GO‐PEG Represses the Progression of Liver Inflammation via Regulating the M1/M2 Polarization of Kupffer Cells

As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic‐substances in liver. Therefore, this study investigates the i...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 26; pp. e2306483 - n/a
Main Authors Ding, Xiaomeng, Pang, Yanting, Liu, Qing, Zhang, Haopeng, Wu, Jiawei, Lei, Jialin, Zhang, Ting
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202306483

Cover

Loading…
Abstract As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic‐substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol‐modified graphene oxide (GO‐PEG) on KCs. Initial RNA‐seq and KEGG pathway analyses reveal the inhibition of the TOLL‐like receptor, TNF‐α and NOD‐like receptor pathways in continually stimulated KCs exposed to GO‐PEG. Subsequent biological experiments validate that a 48‐hour exposure to GO‐PEG alleviates LPS‐induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double‐stranded RNA/single‐stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co‐culture model and animal studies, it is observed that GO‐PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti‐inflammatory drugs. At both cellular and animal levels, Polyethylene glycol‐modified graphene oxide accumulated in endosomes interferes with TLR3/7 activation by adsorbing ds/ssRNA, thereby regulating the immune response of liver macrophages and promoting alternative activation (M2). The corresponding inflammatory mediators further alleviate the progression of liver inflammation through the crosstalk between liver macrophages and hepatocytes.
AbstractList As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic-substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol-modified graphene oxide (GO-PEG) on KCs. Initial RNA-seq and KEGG pathway analyses reveal the inhibition of the TOLL-like receptor, TNF-α and NOD-like receptor pathways in continually stimulated KCs exposed to GO-PEG. Subsequent biological experiments validate that a 48-hour exposure to GO-PEG alleviates LPS-induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double-stranded RNA/single-stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co-culture model and animal studies, it is observed that GO-PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti-inflammatory drugs.As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic-substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol-modified graphene oxide (GO-PEG) on KCs. Initial RNA-seq and KEGG pathway analyses reveal the inhibition of the TOLL-like receptor, TNF-α and NOD-like receptor pathways in continually stimulated KCs exposed to GO-PEG. Subsequent biological experiments validate that a 48-hour exposure to GO-PEG alleviates LPS-induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double-stranded RNA/single-stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co-culture model and animal studies, it is observed that GO-PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti-inflammatory drugs.
As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic-substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol-modified graphene oxide (GO-PEG) on KCs. Initial RNA-seq and KEGG pathway analyses reveal the inhibition of the TOLL-like receptor, TNF-α and NOD-like receptor pathways in continually stimulated KCs exposed to GO-PEG. Subsequent biological experiments validate that a 48-hour exposure to GO-PEG alleviates LPS-induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double-stranded RNA/single-stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co-culture model and animal studies, it is observed that GO-PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti-inflammatory drugs.
As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic‐substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol‐modified graphene oxide (GO‐PEG) on KCs. Initial RNA‐seq and KEGG pathway analyses reveal the inhibition of the TOLL‐like receptor, TNF‐α and NOD‐like receptor pathways in continually stimulated KCs exposed to GO‐PEG. Subsequent biological experiments validate that a 48‐hour exposure to GO‐PEG alleviates LPS‐induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double‐stranded RNA/single‐stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co‐culture model and animal studies, it is observed that GO‐PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti‐inflammatory drugs. At both cellular and animal levels, Polyethylene glycol‐modified graphene oxide accumulated in endosomes interferes with TLR3/7 activation by adsorbing ds/ssRNA, thereby regulating the immune response of liver macrophages and promoting alternative activation (M2). The corresponding inflammatory mediators further alleviate the progression of liver inflammation through the crosstalk between liver macrophages and hepatocytes.
Author Zhang, Haopeng
Zhang, Ting
Lei, Jialin
Pang, Yanting
Wu, Jiawei
Liu, Qing
Ding, Xiaomeng
Author_xml – sequence: 1
  givenname: Xiaomeng
  surname: Ding
  fullname: Ding, Xiaomeng
  organization: Southeast University
– sequence: 2
  givenname: Yanting
  surname: Pang
  fullname: Pang, Yanting
  organization: Southeast University
– sequence: 3
  givenname: Qing
  surname: Liu
  fullname: Liu, Qing
  organization: Southeast University
– sequence: 4
  givenname: Haopeng
  surname: Zhang
  fullname: Zhang, Haopeng
  organization: Southeast University
– sequence: 5
  givenname: Jiawei
  surname: Wu
  fullname: Wu, Jiawei
  organization: Southeast University
– sequence: 6
  givenname: Jialin
  surname: Lei
  fullname: Lei, Jialin
  organization: Southeast University
– sequence: 7
  givenname: Ting
  orcidid: 0000-0002-5748-9754
  surname: Zhang
  fullname: Zhang, Ting
  email: zhangting@seu.edu.cn
  organization: Southeast University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38229561$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9OGzEQh62KqoGUa49opV64JPjPxl4fUQQBdSMiKGfL67VTR951au9S0ROPwDPyJHUISSWkqid7Rt83Gs3vCBy0vtUAfEFwjCDEZ7FxbowhJpDmBfkADhFFZEQLzA_2fwQH4CjGFYQE4Zx9AgNSYMwnFB0CP7t5eXpeXMyyW70OOkYds-6HzhbBLzel9W3mTVbaBx2y69Y42TSy23QfrEzOsnepbJev0hydzXG28E4G-3tLJfdbvzYm2VPtXPwMPhrpoj5-e4fg_vLi-_RqVN7Mrqfn5UgRRsgIG84M1RNVEIMKamRdFJNacq1khaoKYYY0LAjLqWKScihzSZisK8VzxKiqyRCcbueug__Z69iJxkaVNpCt9n0UmKMJ55Cnow3B13foyvehTdsJAhnGDHNGE3XyRvVVo2uxDraR4VHsTpmAfAuo4GMM2ghlu9cjdEFaJxAUm8TEJjGxTyxp43fabvI_Bb4VflmnH_9Di7t5Wf51_wATQalL
CitedBy_id crossref_primary_10_3390_nano14231945
crossref_primary_10_25259_Cytojournal_193_2024
crossref_primary_10_3390_molecules29061335
crossref_primary_10_1021_acsnano_4c16813
Cites_doi 10.1016/j.bbadis.2020.165753
10.1002/hep.23337
10.3389/fimmu.2020.00322
10.1038/s41577-019-0229-1
10.1016/j.redox.2022.102367
10.1016/j.ajpath.2016.06.003
10.1038/s41586-020-2977-2
10.1038/s41586-019-1827-6
10.1016/j.colsurfb.2018.12.063
10.1016/j.cmet.2020.05.003
10.1007/978-3-030-85109-5_6
10.1016/j.addr.2021.114079
10.1016/j.msec.2018.04.096
10.1172/JCI59643
10.1038/s41563-022-01292-4
10.1016/j.jhep.2016.04.018
10.1016/j.jhep.2017.02.026
10.1080/07853890.2022.2095664
10.1016/j.ajpath.2014.02.014
10.1002/smll.201102743
10.1021/am505308f
10.1038/35013070
10.1038/s41467-018-06318-7
10.1002/hep.24524
10.1002/adma.202106456
10.1016/j.biomaterials.2022.121457
10.1128/MCB.24.4.1464-1469.2004
10.3390/nano12010126
10.1021/acsnano.2c06609
10.3390/jcm10061248
10.1038/s41591-021-01344-3
10.1111/imcb.1035
10.1146/annurev-physiol-021909-135846
10.1038/nri1391
10.1016/j.prp.2023.154673
10.1002/smll.202301749
10.1016/j.colsurfb.2019.110709
10.1016/j.bbamcr.2011.01.034
10.1038/srep34691
10.1021/nn201560b
10.1038/s41392-021-00687-0
10.1038/emboj.2010.268
10.4049/jimmunol.1000702
10.1021/nn1024303
10.1038/ni.3153
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202306483
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38229561
10_1002_smll_202306483
SMLL202306483
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 82241087; 82373618
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  funderid: KYCX22_0302
– fundername: National Natural Science Foundation of China
  grantid: 82373618
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  grantid: KYCX22_0302
– fundername: National Natural Science Foundation of China
  grantid: 82241087
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3733-2f97f6e5c83f186fad885da9ecab1bb1271e083746c7a690a4a37adbc94176cd3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 17:03:52 EDT 2025
Fri Jul 25 12:14:07 EDT 2025
Sat Mar 29 01:29:22 EDT 2025
Tue Jul 01 02:54:55 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Wed Jan 22 17:18:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords macrophage polarization
KCs
liver inflammation
cell crosstalk
polyethylene glycol‐modified graphene oxide (GO‐PEG)
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-2f97f6e5c83f186fad885da9ecab1bb1271e083746c7a690a4a37adbc94176cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5748-9754
PMID 38229561
PQID 3072272976
PQPubID 1046358
PageCount 20
ParticipantIDs proquest_miscellaneous_2915990948
proquest_journals_3072272976
pubmed_primary_38229561
crossref_citationtrail_10_1002_smll_202306483
crossref_primary_10_1002_smll_202306483
wiley_primary_10_1002_smll_202306483_SMLL202306483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 1352
2021; 27
2021; 6
2012; 122
2015; 16
2023; 17
2020; 186
2017; 66
2021; 589
2023; 19
2004; 24
2004; 4
2023; 248
2019; 19
2011; 54
2022; 21
2020; 11
2020; 32
2011; 5
2016; 186
2018; 9
2016; 6
2021; 10
2022; 283
2021; 12
2022; 180
2010; 29
2000; 405
2016; 65
2022; 34
2020; 1866
2018; 90
2019; 576
2011; 1813
2018; 96
2014; 184
2022; 54
2014; 6
2010; 51
2010; 72
2012; 8
2019; 176
2011; 186
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 11
  start-page: 322
  year: 2020
  publication-title: Front. Immunol.
– volume: 248
  year: 2023
  publication-title: Pathol. Res. Pract.
– volume: 54
  start-page: 1918
  year: 2022
  publication-title: Ann. Med.
– volume: 32
  start-page: 128
  year: 2020
  publication-title: Cell Metab.
– volume: 10
  start-page: 1248
  year: 2021
  publication-title: J. Clin. Med.
– volume: 66
  start-page: 1300
  year: 2017
  publication-title: J. Hepatol.
– volume: 186
  year: 2020
  publication-title: Colloids Surf. B Biointerfaces
– volume: 405
  start-page: 458
  year: 2000
  publication-title: Nature
– volume: 180
  year: 2022
  publication-title: Adv. Drug Deliv. Rev.
– volume: 65
  start-page: 608
  year: 2016
  publication-title: J. Hepatol.
– volume: 17
  start-page: 1965
  year: 2023
  publication-title: ACS Nano
– volume: 176
  start-page: 96
  year: 2019
  publication-title: Colloids Surf. B Biointerfaces
– volume: 1866
  year: 2020
  publication-title: Biochim. Biophys. Acta Mol. Basis. Dis.
– volume: 90
  start-page: 514
  year: 2018
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 186
  start-page: 4794
  year: 2011
  publication-title: J. Immunol.
– volume: 6
  start-page: 291
  year: 2021
  publication-title: Signal Transduct. Target Ther.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 5
  start-page: 516
  year: 2011
  publication-title: ACS Nano
– volume: 576
  start-page: 437
  year: 2019
  publication-title: Nature
– volume: 184
  start-page: 1763
  year: 2014
  publication-title: Am. J. Pathol.
– volume: 16
  start-page: 448
  year: 2015
  publication-title: Nat. Immunol.
– volume: 1813
  start-page: 878
  year: 2011
  publication-title: Biochim. Biophys. Acta
– volume: 9
  start-page: 4383
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  start-page: 126
  year: 2021
  publication-title: Nanomaterials
– volume: 122
  start-page: 787
  year: 2012
  publication-title: J. Clin. Invest.
– volume: 283
  year: 2022
  publication-title: Biomaterials
– volume: 54
  start-page: 1217
  year: 2011
  publication-title: Hepatology
– volume: 1352
  start-page: 87
  year: 2021
  publication-title: Adv. Exp. Med. Biol.
– volume: 27
  start-page: 1043
  year: 2021
  publication-title: Nat. Med.
– volume: 19
  start-page: 660
  year: 2019
  publication-title: Nat. Rev. Immunol.
– volume: 589
  start-page: 131
  year: 2021
  publication-title: Nature
– volume: 4
  start-page: 499
  year: 2004
  publication-title: Nat. Rev. Immunol.
– volume: 54
  year: 2022
  publication-title: Redox Biol.
– volume: 72
  start-page: 219
  year: 2010
  publication-title: Ann. Rev. Physiol.
– volume: 21
  start-page: 1121
  year: 2022
  publication-title: Nat. Mater.
– volume: 29
  start-page: 4223
  year: 2010
  publication-title: EMBO J.
– volume: 24
  start-page: 1464
  year: 2004
  publication-title: Mol. Cell. Biol.
– volume: 96
  start-page: 257
  year: 2018
  publication-title: Immunol. Cell Biol.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 5
  start-page: 7000
  year: 2011
  publication-title: ACS Nano
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 2577
  year: 2012
  publication-title: Small
– volume: 51
  start-page: 511
  year: 2010
  publication-title: Hepatology
– volume: 186
  start-page: 2238
  year: 2016
  publication-title: Am. J. Pathol.
– ident: e_1_2_9_18_1
  doi: 10.1016/j.bbadis.2020.165753
– ident: e_1_2_9_43_1
  doi: 10.1002/hep.23337
– ident: e_1_2_9_14_1
  doi: 10.3389/fimmu.2020.00322
– ident: e_1_2_9_37_1
  doi: 10.1038/s41577-019-0229-1
– ident: e_1_2_9_45_1
  doi: 10.1016/j.redox.2022.102367
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ajpath.2016.06.003
– ident: e_1_2_9_21_1
  doi: 10.1038/s41586-020-2977-2
– ident: e_1_2_9_2_1
  doi: 10.1038/s41586-019-1827-6
– ident: e_1_2_9_30_1
  doi: 10.1016/j.colsurfb.2018.12.063
– ident: e_1_2_9_35_1
  doi: 10.1016/j.cmet.2020.05.003
– ident: e_1_2_9_32_1
  doi: 10.1007/978-3-030-85109-5_6
– ident: e_1_2_9_5_1
  doi: 10.1016/j.addr.2021.114079
– ident: e_1_2_9_39_1
  doi: 10.1016/j.msec.2018.04.096
– ident: e_1_2_9_11_1
  doi: 10.1172/JCI59643
– ident: e_1_2_9_1_1
  doi: 10.1038/s41563-022-01292-4
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jhep.2016.04.018
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jhep.2017.02.026
– ident: e_1_2_9_33_1
  doi: 10.1080/07853890.2022.2095664
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ajpath.2014.02.014
– ident: e_1_2_9_38_1
  doi: 10.1002/smll.201102743
– ident: e_1_2_9_19_1
  doi: 10.1021/am505308f
– ident: e_1_2_9_23_1
  doi: 10.1038/35013070
– ident: e_1_2_9_8_1
  doi: 10.1038/s41467-018-06318-7
– ident: e_1_2_9_16_1
  doi: 10.1002/hep.24524
– ident: e_1_2_9_22_1
  doi: 10.1002/adma.202106456
– ident: e_1_2_9_44_1
  doi: 10.1016/j.biomaterials.2022.121457
– ident: e_1_2_9_34_1
  doi: 10.1128/MCB.24.4.1464-1469.2004
– ident: e_1_2_9_29_1
  doi: 10.3390/nano12010126
– ident: e_1_2_9_3_1
  doi: 10.1021/acsnano.2c06609
– ident: e_1_2_9_42_1
  doi: 10.3390/jcm10061248
– ident: e_1_2_9_9_1
  doi: 10.1038/s41591-021-01344-3
– ident: e_1_2_9_28_1
  doi: 10.1111/imcb.1035
– ident: e_1_2_9_12_1
  doi: 10.1146/annurev-physiol-021909-135846
– ident: e_1_2_9_31_1
  doi: 10.1038/nri1391
– ident: e_1_2_9_36_1
  doi: 10.1016/j.prp.2023.154673
– ident: e_1_2_9_4_1
  doi: 10.1002/smll.202301749
– ident: e_1_2_9_7_1
  doi: 10.1016/j.colsurfb.2019.110709
– ident: e_1_2_9_27_1
  doi: 10.1016/j.bbamcr.2011.01.034
– ident: e_1_2_9_46_1
  doi: 10.1038/srep34691
– ident: e_1_2_9_20_1
  doi: 10.1021/nn201560b
– ident: e_1_2_9_24_1
  doi: 10.1038/s41392-021-00687-0
– ident: e_1_2_9_25_1
  doi: 10.1038/emboj.2010.268
– ident: e_1_2_9_40_1
  doi: 10.4049/jimmunol.1000702
– ident: e_1_2_9_10_1
  doi: 10.1021/nn1024303
– ident: e_1_2_9_6_1
  doi: 10.1021/nn1024303
– ident: e_1_2_9_26_1
  doi: 10.1038/ni.3153
SSID ssj0031247
Score 2.4897044
Snippet As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2306483
SubjectTerms Animals
Apoptosis - drug effects
Biological effects
cell crosstalk
Cell Line
Cell Polarity - drug effects
Disease Progression
Graphene
Graphite - chemistry
Graphite - pharmacology
Immune system
Inflammation
Inflammation - metabolism
Inflammation - pathology
KCs
Kupffer Cells - drug effects
Kupffer Cells - metabolism
Lipopolysaccharides - pharmacology
Liver
Liver - drug effects
Liver - metabolism
Liver - pathology
liver inflammation
macrophage polarization
Male
Mice
Mice, Inbred C57BL
Nanomaterials
Oxidative Stress - drug effects
Polarization
Polyethylene glycol
Polyethylene Glycols - chemistry
Polyethylene Glycols - pharmacology
polyethylene glycol‐modified graphene oxide (GO‐PEG)
Receptors
Title GO‐PEG Represses the Progression of Liver Inflammation via Regulating the M1/M2 Polarization of Kupffer Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202306483
https://www.ncbi.nlm.nih.gov/pubmed/38229561
https://www.proquest.com/docview/3072272976
https://www.proquest.com/docview/2915990948
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VnOihLbS0KQ-5UqWewm6ch-MjQrx32xUUiVtkO7aEus0issuBU39CfyO_hJk4G1gqVKm9JYoncWxP5pt45huAz5ojilepDokKBB0UyUNpRBKi9dNCZH1eJpTvPPyaHZ4nxxfpxaMsfs8P0f1wI81ovtek4ErXvQfS0PrnmLYOGgidE90nBWwRKjrt-KNiNF5NdRW0WSERb81ZG_u8tyi-aJX-gJqLyLUxPfuvQc077SNOfmzPpnrb3D7hc_yft3oDr1pcynb8QlqBF7ZahZeP2ArfwuTg292v36O9A3bqw2dtzRA-shGFeHl6DzZxbECRHuyocrjWfF4ku7lUKNMUvcc7NULDqDfkbESOdZsJSrInsyuq18J27Xhcv4Pz_b3vu4dhW68hNLGgknBOCpfZ1OSxi_LMqTLP01JJa5SOtI64iCwiPpFkRij0ylWiYqFKbWQSicyU8RosVZPKfgCGsCKSWuYpT22iIqf6seUWsbVxvJ9qF0A4n6_CtGTmVFNjXHgaZl7QQBbdQAbwpWt_5Wk8nm25MZ_-olXnusAPIefohogsgE_dZVRE2l1RlZ3M6oJLRIYSveU8gPd-2XSPiolWH5FqALyZ_L_0oTgbDgbd2cd_EVqHZTxOfFDbBixNr2d2E-HTVG81KnIPvU0RMw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_guBAkZC4pTuxvlxckRV2y1Nyqq0ErfIdmwJsWQrssuBE4_AM_IkzNhJYEEICY5JPIljezzf2ONvAJ4rjihepiokKhB0UAoeFlokIVo_JUQ25U1C552rk2x2nrx6mw7RhHQWxvNDjAtupBluviYFpwXpyQ_W0O7DgvYOHIbO48twhdJ6O6_qdGSQitF8ufwqaLVCot4aeBunfLIpv2mXfgObm9jVGZ-Dm6CGavuYk_e765Xa1Z9_YXT8r_-6BTd6aMpe-rF0Gy6Z9g5c_4mw8C4sD19_-_J1vn_ITn0ErekYIkg2pygvz_DBlpaVFOzBjlqLw80fjWSf3kmUcXnv8U1OqIomFWdz8q37w6Ake7y-oJQtbM8sFt09OD_YP9ubhX3KhlDHgrLC2ULYzKQ6j22UZ1Y2eZ42sjBaqkipiIvIIOgTSaaFRMdcJjIWslG6SCKR6Sbehq122ZoHwBBZRIUq8pSnJpGRldPYcIPwWls-TZUNIBw6rNY9nzml1VjUnomZ19SQ9diQAbwYy194Jo8_ltwZ-r_uNbqrcS7kHD0RkQXwbHyMukgbLLI1y3VX8wLBYYEOcx7AfT9uxk_FxKyPYDUA7nr_L3Wo31RlOV49_Behp3B1dlaVdXl0cvwIruH9xMe47cDW6uPaPEY0tVJPnL58B8mhFU4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAc-KcEChgJiVO6iePE8RG13bZ0t6wKlXqzbMeWUJfsiuxy4MQj8Ix9ko7jbOiCEBIck3gSx_ZkvolnvgF4rSmieJXr2FOBoIMiaCwMZzFaP815kdCK-Xzn8XFxcMreneVnV7L4Az9E_8PNa0b7vfYKPq_c4CdpaPN56rcOWghdZtfhBiuS0q_r3ZOeQCpD69WWV0GjFXvmrRVtY0IH6_LrZuk3rLkOXVvbM7wLatXrEHJyvr1c6G3z7RdCx_95rXtwpwOm5G1YSffhmq0fwO0rdIUPYbb__uL7j8nePjkJ8bO2IYgfycTHeAV-DzJzZORDPchh7XCxhcRI8vWTQpm26j3eqRUap4MxJRPvWXepoF72aDn3BVvIjp1Om0dwOtz7uHMQdwUbYpNxXxPOCe4Km5syc2lZOFWVZV4pYY3SqdYp5alFyMdZYbhCt1wxlXFVaSNYygtTZY9ho57V9gkQxBWp0KLMaW6ZSp1KMkstgmvjaJJrF0G8mi9pOjZzX1RjKgMPM5V-IGU_kBG86dvPA4_HH1turaZfdvrcSPwSUop-CC8ieNVfRk302yuqtrNlI6lAaCjQXS4j2AzLpn9U5nn1EapGQNvJ_0sf5IfxaNQfPf0XoZdwc7I7lKPD46NncAtPsxDgtgUbiy9L-xyh1EK_aLXlEpCKFAY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GO-PEG+Represses+the+Progression+of+Liver+Inflammation+via+Regulating+the+M1%2FM2+Polarization+of+Kupffer+Cells&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ding%2C+Xiaomeng&rft.au=Pang%2C+Yanting&rft.au=Liu%2C+Qing&rft.au=Zhang%2C+Haopeng&rft.date=2024-06-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=26&rft.spage=e2306483&rft_id=info:doi/10.1002%2Fsmll.202306483&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon