Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials

Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 3; pp. e2309033 - n/a
Main Authors Tan, Lili, Fu, Wenlong, Gao, Qi, Wang, Peng‐peng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light–matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state‐of‐the‐art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field. Emerging chiral plasmonic hybrid nanostructures that integrate chirality, plamonics, and rich functionalities into single entities are introduced in this review. A comprehensive overview of recent advancements is provided, including the origins of chirality, rationale design and construction techniques, and versatile applications. Additionally, current challenges and future prospects in this field are discussed in detail.
AbstractList Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light–matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state‐of‐the‐art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light–matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state‐of‐the‐art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field. Emerging chiral plasmonic hybrid nanostructures that integrate chirality, plamonics, and rich functionalities into single entities are introduced in this review. A comprehensive overview of recent advancements is provided, including the origins of chirality, rationale design and construction techniques, and versatile applications. Additionally, current challenges and future prospects in this field are discussed in detail.
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Author Gao, Qi
Fu, Wenlong
Wang, Peng‐peng
Tan, Lili
Author_xml – sequence: 1
  givenname: Lili
  surname: Tan
  fullname: Tan, Lili
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Wenlong
  surname: Fu
  fullname: Fu, Wenlong
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Qi
  surname: Gao
  fullname: Gao, Qi
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Peng‐peng
  orcidid: 0000-0003-4054-8903
  surname: Wang
  fullname: Wang, Peng‐peng
  email: ppwang@xjtu.edu.cn
  organization: Xi'an Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37944554$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaDZprz0WQy-9eDsaSbbUm9m2SSFf0NyFLMtUwba2kpyw_75eNmkhUHqawzzPyzDvKTmawuQIeUdhTQHwk-lGs0ZABgoYe0VWVCAtOShxRFagmChVxeUJOU3pHgBUBdVrcsJqxbkQfEV-bH76aIbidjBpDJO3xcWujb4rrs0UUo6zzXN06XPRFOcmu0ezK3Iomu7BTNZ1xd4O2-ztEnG17KM3Q3pDjvtluLdP84zcfft6t7koL2_Ov2-ay9KymrESuYGuds5SZilwaHtJkaJq21airI3tVWVaARb7vrfMSieR8xorxJo7ZGfk4yF2G8Ov2aWsR5-sGwYzuTAnjVIq5ELWfEE_vEDvwxyn5TiNigophKrUQr1_ouZ2dJ3eRj-auNPP31oAfgBsDClF12vrs8k-TDkaP2gKel-K3pei_5SyaOsX2nPyPwV1EB794Hb_oXXz5ar56_4GiWGdlw
CitedBy_id crossref_primary_10_1002_ange_202416221
crossref_primary_10_1002_advs_202402840
crossref_primary_10_1021_acs_jpclett_4c00558
crossref_primary_10_1021_acs_jpclett_4c01715
crossref_primary_10_1039_D4NR04338C
crossref_primary_10_1038_s41467_025_57624_w
crossref_primary_10_1021_acs_nanolett_4c04295
crossref_primary_10_1002_adom_202402704
crossref_primary_10_1021_acsnano_4c17484
crossref_primary_10_1016_j_optcom_2024_130984
crossref_primary_10_1002_cctc_202400177
crossref_primary_10_1038_s41467_024_53705_4
crossref_primary_10_1002_smll_202408147
crossref_primary_10_1039_D3CS00316G
crossref_primary_10_1360_SSC_2024_0069
crossref_primary_10_1364_JOSAB_534039
crossref_primary_10_1007_s11426_024_2355_0
crossref_primary_10_1016_j_jenvman_2024_123561
crossref_primary_10_1088_1361_6463_ad6f20
crossref_primary_10_1002_anie_202416221
Cites_doi 10.1021/acs.nanolett.1c03503
10.1021/nn5037703
10.1021/acs.nanolett.6b02154
10.1038/nmat4525
10.1073/pnas.1821923116
10.1002/adom.202100907
10.1039/C7MH00966F
10.1039/C5CS00050E
10.1002/adma.202209539
10.1163/156939397X00549
10.1002/andp.201600103
10.1038/s41467-022-35016-8
10.1021/acsnano.3c04337
10.1038/nmat4125
10.1002/adma.202005506
10.1038/s41467-022-33443-1
10.1021/jacs.2c01214
10.1021/acs.jpcc.5b06904
10.1021/jacs.3c00503
10.1021/acsnano.6b08723
10.1002/adma.202209810
10.1016/S0168-1273(04)34003-1
10.1039/D3NH00008G
10.1021/acsnano.0c08274
10.1002/smll.202104301
10.1039/C7CS00894E
10.1021/acsnano.1c08824
10.1021/ac300437v
10.1002/adma.202107917
10.3390/magnetochemistry8090094
10.1021/jacs.9b00700
10.1021/acs.nanolett.2c02661
10.1021/acsami.1c23505
10.1021/ja207848e
10.1016/j.jphotochemrev.2017.05.004
10.1021/acsnano.5b04552
10.1021/acsnano.2c10955
10.1021/jacs.7b02523
10.1126/sciadv.1602735
10.1126/science.abd8576
10.1038/nchem.2280
10.1021/acs.chemrev.1c00370
10.1021/acsnano.6b06233
10.1016/j.apsusc.2020.146711
10.1007/s12274‐023‐5985‐3
10.1038/nnano.2010.209
10.1002/adfm.202215051
10.1021/ph5002632
10.1002/ppsc.201900338
10.1039/b800404h
10.1002/admi.202200369
10.1021/jacs.1c10526
10.1002/adom.202202104
10.1002/adma.201600697
10.1002/adma.201205178
10.1126/science.abf9645
10.1002/adma.201905758
10.1002/adom.201700182
10.1039/b711486a
10.1007/s12274-015-0926-4
10.1021/ja312327m
10.1021/acsnano.1c05489
10.1021/nn102969p
10.1016/j.bios.2018.04.007
10.1021/nl401107g
10.1002/advs.202104598
10.1039/c0nr00903b
10.1002/adma.201601261
10.1002/anie.201607563
10.1002/anie.201810693
10.1021/acs.chemrev.9b00443
10.1021/nl100010v
10.1002/smll.201906048
10.1002/adom.202001274
10.1039/C4TC00040D
10.1021/nn402370x
10.1021/cr00071a001
10.1364/OL.32.000856
10.1039/D1MA00915J
10.1002/smll.201601505
10.1111/j.1747-0285.2009.00847.x
10.1016/j.electacta.2017.04.155
10.1002/adma.201606864
10.1021/acs.chemrev.2c00078
10.1016/j.bios.2021.113109
10.1021/cr970096o
10.1021/acs.analchem.7b01723
10.31635/ccschem.022.202101596
10.1039/D3QM00200D
10.1021/acsaom.3c00147
10.1063/5.0050797
10.1021/acsanm.2c00657
10.1002/anie.201814282
10.1021/nl502237f
10.1038/nature02530
10.1021/acs.nanolett.8b03850
10.1039/C2CS35332F
10.1002/adfm.201403161
10.1002/smll.202107657
10.1038/s41586-018-0034-1
10.1103/PhysRevLett.114.203003
10.1016/j.aca.2022.340740
10.1021/ph500305z
10.1002/smll.201701112
10.1002/smll.202001473
10.1021/acsami.8b10594
10.1038/s41467-022-35699-z
10.1007/s11426‐023‐1685‐3
10.1039/C9CS00765B
10.1021/acs.nanolett.2c01953
10.1038/nmat3685
10.3390/nano8121027
10.1021/ja00278a029
10.1021/acsnano.0c03127
10.1038/s41467-023-36703-w
10.1038/s41467-019-12134-4
10.1021/acsami.6b13280
10.1021/acs.chemrev.9b00234
10.1039/C4NR00403E
10.1021/acs.nanolett.7b04139
10.1021/ja3066336
10.1007/s00604-020-04646-4
10.1039/c3nr05889a
10.1002/adfm.201200588
10.1016/j.nantod.2011.06.003
10.1021/acsnano.0c02026
10.1002/adom.201700040
10.1039/D1SC03327A
10.1073/pnas.80.12.3568
10.1021/cr300068p
10.1002/adom.201200011
10.1021/acsnano.1c04992
10.1002/anie.202210730
10.1021/acsnano.3c02798
10.1021/acsami.1c19404
10.1039/C9NR07421J
10.1021/acs.analchem.1c04981
10.1103/PhysRevLett.90.107404
10.1021/acs.chemrev.6b00755
10.1021/acsnano.2c08145
10.1002/adma.202005760
10.1021/acsami.2c13267
10.1002/(SICI)1521-3773(19991203)38:23<3418::AID-ANIE3418>3.0.CO;2-V
10.1021/jacs.9b11124
10.1103/PhysRevLett.91.247404
10.1021/acsnano.1c05819
10.1021/acsphotonics.9b01180
10.1126/science.aax5415
10.1038/ncomms13117
10.1002/anie.202206520
10.1021/acsami.1c14047
10.1021/acsnano.1c04693
10.1002/adfm.202000670
10.1039/c1jm12345a
10.1038/nature02020
10.1021/acs.nanolett.9b03853
10.1021/acsphotonics.0c00304
10.1364/OE.24.002242
10.1039/C5CC08505E
10.1021/acs.nanolett.3c00655
10.1002/adma.202107325
10.1002/adma.201804241
10.1002/smll.202003005
10.1021/jacs.0c03899
10.1021/acs.nanolett.6b01404
10.1002/adma.201900110
10.1021/acs.chemmater.3c01267
10.1021/acs.accounts.2c00756
10.1021/acs.chemrev.1c00860
10.1002/9783527625345.ch1
10.1002/adfm.201802372
10.1038/s41557-020-0453-0
10.1002/adma.202102337
10.1039/C6CC00320F
10.1038/s41467-021-23087-y
10.1021/nl402782d
10.1088/1367-2630/ac71be
10.1038/nature09150
10.1002/smll.201905734
10.1016/j.apcatb.2019.01.038
10.1021/acs.nanolett.0c01659
10.1007/s12274-022-4212-y
10.1364/OE.421839
10.1103/PhysRevLett.95.227401
10.1002/smll.201401641
10.1039/D0CS00558D
10.1021/acs.jpcc.0c08057
10.1021/acs.jpclett.9b02929
10.1038/s41377-019-0241-z
10.1002/chem.200400869
10.1002/chem.201501178
10.1002/lpor.201800276
10.1021/acsaom.2c00130
10.1021/nl080664n
10.1021/acsanm.9b01198
10.1126/science.aba0980
10.1038/s41586-021-04243-2
10.1002/ppsc.202000008
10.1364/OPN.27.7.000034
10.1002/smll.201702990
10.1002/adma.202305429
10.1038/nature10889
10.1039/D3NR01371E
10.1038/s41467-020-15388-5
10.1021/acs.nanolett.1c01322
10.1002/anie.201305389
10.1039/D0PY01558J
10.1002/adma.201501816
10.1021/nl3013715
10.1039/c3cs60139k
10.1021/acs.nanolett.9b03117
10.1021/jp304907s
10.1021/acs.nanolett.0c02013
10.1021/acs.nanolett.8b00929
10.1002/adfm.202010329
10.1021/acsnano.2c10077
10.1038/s41467-020-15728-5
10.1007/s40242-023-3064-7
10.1021/acs.chemrev.7b00364
10.1021/acsnano.9b04046
10.1021/jp1121432
10.1039/b515476f
10.1002/smll.201701883
10.1021/acsnano.9b08823
10.1038/s41467-023-39456-8
10.1039/D0CC07576K
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202309033
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 37944554
10_1002_adma_202309033
ADMA202309033
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22001201; 22075224
– fundername: National Natural Science Foundation of China
  grantid: 22001201
– fundername: National Natural Science Foundation of China
  grantid: 22075224
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
AEUQT
AFPWT
NPM
RWI
RWM
WRC
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3733-24a0d7eec13c1040bf812129bbb8287acf96ab50c2fffc3c8e82447262274e23
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 23:35:11 EDT 2025
Fri Jul 25 08:18:40 EDT 2025
Wed Feb 19 02:04:39 EST 2025
Tue Jul 01 02:33:45 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Sun Jul 06 04:45:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords chiral applications
chiral sensing
chirality
plasmonic hybrid nanostructures
optical activity
synthetic methods
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-24a0d7eec13c1040bf812129bbb8287acf96ab50c2fffc3c8e82447262274e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4054-8903
PMID 37944554
PQID 2915855969
PQPubID 2045203
PageCount 32
ParticipantIDs proquest_miscellaneous_2889245874
proquest_journals_2915855969
pubmed_primary_37944554
crossref_citationtrail_10_1002_adma_202309033
crossref_primary_10_1002_adma_202309033
wiley_primary_10_1002_adma_202309033_ADMA202309033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022 2021; 16 16
2022 2018; 22 111
2011; 115
2012; 483
2020; 20
2019; 11
2019; 10
2010; 466
2020 2023; 16 14
1999 2013 1998 2003 1983; 38 42 17 425 80
2020; 16
2020; 15
2019; 19
2016 2022; 15 35
2020; 11
2012; 12
2020 2021; 11 372
1986 1998 2009; 108 98 1
2018; 8
2016 2021; 52 180
2020 2022; 20 4
2013; 52
2022 2022 2014; 14 34 6
2022; 35
2014; 14
2012 2019; 170 19
2022 2017 2016; 122 5 27
2022 2023; 9 8
2021 2009 2017; 50 38 5
2016 2021; 16 94
2018; 28
2016 2020; 12 12
2017 2021; 32 21
2019; 6
2020 2021 2023; 32 9 14
2020; 142
2019; 32
2020 2021; 14 13
2019; 37
2016 2014; 528 6
2020 2020; 30 14
2016; 10
2020; 37
2017 2020 2012; 11 14 22
2015 2016 2018; 138 28 30
2016; 16
2021 2023; 21 35
2016; 15
2011; 133
2022 2018 2015; 61 47 9
2017; 139
2004; 429
2018; 18
2016; 7
2021 2022; 12 24
2012; 112
2013 2017 2011; 42 117 3
2022; 5
2017 2020; 89 526
2018; 118
2022; 9
2005; 95
2022; 13
2021; 371
2022; 15
2020 2022; 125 14
2015; 119
2015 2022 2018 2015; 7 18 57 9
2013 2022; 13 22
2018; 10
2012; 116
2017 2022 2021; 13 35
2016; 8
2022; 16
2018; 14
2022; 18
2023 2017; 1239 56
2023; 34
2023; 39
2020; 120
2019 2019; 19 13
2023; 145
2021 2010 2015 2007 2003 2003; 118 5 27 32 90 91
2019; 58
2020; 368
2019; 245
2023; 1
2011 2023; 5 35
2019; 365
2023 1986 2021 2009; 14 86 50 74
2014; 1
2020; 7
2021; 33
2014; 2
2023; 23
2013; 13
2016 2004; 24 10
2013; 12
2022 2019; 16 116
2015; 44
2020; 9
2011; 21
2019; 119
2017; 241
2022 2008; 13 8
2023 2019 2020 2023; 14 10 142 33
2018 2016; 5 28
2012 2013; 11 7
2013 2017 2022 2010; 25 3 3 10
2023; 11
2023; 17
2023; 15
2020; 187
2016; 52
2022; 144
2021; 13
2021; 15
2019 2019; 13 2
2021; 12
2023
2018; 556
2022
2023 2015; 7 114
2013 2022; 1 8
2018 2021; 57 57
2022; 61
2016 2011; 3 6
2015 2019 2019 2022; 14 29 141 601
2017; 13
2015; 21
2012 2015; 134 25
2013; 135
2007 2023 2021 2004; 36 56 33 34
2017; 18
2022 2021; 122 123
2008 2014; 37 8
2015 2021; 137 29
2017 2014 2014; 29 1 10
2012; 84
e_1_2_8_49_1
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_132_1
e_1_2_8_1_2
e_1_2_8_1_5
e_1_2_8_1_4
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_64_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_120_2
e_1_2_8_99_1
Mason S. (e_1_2_8_1_3) 1998; 17
e_1_2_8_30_3
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_30_2
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_48_1
Zhao W. (e_1_2_8_40_2) 2019; 29
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_40_4
e_1_2_8_40_3
Li S. (e_1_2_8_70_1) 2015; 138
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_133_2
e_1_2_8_40_1
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_37_1
e_1_2_8_90_2
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_106_2
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_144_2
e_1_2_8_28_1
e_1_2_8_119_2
e_1_2_8_66_3
e_1_2_8_89_3
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_89_1
e_1_2_8_66_2
e_1_2_8_119_1
e_1_2_8_111_2
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_78_2
e_1_2_8_122_1
Govan J. (e_1_2_8_12_1) 2016
Biswas A. (e_1_2_8_88_1) 2012; 170
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_55_2
e_1_2_8_107_1
e_1_2_8_70_3
e_1_2_8_145_1
e_1_2_8_70_2
e_1_2_8_93_1
e_1_2_8_27_2
e_1_2_8_27_1
e_1_2_8_8_4
e_1_2_8_8_3
e_1_2_8_80_2
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_88_2
e_1_2_8_42_1
e_1_2_8_65_1
e_1_2_8_112_1
e_1_2_8_135_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_31_2
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_123_2
e_1_2_8_123_1
e_1_2_8_146_1
e_1_2_8_22_3
e_1_2_8_22_4
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_22_2
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_83_2
e_1_2_8_136_2
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_11_3
e_1_2_8_34_2
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_57_2
e_1_2_8_95_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_11_2
Dai Y. (e_1_2_8_66_1) 2022; 61
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_147_2
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_21_4
e_1_2_8_152_2
e_1_2_8_152_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_137_2
e_1_2_8_21_3
e_1_2_8_44_1
Tullius R. (e_1_2_8_120_1) 2015; 137
e_1_2_8_137_1
e_1_2_8_114_2
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_18_3
e_1_2_8_79_3
e_1_2_8_56_2
e_1_2_8_79_2
e_1_2_8_79_1
e_1_2_8_18_4
e_1_2_8_94_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_71_3
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_2
e_1_2_8_71_1
e_1_2_8_125_1
Cen M. (e_1_2_8_89_2) 2022; 34
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_24_2
Nguyen H. Q. (e_1_2_8_87_1) 2022; 16
e_1_2_8_3_1
e_1_2_8_3_3
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_3_2
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_36_2
Duan Y. (e_1_2_8_26_1) 2022
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_149_2
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_154_2
e_1_2_8_154_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_4_4
e_1_2_8_4_3
e_1_2_8_4_6
e_1_2_8_4_5
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_2
e_1_2_8_84_1
e_1_2_8_154_4
e_1_2_8_61_1
e_1_2_8_154_3
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_35_1
e_1_2_8_35_3
e_1_2_8_58_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_104_2
e_1_2_8_127_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 115
  start-page: 7914
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 36 56 33 34
  start-page: 914 1359 289
  year: 2007 2023 2021 2004
  end-page: 357
  publication-title: Chem. Soc. Rev. Acc. Chem. Res. Adv. Mater.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2022
  publication-title: Small
– volume: 11 7
  start-page: 1459 6321
  year: 2012 2013
  publication-title: J. Electromagn. Waves Appl. ACS Nano
– volume: 95
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 32 21
  start-page: 40 4780
  year: 2017 2021
  publication-title: J Photoch. Photobio. C Nano Lett.
– volume: 112
  start-page: 5818
  year: 2012
  publication-title: Chem. Rev.
– volume: 58
  start-page: 3913
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– year: 2023
  publication-title: Nano Res.
– volume: 37
  year: 2019
  publication-title: Part. Part. Syst. Charact.
– volume: 15
  start-page: 6574
  year: 2022
  publication-title: Nano Res.
– volume: 9 8
  start-page: 499
  year: 2022 2023
  publication-title: Adv. Mater. Interfaces Nanoscale Horiz.
– volume: 119
  year: 2019
  publication-title: Chem. Rev.
– volume: 7
  start-page: 2682
  year: 2020
  publication-title: ACS Photonics
– volume: 14 86 50 74
  start-page: 81 1 8400 101
  year: 2023 1986 2021 2009
  publication-title: Nat. Commun. Chem. Rev. Chem. Soc. Rev. Chem. Biol. Drug Des.
– year: 2022
  publication-title: Adv. Mater.
– volume: 16 14
  start-page: 3783
  year: 2020 2023
  publication-title: Small Nat. Commun.
– volume: 3 6
  start-page: 381
  year: 2016 2011
  publication-title: Nano Today
– volume: 12
  start-page: 3283
  year: 2012
  publication-title: Nano Lett.
– volume: 21
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 15
  start-page: 461
  year: 2016
  publication-title: Nat. Mater.
– volume: 9
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 6
  start-page: 3241
  year: 2019
  publication-title: ACS Photonics
– volume: 138 28 30
  start-page: 306 5907
  year: 2015 2016 2018
  publication-title: J. Phys. Chem. C Adv. Mater. Adv. Mater.
– volume: 42 117 3
  start-page: 7028 8041 1374
  year: 2013 2017 2011
  publication-title: Chem. Soc. Rev. Chem. Rev. Nanoscale
– volume: 17
  start-page: 1427
  year: 2023
  publication-title: ACS Nano
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 7 114
  start-page: 3259
  year: 2023 2015
  publication-title: Mater. Chem. Front. Phys. Rev. Lett.
– volume: 135
  start-page: 9659
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 5718
  year: 2022
  publication-title: Nat. Commun.
– volume: 187
  start-page: 676
  year: 2020
  publication-title: Mikrochim Acta
– volume: 556
  start-page: 360
  year: 2018
  publication-title: Nature
– volume: 50 38 5
  start-page: 3738 757
  year: 2021 2009 2017
  publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Adv. Opt. Mater.
– volume: 122 123
  start-page: 5411 3904
  year: 2022 2021
  publication-title: Chem. Rev. Chem. Rev.
– volume: 365
  start-page: 1475
  year: 2019
  publication-title: Science
– volume: 17
  start-page: 9850
  year: 2023
  publication-title: ACS Nano
– volume: 12 24
  start-page: 2974
  year: 2021 2022
  publication-title: Nat. Commun. New J. Phys.
– volume: 29 1 10
  start-page: 1189 4293
  year: 2017 2014 2014
  publication-title: Adv. Mater. ACS Photonics Small
– volume: 13 8
  start-page: 595 1929
  year: 2022 2008
  publication-title: Chem. Sci. Nano Lett.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 57 57
  start-page: 3211
  year: 2018 2021
  publication-title: Angew. Chem., Int. Ed. Chem. Commun.
– volume: 19 13
  start-page: 8934 8659
  year: 2019 2019
  publication-title: Nano Lett. ACS Nano
– year: 2023
  publication-title: Sci. China Chem.
– volume: 14 13
  start-page: 7152
  year: 2020 2021
  publication-title: ACS Nano ACS Appl. Mater. Interfaces
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 15
  year: 2023
  publication-title: Nanoscale
– volume: 145
  start-page: 7495
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 1663
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 6585
  year: 2022
  publication-title: ACS Appl. Nano Mater.
– volume: 1
  start-page: 1231
  year: 2014
  publication-title: ACS Photonics
– volume: 1 8
  start-page: 10 94
  year: 2013 2022
  publication-title: Adv. Opt. Mater. Magnetochemistry
– volume: 15 35
  start-page: 461
  year: 2016 2022
  publication-title: Nat. Mater. Adv. Mater.
– volume: 1
  start-page: 1320
  year: 2023
  publication-title: ACS Appl. Opt. Mater.
– volume: 13 35
  year: 2017 2022 2021
  publication-title: Small Adv. Mater. Adv. Funct. Mater.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 52
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 18
  start-page: 302
  year: 2017
  publication-title: Nano Lett.
– volume: 134 25
  start-page: 850
  year: 2012 2015
  publication-title: J. Am. Chem. Soc. Adv. Funct. Mater.
– volume: 21
  year: 2011
  publication-title: J. Mater. Chem. C
– volume: 245
  start-page: 691
  year: 2019
  publication-title: Appl. Catal. B
– volume: 16 94
  start-page: 5183 588
  year: 2016 2021
  publication-title: Nano Lett. Anal. Chem.
– volume: 23
  start-page: 4384
  year: 2023
  publication-title: Nano Lett.
– volume: 5 35
  start-page: 820 5689
  year: 2011 2023
  publication-title: ACS Nano Chem. Mater.
– volume: 137 29
  start-page: 8380
  year: 2015 2021
  publication-title: J. Phys. Chem. C Opt. Express
– volume: 14 34 6
  start-page: 3737
  year: 2022 2022 2014
  publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Nanoscale
– volume: 144
  start-page: 9707
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 24 10
  start-page: 2242 6575
  year: 2016 2004
  publication-title: Opt. Express Chem. ‐ Eur. J.
– volume: 12
  start-page: 802
  year: 2013
  publication-title: Nat. Mater.
– volume: 108 98 1
  start-page: 5539 2391
  year: 1986 1998 2009
  publication-title: J. Am. Chem. Soc. Chem. Rev.
– volume: 118 5 27 32 90 91
  start-page: 783 5610 856
  year: 2021 2010 2015 2007 2003 2003
  publication-title: Appl. Phys. Lett. Nat. Nanotechnol. Adv. Mater. Opt. Lett. Phys. Rev. Lett. Phys. Rev. Lett.
– volume: 16 116
  start-page: 1089
  year: 2022 2019
  publication-title: ACS Nano Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 5792
  year: 2020
  publication-title: Nano Lett.
– volume: 32 9 14
  start-page: 81
  year: 2020 2021 2023
  publication-title: Adv. Mater. Adv. Opt. Mater. Nat. Commun.
– volume: 39
  start-page: 642
  year: 2023
  publication-title: Chem. Res. Chin. Univ.
– volume: 13
  start-page: 3145
  year: 2013
  publication-title: Nano Lett.
– volume: 5 28
  start-page: 141
  year: 2018 2016
  publication-title: Mater. Horiz. Adv. Mater.
– volume: 1
  start-page: 491
  year: 2023
  publication-title: ACS Appl. Opt. Mater.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 139
  start-page: 6070
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 15
  start-page: 2292
  year: 2020
  publication-title: ACS Nano
– volume: 9
  start-page: 4
  year: 2020
  publication-title: Light Sci. Appl.
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 7 18 57 9
  start-page: 591 451
  year: 2015 2022 2018 2015
  publication-title: Nat. Chem. Small Angew. Chem., Int. Ed. Nano Res.
– volume: 30 14
  start-page: 7454
  year: 2020 2020
  publication-title: Adv. Funct. Mater. ACS Nano
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 7289
  year: 2022
  publication-title: Nat. Commun.
– volume: 34
  year: 2023
  publication-title: Adv. Mater.
– volume: 14 10 142 33
  start-page: 1067 7126
  year: 2023 2019 2020 2023
  publication-title: Nat. Commun. J. Phys. Chem. Lett. J. Am. Chem. Soc. Adv. Funct. Mater.
– volume: 122 5 27
  start-page: 34
  year: 2022 2017 2016
  publication-title: Chem. Rev. Adv. Opt. Mater. Opt Photonics News
– volume: 11
  start-page: 2046
  year: 2020
  publication-title: Nat. Commun.
– volume: 25 3 3 10
  start-page: 2517 186 1374
  year: 2013 2017 2022 2010
  publication-title: Adv. Mater. Sci. Adv. Adv. Mater. Nano Lett.
– volume: 10
  start-page: 4826
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1857
  year: 2021
  publication-title: Polym. Chem.
– volume: 35
  year: 2022
  publication-title: Adv. Mater.
– volume: 84
  start-page: 7330
  year: 2012
  publication-title: Anal. Chem.
– volume: 16
  start-page: 4887
  year: 2016
  publication-title: Nano Lett.
– volume: 52
  start-page: 2059
  year: 2016
  publication-title: Chem. Commun.
– volume: 89 526
  start-page: 9781
  year: 2017 2020
  publication-title: Anal. Chem. Appl. Surf. Sci.
– volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 14 29 141 601
  start-page: 66 366
  year: 2015 2019 2019 2022
  publication-title: Nat. Mater. Adv. Funct. Mater. J. Am. Chem. Soc. Nature
– volume: 13 2
  start-page: 5681
  year: 2019 2019
  publication-title: Laser Photonics Rev. ACS Appl. Nano Mater.
– volume: 11
  year: 2023
  publication-title: Adv. Opt. Mater.
– volume: 22 111
  start-page: 5022 102
  year: 2022 2018
  publication-title: Nano Lett. Biosens. Bioelectron.
– volume: 2
  start-page: 2702
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 371
  start-page: 1368
  year: 2021
  publication-title: Science
– volume: 241
  start-page: 386
  year: 2017
  publication-title: Electrochim. Acta
– volume: 14
  start-page: 6799
  year: 2014
  publication-title: Nano Lett.
– volume: 118
  start-page: 3100
  year: 2018
  publication-title: Chem. Rev.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 21 35
  year: 2021 2023
  publication-title: Nano Lett. Adv. Mater.
– volume: 11 372
  start-page: 1588 729
  year: 2020 2021
  publication-title: Nat. Commun. Science
– volume: 13 22
  start-page: 5277 8181
  year: 2013 2022
  publication-title: Nano Lett. Nano Lett.
– volume: 37 8
  start-page: 1792 7559
  year: 2008 2014
  publication-title: Chem. Soc. Rev. ACS Nano
– volume: 368
  start-page: 1472
  year: 2020
  publication-title: Science
– volume: 528 6
  start-page: 677 9457
  year: 2016 2014
  publication-title: Ann. Phys. Nanoscale
– volume: 16 16
  start-page: 148
  year: 2022 2021
  publication-title: ACS Nano ACS Nano
– volume: 8
  start-page: 1027
  year: 2018
  publication-title: Nanomaterials
– volume: 11 14 22
  start-page: 3806 4111 3784
  year: 2017 2020 2012
  publication-title: ACS Nano ACS Nano Adv. Funct. Mater.
– volume: 17
  start-page: 5548
  year: 2023
  publication-title: ACS Nano
– volume: 18
  start-page: 3209
  year: 2018
  publication-title: Nano Lett.
– volume: 44
  start-page: 2940
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 1239 56
  start-page: 1283
  year: 2023 2017
  publication-title: Anal. Chim. Acta Angew. Chem., Int. Ed.
– volume: 125 14
  start-page: 716
  year: 2020 2022
  publication-title: J. Phys. Chem. C ACS Appl. Mater. Interfaces
– volume: 142
  start-page: 4193
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 20 4
  start-page: 8453 3447
  year: 2020 2022
  publication-title: Nano Lett. CCS Chem.
– volume: 466
  start-page: 91
  year: 2010
  publication-title: Nature
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52 180
  start-page: 5432
  year: 2016 2021
  publication-title: Chem. Commun. Biosens. Bioelectron.
– volume: 120
  start-page: 2123
  year: 2020
  publication-title: Chem. Rev.
– volume: 38 42 17 425 80
  start-page: 3418 2930 347 487 3568
  year: 1999 2013 1998 2003 1983
  publication-title: Angew. Chem., Int. Ed. Chem. Soc. Rev. Chem Nature Proc. Natl. Acad. Sci. USA
– volume: 483
  start-page: 311
  year: 2012
  publication-title: Nature
– volume: 170 19
  start-page: 775
  issue: 2
  year: 2012 2019
  publication-title: Adv. Colloid Interface Sci. Nano Lett.
– volume: 32
  year: 2019
  publication-title: Adv. Mater.
– volume: 37
  year: 2020
  publication-title: Part. Part. Syst. Charact.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 7427
  year: 2019
  publication-title: Nano Lett.
– volume: 12 12
  start-page: 5902 551
  year: 2016 2020
  publication-title: Small Nat. Chem.
– volume: 61 47 9
  start-page: 4677
  year: 2022 2018 2015
  publication-title: Angew. Chem., Int. Ed. Chem. Soc. Rev. ACS Nano
– volume: 429
  start-page: 277
  year: 2004
  publication-title: Nature
– ident: e_1_2_8_106_1
  doi: 10.1021/acs.nanolett.1c03503
– ident: e_1_2_8_31_2
  doi: 10.1021/nn5037703
– ident: e_1_2_8_114_1
  doi: 10.1021/acs.nanolett.6b02154
– ident: e_1_2_8_141_1
  doi: 10.1038/nmat4525
– ident: e_1_2_8_24_2
  doi: 10.1073/pnas.1821923116
– ident: e_1_2_8_35_2
  doi: 10.1002/adom.202100907
– ident: e_1_2_8_55_1
  doi: 10.1039/C7MH00966F
– ident: e_1_2_8_134_1
  doi: 10.1039/C5CS00050E
– ident: e_1_2_8_144_2
  doi: 10.1002/adma.202209539
– ident: e_1_2_8_2_1
  doi: 10.1163/156939397X00549
– ident: e_1_2_8_57_1
  doi: 10.1002/andp.201600103
– ident: e_1_2_8_48_1
  doi: 10.1038/s41467-022-35016-8
– ident: e_1_2_8_153_1
  doi: 10.1021/acsnano.3c04337
– ident: e_1_2_8_40_1
  doi: 10.1038/nmat4125
– ident: e_1_2_8_127_1
  doi: 10.1002/adma.202005506
– ident: e_1_2_8_150_1
  doi: 10.1038/s41467-022-33443-1
– ident: e_1_2_8_131_1
  doi: 10.1021/jacs.2c01214
– ident: e_1_2_8_117_1
  doi: 10.1021/acs.jpcc.5b06904
– ident: e_1_2_8_74_1
  doi: 10.1021/jacs.3c00503
– ident: e_1_2_8_79_1
  doi: 10.1021/acsnano.6b08723
– ident: e_1_2_8_106_2
  doi: 10.1002/adma.202209810
– ident: e_1_2_8_22_4
  doi: 10.1016/S0168-1273(04)34003-1
– ident: e_1_2_8_123_2
  doi: 10.1039/D3NH00008G
– volume: 34
  year: 2022
  ident: e_1_2_8_89_2
  publication-title: Adv. Mater.
– ident: e_1_2_8_51_1
  doi: 10.1021/acsnano.0c08274
– ident: e_1_2_8_122_1
  doi: 10.1002/smll.202104301
– volume: 138
  start-page: 306
  year: 2015
  ident: e_1_2_8_70_1
  publication-title: J. Phys. Chem. C
– ident: e_1_2_8_66_2
  doi: 10.1039/C7CS00894E
– ident: e_1_2_8_24_1
  doi: 10.1021/acsnano.1c08824
– ident: e_1_2_8_124_1
  doi: 10.1021/ac300437v
– ident: e_1_2_8_11_2
  doi: 10.1002/adma.202107917
– ident: e_1_2_8_136_2
  doi: 10.3390/magnetochemistry8090094
– volume: 137
  start-page: 8380
  year: 2015
  ident: e_1_2_8_120_1
  publication-title: J. Phys. Chem. C
– ident: e_1_2_8_40_3
  doi: 10.1021/jacs.9b00700
– ident: e_1_2_8_56_2
  doi: 10.1021/acs.nanolett.2c02661
– ident: e_1_2_8_111_2
  doi: 10.1021/acsami.1c23505
– volume: 17
  start-page: 347
  year: 1998
  ident: e_1_2_8_1_3
  publication-title: Chem
– ident: e_1_2_8_53_1
  doi: 10.1021/ja207848e
– ident: e_1_2_8_152_1
  doi: 10.1016/j.jphotochemrev.2017.05.004
– ident: e_1_2_8_66_3
  doi: 10.1021/acsnano.5b04552
– ident: e_1_2_8_140_1
  doi: 10.1021/acsnano.2c10955
– ident: e_1_2_8_92_1
  doi: 10.1021/jacs.7b02523
– ident: e_1_2_8_8_2
  doi: 10.1126/sciadv.1602735
– ident: e_1_2_8_128_1
  doi: 10.1126/science.abd8576
– ident: e_1_2_8_18_1
  doi: 10.1038/nchem.2280
– ident: e_1_2_8_137_1
  doi: 10.1021/acs.chemrev.1c00370
– ident: e_1_2_8_64_1
  doi: 10.1021/acsnano.6b06233
– ident: e_1_2_8_44_2
  doi: 10.1016/j.apsusc.2020.146711
– ident: e_1_2_8_139_1
  doi: 10.1007/s12274‐023‐5985‐3
– ident: e_1_2_8_4_2
  doi: 10.1038/nnano.2010.209
– ident: e_1_2_8_154_4
  doi: 10.1002/adfm.202215051
– ident: e_1_2_8_71_2
  doi: 10.1021/ph5002632
– ident: e_1_2_8_50_1
  doi: 10.1002/ppsc.201900338
– ident: e_1_2_8_9_2
  doi: 10.1039/b800404h
– ident: e_1_2_8_123_1
  doi: 10.1002/admi.202200369
– ident: e_1_2_8_38_1
  doi: 10.1021/jacs.1c10526
– ident: e_1_2_8_145_1
  doi: 10.1002/adom.202202104
– ident: e_1_2_8_55_2
  doi: 10.1002/adma.201600697
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201205178
– ident: e_1_2_8_149_2
  doi: 10.1126/science.abf9645
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.201905758
– ident: e_1_2_8_30_2
  doi: 10.1002/adom.201700182
– ident: e_1_2_8_31_1
  doi: 10.1039/b711486a
– ident: e_1_2_8_18_4
  doi: 10.1007/s12274-015-0926-4
– ident: e_1_2_8_42_1
  doi: 10.1021/ja312327m
– ident: e_1_2_8_54_1
  doi: 10.1021/acsnano.1c05489
– ident: e_1_2_8_16_1
  doi: 10.1021/nn102969p
– ident: e_1_2_8_109_1
  doi: 10.1002/adom.202202104
– ident: e_1_2_8_133_2
  doi: 10.1016/j.bios.2018.04.007
– ident: e_1_2_8_20_1
  doi: 10.1021/nl401107g
– ident: e_1_2_8_103_1
  doi: 10.1002/advs.202104598
– ident: e_1_2_8_7_3
  doi: 10.1039/c0nr00903b
– ident: e_1_2_8_70_2
  doi: 10.1002/adma.201601261
– ident: e_1_2_8_104_2
  doi: 10.1002/anie.201607563
– ident: e_1_2_8_18_3
  doi: 10.1002/anie.201810693
– ident: e_1_2_8_142_1
  doi: 10.1021/acs.chemrev.9b00443
– ident: e_1_2_8_8_4
  doi: 10.1021/nl100010v
– ident: e_1_2_8_15_1
  doi: 10.1002/smll.201906048
– ident: e_1_2_8_52_1
  doi: 10.1002/adom.202001274
– ident: e_1_2_8_102_1
  doi: 10.1039/C4TC00040D
– ident: e_1_2_8_2_2
  doi: 10.1021/nn402370x
– ident: e_1_2_8_21_2
  doi: 10.1021/cr00071a001
– ident: e_1_2_8_4_4
  doi: 10.1364/OL.32.000856
– ident: e_1_2_8_8_3
  doi: 10.1039/D1MA00915J
– ident: e_1_2_8_58_1
  doi: 10.1002/smll.201601505
– ident: e_1_2_8_21_4
  doi: 10.1111/j.1747-0285.2009.00847.x
– ident: e_1_2_8_108_1
  doi: 10.1016/j.electacta.2017.04.155
– ident: e_1_2_8_71_1
  doi: 10.1002/adma.201606864
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.chemrev.2c00078
– ident: e_1_2_8_83_2
  doi: 10.1016/j.bios.2021.113109
– ident: e_1_2_8_3_2
  doi: 10.1021/cr970096o
– ident: e_1_2_8_44_1
  doi: 10.1021/acs.analchem.7b01723
– ident: e_1_2_8_80_2
  doi: 10.31635/ccschem.022.202101596
– ident: e_1_2_8_34_1
  doi: 10.1039/D3QM00200D
– ident: e_1_2_8_65_1
  doi: 10.1021/acsaom.3c00147
– volume: 170
  issue: 2
  year: 2012
  ident: e_1_2_8_88_1
  publication-title: Adv. Colloid Interface Sci.
– ident: e_1_2_8_4_1
  doi: 10.1063/5.0050797
– ident: e_1_2_8_67_1
  doi: 10.1021/acsanm.2c00657
– ident: e_1_2_8_72_1
  doi: 10.1002/anie.201814282
– ident: e_1_2_8_94_1
  doi: 10.1021/nl502237f
– ident: e_1_2_8_81_1
  doi: 10.1038/nature02530
– ident: e_1_2_8_88_2
  doi: 10.1021/acs.nanolett.8b03850
– ident: e_1_2_8_1_2
  doi: 10.1039/C2CS35332F
– ident: e_1_2_8_37_2
  doi: 10.1002/adfm.201403161
– ident: e_1_2_8_18_2
  doi: 10.1002/smll.202107657
– ident: e_1_2_8_10_1
  doi: 10.1038/s41586-018-0034-1
– ident: e_1_2_8_34_2
  doi: 10.1103/PhysRevLett.114.203003
– ident: e_1_2_8_104_1
  doi: 10.1016/j.aca.2022.340740
– ident: e_1_2_8_95_1
  doi: 10.1021/ph500305z
– volume: 61
  year: 2022
  ident: e_1_2_8_66_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_8_60_1
  doi: 10.1002/smll.201701112
– ident: e_1_2_8_59_1
  doi: 10.1002/smll.202001473
– ident: e_1_2_8_129_1
  doi: 10.1021/acsami.8b10594
– ident: e_1_2_8_35_3
  doi: 10.1038/s41467-022-35699-z
– ident: e_1_2_8_73_1
  doi: 10.1007/s11426‐023‐1685‐3
– ident: e_1_2_8_9_1
  doi: 10.1039/C9CS00765B
– ident: e_1_2_8_133_1
  doi: 10.1021/acs.nanolett.2c01953
– ident: e_1_2_8_41_1
  doi: 10.1038/nmat3685
– ident: e_1_2_8_93_1
  doi: 10.3390/nano8121027
– ident: e_1_2_8_3_1
  doi: 10.1021/ja00278a029
– ident: e_1_2_8_14_2
  doi: 10.1021/acsnano.0c03127
– ident: e_1_2_8_154_1
  doi: 10.1038/s41467-023-36703-w
– ident: e_1_2_8_98_1
  doi: 10.1038/s41467-019-12134-4
– ident: e_1_2_8_76_1
  doi: 10.1021/acsami.6b13280
– ident: e_1_2_8_125_1
  doi: 10.1021/acs.chemrev.9b00234
– ident: e_1_2_8_57_2
  doi: 10.1039/C4NR00403E
– ident: e_1_2_8_110_1
  doi: 10.1021/acs.nanolett.7b04139
– ident: e_1_2_8_37_1
  doi: 10.1021/ja3066336
– ident: e_1_2_8_121_1
  doi: 10.1007/s00604-020-04646-4
– ident: e_1_2_8_89_3
  doi: 10.1039/c3nr05889a
– ident: e_1_2_8_79_3
  doi: 10.1002/adfm.201200588
– ident: e_1_2_8_12_2
  doi: 10.1016/j.nantod.2011.06.003
– ident: e_1_2_8_39_1
  doi: 10.1021/acsnano.0c02026
– ident: e_1_2_8_9_3
  doi: 10.1002/adom.201700040
– ident: e_1_2_8_78_1
  doi: 10.1039/D1SC03327A
– ident: e_1_2_8_1_5
  doi: 10.1073/pnas.80.12.3568
– ident: e_1_2_8_138_1
  doi: 10.1021/cr300068p
– ident: e_1_2_8_136_1
  doi: 10.1002/adom.201200011
– ident: e_1_2_8_25_1
  doi: 10.1021/acsnano.1c04992
– ident: e_1_2_8_107_1
  doi: 10.1002/anie.202210730
– ident: e_1_2_8_19_1
  doi: 10.1021/acsnano.3c02798
– volume: 29
  year: 2019
  ident: e_1_2_8_40_2
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_68_1
  doi: 10.1021/acsami.1c19404
– ident: e_1_2_8_43_1
  doi: 10.1039/C9NR07421J
– ident: e_1_2_8_114_2
  doi: 10.1021/acs.analchem.1c04981
– ident: e_1_2_8_4_5
  doi: 10.1103/PhysRevLett.90.107404
– ident: e_1_2_8_7_2
  doi: 10.1021/acs.chemrev.6b00755
– ident: e_1_2_8_119_1
  doi: 10.1021/acsnano.2c08145
– ident: e_1_2_8_22_3
  doi: 10.1002/adma.202005760
– ident: e_1_2_8_89_1
  doi: 10.1021/acsami.2c13267
– ident: e_1_2_8_1_1
  doi: 10.1002/(SICI)1521-3773(19991203)38:23<3418::AID-ANIE3418>3.0.CO;2-V
– ident: e_1_2_8_13_1
  doi: 10.1021/jacs.9b11124
– ident: e_1_2_8_4_6
  doi: 10.1103/PhysRevLett.91.247404
– ident: e_1_2_8_77_1
  doi: 10.1021/acsnano.1c05819
– ident: e_1_2_8_113_1
  doi: 10.1021/acsphotonics.9b01180
– ident: e_1_2_8_151_1
  doi: 10.1126/science.aax5415
– ident: e_1_2_8_118_1
  doi: 10.1038/ncomms13117
– ident: e_1_2_8_130_1
  doi: 10.1002/anie.202206520
– volume-title: Nanoscience
  year: 2016
  ident: e_1_2_8_12_1
– ident: e_1_2_8_39_2
  doi: 10.1021/acsami.1c14047
– ident: e_1_2_8_119_2
  doi: 10.1021/acsnano.1c04693
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.202000670
– ident: e_1_2_8_63_1
  doi: 10.1039/c1jm12345a
– ident: e_1_2_8_1_4
  doi: 10.1038/nature02020
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.nanolett.9b03853
– ident: e_1_2_8_28_1
  doi: 10.1021/acsphotonics.0c00304
– ident: e_1_2_8_6_1
  doi: 10.1364/OE.24.002242
– ident: e_1_2_8_45_1
  doi: 10.1039/C5CC08505E
– ident: e_1_2_8_132_1
  doi: 10.1021/acs.nanolett.3c00655
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.202107325
– ident: e_1_2_8_70_3
  doi: 10.1002/adma.201804241
– ident: e_1_2_8_84_1
  doi: 10.1002/smll.202003005
– ident: e_1_2_8_154_3
  doi: 10.1021/jacs.0c03899
– ident: e_1_2_8_96_1
  doi: 10.1021/acs.nanolett.6b01404
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201900110
– ident: e_1_2_8_16_2
  doi: 10.1021/acs.chemmater.3c01267
– ident: e_1_2_8_22_2
  doi: 10.1021/acs.accounts.2c00756
– ident: e_1_2_8_137_2
  doi: 10.1021/acs.chemrev.1c00860
– ident: e_1_2_8_3_3
  doi: 10.1002/9783527625345.ch1
– ident: e_1_2_8_46_1
  doi: 10.1002/adfm.201802372
– ident: e_1_2_8_58_2
  doi: 10.1038/s41557-020-0453-0
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.202102337
– ident: e_1_2_8_83_1
  doi: 10.1039/C6CC00320F
– ident: e_1_2_8_147_1
  doi: 10.1038/s41467-021-23087-y
– ident: e_1_2_8_56_1
  doi: 10.1021/nl402782d
– ident: e_1_2_8_147_2
  doi: 10.1088/1367-2630/ac71be
– ident: e_1_2_8_143_1
  doi: 10.1038/nature09150
– ident: e_1_2_8_75_1
  doi: 10.1002/smll.201905734
– ident: e_1_2_8_97_1
  doi: 10.1016/j.apcatb.2019.01.038
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.nanolett.0c01659
– ident: e_1_2_8_85_1
  doi: 10.1007/s12274-022-4212-y
– ident: e_1_2_8_120_2
  doi: 10.1364/OE.421839
– ident: e_1_2_8_5_1
  doi: 10.1103/PhysRevLett.95.227401
– ident: e_1_2_8_71_3
  doi: 10.1002/smll.201401641
– ident: e_1_2_8_21_3
  doi: 10.1039/D0CS00558D
– ident: e_1_2_8_111_1
  doi: 10.1021/acs.jpcc.0c08057
– ident: e_1_2_8_154_2
  doi: 10.1021/acs.jpclett.9b02929
– ident: e_1_2_8_135_1
  doi: 10.1038/s41377-019-0241-z
– ident: e_1_2_8_144_1
  doi: 10.1038/nmat4525
– ident: e_1_2_8_6_2
  doi: 10.1002/chem.200400869
– ident: e_1_2_8_23_1
  doi: 10.1002/chem.201501178
– ident: e_1_2_8_36_1
  doi: 10.1002/lpor.201800276
– ident: e_1_2_8_115_1
  doi: 10.1021/acsaom.2c00130
– ident: e_1_2_8_78_2
  doi: 10.1021/nl080664n
– ident: e_1_2_8_36_2
  doi: 10.1021/acsanm.9b01198
– ident: e_1_2_8_47_1
  doi: 10.1126/science.aba0980
– ident: e_1_2_8_21_1
  doi: 10.1038/s41467-022-35699-z
– ident: e_1_2_8_40_4
  doi: 10.1038/s41586-021-04243-2
– ident: e_1_2_8_101_1
  doi: 10.1002/ppsc.202000008
– ident: e_1_2_8_30_3
  doi: 10.1364/OPN.27.7.000034
– ident: e_1_2_8_105_1
  doi: 10.1002/smll.201702990
– ident: e_1_2_8_91_1
  doi: 10.1002/adma.202305429
– ident: e_1_2_8_69_1
  doi: 10.1038/nature10889
– ident: e_1_2_8_99_1
  doi: 10.1039/D3NR01371E
– ident: e_1_2_8_149_1
  doi: 10.1038/s41467-020-15388-5
– ident: e_1_2_8_152_2
  doi: 10.1021/acs.nanolett.1c01322
– ident: e_1_2_8_82_1
  doi: 10.1002/anie.201305389
– ident: e_1_2_8_116_1
  doi: 10.1039/D0PY01558J
– ident: e_1_2_8_4_3
  doi: 10.1002/adma.201501816
– year: 2022
  ident: e_1_2_8_26_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_33_1
  doi: 10.1021/nl3013715
– ident: e_1_2_8_7_1
  doi: 10.1039/c3cs60139k
– ident: e_1_2_8_61_1
  doi: 10.1021/acs.nanolett.9b03117
– ident: e_1_2_8_146_1
  doi: 10.1021/jp304907s
– ident: e_1_2_8_80_1
  doi: 10.1021/acs.nanolett.0c02013
– ident: e_1_2_8_90_1
  doi: 10.1002/anie.201810693
– volume: 16
  year: 2022
  ident: e_1_2_8_87_1
  publication-title: ACS Nano
– ident: e_1_2_8_86_1
  doi: 10.1021/acs.nanolett.8b00929
– ident: e_1_2_8_11_3
  doi: 10.1002/adfm.202010329
– ident: e_1_2_8_112_1
  doi: 10.1021/acsnano.2c10077
– ident: e_1_2_8_148_1
  doi: 10.1038/s41467-020-15728-5
– ident: e_1_2_8_100_1
  doi: 10.1007/s40242-023-3064-7
– ident: e_1_2_8_126_1
  doi: 10.1021/acs.chemrev.7b00364
– ident: e_1_2_8_27_2
  doi: 10.1021/acsnano.9b04046
– ident: e_1_2_8_32_1
  doi: 10.1021/jp1121432
– ident: e_1_2_8_22_1
  doi: 10.1039/b515476f
– ident: e_1_2_8_11_1
  doi: 10.1002/smll.201701883
– ident: e_1_2_8_79_2
  doi: 10.1021/acsnano.9b08823
– ident: e_1_2_8_84_2
  doi: 10.1038/s41467-023-39456-8
– ident: e_1_2_8_90_2
  doi: 10.1039/D0CC07576K
SSID ssj0009606
Score 2.5742333
SecondaryResourceType review_article
Snippet Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2309033
SubjectTerms chiral applications
chiral sensing
Chirality
Nanomaterials
Nanostructure
Optical activity
plasmonic hybrid nanostructures
Plasmonics
Synthesis
synthetic methods
Title Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202309033
https://www.ncbi.nlm.nih.gov/pubmed/37944554
https://www.proquest.com/docview/2915855969
https://www.proquest.com/docview/2889245874
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6hPsHD-DkIFGQkJJ7SprHj2LxF3aoKqQhBJ_Utsh1boG1NtbYP21_POU7TlgkhwVuinBXHd2d_d7G_A_ggK57l1KqYc-ViVjEbC0-vLSvNnFDSZE0dstkXPr1gnxfZ4uAUf-CH6BJu3jOa-do7uNLr4Z40VFUNbxBCaJlQT_fpN2x5VPRtzx_l4XlDtkezWHImdqyNSTo8bn68Kt2DmsfItVl6Jo9B7ToddpxcDrYbPTB3v_E5_s9XPYGTFpeSIhjSU3hgl8_g0QFb4XP4Pv7x8wZlviLgvvaMumR66897EZyh68BDu8Xg_RMpSJuTI5uaFO0mA-Jb16smdU5mahMs_wXMJ-fz8TRuazLEhua-7BtTSZVba0bUYCSXaIcIATGD1tpT5yvjJFc6S0zqnDPUCCsQQOQpTzH8tSk9hd6yXtpXQCw3ibAIH_zx1kpTqbhSaCHcUVY5mkQQ71RSmpav3JfNuCoD03Ja-rEqu7GK4GMnvwpMHX-U7O80XLYeuy5TOcLIKZNcRvC-e4y-5n-gqKWttygjBIarmchZBC-DZXSvojixMcRmEaSNfv_Sh7I4mxXd3et_afQGHuI1C_mgPvRQz_YtIqSNftd4wS_aJAYC
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LbtQwFECvqrIAFrwfgQJGArFKm9qOYyOxiDpUU9qpEAxSd5Ht2AIBk6ozI1S-il_hj7iOk5QBISSkLlgmsZXEvk8nPhfgiapFXjCnUyG0T3nNXSoDXlvVhnuplc3bOmSTQzF-x18d5Udr8K3fCxP5EMOCW9CM1l4HBQ8L0ltn1FBdt-AgjKFVxvr61fvu9AtmbfMXeyOc4qeU7r6c7ozTrrBAalkRapdxndWFc3abWUxHMuPRzaHjM8YE_ru2Xglt8sxS771lVjqJXrCggmIO5wLqAI3-hVBFPND6R2_OgFUhH2jpfixPleCyx0RmdGv1cVfd4G-x7Wqo3Pq63avwvR-l-IvLx83lwmzar78AJP-nYbwGV7rAm5RRU67DmpvdgMs_4Rhvwtud9x9OsM1rzCg-B2QwGZ-GDW0EXVATQbvLEzd_TkrSLTqSRUPK7i8KEno3x-23ATLRi6jat2B6Hi91G9ZnzczdBeKEzaTD-Cjs360NU1pojSogPOO1Z1kCaS8Cle2A7KEuyKcqoqRpFaamGqYmgWdD--OIIvljy41eoqrOJM0rqrYxNcyVUAk8Hi6jMQlfiPTMNUtsIyXm47kseAJ3oiQOt2JouTkGnwnQVp7-8gxVOZqUw9G9f-n0CC6Op5OD6mDvcP8-XMLzPC5-bcA6zrl7gOHgwjxsNZBAdc6i-gPaMWJn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxQxFD6UCqIPrXenrRpB8WnaaZLJTAQfhq7L1rqlaIW-hSSToFR3lu4u0v4p_4o_yZO51VVEEPrg48yckEzOPZfvADyTpUgz5nQshPYxL7mL8wCvLUvDfa6lTes6ZONDMfrA35ykJyvwrbsL0-BD9AtuQTNqex0UfFr6nUvQUF3WuEEYQsuEdeWrD9z5V0zaZq_2B8jh55QOXx_vjeK2rkBsWRZKl3GdlJlzdpdZzEYS49HLod8zxgT4d229FNqkiaXee8ts7nJ0ghkVFFM4F5AO0OZf4wI7DlHYu0u8qpAO1OB-LI2l4HmHEpnQneXhLnvB30Lb5Ui5dnXDdfjeTVJzwuV0ezE32_biF_zI_2gWb8FaG3aTotGT27DiJnfg5k9gjHfh_d7HT2dIc4T5xJcAGExG5-E6G0EHVDUwu4szN3tJCtIuOZJ5RYr2DAUJratpvTNAxnreKPY9OL6Kn7oPq5Nq4h4CccImucPoKNzeLQ2TWmiNCiA846VnSQRxJwHKtnDsoSrIZ9UASVMVWKN61kTwoqefNkAkf6Tc6gRKtQZppqjcxcQwlUJG8LT_jKYk7A_piasWSJPnmI2necYjeNAIYt8VQ7vNMfSMgNbi9JcxqGIwLvqnjX9p9ASuHw2G6u3-4cEm3MDXvFn52oJVZLl7hLHg3Dyu9Y-AumJJ_QEp0mEW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Plasmonic+Hybrid+Nanostructures%3A+A+Gateway+to+Advanced+Chiroptical+Materials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tan%2C+Lili&rft.au=Fu%2C+Wenlong&rft.au=Gao%2C+Qi&rft.au=Wang%2C+Peng-Peng&rft.date=2024-01-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=36&rft.issue=3&rft.spage=e2309033&rft_id=info:doi/10.1002%2Fadma.202309033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon