GO‐PEG Represses the Progression of Liver Inflammation via Regulating the M1/M2 Polarization of Kupffer Cells
As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic‐substances in liver. Therefore, this study investigates the i...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 26; pp. e2306483 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202306483 |
Cover
Loading…
Abstract | As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic‐substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol‐modified graphene oxide (GO‐PEG) on KCs. Initial RNA‐seq and KEGG pathway analyses reveal the inhibition of the TOLL‐like receptor, TNF‐α and NOD‐like receptor pathways in continually stimulated KCs exposed to GO‐PEG. Subsequent biological experiments validate that a 48‐hour exposure to GO‐PEG alleviates LPS‐induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double‐stranded RNA/single‐stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co‐culture model and animal studies, it is observed that GO‐PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti‐inflammatory drugs.
At both cellular and animal levels, Polyethylene glycol‐modified graphene oxide accumulated in endosomes interferes with TLR3/7 activation by adsorbing ds/ssRNA, thereby regulating the immune response of liver macrophages and promoting alternative activation (M2). The corresponding inflammatory mediators further alleviate the progression of liver inflammation through the crosstalk between liver macrophages and hepatocytes. |
---|---|
AbstractList | As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic-substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol-modified graphene oxide (GO-PEG) on KCs. Initial RNA-seq and KEGG pathway analyses reveal the inhibition of the TOLL-like receptor, TNF-α and NOD-like receptor pathways in continually stimulated KCs exposed to GO-PEG. Subsequent biological experiments validate that a 48-hour exposure to GO-PEG alleviates LPS-induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double-stranded RNA/single-stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co-culture model and animal studies, it is observed that GO-PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti-inflammatory drugs.As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic-substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol-modified graphene oxide (GO-PEG) on KCs. Initial RNA-seq and KEGG pathway analyses reveal the inhibition of the TOLL-like receptor, TNF-α and NOD-like receptor pathways in continually stimulated KCs exposed to GO-PEG. Subsequent biological experiments validate that a 48-hour exposure to GO-PEG alleviates LPS-induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double-stranded RNA/single-stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co-culture model and animal studies, it is observed that GO-PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti-inflammatory drugs. As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic-substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol-modified graphene oxide (GO-PEG) on KCs. Initial RNA-seq and KEGG pathway analyses reveal the inhibition of the TOLL-like receptor, TNF-α and NOD-like receptor pathways in continually stimulated KCs exposed to GO-PEG. Subsequent biological experiments validate that a 48-hour exposure to GO-PEG alleviates LPS-induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double-stranded RNA/single-stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co-culture model and animal studies, it is observed that GO-PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti-inflammatory drugs. As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic‐substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol‐modified graphene oxide (GO‐PEG) on KCs. Initial RNA‐seq and KEGG pathway analyses reveal the inhibition of the TOLL‐like receptor, TNF‐α and NOD‐like receptor pathways in continually stimulated KCs exposed to GO‐PEG. Subsequent biological experiments validate that a 48‐hour exposure to GO‐PEG alleviates LPS‐induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double‐stranded RNA/single‐stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co‐culture model and animal studies, it is observed that GO‐PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti‐inflammatory drugs. At both cellular and animal levels, Polyethylene glycol‐modified graphene oxide accumulated in endosomes interferes with TLR3/7 activation by adsorbing ds/ssRNA, thereby regulating the immune response of liver macrophages and promoting alternative activation (M2). The corresponding inflammatory mediators further alleviate the progression of liver inflammation through the crosstalk between liver macrophages and hepatocytes. |
Author | Zhang, Haopeng Zhang, Ting Lei, Jialin Pang, Yanting Wu, Jiawei Liu, Qing Ding, Xiaomeng |
Author_xml | – sequence: 1 givenname: Xiaomeng surname: Ding fullname: Ding, Xiaomeng organization: Southeast University – sequence: 2 givenname: Yanting surname: Pang fullname: Pang, Yanting organization: Southeast University – sequence: 3 givenname: Qing surname: Liu fullname: Liu, Qing organization: Southeast University – sequence: 4 givenname: Haopeng surname: Zhang fullname: Zhang, Haopeng organization: Southeast University – sequence: 5 givenname: Jiawei surname: Wu fullname: Wu, Jiawei organization: Southeast University – sequence: 6 givenname: Jialin surname: Lei fullname: Lei, Jialin organization: Southeast University – sequence: 7 givenname: Ting orcidid: 0000-0002-5748-9754 surname: Zhang fullname: Zhang, Ting email: zhangting@seu.edu.cn organization: Southeast University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38229561$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9OGzEQh62KqoGUa49opV64JPjPxl4fUQQBdSMiKGfL67VTR951au9S0ROPwDPyJHUISSWkqid7Rt83Gs3vCBy0vtUAfEFwjCDEZ7FxbowhJpDmBfkADhFFZEQLzA_2fwQH4CjGFYQE4Zx9AgNSYMwnFB0CP7t5eXpeXMyyW70OOkYds-6HzhbBLzel9W3mTVbaBx2y69Y42TSy23QfrEzOsnepbJev0hydzXG28E4G-3tLJfdbvzYm2VPtXPwMPhrpoj5-e4fg_vLi-_RqVN7Mrqfn5UgRRsgIG84M1RNVEIMKamRdFJNacq1khaoKYYY0LAjLqWKScihzSZisK8VzxKiqyRCcbueug__Z69iJxkaVNpCt9n0UmKMJ55Cnow3B13foyvehTdsJAhnGDHNGE3XyRvVVo2uxDraR4VHsTpmAfAuo4GMM2ghlu9cjdEFaJxAUm8TEJjGxTyxp43fabvI_Bb4VflmnH_9Di7t5Wf51_wATQalL |
CitedBy_id | crossref_primary_10_3390_nano14231945 crossref_primary_10_25259_Cytojournal_193_2024 crossref_primary_10_3390_molecules29061335 crossref_primary_10_1021_acsnano_4c16813 |
Cites_doi | 10.1016/j.bbadis.2020.165753 10.1002/hep.23337 10.3389/fimmu.2020.00322 10.1038/s41577-019-0229-1 10.1016/j.redox.2022.102367 10.1016/j.ajpath.2016.06.003 10.1038/s41586-020-2977-2 10.1038/s41586-019-1827-6 10.1016/j.colsurfb.2018.12.063 10.1016/j.cmet.2020.05.003 10.1007/978-3-030-85109-5_6 10.1016/j.addr.2021.114079 10.1016/j.msec.2018.04.096 10.1172/JCI59643 10.1038/s41563-022-01292-4 10.1016/j.jhep.2016.04.018 10.1016/j.jhep.2017.02.026 10.1080/07853890.2022.2095664 10.1016/j.ajpath.2014.02.014 10.1002/smll.201102743 10.1021/am505308f 10.1038/35013070 10.1038/s41467-018-06318-7 10.1002/hep.24524 10.1002/adma.202106456 10.1016/j.biomaterials.2022.121457 10.1128/MCB.24.4.1464-1469.2004 10.3390/nano12010126 10.1021/acsnano.2c06609 10.3390/jcm10061248 10.1038/s41591-021-01344-3 10.1111/imcb.1035 10.1146/annurev-physiol-021909-135846 10.1038/nri1391 10.1016/j.prp.2023.154673 10.1002/smll.202301749 10.1016/j.colsurfb.2019.110709 10.1016/j.bbamcr.2011.01.034 10.1038/srep34691 10.1021/nn201560b 10.1038/s41392-021-00687-0 10.1038/emboj.2010.268 10.4049/jimmunol.1000702 10.1021/nn1024303 10.1038/ni.3153 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202306483 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38229561 10_1002_smll_202306483 SMLL202306483 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 82241087; 82373618 – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province funderid: KYCX22_0302 – fundername: National Natural Science Foundation of China grantid: 82373618 – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province grantid: KYCX22_0302 – fundername: National Natural Science Foundation of China grantid: 82241087 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3733-2f97f6e5c83f186fad885da9ecab1bb1271e083746c7a690a4a37adbc94176cd3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 17:03:52 EDT 2025 Fri Jul 25 12:14:07 EDT 2025 Sat Mar 29 01:29:22 EDT 2025 Tue Jul 01 02:54:55 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Wed Jan 22 17:18:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | macrophage polarization KCs liver inflammation cell crosstalk polyethylene glycol‐modified graphene oxide (GO‐PEG) |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-2f97f6e5c83f186fad885da9ecab1bb1271e083746c7a690a4a37adbc94176cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5748-9754 |
PMID | 38229561 |
PQID | 3072272976 |
PQPubID | 1046358 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2915990948 proquest_journals_3072272976 pubmed_primary_38229561 crossref_citationtrail_10_1002_smll_202306483 crossref_primary_10_1002_smll_202306483 wiley_primary_10_1002_smll_202306483_SMLL202306483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 1352 2021; 27 2021; 6 2012; 122 2015; 16 2023; 17 2020; 186 2017; 66 2021; 589 2023; 19 2004; 24 2004; 4 2023; 248 2019; 19 2011; 54 2022; 21 2020; 11 2020; 32 2011; 5 2016; 186 2018; 9 2016; 6 2021; 10 2022; 283 2021; 12 2022; 180 2010; 29 2000; 405 2016; 65 2022; 34 2020; 1866 2018; 90 2019; 576 2011; 1813 2018; 96 2014; 184 2022; 54 2014; 6 2010; 51 2010; 72 2012; 8 2019; 176 2011; 186 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 11 start-page: 322 year: 2020 publication-title: Front. Immunol. – volume: 248 year: 2023 publication-title: Pathol. Res. Pract. – volume: 54 start-page: 1918 year: 2022 publication-title: Ann. Med. – volume: 32 start-page: 128 year: 2020 publication-title: Cell Metab. – volume: 10 start-page: 1248 year: 2021 publication-title: J. Clin. Med. – volume: 66 start-page: 1300 year: 2017 publication-title: J. Hepatol. – volume: 186 year: 2020 publication-title: Colloids Surf. B Biointerfaces – volume: 405 start-page: 458 year: 2000 publication-title: Nature – volume: 180 year: 2022 publication-title: Adv. Drug Deliv. Rev. – volume: 65 start-page: 608 year: 2016 publication-title: J. Hepatol. – volume: 17 start-page: 1965 year: 2023 publication-title: ACS Nano – volume: 176 start-page: 96 year: 2019 publication-title: Colloids Surf. B Biointerfaces – volume: 1866 year: 2020 publication-title: Biochim. Biophys. Acta Mol. Basis. Dis. – volume: 90 start-page: 514 year: 2018 publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 186 start-page: 4794 year: 2011 publication-title: J. Immunol. – volume: 6 start-page: 291 year: 2021 publication-title: Signal Transduct. Target Ther. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 5 start-page: 516 year: 2011 publication-title: ACS Nano – volume: 576 start-page: 437 year: 2019 publication-title: Nature – volume: 184 start-page: 1763 year: 2014 publication-title: Am. J. Pathol. – volume: 16 start-page: 448 year: 2015 publication-title: Nat. Immunol. – volume: 1813 start-page: 878 year: 2011 publication-title: Biochim. Biophys. Acta – volume: 9 start-page: 4383 year: 2018 publication-title: Nat. Commun. – volume: 12 start-page: 126 year: 2021 publication-title: Nanomaterials – volume: 122 start-page: 787 year: 2012 publication-title: J. Clin. Invest. – volume: 283 year: 2022 publication-title: Biomaterials – volume: 54 start-page: 1217 year: 2011 publication-title: Hepatology – volume: 1352 start-page: 87 year: 2021 publication-title: Adv. Exp. Med. Biol. – volume: 27 start-page: 1043 year: 2021 publication-title: Nat. Med. – volume: 19 start-page: 660 year: 2019 publication-title: Nat. Rev. Immunol. – volume: 589 start-page: 131 year: 2021 publication-title: Nature – volume: 4 start-page: 499 year: 2004 publication-title: Nat. Rev. Immunol. – volume: 54 year: 2022 publication-title: Redox Biol. – volume: 72 start-page: 219 year: 2010 publication-title: Ann. Rev. Physiol. – volume: 21 start-page: 1121 year: 2022 publication-title: Nat. Mater. – volume: 29 start-page: 4223 year: 2010 publication-title: EMBO J. – volume: 24 start-page: 1464 year: 2004 publication-title: Mol. Cell. Biol. – volume: 96 start-page: 257 year: 2018 publication-title: Immunol. Cell Biol. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 19 year: 2023 publication-title: Small – volume: 5 start-page: 7000 year: 2011 publication-title: ACS Nano – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 2577 year: 2012 publication-title: Small – volume: 51 start-page: 511 year: 2010 publication-title: Hepatology – volume: 186 start-page: 2238 year: 2016 publication-title: Am. J. Pathol. – ident: e_1_2_9_18_1 doi: 10.1016/j.bbadis.2020.165753 – ident: e_1_2_9_43_1 doi: 10.1002/hep.23337 – ident: e_1_2_9_14_1 doi: 10.3389/fimmu.2020.00322 – ident: e_1_2_9_37_1 doi: 10.1038/s41577-019-0229-1 – ident: e_1_2_9_45_1 doi: 10.1016/j.redox.2022.102367 – ident: e_1_2_9_41_1 doi: 10.1016/j.ajpath.2016.06.003 – ident: e_1_2_9_21_1 doi: 10.1038/s41586-020-2977-2 – ident: e_1_2_9_2_1 doi: 10.1038/s41586-019-1827-6 – ident: e_1_2_9_30_1 doi: 10.1016/j.colsurfb.2018.12.063 – ident: e_1_2_9_35_1 doi: 10.1016/j.cmet.2020.05.003 – ident: e_1_2_9_32_1 doi: 10.1007/978-3-030-85109-5_6 – ident: e_1_2_9_5_1 doi: 10.1016/j.addr.2021.114079 – ident: e_1_2_9_39_1 doi: 10.1016/j.msec.2018.04.096 – ident: e_1_2_9_11_1 doi: 10.1172/JCI59643 – ident: e_1_2_9_1_1 doi: 10.1038/s41563-022-01292-4 – ident: e_1_2_9_15_1 doi: 10.1016/j.jhep.2016.04.018 – ident: e_1_2_9_13_1 doi: 10.1016/j.jhep.2017.02.026 – ident: e_1_2_9_33_1 doi: 10.1080/07853890.2022.2095664 – ident: e_1_2_9_17_1 doi: 10.1016/j.ajpath.2014.02.014 – ident: e_1_2_9_38_1 doi: 10.1002/smll.201102743 – ident: e_1_2_9_19_1 doi: 10.1021/am505308f – ident: e_1_2_9_23_1 doi: 10.1038/35013070 – ident: e_1_2_9_8_1 doi: 10.1038/s41467-018-06318-7 – ident: e_1_2_9_16_1 doi: 10.1002/hep.24524 – ident: e_1_2_9_22_1 doi: 10.1002/adma.202106456 – ident: e_1_2_9_44_1 doi: 10.1016/j.biomaterials.2022.121457 – ident: e_1_2_9_34_1 doi: 10.1128/MCB.24.4.1464-1469.2004 – ident: e_1_2_9_29_1 doi: 10.3390/nano12010126 – ident: e_1_2_9_3_1 doi: 10.1021/acsnano.2c06609 – ident: e_1_2_9_42_1 doi: 10.3390/jcm10061248 – ident: e_1_2_9_9_1 doi: 10.1038/s41591-021-01344-3 – ident: e_1_2_9_28_1 doi: 10.1111/imcb.1035 – ident: e_1_2_9_12_1 doi: 10.1146/annurev-physiol-021909-135846 – ident: e_1_2_9_31_1 doi: 10.1038/nri1391 – ident: e_1_2_9_36_1 doi: 10.1016/j.prp.2023.154673 – ident: e_1_2_9_4_1 doi: 10.1002/smll.202301749 – ident: e_1_2_9_7_1 doi: 10.1016/j.colsurfb.2019.110709 – ident: e_1_2_9_27_1 doi: 10.1016/j.bbamcr.2011.01.034 – ident: e_1_2_9_46_1 doi: 10.1038/srep34691 – ident: e_1_2_9_20_1 doi: 10.1021/nn201560b – ident: e_1_2_9_24_1 doi: 10.1038/s41392-021-00687-0 – ident: e_1_2_9_25_1 doi: 10.1038/emboj.2010.268 – ident: e_1_2_9_40_1 doi: 10.4049/jimmunol.1000702 – ident: e_1_2_9_10_1 doi: 10.1021/nn1024303 – ident: e_1_2_9_6_1 doi: 10.1021/nn1024303 – ident: e_1_2_9_26_1 doi: 10.1038/ni.3153 |
SSID | ssj0031247 |
Score | 2.4897044 |
Snippet | As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2306483 |
SubjectTerms | Animals Apoptosis - drug effects Biological effects cell crosstalk Cell Line Cell Polarity - drug effects Disease Progression Graphene Graphite - chemistry Graphite - pharmacology Immune system Inflammation Inflammation - metabolism Inflammation - pathology KCs Kupffer Cells - drug effects Kupffer Cells - metabolism Lipopolysaccharides - pharmacology Liver Liver - drug effects Liver - metabolism Liver - pathology liver inflammation macrophage polarization Male Mice Mice, Inbred C57BL Nanomaterials Oxidative Stress - drug effects Polarization Polyethylene glycol Polyethylene Glycols - chemistry Polyethylene Glycols - pharmacology polyethylene glycol‐modified graphene oxide (GO‐PEG) Receptors |
Title | GO‐PEG Represses the Progression of Liver Inflammation via Regulating the M1/M2 Polarization of Kupffer Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202306483 https://www.ncbi.nlm.nih.gov/pubmed/38229561 https://www.proquest.com/docview/3072272976 https://www.proquest.com/docview/2915990948 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VnOihLbS0KQ-5UqWewm6ch-MjQrx32xUUiVtkO7aEus0issuBU39CfyO_hJk4G1gqVKm9JYoncWxP5pt45huAz5ojilepDokKBB0UyUNpRBKi9dNCZH1eJpTvPPyaHZ4nxxfpxaMsfs8P0f1wI81ovtek4ErXvQfS0PrnmLYOGgidE90nBWwRKjrt-KNiNF5NdRW0WSERb81ZG_u8tyi-aJX-gJqLyLUxPfuvQc077SNOfmzPpnrb3D7hc_yft3oDr1pcynb8QlqBF7ZahZeP2ArfwuTg292v36O9A3bqw2dtzRA-shGFeHl6DzZxbECRHuyocrjWfF4ku7lUKNMUvcc7NULDqDfkbESOdZsJSrInsyuq18J27Xhcv4Pz_b3vu4dhW68hNLGgknBOCpfZ1OSxi_LMqTLP01JJa5SOtI64iCwiPpFkRij0ylWiYqFKbWQSicyU8RosVZPKfgCGsCKSWuYpT22iIqf6seUWsbVxvJ9qF0A4n6_CtGTmVFNjXHgaZl7QQBbdQAbwpWt_5Wk8nm25MZ_-olXnusAPIefohogsgE_dZVRE2l1RlZ3M6oJLRIYSveU8gPd-2XSPiolWH5FqALyZ_L_0oTgbDgbd2cd_EVqHZTxOfFDbBixNr2d2E-HTVG81KnIPvU0RMw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_guBAkZC4pTuxvlxckRV2y1Nyqq0ErfIdmwJsWQrssuBE4_AM_IkzNhJYEEICY5JPIljezzf2ONvAJ4rjihepiokKhB0UAoeFlokIVo_JUQ25U1C552rk2x2nrx6mw7RhHQWxvNDjAtupBluviYFpwXpyQ_W0O7DgvYOHIbO48twhdJ6O6_qdGSQitF8ufwqaLVCot4aeBunfLIpv2mXfgObm9jVGZ-Dm6CGavuYk_e765Xa1Z9_YXT8r_-6BTd6aMpe-rF0Gy6Z9g5c_4mw8C4sD19_-_J1vn_ITn0ErekYIkg2pygvz_DBlpaVFOzBjlqLw80fjWSf3kmUcXnv8U1OqIomFWdz8q37w6Ake7y-oJQtbM8sFt09OD_YP9ubhX3KhlDHgrLC2ULYzKQ6j22UZ1Y2eZ42sjBaqkipiIvIIOgTSaaFRMdcJjIWslG6SCKR6Sbehq122ZoHwBBZRIUq8pSnJpGRldPYcIPwWls-TZUNIBw6rNY9nzml1VjUnomZ19SQ9diQAbwYy194Jo8_ltwZ-r_uNbqrcS7kHD0RkQXwbHyMukgbLLI1y3VX8wLBYYEOcx7AfT9uxk_FxKyPYDUA7nr_L3Wo31RlOV49_Behp3B1dlaVdXl0cvwIruH9xMe47cDW6uPaPEY0tVJPnL58B8mhFU4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAc-KcEChgJiVO6iePE8RG13bZ0t6wKlXqzbMeWUJfsiuxy4MQj8Ix9ko7jbOiCEBIck3gSx_ZkvolnvgF4rSmieJXr2FOBoIMiaCwMZzFaP815kdCK-Xzn8XFxcMreneVnV7L4Az9E_8PNa0b7vfYKPq_c4CdpaPN56rcOWghdZtfhBiuS0q_r3ZOeQCpD69WWV0GjFXvmrRVtY0IH6_LrZuk3rLkOXVvbM7wLatXrEHJyvr1c6G3z7RdCx_95rXtwpwOm5G1YSffhmq0fwO0rdIUPYbb__uL7j8nePjkJ8bO2IYgfycTHeAV-DzJzZORDPchh7XCxhcRI8vWTQpm26j3eqRUap4MxJRPvWXepoF72aDn3BVvIjp1Om0dwOtz7uHMQdwUbYpNxXxPOCe4Km5syc2lZOFWVZV4pYY3SqdYp5alFyMdZYbhCt1wxlXFVaSNYygtTZY9ho57V9gkQxBWp0KLMaW6ZSp1KMkstgmvjaJJrF0G8mi9pOjZzX1RjKgMPM5V-IGU_kBG86dvPA4_HH1turaZfdvrcSPwSUop-CC8ieNVfRk302yuqtrNlI6lAaCjQXS4j2AzLpn9U5nn1EapGQNvJ_0sf5IfxaNQfPf0XoZdwc7I7lKPD46NncAtPsxDgtgUbiy9L-xyh1EK_aLXlEpCKFAY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GO-PEG+Represses+the+Progression+of+Liver+Inflammation+via+Regulating+the+M1%2FM2+Polarization+of+Kupffer+Cells&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ding%2C+Xiaomeng&rft.au=Pang%2C+Yanting&rft.au=Liu%2C+Qing&rft.au=Zhang%2C+Haopeng&rft.date=2024-06-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=26&rft.spage=e2306483&rft_id=info:doi/10.1002%2Fsmll.202306483&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |