Strong and Tough Glass with Self‐Dispersed Nanoparticles via Solidification

Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in daily life and industry. Although many methods have been applied, the fracture toughness of traditional glasses is still very low due to intrins...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 33; pp. e1901803 - n/a
Main Authors Jiang, Qiang‐Guo, Cao, Chezheng, Lin, Ting‐Chiang, Wu, Shanghua, Li, Xiaochun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in daily life and industry. Although many methods have been applied, the fracture toughness of traditional glasses is still very low due to intrinsic brittleness, significantly limiting their use for structural applications. While nanoelements may be added into glasses and ceramics to form nanocomposites with enhanced properties, it is extremely difficult to distribute and disperse them inside the liquid glass/ceramic matrix with traditional processing methods. It is shown that a strong and tough glass can be fabricated through a direct‐solidification process using a nanoparticle self‐dispersion mechanism in a glass melt (2MgO·2Al2O3·5SiO2) with the assistance of B2O3, delivering a 6.1% strain limit and strength up to E/14 (E is elastic modulus), which is close to the theoretical limit of E/10 and one of the highest among all materials reported so far. The fracture toughness of the glass with 30 vol% SiC nanoparticles is significantly higher than any other inorganic glass tested under similar conditions. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications. A strong and tough glass can be fabricated through a direct‐solidification process using a nanoparticle self‐dispersion mechanism, delivering a 6.1% strain limit and strength close to the theoretical limit. The fracture toughness of this glass is significantly higher than any other inorganic glasses. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications.
AbstractList Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in daily life and industry. Although many methods have been applied, the fracture toughness of traditional glasses is still very low due to intrinsic brittleness, significantly limiting their use for structural applications. While nanoelements may be added into glasses and ceramics to form nanocomposites with enhanced properties, it is extremely difficult to distribute and disperse them inside the liquid glass/ceramic matrix with traditional processing methods. It is shown that a strong and tough glass can be fabricated through a direct‐solidification process using a nanoparticle self‐dispersion mechanism in a glass melt (2MgO·2Al2O3·5SiO2) with the assistance of B2O3, delivering a 6.1% strain limit and strength up to E/14 (E is elastic modulus), which is close to the theoretical limit of E/10 and one of the highest among all materials reported so far. The fracture toughness of the glass with 30 vol% SiC nanoparticles is significantly higher than any other inorganic glass tested under similar conditions. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications.
Abstract Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in daily life and industry. Although many methods have been applied, the fracture toughness of traditional glasses is still very low due to intrinsic brittleness, significantly limiting their use for structural applications. While nanoelements may be added into glasses and ceramics to form nanocomposites with enhanced properties, it is extremely difficult to distribute and disperse them inside the liquid glass/ceramic matrix with traditional processing methods. It is shown that a strong and tough glass can be fabricated through a direct‐solidification process using a nanoparticle self‐dispersion mechanism in a glass melt (2MgO·2Al 2 O 3 ·5SiO 2 ) with the assistance of B 2 O 3 , delivering a 6.1% strain limit and strength up to E /14 ( E is elastic modulus), which is close to the theoretical limit of E /10 and one of the highest among all materials reported so far. The fracture toughness of the glass with 30 vol% SiC nanoparticles is significantly higher than any other inorganic glass tested under similar conditions. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications.
Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in daily life and industry. Although many methods have been applied, the fracture toughness of traditional glasses is still very low due to intrinsic brittleness, significantly limiting their use for structural applications. While nanoelements may be added into glasses and ceramics to form nanocomposites with enhanced properties, it is extremely difficult to distribute and disperse them inside the liquid glass/ceramic matrix with traditional processing methods. It is shown that a strong and tough glass can be fabricated through a direct‐solidification process using a nanoparticle self‐dispersion mechanism in a glass melt (2MgO·2Al2O3·5SiO2) with the assistance of B2O3, delivering a 6.1% strain limit and strength up to E/14 (E is elastic modulus), which is close to the theoretical limit of E/10 and one of the highest among all materials reported so far. The fracture toughness of the glass with 30 vol% SiC nanoparticles is significantly higher than any other inorganic glass tested under similar conditions. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications. A strong and tough glass can be fabricated through a direct‐solidification process using a nanoparticle self‐dispersion mechanism, delivering a 6.1% strain limit and strength close to the theoretical limit. The fracture toughness of this glass is significantly higher than any other inorganic glasses. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications.
Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in daily life and industry. Although many methods have been applied, the fracture toughness of traditional glasses is still very low due to intrinsic brittleness, significantly limiting their use for structural applications. While nanoelements may be added into glasses and ceramics to form nanocomposites with enhanced properties, it is extremely difficult to distribute and disperse them inside the liquid glass/ceramic matrix with traditional processing methods. It is shown that a strong and tough glass can be fabricated through a direct-solidification process using a nanoparticle self-dispersion mechanism in a glass melt (2MgO·2Al O ·5SiO ) with the assistance of B O , delivering a 6.1% strain limit and strength up to E/14 (E is elastic modulus), which is close to the theoretical limit of E/10 and one of the highest among all materials reported so far. The fracture toughness of the glass with 30 vol% SiC nanoparticles is significantly higher than any other inorganic glass tested under similar conditions. This new method opens up remarkable opportunities for glass and ceramic research, manufacturing, and applications.
Author Li, Xiaochun
Wu, Shanghua
Lin, Ting‐Chiang
Cao, Chezheng
Jiang, Qiang‐Guo
Author_xml – sequence: 1
  givenname: Qiang‐Guo
  surname: Jiang
  fullname: Jiang, Qiang‐Guo
  organization: Guangdong University of Technology
– sequence: 2
  givenname: Chezheng
  surname: Cao
  fullname: Cao, Chezheng
  organization: University of California
– sequence: 3
  givenname: Ting‐Chiang
  surname: Lin
  fullname: Lin, Ting‐Chiang
  organization: University of California
– sequence: 4
  givenname: Shanghua
  surname: Wu
  fullname: Wu, Shanghua
  email: swu@gdut.edu.cn
  organization: Guangdong University of Technology
– sequence: 5
  givenname: Xiaochun
  orcidid: 0000-0001-9176-7722
  surname: Li
  fullname: Li, Xiaochun
  email: xcli@seas.ucla.edu
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31222850$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOwzAUQC0EglJYGVEkFpaUa7t24rGivCQeQ2GOHD9aozQudgJi4xP4Rr6EVC1FYmG6y7nnXp19tF372iB0hGGAAciZ1HM5IIAF4BzoFuphRnA6BMG2UQ8EZangw3wP7cf4DACCA99FexQTQnIGPXQ3aYKvp4msdfLo2-ksuapkjMmba2bJxFT26-Nz7OLChGh0ci9rv5ChcaoyMXl1Mpn4ymlnnZKN8_UB2rGyiuZwPfvo6fLi8fw6vX24ujkf3aaKZpSmVGhhQRmN89KWgiltLREkMxnHJeWMKSqF7CbVuSGgGeem5DbXasgzAoT20enKuwj-pTWxKeYuKlNVsja-jQUhQ8ax6G516Mkf9Nm3oe6-66iMYJ5lGDpqsKJU8DEGY4tFcHMZ3gsMxTJ0sQxdbEJ3C8drbVvOjd7gP2U7QKyAN1eZ9390xWh8N_qVfwNdVIur
CitedBy_id crossref_primary_10_1038_s41467_024_44712_6
crossref_primary_10_1002_adem_202200971
crossref_primary_10_1016_j_compositesb_2019_107618
crossref_primary_10_1111_jace_18127
crossref_primary_10_1016_j_ceramint_2023_06_234
crossref_primary_10_1016_j_heliyon_2023_e21895
crossref_primary_10_1016_j_ceramint_2024_06_283
crossref_primary_10_1111_jace_19769
crossref_primary_10_1002_ppsc_202100245
crossref_primary_10_1007_s42864_022_00153_6
crossref_primary_10_1016_j_jnoncrysol_2023_122778
crossref_primary_10_1021_acs_nanolett_1c01594
crossref_primary_10_1002_ppsc_201900404
crossref_primary_10_1016_j_actamat_2021_117016
crossref_primary_10_1016_j_ceramint_2023_09_183
crossref_primary_10_1103_PhysRevMaterials_4_063606
crossref_primary_10_1111_jace_17751
crossref_primary_10_1002_smm2_1302
Cites_doi 10.1038/nature21691
10.1115/1.4006767
10.1016/j.actamat.2006.02.033
10.1038/ncomms2047
10.1023/A:1017962922590
10.1038/ncomms1619
10.1038/nmat793
10.1016/j.actamat.2015.10.047
10.1111/jace.15108
10.1002/adma.19930050614
10.1126/science.267.5206.1947
10.1111/jace.13402
10.1080/14786435.2010.505179
10.1002/adma.19930050514
10.1126/science.1071064
10.1016/j.jnoncrysol.2005.03.024
10.1002/adma.201102795
10.1063/1.2193060
10.1038/nature16445
10.1111/j.1551-2916.2012.05346.x
10.1007/BF01729352
10.1021/nl9015107
10.1111/j.1151-2916.1966.tb13210.x
10.2109/jcersj.99.974
10.1126/science.1151434
10.1111/j.1151-2916.1993.tb03677.x
10.1007/BF00756636
10.1007/BF00555385
10.3390/nano5020656
10.1021/nn900668p
10.1111/j.1151-2916.1988.tb05911.x
10.1111/j.1151-2916.1998.tb02503.x
10.1016/0013-7944(76)90026-6
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201901803
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_201901803
31222850
ADMA201901803
Genre article
Journal Article
GrantInformation_xml – fundername: University of California, Los Angeles, and Science and Technology Project of Guangdong Province
  funderid: #2016B090915002
– fundername: University of California, Los Angeles, and Science and Technology Project of Guangdong Province
  grantid: #2016B090915002
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
NPM
.Y3
31~
6TJ
8WZ
A6W
AAYOK
AAYXX
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3733-39d9f0ced18bfb95cdff2927e761b3655c3a9a6553d8e20d566eb6f8dc4672023
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Sat Aug 17 03:47:11 EDT 2024
Thu Oct 10 20:01:16 EDT 2024
Thu Sep 26 15:57:10 EDT 2024
Wed Oct 16 00:49:00 EDT 2024
Sat Aug 24 01:11:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords glasses
fracture toughness
nanocomposites
solidification processing
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-39d9f0ced18bfb95cdff2927e761b3655c3a9a6553d8e20d566eb6f8dc4672023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9176-7722
PMID 31222850
PQID 2272167710
PQPubID 2045203
PageCount 5
ParticipantIDs proquest_miscellaneous_2245619733
proquest_journals_2272167710
crossref_primary_10_1002_adma_201901803
pubmed_primary_31222850
wiley_primary_10_1002_adma_201901803_ADMA201901803
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 5
2005; 351
2006; 54
1991; 99
2002; 295
2006; 99
1987; 6
2015; 98
2015; 528
1998; 81
2016; 103
2012; 79
1976; 8
1988; 71
1993; 5
2012; 95
1966; 49
2012; 3
2011; 91
1967; 2
1993; 76
2008; 319
2003; 2
2009; 9
2011; 23
1995; 267
2017; 100
2009; 3
1973; 8
2001; 36
2017; 545
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 103
  start-page: 882
  year: 2016
  publication-title: Acta Mater.
– volume: 5
  start-page: 468
  year: 1993
  publication-title: Adv. Mater.
– volume: 99
  start-page: 093506
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 656
  year: 2015
  publication-title: Nanomaterials
– volume: 99
  start-page: 974
  year: 1991
  publication-title: J. Ceram. Soc. Jpn.
– volume: 295
  start-page: 2386
  year: 2002
  publication-title: Science
– volume: 8
  start-page: 447
  year: 1976
  publication-title: Eng. Fract. Mech.
– volume: 91
  start-page: 1150
  year: 2011
  publication-title: Philos. Mag.
– volume: 3
  start-page: 1052
  year: 2012
  publication-title: Nat. Commun.
– volume: 79
  start-page: 061011
  year: 2012
  publication-title: J. Appl. Mech.
– volume: 319
  start-page: 419
  year: 2008
  publication-title: Science
– volume: 49
  start-page: 68
  year: 1966
  publication-title: J. Am. Ceram. Soc.
– volume: 2
  start-page: 275
  year: 1967
  publication-title: J. Mater. Sci.
– volume: 71
  start-page: C
  year: 1988
  publication-title: J. Am. Ceram. Soc.
– volume: 76
  start-page: 773
  year: 1993
  publication-title: J. Am. Ceram. Soc.
– volume: 3
  start-page: 609
  year: 2012
  publication-title: Nat. Commun.
– volume: 3
  start-page: 3001
  year: 2009
  publication-title: ACS Nano
– volume: 100
  start-page: 4374
  year: 2017
  publication-title: J. Am. Ceram. Soc.
– volume: 351
  start-page: 1481
  year: 2005
  publication-title: J. Non‐Cryst. Solids
– volume: 81
  start-page: 1453
  year: 1998
  publication-title: J. Am. Ceram. Soc.
– volume: 545
  start-page: 80
  year: 2017
  publication-title: Nature
– volume: 8
  start-page: 1041
  year: 1973
  publication-title: J. Mater. Sci.
– volume: 5
  start-page: 389
  year: 1993
  publication-title: Adv. Mater.
– volume: 267
  start-page: 1947
  year: 1995
  publication-title: Science
– volume: 98
  start-page: 374
  year: 2015
  publication-title: J. Am. Ceram. Soc.
– volume: 23
  start-page: 4578
  year: 2011
  publication-title: Adv. Mater.
– volume: 528
  start-page: 539
  year: 2015
  publication-title: Nature
– volume: 6
  start-page: 355
  year: 1987
  publication-title: J. Mater. Sci. Lett.
– volume: 54
  start-page: 2877
  year: 2006
  publication-title: Acta Mater.
– volume: 95
  start-page: 2944
  year: 2012
  publication-title: J. Am. Ceram. Soc.
– volume: 36
  start-page: 2575
  year: 2001
  publication-title: J. Mater. Sci.
– volume: 9
  start-page: 3048
  year: 2009
  publication-title: Nano Lett.
– volume: 2
  start-page: 38
  year: 2003
  publication-title: Nat. Mater.
– ident: e_1_2_5_21_1
  doi: 10.1038/nature21691
– ident: e_1_2_5_31_1
  doi: 10.1115/1.4006767
– ident: e_1_2_5_26_1
  doi: 10.1016/j.actamat.2006.02.033
– ident: e_1_2_5_19_1
  doi: 10.1038/ncomms2047
– ident: e_1_2_5_7_1
  doi: 10.1023/A:1017962922590
– ident: e_1_2_5_22_1
  doi: 10.1038/ncomms1619
– ident: e_1_2_5_10_1
  doi: 10.1038/nmat793
– ident: e_1_2_5_28_1
  doi: 10.1016/j.actamat.2015.10.047
– ident: e_1_2_5_15_1
  doi: 10.1111/jace.15108
– ident: e_1_2_5_4_1
  doi: 10.1002/adma.19930050614
– ident: e_1_2_5_23_1
  doi: 10.1126/science.267.5206.1947
– ident: e_1_2_5_17_1
  doi: 10.1111/jace.13402
– ident: e_1_2_5_29_1
  doi: 10.1080/14786435.2010.505179
– ident: e_1_2_5_3_1
  doi: 10.1002/adma.19930050514
– ident: e_1_2_5_12_1
  doi: 10.1126/science.1071064
– ident: e_1_2_5_18_1
  doi: 10.1016/j.jnoncrysol.2005.03.024
– ident: e_1_2_5_1_1
  doi: 10.1002/adma.201102795
– ident: e_1_2_5_20_1
  doi: 10.1063/1.2193060
– ident: e_1_2_5_14_1
  doi: 10.1038/nature16445
– ident: e_1_2_5_27_1
  doi: 10.1111/j.1551-2916.2012.05346.x
– ident: e_1_2_5_32_1
  doi: 10.1007/BF01729352
– ident: e_1_2_5_25_1
  doi: 10.1021/nl9015107
– ident: e_1_2_5_8_1
  doi: 10.1111/j.1151-2916.1966.tb13210.x
– ident: e_1_2_5_9_1
  doi: 10.2109/jcersj.99.974
– ident: e_1_2_5_11_1
  doi: 10.1126/science.1151434
– ident: e_1_2_5_16_1
  doi: 10.1111/j.1151-2916.1993.tb03677.x
– ident: e_1_2_5_5_1
  doi: 10.1007/BF00756636
– ident: e_1_2_5_2_1
  doi: 10.1007/BF00555385
– ident: e_1_2_5_13_1
  doi: 10.3390/nano5020656
– ident: e_1_2_5_24_1
  doi: 10.1021/nn900668p
– ident: e_1_2_5_6_1
  doi: 10.1111/j.1151-2916.1988.tb05911.x
– ident: e_1_2_5_30_1
  doi: 10.1111/j.1151-2916.1998.tb02503.x
– ident: e_1_2_5_33_1
  doi: 10.1016/0013-7944(76)90026-6
SSID ssj0009606
Score 2.4442968
Snippet Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their applications in...
Abstract Glassy materials can be broadly defined as any amorphous solid, which are important in nature and have significant societal value for their...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1901803
SubjectTerms Amorphous materials
Boron oxides
Ceramics
Dispersion
Elastic limit
Fracture toughness
Glass
glasses
Materials science
Modulus of elasticity
Nanocomposites
Nanoparticles
Solidification
solidification processing
Strain
Title Strong and Tough Glass with Self‐Dispersed Nanoparticles via Solidification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901803
https://www.ncbi.nlm.nih.gov/pubmed/31222850
https://www.proquest.com/docview/2272167710
https://search.proquest.com/docview/2245619733
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL4WCjITEKV3sbD5WlFIhlQNtpd4ir6iiShFtOXDiE_hGvgSPk6YtHJDglETJKLbHM_M8mTwjdCmpYdT3uacM4Z5vpPBEHBmP6CBScaC1NK5A9j5s9_27QTBY-os_44coEm5gGc5fg4FzMakuSEO5crxBENBiR_dZpxHUdDUfFvxRAM8d2R4NPBb68Zy1sUaqq-KrUekH1FxFri70tLYRnzc6qzh5qsymoiLfvvE5_qdXO2grx6W4kU2kXbSm0z20ucRWuI86XUibP2KeKtyDzX3wLUBvDKlc3NUj8_n-0RwC8_hEK2zdtl2P52V3-HXIcXc8GiqoTHKT4QD1Wze967aX78bgSRpR6lGmmKlJreqxMIIFUhlDGIl0FNYFDYNAUs64PVIVa1JTFidqEZpYSeuLYZP2Q7SejlN9jDAVQgrfYi9ul3NUCRYJ6-uU8akEQBeW0NVcG8lzRrqRZPTKJIEBSooBKqHyXFlJbnyThBBgJIosdiqhi-K2NRv4FsJTPZ7BM4Acme1YCR1lSi5eReuQFgusNHGq-qUNSaPZaRRXJ38ROkUbcJ4VFpbR-vRlps8s2JmKczehvwDZR_aF
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOAAH9qWsRkLiFGjtbD5WFChLOdAicYu8ogqUImg5cOIT-Ea-BE_SBAoHJDhFWUaxPTP282TyBmBXMcuZ7wtPWyo83yrpyTiyHjVBpOPAGGWzBNnLsHntn90ERTYh_guT80OUATf0jGy-RgfHgPTBJ2uo0BlxEK5oMfJ9TjifZ1i9oXH1ySCFAD2j22OBx0M_Lngbq_RgVH50XfoBNkexa7b4HM-CLJqd55zc7Q_6cl-9fGN0_Fe_5mBmCE1JPbeleRgz6QJMfyEsXIRWGyPnt0SkmnSwvg85QfRNMJpL2ubevr--NbpIPv5kNHEzt9uSDzPvyHNXkHbvvqsxOSmzhyW4Pj7qHDa9YUEGT7GIMY9xzW1VGV2LpZU8UNpaymlkorAmWRgEigku3JHp2NCqdlDRyNDGWjnVYJ32ZRhPe6lZBcKkVNJ38Eu4HR3TkkfSTXfa-kwhpgsrsFeoI3nIeTeSnGGZJjhASTlAFdgotJUM_e8poRRJiSIHnyqwU952noOfQ0RqegN8BsEjdx2rwEqu5fJVrIaRscBJ00xXv7QhqTda9fJs7S9C2zDZ7LQukovTy_N1mMLreZ7hBoz3Hwdm02GfvtzKrPsDQMj6nQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hkBAc2JdCASMhcQq0djYfK0rZEaIgcYu8oooqRdBy4MQn8I18CZ6kDS0ckOAUZRnF9nhmnieTZ4AdxSxnvi88banwfKukJ-PIetQEkY4DY5TNCmQvw-Nb__QuuBv6iz_nhygSbmgZmb9GA3_Udv-LNFTojDcIA1qMdJ8TfujgL8Ki6y8CKcTnGdseCzwe-vGAtrFC90flR8PSD6w5Cl2z2NOYBTFodV5y8rDX68o99fqN0PE_3ZqDmT4wJbV8Js3DmEkXYHqIrnARLpqYN78nItXkBnf3IUeIvQnmcknTtO3H23u9hdTjz0YT57fdgrxfd0deWoI0O-2WxtKkbDYswW3j8Obg2Otvx-ApFjHmMa65rSijq7G0kgdKW0s5jUwUViULg0AxwYU7Mh0bWtEOKBoZ2lgr54xxl_ZlGE87qVkFwqRU0nfgS7j1HNOSR9I5O219phDRhSXYHWgjecxZN5KcX5kmOEBJMUAlKA-UlfSt7zmhFCmJIgeeSrBd3HZ2gx9DRGo6PXwGoSN3HSvBSq7k4lWsinmxwEnTTFW_tCGp1S9qxdnaX4S2YPKq3kjOTy7P1mEKL-dFhmUY7z71zIYDPl25mc3tT1Bb-Uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+and+Tough+Glass+with+Self%E2%80%90Dispersed+Nanoparticles+via+Solidification&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jiang%2C+Qiang%E2%80%90Guo&rft.au=Cao%2C+Chezheng&rft.au=Lin%2C+Ting%E2%80%90Chiang&rft.au=Wu%2C+Shanghua&rft.date=2019-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201901803&rft.externalDBID=10.1002%252Fadma.201901803&rft.externalDocID=ADMA201901803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon