sci.
– volume: 326
  start-page: 222
  year: 2009
  publication-title: J. Membr. Sci.
– volume: 401
  start-page: 222
  year: 2012
  publication-title: J. Membr. Sci.
– volume: 114
  start-page: 10735
  year: 2014
  publication-title: Chem. Rev.
– volume: 4638
  start-page: 760
  year: 2016
  publication-title: Nat. Mater.
– volume: 356
  start-page: eaab0530
  year: 2017
  publication-title: Science
– volume: 342
  start-page: 91
  year: 2013
  publication-title: Science
– volume: 225
  start-page: 165
  year: 2003
  publication-title: J. Membr. Sci.
– volume: 139
  start-page: 7689
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 342
  start-page: 95
  year: 2013
  publication-title: Science
– volume: 33
  start-page: 1
  year: 2014
  publication-title: Adv. Polym. Technol.
– volume: 29
  start-page: 1
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 14401
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 526
  start-page: 32
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 458
  start-page: 199
  year: 2014
  publication-title: J. Membr. Sci.
– volume: 27
  start-page: 3797
  year: 2015
  publication-title: Adv. Mater.
– volume: 346
  start-page: 1356
  year: 2014
  publication-title: Science
– volume: 523
  start-page: 92
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 52
  start-page: 1109
  year: 2013
  publication-title: Ind. Eng. Chem. Res.
– volume: 405
  start-page: 123
  year: 2012
  publication-title: J. Membr. Sci.
– volume: 529
  start-page: 190
  year: 2016
  publication-title: Nature
– volume: 428
  start-page: 301
  year: 2013
  publication-title: J. Membr. Sci.
– volume: 87
  start-page: 579
  year: 2014
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 28
  start-page: 8669
  year: 2016
  publication-title: Adv. Mater.
– volume: 339
  start-page: 303
  year: 2013
  publication-title: Science
– volume: 60
  start-page: 3623
  year: 2014
  publication-title: AIChE J.
– volume: 186
  start-page: 243
  year: 2017
  publication-title: Sep. Purif. Technol.
– volume: 142
  start-page: 111
  year: 1998
  publication-title: J. Membr. Sci.
– volume: 3
  start-page: 3019
  year: 2015
  publication-title: ACS Sustainable Chem. Eng.
– volume: 16
  start-page: 456
  year: 2004
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4583
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 339
  start-page: 284
  year: 2013
  publication-title: Science
– volume: 24
  start-page: 4729
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 7590
  year: 2017
  publication-title: Environ. Sci. Technol.
– volume: 542
  start-page: 289
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 122
  start-page: 604
  year: 2017
  publication-title: Carbon
– volume: 40
  start-page: 2151
  year: 2002
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 390–391
  start-page: 141
  year: 2012
  publication-title: J. Membr. Sci.
– volume: 3
  start-page: 1925
  year: 2015
  publication-title: ACS Sustainable Chem. Eng.
– volume: 36
  start-page: 1360
  year: 2002
  publication-title: Water Res.
– volume: 3
  start-page: 34
  year: 2011
  publication-title: Nat. Chem.
– volume: 41
  start-page: 5523
  year: 2002
  publication-title: Ind. Eng. Chem. Res.
– volume: 29
  start-page: 1606641
  year: 2017
  publication-title: Adv. Mater.
– volume: 289
  start-page: 562
  year: 2016
  publication-title: Chem. Eng. J.
– volume: 88
  start-page: 39
  year: 2016
  publication-title: Chem. Ing. Tech.
– volume: 335
  start-page: 444
  year: 2012
  publication-title: Science
– volume: 54
  start-page: 321
  year: 1990
  publication-title: J. Membr. Sci.
– volume: 318
  start-page: 254
  year: 2007
  publication-title: Science
– volume: 348
  start-page: 1347
  year: 2015
  publication-title: Science
– volume: 135
  start-page: 15201
  year: 2013
  publication-title: J. Am. Chem. Soc.
– year: 2006
– volume: 37
  start-page: 365
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 344
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 375
  start-page: 81
  year: 2011
  publication-title: J. Membr. Sci.
– volume: 44
  start-page: 157
  year: 2015
  publication-title: Sep. Purif. Rev.
– ident: e_1_2_4_22_1
  doi: 10.1016/j.carbon.2017.07.011
– ident: e_1_2_4_5_1
  doi: 10.1126/science.1212101
– ident: e_1_2_4_39_1
  doi: 10.1021/jacs.7b02381
– ident: e_1_2_4_26_1
  doi: 10.1021/ie202999b
– ident: e_1_2_4_53_1
  doi: 10.1016/S0043-1354(01)00318-9
– ident: e_1_2_4_38_1
  doi: 10.1038/nature16185
– ident: e_1_2_4_54_1
  doi: 10.1016/S0376-7388(00)80618-3
– ident: e_1_2_4_6_1
  doi: 10.1126/science.1236686
– ident: e_1_2_4_45_1
  doi: 10.1016/j.memsci.2006.12.016
– ident: e_1_2_4_23_1
  doi: 10.1016/j.memsci.2011.03.012
– ident: e_1_2_4_24_1
  doi: 10.1016/j.seppur.2017.06.021
– ident: e_1_2_4_16_1
  doi: 10.1021/acssuschemeng.5b01292
– ident: e_1_2_4_8_1
  doi: 10.1126/science.1254227
– ident: e_1_2_4_13_1
  doi: 10.1080/15422119.2014.918884
– ident: e_1_2_4_43_1
  doi: 10.1038/nchem.893
– ident: e_1_2_4_14_1
  doi: 10.1016/j.cej.2015.12.062
– ident: e_1_2_4_55_1
  doi: 10.1016/S0376-7388(97)00329-3
– ident: e_1_2_4_49_1
  doi: 10.1016/j.memsci.2012.02.058
– ident: e_1_2_4_47_1
  doi: 10.1016/j.memsci.2011.11.030
– ident: e_1_2_4_50_1
  doi: 10.1016/j.memsci.2014.01.062
– ident: e_1_2_4_46_1
  doi: 10.1016/j.progpolymsci.2012.06.005
– ident: e_1_2_4_56_1
  doi: 10.1016/j.memsci.2017.08.024
– ident: e_1_2_4_28_1
  doi: 10.1021/ie0202064
– ident: e_1_2_4_12_1
  doi: 10.1016/j.coche.2015.01.009
– ident: e_1_2_4_15_1
  doi: 10.1002/cite.201500084
– ident: e_1_2_4_51_1
  doi: 10.1016/j.memsci.2008.10.005
– ident: e_1_2_4_36_1
  doi: 10.1126/science.aaa5058
– ident: e_1_2_4_7_1
  doi: 10.1126/science.1236098
– ident: e_1_2_4_20_1
  doi: 10.1002/adma.201601606
– ident: e_1_2_4_52_1
  doi: 10.1016/j.memsci.2003.07.016
– ident: e_1_2_4_18_1
  doi: 10.1002/adma.201603945
– ident: e_1_2_4_48_1
  doi: 10.1002/aic.14558
– ident: e_1_2_4_9_1
  doi: 10.1039/B610848M
– ident: e_1_2_4_40_1
  doi: 10.1016/j.memsci.2012.09.063
– ident: e_1_2_4_37_1
  doi: 10.1002/3527608982
– ident: e_1_2_4_34_1
  doi: 10.1038/nmat4638
– ident: e_1_2_4_29_1
  doi: 10.1002/adma.200306053
– ident: e_1_2_4_30_1
  doi: 10.1016/j.memsci.2016.10.001
– ident: e_1_2_4_4_1
  doi: 10.1126/science.1228032
– ident: e_1_2_4_2_1
  doi: 10.1126/science.1146744
– ident: e_1_2_4_27_1
  doi: 10.1002/polb.10265
– ident: e_1_2_4_41_1
  doi: 10.1021/acssuschemeng.5b00435
– ident: e_1_2_4_31_1
  doi: 10.1039/C6TA09751K
– ident: e_1_2_4_44_1
  doi: 10.1016/j.ejpb.2014.04.006
– ident: e_1_2_4_21_1
  doi: 10.1002/adma.201500975
– ident: e_1_2_4_32_1
  doi: 10.1002/adfm.201400400
– ident: e_1_2_4_33_1
  doi: 10.1016/j.memsci.2012.02.008
– ident: e_1_2_4_17_1
  doi: 10.1021/ja407665w
– ident: e_1_2_4_10_1
  doi: 10.1021/cr500006j
– ident: e_1_2_4_25_1
  doi: 10.1016/j.memsci.2016.12.026
– ident: e_1_2_4_42_1
  doi: 10.1021/acs.est.7b00906
– ident: e_1_2_4_1_1
  doi: 10.1126/science.aab0530
– ident: e_1_2_4_11_1
  doi: 10.1002/adv.21455
– ident: e_1_2_4_3_1
  doi: 10.1126/science.1232714
– ident: e_1_2_4_35_1
  doi: 10.1002/adma.201606641
– ident: e_1_2_4_19_1
  doi: 10.1021/acsami.7b02295
SSID ssj0009606
Score 2.651069
Snippet Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms cyclodextrin
Cyclodextrins
Holes
Janus pathways
Materials science
membranes with intrinsic microporosity
Microporosity
molecular sieving nanofilms
Pore size distribution
Porosity
Positron annihilation
Title Precise Molecular Sieving Architectures with Janus Pathways for Both Polar and Nonpolar Molecules
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705933
https://www.ncbi.nlm.nih.gov/pubmed/29380439
https://www.proquest.com/docview/2013051586
https://www.proquest.com/docview/1993007587
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VnNoDbSnQAK1cqVJPhhDHdnLcPhBaadGqBYlb5MS2hEBZRHZVtb-eGeexuyCE1N5i2U4cz4z9jR_fAHz2Ce0tpZJ7kzueou_GDfoRPJdVblPlrQ_BYCZn6vQiHV_Ky5Vb_C0_xLDgRpYRxmsycFM2R0vSUGMDbxDRwaBTjoMwHdgiVPRzyR9F8DyQ7QnJc5VmPWtjnBytV1-flR5BzXXkGqaek9dg-ka3J06uDxfz8rD6-4DP8X_-6g1sdriUjVpFegsvXL0Fr1bYCt-BmRITRuPYpA-py35dOVqQYKOV7YiG0douG5t60bApAszf5k_DEBuzr6gVbEq-NDO1ZWez-jYkuve5ZhsuTn6cfzvlXYQGXgktBMeZTVbGe5z-4lJK7zzCg4AqE2tjlLzVwkivYq-1O86xSnVcxqgMeWx0ZaTYgY16Vrv3wFItrMHRoVRCpbQ4WSqtSnTedWyNcFUEvJdQUXX05RRF46ZoiZeTgrquGLougi9D-duWuOPJkge9wIvOgBvKFRT-JlMRfBqy0fRoP8XUbrZoCjr7SJAr0xHstooyfApRVEa3jiNIgrifaUMx-j4ZDam9f6m0Dy_xOWvPxx3Axvxu4T4gYJqXH4NR3AN_RwrS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gA9QHkU0gcYCYmT2zSO7eS4QKuldFcraCVukRPbEgJlq2ZXCH49M86jXRBCKkfHduLYHvub8fgbgFc-obOlVHJvcsdT1N24QT2C57LKbaq89SEYzGSqxhfp6WfZexPSXZiWH2IwuJFkhPWaBJwM0ofXrKHGBuIg4oNBrfwObFBY76BVfbxmkCKAHuj2hOS5SrOetzFODlfrr-5Lf4DNVewaNp-TB1D2zW59Tr4eLBflQfXzN0bH__qvLbjfQVM2aufSQ1hz9SPYvEFY-BjMjMgwGscmfVRd9umLI5sEG904kWgYmXfZqamXDZshxvxufjQM4TF7gxODzUidZqa2bDqvL0Oie59rnsDFyfH52zHvgjTwSmghOG5usjLe4w4Yl1J65xEhBGCZWBvj4FstjPQq9lq7oxyrVEdljPMhj42ujBTbsF7Pa_cMWKqFNbhAlEqolOyTpdKqRP1dx9YIV0XA-yEqqo7BnAJpfCta7uWkoK4rhq6L4PVQ_rLl7vhryb1-xItOhhvKFRQBJ1MRvByyUfroSMXUbr5sCnJ_JNSV6QietjNl-BQCqYwuHkeQhPH-RxuK0bvJaEjt3KbSC7g7Pp-cFWfvpx924R4-z1p3uT1YX1wt3T7ip0X5PEjILzDVDu0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BkBA8bHwNAgOMhMSTtyyO7eSxo1Rj0KoCJu0tcmJbQqC0Iq3Q-Ou5cz7WghASPDq2E8e-s393tn8H8NIntLeUSu5N7niKths3aEfwXFa5TZW3PgSDmc7U6Xl6diEvNm7xt_wQg8ONNCPM16TgS-uPrkhDjQ28QUQHg0b5dbiRqjgjuR5_uCKQInwe2PaE5LlKs562MU6OtutvL0u_Yc1t6BrWnskemL7V7ZGTL4frVXlY_fiF0PF_fusO7HbAlI1aSboL11x9D25v0BXeBzMnKozGsWkfU5d9_OzII8FGG_sRDSPnLjsz9bphc0SY381lwxAcsxMUCzYnY5qZ2rLZol6GRPc-1zyA88mbT69PeReigVdCC8FxaZOV8R7Xv7iU0juP-CDAysTaGIfeamGkV7HX2h3nWKU6LmOUhjw2ujJS7MNOvajdI2CpFtbg9FAqoVLyTpZKqxKtdx1bI1wVAe9HqKg6_nIKo_G1aJmXk4K6rhi6LoJXQ_lly9zxx5IH_YAXnQY3lCso_k2mIngxZKPu0YaKqd1i3RR0-JEwV6YjeNgKyvAphFEZXTuOIAnD_Zc2FKPxdDSkHv9Lpedwcz6eFO_fzt49gVv4OGvPyh3Azurb2j1F8LQqnwX9-AkJXQ2l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precise+Molecular+Sieving+Architectures+with+Janus+Pathways+for+Both+Polar+and+Nonpolar+Molecules&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Jiangtao&rft.au=Hua%2C+Dan&rft.au=Zhang%2C+Yu&rft.au=Japip%2C+Susilo&rft.date=2018-03-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=11&rft_id=info:doi/10.1002%2Fadma.201705933&rft_id=info%3Apmid%2F29380439&rft.externalDocID=29380439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon