Strong and Tough Glass with Self‐Dispersed Nanoparticles via Solidification
Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in daily life and industry. Although many methods have been applied, the fracture toughness of traditional glasses is still very low due to intrins...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 33; pp. e1901803 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in daily life and industry. Although many methods have been applied, the fracture toughness of traditional glasses is still very low due to intrinsic brittleness, significantly limiting their use for structural applications. While nanoelements may be added into glasses and ceramics to form nanocomposites with enhanced properties, it is extremely difficult to distribute and disperse them inside the liquid glass/ceramic matrix with traditional processing methods. It is shown that a strong and tough glass can be fabricated through a direct‐solidification process using a nanoparticle self‐dispersion mechanism in a glass melt (2MgO·2Al2O3·5SiO2) with the assistance of B2O3, delivering a 6.1% strain limit and strength up to E/14 (E is elastic modulus), which is close to the theoretical limit of E/10 and one of the highest among all materials reported so far. The fracture toughness of the glass with 30 vol% SiC nanoparticles is significantly higher than any other inorganic glass tested under similar conditions. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications.
A strong and tough glass can be fabricated through a direct‐solidification process using a nanoparticle self‐dispersion mechanism, delivering a 6.1% strain limit and strength close to the theoretical limit. The fracture toughness of this glass is significantly higher than any other inorganic glasses. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications. |
---|---|
AbstractList | Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in daily life and industry. Although many methods have been applied, the fracture toughness of traditional glasses is still very low due to intrinsic brittleness, significantly limiting their use for structural applications. While nanoelements may be added into glasses and ceramics to form nanocomposites with enhanced properties, it is extremely difficult to distribute and disperse them inside the liquid glass/ceramic matrix with traditional processing methods. It is shown that a strong and tough glass can be fabricated through a direct‐solidification process using a nanoparticle self‐dispersion mechanism in a glass melt (2MgO·2Al2O3·5SiO2) with the assistance of B2O3, delivering a 6.1% strain limit and strength up to E/14 (E is elastic modulus), which is close to the theoretical limit of E/10 and one of the highest among all materials reported so far. The fracture toughness of the glass with 30 vol% SiC nanoparticles is significantly higher than any other inorganic glass tested under similar conditions. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications. Abstract Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in daily life and industry. Although many methods have been applied, the fracture toughness of traditional glasses is still very low due to intrinsic brittleness, significantly limiting their use for structural applications. While nanoelements may be added into glasses and ceramics to form nanocomposites with enhanced properties, it is extremely difficult to distribute and disperse them inside the liquid glass/ceramic matrix with traditional processing methods. It is shown that a strong and tough glass can be fabricated through a direct‐solidification process using a nanoparticle self‐dispersion mechanism in a glass melt (2MgO·2Al 2 O 3 ·5SiO 2 ) with the assistance of B 2 O 3 , delivering a 6.1% strain limit and strength up to E /14 ( E is elastic modulus), which is close to the theoretical limit of E /10 and one of the highest among all materials reported so far. The fracture toughness of the glass with 30 vol% SiC nanoparticles is significantly higher than any other inorganic glass tested under similar conditions. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications. Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in daily life and industry. Although many methods have been applied, the fracture toughness of traditional glasses is still very low due to intrinsic brittleness, significantly limiting their use for structural applications. While nanoelements may be added into glasses and ceramics to form nanocomposites with enhanced properties, it is extremely difficult to distribute and disperse them inside the liquid glass/ceramic matrix with traditional processing methods. It is shown that a strong and tough glass can be fabricated through a direct‐solidification process using a nanoparticle self‐dispersion mechanism in a glass melt (2MgO·2Al2O3·5SiO2) with the assistance of B2O3, delivering a 6.1% strain limit and strength up to E/14 (E is elastic modulus), which is close to the theoretical limit of E/10 and one of the highest among all materials reported so far. The fracture toughness of the glass with 30 vol% SiC nanoparticles is significantly higher than any other inorganic glass tested under similar conditions. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications. A strong and tough glass can be fabricated through a direct‐solidification process using a nanoparticle self‐dispersion mechanism, delivering a 6.1% strain limit and strength close to the theoretical limit. The fracture toughness of this glass is significantly higher than any other inorganic glasses. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications. Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in daily life and industry. Although many methods have been applied, the fracture toughness of traditional glasses is still very low due to intrinsic brittleness, significantly limiting their use for structural applications. While nanoelements may be added into glasses and ceramics to form nanocomposites with enhanced properties, it is extremely difficult to distribute and disperse them inside the liquid glass/ceramic matrix with traditional processing methods. It is shown that a strong and tough glass can be fabricated through a direct-solidification process using a nanoparticle self-dispersion mechanism in a glass melt (2MgO·2Al O ·5SiO ) with the assistance of B O , delivering a 6.1% strain limit and strength up to E/14 (E is elastic modulus), which is close to the theoretical limit of E/10 and one of the highest among all materials reported so far. The fracture toughness of the glass with 30 vol% SiC nanoparticles is significantly higher than any other inorganic glass tested under similar conditions. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications. |
Author | Li, Xiaochun Wu, Shanghua Lin, Ting‐Chiang Cao, Chezheng Jiang, Qiang‐Guo |
Author_xml | – sequence: 1 givenname: Qiang‐Guo surname: Jiang fullname: Jiang, Qiang‐Guo organization: Guangdong University of Technology – sequence: 2 givenname: Chezheng surname: Cao fullname: Cao, Chezheng organization: University of California – sequence: 3 givenname: Ting‐Chiang surname: Lin fullname: Lin, Ting‐Chiang organization: University of California – sequence: 4 givenname: Shanghua surname: Wu fullname: Wu, Shanghua email: swu@gdut.edu.cn organization: Guangdong University of Technology – sequence: 5 givenname: Xiaochun orcidid: 0000-0001-9176-7722 surname: Li fullname: Li, Xiaochun email: xcli@seas.ucla.edu organization: University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31222850$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtOwzAUQC0EglJYGVEkFpaUa7t24rGivCQeQ2GOHD9aozQudgJi4xP4Rr6EVC1FYmG6y7nnXp19tF372iB0hGGAAciZ1HM5IIAF4BzoFuphRnA6BMG2UQ8EZangw3wP7cf4DACCA99FexQTQnIGPXQ3aYKvp4msdfLo2-ksuapkjMmba2bJxFT26-Nz7OLChGh0ci9rv5ChcaoyMXl1Mpn4ymlnnZKN8_UB2rGyiuZwPfvo6fLi8fw6vX24ujkf3aaKZpSmVGhhQRmN89KWgiltLREkMxnHJeWMKSqF7CbVuSGgGeem5DbXasgzAoT20enKuwj-pTWxKeYuKlNVsja-jQUhQ8ax6G516Mkf9Nm3oe6-66iMYJ5lGDpqsKJU8DEGY4tFcHMZ3gsMxTJ0sQxdbEJ3C8drbVvOjd7gP2U7QKyAN1eZ9390xWh8N_qVfwNdVIur |
CitedBy_id | crossref_primary_10_1038_s41467_024_44712_6 crossref_primary_10_1002_adem_202200971 crossref_primary_10_1016_j_compositesb_2019_107618 crossref_primary_10_1111_jace_18127 crossref_primary_10_1016_j_ceramint_2023_06_234 crossref_primary_10_1016_j_heliyon_2023_e21895 crossref_primary_10_1016_j_ceramint_2024_06_283 crossref_primary_10_1111_jace_19769 crossref_primary_10_1002_ppsc_202100245 crossref_primary_10_1007_s42864_022_00153_6 crossref_primary_10_1016_j_jnoncrysol_2023_122778 crossref_primary_10_1021_acs_nanolett_1c01594 crossref_primary_10_1002_ppsc_201900404 crossref_primary_10_1016_j_actamat_2021_117016 crossref_primary_10_1016_j_ceramint_2023_09_183 crossref_primary_10_1103_PhysRevMaterials_4_063606 crossref_primary_10_1111_jace_17751 crossref_primary_10_1002_smm2_1302 |
Cites_doi | 10.1038/nature21691 10.1115/1.4006767 10.1016/j.actamat.2006.02.033 10.1038/ncomms2047 10.1023/A:1017962922590 10.1038/ncomms1619 10.1038/nmat793 10.1016/j.actamat.2015.10.047 10.1111/jace.15108 10.1002/adma.19930050614 10.1126/science.267.5206.1947 10.1111/jace.13402 10.1080/14786435.2010.505179 10.1002/adma.19930050514 10.1126/science.1071064 10.1016/j.jnoncrysol.2005.03.024 10.1002/adma.201102795 10.1063/1.2193060 10.1038/nature16445 10.1111/j.1551-2916.2012.05346.x 10.1007/BF01729352 10.1021/nl9015107 10.1111/j.1151-2916.1966.tb13210.x 10.2109/jcersj.99.974 10.1126/science.1151434 10.1111/j.1151-2916.1993.tb03677.x 10.1007/BF00756636 10.1007/BF00555385 10.3390/nano5020656 10.1021/nn900668p 10.1111/j.1151-2916.1988.tb05911.x 10.1111/j.1151-2916.1998.tb02503.x 10.1016/0013-7944(76)90026-6 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201901803 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_201901803 31222850 ADMA201901803 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: University of California, Los Angeles, and Science and Technology Project of Guangdong Province funderid: #2016B090915002 – fundername: University of California, Los Angeles, and Science and Technology Project of Guangdong Province grantid: #2016B090915002 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT NPM .Y3 31~ 6TJ 8WZ A6W AAYOK AAYXX ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3733-39d9f0ced18bfb95cdff2927e761b3655c3a9a6553d8e20d566eb6f8dc4672023 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Sat Aug 17 03:47:11 EDT 2024 Thu Oct 10 20:01:16 EDT 2024 Thu Sep 26 15:57:10 EDT 2024 Wed Oct 16 00:49:00 EDT 2024 Sat Aug 24 01:11:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | glasses fracture toughness nanocomposites solidification processing |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-39d9f0ced18bfb95cdff2927e761b3655c3a9a6553d8e20d566eb6f8dc4672023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9176-7722 |
PMID | 31222850 |
PQID | 2272167710 |
PQPubID | 2045203 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2245619733 proquest_journals_2272167710 crossref_primary_10_1002_adma_201901803 pubmed_primary_31222850 wiley_primary_10_1002_adma_201901803_ADMA201901803 |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 5 2005; 351 2006; 54 1991; 99 2002; 295 2006; 99 1987; 6 2015; 98 2015; 528 1998; 81 2016; 103 2012; 79 1976; 8 1988; 71 1993; 5 2012; 95 1966; 49 2012; 3 2011; 91 1967; 2 1993; 76 2008; 319 2003; 2 2009; 9 2011; 23 1995; 267 2017; 100 2009; 3 1973; 8 2001; 36 2017; 545 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 103 start-page: 882 year: 2016 publication-title: Acta Mater. – volume: 5 start-page: 468 year: 1993 publication-title: Adv. Mater. – volume: 99 start-page: 093506 year: 2006 publication-title: J. Appl. Phys. – volume: 5 start-page: 656 year: 2015 publication-title: Nanomaterials – volume: 99 start-page: 974 year: 1991 publication-title: J. Ceram. Soc. Jpn. – volume: 295 start-page: 2386 year: 2002 publication-title: Science – volume: 8 start-page: 447 year: 1976 publication-title: Eng. Fract. Mech. – volume: 91 start-page: 1150 year: 2011 publication-title: Philos. Mag. – volume: 3 start-page: 1052 year: 2012 publication-title: Nat. Commun. – volume: 79 start-page: 061011 year: 2012 publication-title: J. Appl. Mech. – volume: 319 start-page: 419 year: 2008 publication-title: Science – volume: 49 start-page: 68 year: 1966 publication-title: J. Am. Ceram. Soc. – volume: 2 start-page: 275 year: 1967 publication-title: J. Mater. Sci. – volume: 71 start-page: C year: 1988 publication-title: J. Am. Ceram. Soc. – volume: 76 start-page: 773 year: 1993 publication-title: J. Am. Ceram. Soc. – volume: 3 start-page: 609 year: 2012 publication-title: Nat. Commun. – volume: 3 start-page: 3001 year: 2009 publication-title: ACS Nano – volume: 100 start-page: 4374 year: 2017 publication-title: J. Am. Ceram. Soc. – volume: 351 start-page: 1481 year: 2005 publication-title: J. Non‐Cryst. Solids – volume: 81 start-page: 1453 year: 1998 publication-title: J. Am. Ceram. Soc. – volume: 545 start-page: 80 year: 2017 publication-title: Nature – volume: 8 start-page: 1041 year: 1973 publication-title: J. Mater. Sci. – volume: 5 start-page: 389 year: 1993 publication-title: Adv. Mater. – volume: 267 start-page: 1947 year: 1995 publication-title: Science – volume: 98 start-page: 374 year: 2015 publication-title: J. Am. Ceram. Soc. – volume: 23 start-page: 4578 year: 2011 publication-title: Adv. Mater. – volume: 528 start-page: 539 year: 2015 publication-title: Nature – volume: 6 start-page: 355 year: 1987 publication-title: J. Mater. Sci. Lett. – volume: 54 start-page: 2877 year: 2006 publication-title: Acta Mater. – volume: 95 start-page: 2944 year: 2012 publication-title: J. Am. Ceram. Soc. – volume: 36 start-page: 2575 year: 2001 publication-title: J. Mater. Sci. – volume: 9 start-page: 3048 year: 2009 publication-title: Nano Lett. – volume: 2 start-page: 38 year: 2003 publication-title: Nat. Mater. – ident: e_1_2_5_21_1 doi: 10.1038/nature21691 – ident: e_1_2_5_31_1 doi: 10.1115/1.4006767 – ident: e_1_2_5_26_1 doi: 10.1016/j.actamat.2006.02.033 – ident: e_1_2_5_19_1 doi: 10.1038/ncomms2047 – ident: e_1_2_5_7_1 doi: 10.1023/A:1017962922590 – ident: e_1_2_5_22_1 doi: 10.1038/ncomms1619 – ident: e_1_2_5_10_1 doi: 10.1038/nmat793 – ident: e_1_2_5_28_1 doi: 10.1016/j.actamat.2015.10.047 – ident: e_1_2_5_15_1 doi: 10.1111/jace.15108 – ident: e_1_2_5_4_1 doi: 10.1002/adma.19930050614 – ident: e_1_2_5_23_1 doi: 10.1126/science.267.5206.1947 – ident: e_1_2_5_17_1 doi: 10.1111/jace.13402 – ident: e_1_2_5_29_1 doi: 10.1080/14786435.2010.505179 – ident: e_1_2_5_3_1 doi: 10.1002/adma.19930050514 – ident: e_1_2_5_12_1 doi: 10.1126/science.1071064 – ident: e_1_2_5_18_1 doi: 10.1016/j.jnoncrysol.2005.03.024 – ident: e_1_2_5_1_1 doi: 10.1002/adma.201102795 – ident: e_1_2_5_20_1 doi: 10.1063/1.2193060 – ident: e_1_2_5_14_1 doi: 10.1038/nature16445 – ident: e_1_2_5_27_1 doi: 10.1111/j.1551-2916.2012.05346.x – ident: e_1_2_5_32_1 doi: 10.1007/BF01729352 – ident: e_1_2_5_25_1 doi: 10.1021/nl9015107 – ident: e_1_2_5_8_1 doi: 10.1111/j.1151-2916.1966.tb13210.x – ident: e_1_2_5_9_1 doi: 10.2109/jcersj.99.974 – ident: e_1_2_5_11_1 doi: 10.1126/science.1151434 – ident: e_1_2_5_16_1 doi: 10.1111/j.1151-2916.1993.tb03677.x – ident: e_1_2_5_5_1 doi: 10.1007/BF00756636 – ident: e_1_2_5_2_1 doi: 10.1007/BF00555385 – ident: e_1_2_5_13_1 doi: 10.3390/nano5020656 – ident: e_1_2_5_24_1 doi: 10.1021/nn900668p – ident: e_1_2_5_6_1 doi: 10.1111/j.1151-2916.1988.tb05911.x – ident: e_1_2_5_30_1 doi: 10.1111/j.1151-2916.1998.tb02503.x – ident: e_1_2_5_33_1 doi: 10.1016/0013-7944(76)90026-6 |
SSID | ssj0009606 |
Score | 2.4442968 |
Snippet | Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in... Abstract Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e1901803 |
SubjectTerms | Amorphous materials Boron oxides Ceramics Dispersion Elastic limit Fracture toughness Glass glasses Materials science Modulus of elasticity Nanocomposites Nanoparticles Solidification solidification processing Strain |
Title | Strong and Tough Glass with Self‐Dispersed Nanoparticles via Solidification |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901803 https://www.ncbi.nlm.nih.gov/pubmed/31222850 https://www.proquest.com/docview/2272167710 https://search.proquest.com/docview/2245619733 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL4WCjITEKV3sbD5WlFIhlQNtpd4ir6iiShFtOXDiE_hGvgSPk6YtHJDglETJKLbHM_M8mTwjdCmpYdT3uacM4Z5vpPBEHBmP6CBScaC1NK5A9j5s9_27QTBY-os_44coEm5gGc5fg4FzMakuSEO5crxBENBiR_dZpxHUdDUfFvxRAM8d2R4NPBb68Zy1sUaqq-KrUekH1FxFri70tLYRnzc6qzh5qsymoiLfvvE5_qdXO2grx6W4kU2kXbSm0z20ucRWuI86XUibP2KeKtyDzX3wLUBvDKlc3NUj8_n-0RwC8_hEK2zdtl2P52V3-HXIcXc8GiqoTHKT4QD1Wze967aX78bgSRpR6lGmmKlJreqxMIIFUhlDGIl0FNYFDYNAUs64PVIVa1JTFidqEZpYSeuLYZP2Q7SejlN9jDAVQgrfYi9ul3NUCRYJ6-uU8akEQBeW0NVcG8lzRrqRZPTKJIEBSooBKqHyXFlJbnyThBBgJIosdiqhi-K2NRv4FsJTPZ7BM4Acme1YCR1lSi5eReuQFgusNHGq-qUNSaPZaRRXJ38ROkUbcJ4VFpbR-vRlps8s2JmKczehvwDZR_aF |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOAAH9qWsRkLiFGjtbD5WFChLOdAicYu8ogqUImg5cOIT-Ea-BE_SBAoHJDhFWUaxPTP282TyBmBXMcuZ7wtPWyo83yrpyTiyHjVBpOPAGGWzBNnLsHntn90ERTYh_guT80OUATf0jGy-RgfHgPTBJ2uo0BlxEK5oMfJ9TjifZ1i9oXH1ySCFAD2j22OBx0M_Lngbq_RgVH50XfoBNkexa7b4HM-CLJqd55zc7Q_6cl-9fGN0_Fe_5mBmCE1JPbeleRgz6QJMfyEsXIRWGyPnt0SkmnSwvg85QfRNMJpL2ubevr--NbpIPv5kNHEzt9uSDzPvyHNXkHbvvqsxOSmzhyW4Pj7qHDa9YUEGT7GIMY9xzW1VGV2LpZU8UNpaymlkorAmWRgEigku3JHp2NCqdlDRyNDGWjnVYJ32ZRhPe6lZBcKkVNJ38Eu4HR3TkkfSTXfa-kwhpgsrsFeoI3nIeTeSnGGZJjhASTlAFdgotJUM_e8poRRJiSIHnyqwU952noOfQ0RqegN8BsEjdx2rwEqu5fJVrIaRscBJ00xXv7QhqTda9fJs7S9C2zDZ7LQukovTy_N1mMLreZ7hBoz3Hwdm02GfvtzKrPsDQMj6nQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hkBAc2JdCASMhcQq0djYfK0rZEaIgcYu8oooqRdBy4MQn8I18CZ6kDS0ckOAUZRnF9nhmnieTZ4AdxSxnvi88banwfKukJ-PIetQEkY4DY5TNCmQvw-Nb__QuuBv6iz_nhygSbmgZmb9GA3_Udv-LNFTojDcIA1qMdJ8TfujgL8Ki6y8CKcTnGdseCzwe-vGAtrFC90flR8PSD6w5Cl2z2NOYBTFodV5y8rDX68o99fqN0PE_3ZqDmT4wJbV8Js3DmEkXYHqIrnARLpqYN78nItXkBnf3IUeIvQnmcknTtO3H23u9hdTjz0YT57fdgrxfd0deWoI0O-2WxtKkbDYswW3j8Obg2Otvx-ApFjHmMa65rSijq7G0kgdKW0s5jUwUViULg0AxwYU7Mh0bWtEOKBoZ2lgr54xxl_ZlGE87qVkFwqRU0nfgS7j1HNOSR9I5O219phDRhSXYHWgjecxZN5KcX5kmOEBJMUAlKA-UlfSt7zmhFCmJIgeeSrBd3HZ2gx9DRGo6PXwGoSN3HSvBSq7k4lWsinmxwEnTTFW_tCGp1S9qxdnaX4S2YPKq3kjOTy7P1mEKL-dFhmUY7z71zIYDPl25mc3tT1Bb-Uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+and+Tough+Glass+with+Self%E2%80%90Dispersed+Nanoparticles+via+Solidification&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jiang%2C+Qiang%E2%80%90Guo&rft.au=Cao%2C+Chezheng&rft.au=Lin%2C+Ting%E2%80%90Chiang&rft.au=Wu%2C+Shanghua&rft.date=2019-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201901803&rft.externalDBID=10.1002%252Fadma.201901803&rft.externalDocID=ADMA201901803 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |