Precise Molecular Sieving Architectures with Janus Pathways for Both Polar and Nonpolar Molecules
Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exh...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exhibit exceptionally high permeances for both polar and nonpolar solvents. The precise molecular sieving functions are determined by the type of CD building blocks and the inner cavities of intrinsic 3D hollow bowls. Positron annihilation spectroscopy (PAS) confirms that a larger inner CD cavity tends to generate a larger free volume and higher microporosity. Based on the rejection ratio of various dyes, the estimated molecular weight cutoff of CD/TMC nanofilms follows the trend of α‐CD/TMC (320 Da) <β‐CD/TMC (400 Da) <γ‐CD/TMC (550 Da), which is in strict accordance with the orders of their free volumes measured by PAS and inner cavity sizes of α‐CD <β‐CD <γ‐CD. This kind of novel CD/TMC molecular sieving membrane with intrinsic microporosity containing tunable pore size and sharp pore‐size distribution can effectively discriminate molecules with different 3D sizes.
Precise molecular sieving architectures with Janus pathways (both hydrophobic inner cavities and hydrophilic channels) exhibit high permeances for both polar and nonpolar solvents. The pore size can be accurately tuned by the intrinsic 3D hollow bowls of cyclodextrins. Clearly, the molecular sieving function is the most distinctive feature to discriminate small molecules based on their 3D structures. |
---|---|
AbstractList | Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exhibit exceptionally high permeances for both polar and nonpolar solvents. The precise molecular sieving functions are determined by the type of CD building blocks and the inner cavities of intrinsic 3D hollow bowls. Positron annihilation spectroscopy (PAS) confirms that a larger inner CD cavity tends to generate a larger free volume and higher microporosity. Based on the rejection ratio of various dyes, the estimated molecular weight cutoff of CD/TMC nanofilms follows the trend of α‐CD/TMC (320 Da) <β‐CD/TMC (400 Da) <γ‐CD/TMC (550 Da), which is in strict accordance with the orders of their free volumes measured by PAS and inner cavity sizes of α‐CD <β‐CD <γ‐CD. This kind of novel CD/TMC molecular sieving membrane with intrinsic microporosity containing tunable pore size and sharp pore‐size distribution can effectively discriminate molecules with different 3D sizes. Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exhibit exceptionally high permeances for both polar and nonpolar solvents. The precise molecular sieving functions are determined by the type of CD building blocks and the inner cavities of intrinsic 3D hollow bowls. Positron annihilation spectroscopy (PAS) confirms that a larger inner CD cavity tends to generate a larger free volume and higher microporosity. Based on the rejection ratio of various dyes, the estimated molecular weight cutoff of CD/TMC nanofilms follows the trend of α-CD/TMC (320 Da) <β-CD/TMC (400 Da) <γ-CD/TMC (550 Da), which is in strict accordance with the orders of their free volumes measured by PAS and inner cavity sizes of α-CD <β-CD <γ-CD. This kind of novel CD/TMC molecular sieving membrane with intrinsic microporosity containing tunable pore size and sharp pore-size distribution can effectively discriminate molecules with different 3D sizes.Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exhibit exceptionally high permeances for both polar and nonpolar solvents. The precise molecular sieving functions are determined by the type of CD building blocks and the inner cavities of intrinsic 3D hollow bowls. Positron annihilation spectroscopy (PAS) confirms that a larger inner CD cavity tends to generate a larger free volume and higher microporosity. Based on the rejection ratio of various dyes, the estimated molecular weight cutoff of CD/TMC nanofilms follows the trend of α-CD/TMC (320 Da) <β-CD/TMC (400 Da) <γ-CD/TMC (550 Da), which is in strict accordance with the orders of their free volumes measured by PAS and inner cavity sizes of α-CD <β-CD <γ-CD. This kind of novel CD/TMC molecular sieving membrane with intrinsic microporosity containing tunable pore size and sharp pore-size distribution can effectively discriminate molecules with different 3D sizes. Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD) and trimesoyl chloride (TMC). Interestingly, the CD/TMC nanofilms constructed with both hydrophobic inner cavities and hydrophilic channels exhibit exceptionally high permeances for both polar and nonpolar solvents. The precise molecular sieving functions are determined by the type of CD building blocks and the inner cavities of intrinsic 3D hollow bowls. Positron annihilation spectroscopy (PAS) confirms that a larger inner CD cavity tends to generate a larger free volume and higher microporosity. Based on the rejection ratio of various dyes, the estimated molecular weight cutoff of CD/TMC nanofilms follows the trend of α‐CD/TMC (320 Da) <β‐CD/TMC (400 Da) <γ‐CD/TMC (550 Da), which is in strict accordance with the orders of their free volumes measured by PAS and inner cavity sizes of α‐CD <β‐CD <γ‐CD. This kind of novel CD/TMC molecular sieving membrane with intrinsic microporosity containing tunable pore size and sharp pore‐size distribution can effectively discriminate molecules with different 3D sizes. Precise molecular sieving architectures with Janus pathways (both hydrophobic inner cavities and hydrophilic channels) exhibit high permeances for both polar and nonpolar solvents. The pore size can be accurately tuned by the intrinsic 3D hollow bowls of cyclodextrins. Clearly, the molecular sieving function is the most distinctive feature to discriminate small molecules based on their 3D structures. |
Author | Chung, Tai‐Shung Liu, Jiangtao Hua, Dan Zhang, Yu Japip, Susilo |
Author_xml | – sequence: 1 givenname: Jiangtao surname: Liu fullname: Liu, Jiangtao organization: National University of Singapore – sequence: 2 givenname: Dan surname: Hua fullname: Hua, Dan organization: National University of Singapore – sequence: 3 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: National University of Singapore – sequence: 4 givenname: Susilo surname: Japip fullname: Japip, Susilo organization: National University of Singapore – sequence: 5 givenname: Tai‐Shung surname: Chung fullname: Chung, Tai‐Shung email: chencts@nus.edu.sg organization: National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29380439$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc-PEyEYholZ43ZXrx4NiRcvUz-GYRiOdf2dXW2inslXBiybKVSYsel_L7VdTTYxngjked7wfe8FOQsxWEKeMpgzgPol9huc18AkCMX5AzJjomZVA0qckRkoLirVNt05ucj5FgBUC-0jcl4r3kHD1YzgMlnjs6U3cbBmGjDRL97-9OE7XSSz9qM145Rspjs_rulHDFOmSxzXO9xn6mKir2J5X8aDiKGnn2LY_r6c8mx-TB46HLJ9cjovybe3b75eva-uP7_7cLW4rgyXnFeNZMKgc6zmsBLCWQdtmZBxVfc9NHbVS47CteCktEwVxbAVYNcoQGlQ8Evy4pi7TfHHZPOoNz4bOwwYbJyyZkpxACk6WdDn99DbOKVQfqfLKjkIJrq2UM9O1LTa2F5vk99g2uu75RWgOQImxZyTddr4EUcfw5jQD5qBPnSkDx3pPx0VbX5Pu0v-p6COws4Pdv8fWi9e3yz-ur8AhUai-g |
CitedBy_id | crossref_primary_10_1016_j_seppur_2020_117370 crossref_primary_10_1002_cplu_202100473 crossref_primary_10_1016_j_carbon_2021_08_068 crossref_primary_10_1016_j_seppur_2022_120781 crossref_primary_10_1016_j_cej_2021_129338 crossref_primary_10_1016_j_memsci_2023_121711 crossref_primary_10_1039_C9TA12670H crossref_primary_10_1016_j_memsci_2022_120583 crossref_primary_10_1021_acsapm_0c00896 crossref_primary_10_1016_j_memsci_2022_120466 crossref_primary_10_1007_s11705_024_2510_5 crossref_primary_10_4236_acs_2021_112018 crossref_primary_10_1016_j_memsci_2021_120074 crossref_primary_10_1021_acs_nanolett_4c03606 crossref_primary_10_1016_j_ces_2024_120925 crossref_primary_10_1016_j_scitotenv_2023_166016 crossref_primary_10_1002_adfm_202406430 crossref_primary_10_1016_j_foodchem_2025_143253 crossref_primary_10_1126_sciadv_adp6666 crossref_primary_10_1016_j_cej_2023_141694 crossref_primary_10_1002_ange_202206144 crossref_primary_10_1016_j_cej_2022_137013 crossref_primary_10_1002_admi_202001050 crossref_primary_10_1002_pol_20240961 crossref_primary_10_1021_acs_nanolett_4c02403 crossref_primary_10_1016_j_seppur_2023_125282 crossref_primary_10_3390_membranes11030184 crossref_primary_10_1021_acssuschemeng_8b02021 crossref_primary_10_1007_s11705_018_1780_1 crossref_primary_10_1021_acsapm_9b01024 crossref_primary_10_1039_D2RA01491B crossref_primary_10_3390_polym14081604 crossref_primary_10_1016_j_seppur_2022_121985 crossref_primary_10_1016_j_cej_2020_128198 crossref_primary_10_1016_j_desal_2024_117379 crossref_primary_10_1016_j_seppur_2023_124406 crossref_primary_10_1002_ange_202212816 crossref_primary_10_1016_j_xcrp_2020_100034 crossref_primary_10_1016_j_memsci_2024_122428 crossref_primary_10_1016_j_nanoen_2020_104610 crossref_primary_10_1016_j_advmem_2025_100129 crossref_primary_10_1007_s10118_023_3012_5 crossref_primary_10_1016_j_seppur_2023_125852 crossref_primary_10_1016_j_desal_2023_116459 crossref_primary_10_1039_C8TA03673J crossref_primary_10_1016_j_cej_2023_142880 crossref_primary_10_1002_adma_202404164 crossref_primary_10_1016_j_seppur_2022_121520 crossref_primary_10_1002_solr_202400021 crossref_primary_10_1021_acs_chemmater_3c02448 crossref_primary_10_1016_j_seppur_2018_07_026 crossref_primary_10_1021_jacs_8b08788 crossref_primary_10_1016_j_memsci_2024_123504 crossref_primary_10_1126_sciadv_adg6134 crossref_primary_10_1016_j_cis_2023_102937 crossref_primary_10_1016_j_cjche_2022_01_027 crossref_primary_10_1016_j_memsci_2019_05_057 crossref_primary_10_1016_j_desal_2023_116685 crossref_primary_10_1002_adfm_202305815 crossref_primary_10_1002_aic_17795 crossref_primary_10_1002_anie_202402509 crossref_primary_10_1016_j_memsci_2018_10_052 crossref_primary_10_1021_acsami_0c16831 crossref_primary_10_1007_s11431_021_1895_y crossref_primary_10_1016_j_cjche_2024_06_032 crossref_primary_10_1016_j_cej_2020_128206 crossref_primary_10_1039_D0TA10632A crossref_primary_10_1016_j_memsci_2018_10_057 crossref_primary_10_1016_j_jhazmat_2021_126716 crossref_primary_10_1016_j_cej_2021_128609 crossref_primary_10_1126_science_abm7686 crossref_primary_10_1039_D3TA02683C crossref_primary_10_1016_j_cej_2024_152165 crossref_primary_10_1016_j_desal_2025_118819 crossref_primary_10_1016_j_memsci_2019_05_021 crossref_primary_10_1016_j_memsci_2023_122052 crossref_primary_10_1002_anie_202200905 crossref_primary_10_1016_j_desal_2024_117967 crossref_primary_10_1039_D2TA05880D crossref_primary_10_1021_acs_est_2c04772 crossref_primary_10_1039_D0CS00502A crossref_primary_10_1016_j_seppur_2022_121541 crossref_primary_10_1016_j_jcis_2023_05_133 crossref_primary_10_1016_j_cej_2023_145339 crossref_primary_10_1016_j_cej_2021_130015 crossref_primary_10_1016_j_cej_2019_04_096 crossref_primary_10_1016_j_memsci_2019_05_038 crossref_primary_10_1039_C9TA06169J crossref_primary_10_1002_smsc_202200026 crossref_primary_10_1016_j_cej_2022_136089 crossref_primary_10_1016_j_cis_2024_103269 crossref_primary_10_1021_acs_chemmater_8b02843 crossref_primary_10_1016_j_advmem_2024_100098 crossref_primary_10_1016_j_heliyon_2024_e24330 crossref_primary_10_1021_acsami_1c21862 crossref_primary_10_1016_j_desal_2021_114957 crossref_primary_10_1016_j_memsci_2020_118911 crossref_primary_10_1016_j_memsci_2019_117505 crossref_primary_10_1016_j_seppur_2022_122547 crossref_primary_10_1002_admi_202001671 crossref_primary_10_1016_j_memsci_2021_119867 crossref_primary_10_1016_j_ccr_2023_215613 crossref_primary_10_1016_j_seppur_2024_128431 crossref_primary_10_1016_j_memsci_2024_123432 crossref_primary_10_1016_j_memsci_2024_122463 crossref_primary_10_1021_acsami_3c17579 crossref_primary_10_1002_aic_17517 crossref_primary_10_1021_acs_est_9b06426 crossref_primary_10_1016_j_memsci_2023_122282 crossref_primary_10_1002_ange_202200905 crossref_primary_10_1021_acsami_0c20652 crossref_primary_10_1039_C8TA05687K crossref_primary_10_1002_adsu_201800165 crossref_primary_10_1021_acsami_1c07737 crossref_primary_10_1016_j_memsci_2025_123737 crossref_primary_10_1039_D0SC00056F crossref_primary_10_1021_acsami_1c06891 crossref_primary_10_1016_j_seppur_2022_120496 crossref_primary_10_1002_adma_202001383 crossref_primary_10_1021_acs_nanolett_4c02483 crossref_primary_10_1002_ange_202302809 crossref_primary_10_1016_j_cej_2020_127947 crossref_primary_10_1016_j_memsci_2023_121445 crossref_primary_10_1016_j_desal_2020_114387 crossref_primary_10_1002_anie_202206144 crossref_primary_10_1002_anie_202212816 crossref_primary_10_1016_j_memsci_2021_119375 crossref_primary_10_1002_admt_202201426 crossref_primary_10_1002_ange_202402509 crossref_primary_10_1039_D0TA01654C crossref_primary_10_1016_j_cej_2023_146736 crossref_primary_10_1021_acsami_0c10272 crossref_primary_10_1016_j_jwpe_2024_106394 crossref_primary_10_1126_science_adh2404 crossref_primary_10_1016_j_memsci_2018_12_047 crossref_primary_10_1021_acs_nanolett_0c00344 crossref_primary_10_1007_s12633_022_01659_x crossref_primary_10_1016_j_memsci_2023_122197 crossref_primary_10_1002_aic_16879 crossref_primary_10_1016_j_memsci_2023_122078 crossref_primary_10_1002_anie_202416050 crossref_primary_10_1039_D4GC00466C crossref_primary_10_1016_j_desal_2023_117029 crossref_primary_10_1016_j_cej_2019_122462 crossref_primary_10_1039_D0EN00401D crossref_primary_10_1002_adma_202309406 crossref_primary_10_1016_j_mattod_2021_07_001 crossref_primary_10_1016_j_mtcomm_2022_103438 crossref_primary_10_1021_acs_nanolett_0c03288 crossref_primary_10_1039_C8TA11372F crossref_primary_10_1088_1361_6528_acbf56 crossref_primary_10_1039_C8TA08618D crossref_primary_10_1002_advs_202412600 crossref_primary_10_1016_j_cej_2022_137316 crossref_primary_10_1016_j_cej_2018_07_156 crossref_primary_10_1016_j_desal_2023_117138 crossref_primary_10_1016_j_seppur_2022_120833 crossref_primary_10_1016_j_seppur_2021_119594 crossref_primary_10_1021_acsapm_2c01209 crossref_primary_10_1126_sciadv_abb1110 crossref_primary_10_1002_ange_202416050 crossref_primary_10_1016_j_memsci_2024_122605 crossref_primary_10_1039_D3SC05787A crossref_primary_10_1021_acs_iecr_3c02779 crossref_primary_10_1002_anie_202302809 crossref_primary_10_1016_j_seppur_2024_126560 crossref_primary_10_1016_j_cej_2022_136113 crossref_primary_10_1002_adma_202405744 crossref_primary_10_1039_C8CC04080J crossref_primary_10_1016_j_desal_2022_115941 crossref_primary_10_1016_j_memsci_2018_11_012 crossref_primary_10_1016_j_memsci_2019_04_077 crossref_primary_10_1021_acs_iecr_9b02408 crossref_primary_10_1021_acssuschemeng_0c02320 crossref_primary_10_1038_s41586_022_05032_1 crossref_primary_10_1038_s41467_024_47239_y crossref_primary_10_1016_j_cej_2025_159244 crossref_primary_10_1016_j_jwpe_2023_104068 crossref_primary_10_1039_D0TA05337F crossref_primary_10_1016_j_memsci_2025_123787 crossref_primary_10_1016_j_cej_2022_135159 crossref_primary_10_1016_j_jhazmat_2024_136632 crossref_primary_10_1016_j_arabjc_2020_10_021 crossref_primary_10_1016_j_jwpe_2022_102579 crossref_primary_10_1002_smll_202410900 crossref_primary_10_1007_s11270_024_06950_8 crossref_primary_10_1016_j_ces_2020_116001 crossref_primary_10_1016_j_seppur_2023_123983 crossref_primary_10_1016_j_apsusc_2020_148284 crossref_primary_10_1016_j_desal_2021_115531 crossref_primary_10_1016_j_seppur_2022_121941 crossref_primary_10_1016_j_seppur_2023_123759 crossref_primary_10_1039_D0CS00552E crossref_primary_10_1021_acsami_9b03753 crossref_primary_10_1039_C9TA10190J crossref_primary_10_3390_toxics10120783 crossref_primary_10_1002_adfm_201907006 crossref_primary_10_1016_j_memsci_2019_117347 crossref_primary_10_1016_j_seppur_2024_128962 crossref_primary_10_1016_j_memsci_2019_117227 crossref_primary_10_1016_j_memsci_2022_121061 crossref_primary_10_1126_sciadv_abm5899 crossref_primary_10_1016_j_memsci_2024_123041 crossref_primary_10_1021_acs_jpcb_4c02263 crossref_primary_10_1039_D0TA12283A crossref_primary_10_1016_j_memsci_2021_119224 crossref_primary_10_3390_pr12030563 crossref_primary_10_1002_adma_202107401 crossref_primary_10_1002_eem2_12319 crossref_primary_10_1002_admi_201800823 crossref_primary_10_1016_j_cej_2020_126796 crossref_primary_10_1016_j_desal_2019_114178 crossref_primary_10_1039_D0TA02510K crossref_primary_10_1016_j_jcis_2023_03_044 crossref_primary_10_1016_j_seppur_2022_121166 crossref_primary_10_1021_jacs_3c02711 crossref_primary_10_3724_SP_J_1123_2023_09001 crossref_primary_10_1021_acsami_0c14825 crossref_primary_10_1039_D1CS00545F crossref_primary_10_1016_j_seppur_2020_117787 crossref_primary_10_1016_j_memsci_2024_122982 crossref_primary_10_1007_s12274_024_6560_1 crossref_primary_10_1016_j_seppur_2021_120217 crossref_primary_10_1038_s41467_023_38728_7 crossref_primary_10_1021_acsami_4c03688 crossref_primary_10_1039_D3QM00217A crossref_primary_10_1016_j_seppur_2023_123884 crossref_primary_10_1016_j_seppur_2021_120336 |
Cites_doi | 10.1016/j.carbon.2017.07.011 10.1126/science.1212101 10.1021/jacs.7b02381 10.1021/ie202999b 10.1016/S0043-1354(01)00318-9 10.1038/nature16185 10.1016/S0376-7388(00)80618-3 10.1126/science.1236686 10.1016/j.memsci.2006.12.016 10.1016/j.memsci.2011.03.012 10.1016/j.seppur.2017.06.021 10.1021/acssuschemeng.5b01292 10.1126/science.1254227 10.1080/15422119.2014.918884 10.1038/nchem.893 10.1016/j.cej.2015.12.062 10.1016/S0376-7388(97)00329-3 10.1016/j.memsci.2012.02.058 10.1016/j.memsci.2011.11.030 10.1016/j.memsci.2014.01.062 10.1016/j.progpolymsci.2012.06.005 10.1016/j.memsci.2017.08.024 10.1021/ie0202064 10.1016/j.coche.2015.01.009 10.1002/cite.201500084 10.1016/j.memsci.2008.10.005 10.1126/science.aaa5058 10.1126/science.1236098 10.1002/adma.201601606 10.1016/j.memsci.2003.07.016 10.1002/adma.201603945 10.1002/aic.14558 10.1039/B610848M 10.1016/j.memsci.2012.09.063 10.1002/3527608982 10.1038/nmat4638 10.1002/adma.200306053 10.1016/j.memsci.2016.10.001 10.1126/science.1228032 10.1126/science.1146744 10.1002/polb.10265 10.1021/acssuschemeng.5b00435 10.1039/C6TA09751K 10.1016/j.ejpb.2014.04.006 10.1002/adma.201500975 10.1002/adfm.201400400 10.1016/j.memsci.2012.02.008 10.1021/ja407665w 10.1021/cr500006j 10.1016/j.memsci.2016.12.026 10.1021/acs.est.7b00906 10.1126/science.aab0530 10.1002/adv.21455 10.1126/science.1232714 10.1002/adma.201606641 10.1021/acsami.7b02295 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201705933 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29380439 10_1002_adma_201705933 ADMA201705933 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Research Foundation, Prime Minister's Office, Singapore funderid: NRF‐CRP14‐2014‐01; R‐279‐000‐466‐281 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3733-4715caff1230b55fef061001392dd04ebd73a5f60f77e19733c1b0a8490a7ca53 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 15:55:30 EDT 2025 Mon Jul 14 09:43:58 EDT 2025 Wed Feb 19 02:43:47 EST 2025 Tue Jul 01 00:44:39 EDT 2025 Thu Apr 24 22:57:14 EDT 2025 Wed Jan 22 16:18:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | molecular sieving nanofilms membranes with intrinsic microporosity cyclodextrin Janus pathways |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-4715caff1230b55fef061001392dd04ebd73a5f60f77e19733c1b0a8490a7ca53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29380439 |
PQID | 2013051586 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1993007587 proquest_journals_2013051586 pubmed_primary_29380439 crossref_citationtrail_10_1002_adma_201705933 crossref_primary_10_1002_adma_201705933 wiley_primary_10_1002_adma_201705933_ADMA201705933 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Mar |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-Mar |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2014; 458 1990; 54 2008; 37 2014; 24 2015; 348 2012; 401 2017; 356 2014; 60 2017; 9 2012; 405 2017; 526 2002; 41 2002; 40 2015; 44 2013; 52 2016; 4638 2017; 122 2012; 335 2017; 523 2016; 88 2009; 326 2002; 36 2015; 3 2013; 428 2016; 529 2016; 289 2013; 342 2006 2017; 29 2007; 290 2011; 3 2015; 8 2014; 114 2011; 375 2017; 139 2014; 87 2017; 51 2015; 27 2013; 38 2013; 339 2004; 16 2013; 135 2012; 390–391 2017; 186 2003; 225 2016; 28 2007; 318 2017; 542 2014; 346 2014; 33 1998; 142 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_56_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 8 start-page: 45 year: 2015 publication-title: Curr. Opin. Chem. Eng. – volume: 290 start-page: 78 year: 2007 publication-title: J. Membr. Sci. – volume: 326 start-page: 222 year: 2009 publication-title: J. Membr. Sci. – volume: 401 start-page: 222 year: 2012 publication-title: J. Membr. Sci. – volume: 114 start-page: 10735 year: 2014 publication-title: Chem. Rev. – volume: 4638 start-page: 760 year: 2016 publication-title: Nat. Mater. – volume: 356 start-page: eaab0530 year: 2017 publication-title: Science – volume: 342 start-page: 91 year: 2013 publication-title: Science – volume: 225 start-page: 165 year: 2003 publication-title: J. Membr. Sci. – volume: 139 start-page: 7689 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 342 start-page: 95 year: 2013 publication-title: Science – volume: 33 start-page: 1 year: 2014 publication-title: Adv. Polym. Technol. – volume: 29 start-page: 1 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 14401 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 526 start-page: 32 year: 2017 publication-title: J. Membr. Sci. – volume: 458 start-page: 199 year: 2014 publication-title: J. Membr. Sci. – volume: 27 start-page: 3797 year: 2015 publication-title: Adv. Mater. – volume: 346 start-page: 1356 year: 2014 publication-title: Science – volume: 523 start-page: 92 year: 2017 publication-title: J. Membr. Sci. – volume: 52 start-page: 1109 year: 2013 publication-title: Ind. Eng. Chem. Res. – volume: 405 start-page: 123 year: 2012 publication-title: J. Membr. Sci. – volume: 529 start-page: 190 year: 2016 publication-title: Nature – volume: 428 start-page: 301 year: 2013 publication-title: J. Membr. Sci. – volume: 87 start-page: 579 year: 2014 publication-title: Eur. J. Pharm. Biopharm. – volume: 28 start-page: 8669 year: 2016 publication-title: Adv. Mater. – volume: 339 start-page: 303 year: 2013 publication-title: Science – volume: 60 start-page: 3623 year: 2014 publication-title: AIChE J. – volume: 186 start-page: 243 year: 2017 publication-title: Sep. Purif. Technol. – volume: 142 start-page: 111 year: 1998 publication-title: J. Membr. Sci. – volume: 3 start-page: 3019 year: 2015 publication-title: ACS Sustainable Chem. Eng. – volume: 16 start-page: 456 year: 2004 publication-title: Adv. Mater. – volume: 5 start-page: 4583 year: 2017 publication-title: J. Mater. Chem. A – volume: 339 start-page: 284 year: 2013 publication-title: Science – volume: 24 start-page: 4729 year: 2014 publication-title: Adv. Funct. Mater. – volume: 51 start-page: 7590 year: 2017 publication-title: Environ. Sci. Technol. – volume: 542 start-page: 289 year: 2017 publication-title: J. Membr. Sci. – volume: 122 start-page: 604 year: 2017 publication-title: Carbon – volume: 40 start-page: 2151 year: 2002 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 390–391 start-page: 141 year: 2012 publication-title: J. Membr. Sci. – volume: 3 start-page: 1925 year: 2015 publication-title: ACS Sustainable Chem. Eng. – volume: 36 start-page: 1360 year: 2002 publication-title: Water Res. – volume: 3 start-page: 34 year: 2011 publication-title: Nat. Chem. – volume: 41 start-page: 5523 year: 2002 publication-title: Ind. Eng. Chem. Res. – volume: 29 start-page: 1606641 year: 2017 publication-title: Adv. Mater. – volume: 289 start-page: 562 year: 2016 publication-title: Chem. Eng. J. – volume: 88 start-page: 39 year: 2016 publication-title: Chem. Ing. Tech. – volume: 335 start-page: 444 year: 2012 publication-title: Science – volume: 54 start-page: 321 year: 1990 publication-title: J. Membr. Sci. – volume: 318 start-page: 254 year: 2007 publication-title: Science – volume: 348 start-page: 1347 year: 2015 publication-title: Science – volume: 135 start-page: 15201 year: 2013 publication-title: J. Am. Chem. Soc. – year: 2006 – volume: 37 start-page: 365 year: 2008 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 344 year: 2013 publication-title: Prog. Polym. Sci. – volume: 375 start-page: 81 year: 2011 publication-title: J. Membr. Sci. – volume: 44 start-page: 157 year: 2015 publication-title: Sep. Purif. Rev. – ident: e_1_2_4_22_1 doi: 10.1016/j.carbon.2017.07.011 – ident: e_1_2_4_5_1 doi: 10.1126/science.1212101 – ident: e_1_2_4_39_1 doi: 10.1021/jacs.7b02381 – ident: e_1_2_4_26_1 doi: 10.1021/ie202999b – ident: e_1_2_4_53_1 doi: 10.1016/S0043-1354(01)00318-9 – ident: e_1_2_4_38_1 doi: 10.1038/nature16185 – ident: e_1_2_4_54_1 doi: 10.1016/S0376-7388(00)80618-3 – ident: e_1_2_4_6_1 doi: 10.1126/science.1236686 – ident: e_1_2_4_45_1 doi: 10.1016/j.memsci.2006.12.016 – ident: e_1_2_4_23_1 doi: 10.1016/j.memsci.2011.03.012 – ident: e_1_2_4_24_1 doi: 10.1016/j.seppur.2017.06.021 – ident: e_1_2_4_16_1 doi: 10.1021/acssuschemeng.5b01292 – ident: e_1_2_4_8_1 doi: 10.1126/science.1254227 – ident: e_1_2_4_13_1 doi: 10.1080/15422119.2014.918884 – ident: e_1_2_4_43_1 doi: 10.1038/nchem.893 – ident: e_1_2_4_14_1 doi: 10.1016/j.cej.2015.12.062 – ident: e_1_2_4_55_1 doi: 10.1016/S0376-7388(97)00329-3 – ident: e_1_2_4_49_1 doi: 10.1016/j.memsci.2012.02.058 – ident: e_1_2_4_47_1 doi: 10.1016/j.memsci.2011.11.030 – ident: e_1_2_4_50_1 doi: 10.1016/j.memsci.2014.01.062 – ident: e_1_2_4_46_1 doi: 10.1016/j.progpolymsci.2012.06.005 – ident: e_1_2_4_56_1 doi: 10.1016/j.memsci.2017.08.024 – ident: e_1_2_4_28_1 doi: 10.1021/ie0202064 – ident: e_1_2_4_12_1 doi: 10.1016/j.coche.2015.01.009 – ident: e_1_2_4_15_1 doi: 10.1002/cite.201500084 – ident: e_1_2_4_51_1 doi: 10.1016/j.memsci.2008.10.005 – ident: e_1_2_4_36_1 doi: 10.1126/science.aaa5058 – ident: e_1_2_4_7_1 doi: 10.1126/science.1236098 – ident: e_1_2_4_20_1 doi: 10.1002/adma.201601606 – ident: e_1_2_4_52_1 doi: 10.1016/j.memsci.2003.07.016 – ident: e_1_2_4_18_1 doi: 10.1002/adma.201603945 – ident: e_1_2_4_48_1 doi: 10.1002/aic.14558 – ident: e_1_2_4_9_1 doi: 10.1039/B610848M – ident: e_1_2_4_40_1 doi: 10.1016/j.memsci.2012.09.063 – ident: e_1_2_4_37_1 doi: 10.1002/3527608982 – ident: e_1_2_4_34_1 doi: 10.1038/nmat4638 – ident: e_1_2_4_29_1 doi: 10.1002/adma.200306053 – ident: e_1_2_4_30_1 doi: 10.1016/j.memsci.2016.10.001 – ident: e_1_2_4_4_1 doi: 10.1126/science.1228032 – ident: e_1_2_4_2_1 doi: 10.1126/science.1146744 – ident: e_1_2_4_27_1 doi: 10.1002/polb.10265 – ident: e_1_2_4_41_1 doi: 10.1021/acssuschemeng.5b00435 – ident: e_1_2_4_31_1 doi: 10.1039/C6TA09751K – ident: e_1_2_4_44_1 doi: 10.1016/j.ejpb.2014.04.006 – ident: e_1_2_4_21_1 doi: 10.1002/adma.201500975 – ident: e_1_2_4_32_1 doi: 10.1002/adfm.201400400 – ident: e_1_2_4_33_1 doi: 10.1016/j.memsci.2012.02.008 – ident: e_1_2_4_17_1 doi: 10.1021/ja407665w – ident: e_1_2_4_10_1 doi: 10.1021/cr500006j – ident: e_1_2_4_25_1 doi: 10.1016/j.memsci.2016.12.026 – ident: e_1_2_4_42_1 doi: 10.1021/acs.est.7b00906 – ident: e_1_2_4_1_1 doi: 10.1126/science.aab0530 – ident: e_1_2_4_11_1 doi: 10.1002/adv.21455 – ident: e_1_2_4_3_1 doi: 10.1126/science.1232714 – ident: e_1_2_4_35_1 doi: 10.1002/adma.201606641 – ident: e_1_2_4_19_1 doi: 10.1021/acsami.7b02295 |
SSID | ssj0009606 |
Score | 2.651069 |
Snippet | Precise molecular sieving architectures with Janus superhighways are constructed via a molecularly engineered interfacial reaction between cyclodextrin (CD)... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | cyclodextrin Cyclodextrins Holes Janus pathways Materials science membranes with intrinsic microporosity Microporosity molecular sieving nanofilms Pore size distribution Porosity Positron annihilation |
Title | Precise Molecular Sieving Architectures with Janus Pathways for Both Polar and Nonpolar Molecules |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705933 https://www.ncbi.nlm.nih.gov/pubmed/29380439 https://www.proquest.com/docview/2013051586 https://www.proquest.com/docview/1993007587 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VnNoDbSnQAK1cqVJPhhDHdnLcPhBaadGqBYlb5MS2hEBZRHZVtb-eGeexuyCE1N5i2U4cz4z9jR_fAHz2Ce0tpZJ7kzueou_GDfoRPJdVblPlrQ_BYCZn6vQiHV_Ky5Vb_C0_xLDgRpYRxmsycFM2R0vSUGMDbxDRwaBTjoMwHdgiVPRzyR9F8DyQ7QnJc5VmPWtjnBytV1-flR5BzXXkGqaek9dg-ka3J06uDxfz8rD6-4DP8X_-6g1sdriUjVpFegsvXL0Fr1bYCt-BmRITRuPYpA-py35dOVqQYKOV7YiG0douG5t60bApAszf5k_DEBuzr6gVbEq-NDO1ZWez-jYkuve5ZhsuTn6cfzvlXYQGXgktBMeZTVbGe5z-4lJK7zzCg4AqE2tjlLzVwkivYq-1O86xSnVcxqgMeWx0ZaTYgY16Vrv3wFItrMHRoVRCpbQ4WSqtSnTedWyNcFUEvJdQUXX05RRF46ZoiZeTgrquGLougi9D-duWuOPJkge9wIvOgBvKFRT-JlMRfBqy0fRoP8XUbrZoCjr7SJAr0xHstooyfApRVEa3jiNIgrifaUMx-j4ZDam9f6m0Dy_xOWvPxx3Axvxu4T4gYJqXH4NR3AN_RwrS |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gA9QHkU0gcYCYmT2zSO7eS4QKuldFcraCVukRPbEgJlq2ZXCH49M86jXRBCKkfHduLYHvub8fgbgFc-obOlVHJvcsdT1N24QT2C57LKbaq89SEYzGSqxhfp6WfZexPSXZiWH2IwuJFkhPWaBJwM0ofXrKHGBuIg4oNBrfwObFBY76BVfbxmkCKAHuj2hOS5SrOetzFODlfrr-5Lf4DNVewaNp-TB1D2zW59Tr4eLBflQfXzN0bH__qvLbjfQVM2aufSQ1hz9SPYvEFY-BjMjMgwGscmfVRd9umLI5sEG904kWgYmXfZqamXDZshxvxufjQM4TF7gxODzUidZqa2bDqvL0Oie59rnsDFyfH52zHvgjTwSmghOG5usjLe4w4Yl1J65xEhBGCZWBvj4FstjPQq9lq7oxyrVEdljPMhj42ujBTbsF7Pa_cMWKqFNbhAlEqolOyTpdKqRP1dx9YIV0XA-yEqqo7BnAJpfCta7uWkoK4rhq6L4PVQ_rLl7vhryb1-xItOhhvKFRQBJ1MRvByyUfroSMXUbr5sCnJ_JNSV6QietjNl-BQCqYwuHkeQhPH-RxuK0bvJaEjt3KbSC7g7Pp-cFWfvpx924R4-z1p3uT1YX1wt3T7ip0X5PEjILzDVDu0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BkBA8bHwNAgOMhMSTtyyO7eSxo1Rj0KoCJu0tcmJbQqC0Iq3Q-Ou5cz7WghASPDq2E8e-s393tn8H8NIntLeUSu5N7niKths3aEfwXFa5TZW3PgSDmc7U6Xl6diEvNm7xt_wQg8ONNCPM16TgS-uPrkhDjQ28QUQHg0b5dbiRqjgjuR5_uCKQInwe2PaE5LlKs562MU6OtutvL0u_Yc1t6BrWnskemL7V7ZGTL4frVXlY_fiF0PF_fusO7HbAlI1aSboL11x9D25v0BXeBzMnKozGsWkfU5d9_OzII8FGG_sRDSPnLjsz9bphc0SY381lwxAcsxMUCzYnY5qZ2rLZol6GRPc-1zyA88mbT69PeReigVdCC8FxaZOV8R7Xv7iU0juP-CDAysTaGIfeamGkV7HX2h3nWKU6LmOUhjw2ujJS7MNOvajdI2CpFtbg9FAqoVLyTpZKqxKtdx1bI1wVAe9HqKg6_nIKo_G1aJmXk4K6rhi6LoJXQ_lly9zxx5IH_YAXnQY3lCso_k2mIngxZKPu0YaKqd1i3RR0-JEwV6YjeNgKyvAphFEZXTuOIAnD_Zc2FKPxdDSkHv9Lpedwcz6eFO_fzt49gVv4OGvPyh3Azurb2j1F8LQqnwX9-AkJXQ2l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precise+Molecular+Sieving+Architectures+with+Janus+Pathways+for+Both+Polar+and+Nonpolar+Molecules&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Jiangtao&rft.au=Hua%2C+Dan&rft.au=Zhang%2C+Yu&rft.au=Japip%2C+Susilo&rft.date=2018-03-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=11&rft_id=info:doi/10.1002%2Fadma.201705933&rft_id=info%3Apmid%2F29380439&rft.externalDocID=29380439 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |