Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 3; pp. e2309033 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light–matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state‐of‐the‐art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Emerging chiral plasmonic hybrid nanostructures that integrate chirality, plamonics, and rich functionalities into single entities are introduced in this review. A comprehensive overview of recent advancements is provided, including the origins of chirality, rationale design and construction techniques, and versatile applications. Additionally, current challenges and future prospects in this field are discussed in detail. |
---|---|
AbstractList | Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light–matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state‐of‐the‐art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field. Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light–matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state‐of‐the‐art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field. Emerging chiral plasmonic hybrid nanostructures that integrate chirality, plamonics, and rich functionalities into single entities are introduced in this review. A comprehensive overview of recent advancements is provided, including the origins of chirality, rationale design and construction techniques, and versatile applications. Additionally, current challenges and future prospects in this field are discussed in detail. Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field. |
Author | Gao, Qi Fu, Wenlong Wang, Peng‐peng Tan, Lili |
Author_xml | – sequence: 1 givenname: Lili surname: Tan fullname: Tan, Lili organization: Xi'an Jiaotong University – sequence: 2 givenname: Wenlong surname: Fu fullname: Fu, Wenlong organization: Xi'an Jiaotong University – sequence: 3 givenname: Qi surname: Gao fullname: Gao, Qi organization: Xi'an Jiaotong University – sequence: 4 givenname: Peng‐peng orcidid: 0000-0003-4054-8903 surname: Wang fullname: Wang, Peng‐peng email: ppwang@xjtu.edu.cn organization: Xi'an Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37944554$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaDZprz0WQy-9eDsaSbbUm9m2SSFf0NyFLMtUwba2kpyw_75eNmkhUHqawzzPyzDvKTmawuQIeUdhTQHwk-lGs0ZABgoYe0VWVCAtOShxRFagmChVxeUJOU3pHgBUBdVrcsJqxbkQfEV-bH76aIbidjBpDJO3xcWujb4rrs0UUo6zzXN06XPRFOcmu0ezK3Iomu7BTNZ1xd4O2-ztEnG17KM3Q3pDjvtluLdP84zcfft6t7koL2_Ov2-ay9KymrESuYGuds5SZilwaHtJkaJq21airI3tVWVaARb7vrfMSieR8xorxJo7ZGfk4yF2G8Ov2aWsR5-sGwYzuTAnjVIq5ELWfEE_vEDvwxyn5TiNigophKrUQr1_ouZ2dJ3eRj-auNPP31oAfgBsDClF12vrs8k-TDkaP2gKel-K3pei_5SyaOsX2nPyPwV1EB794Hb_oXXz5ar56_4GiWGdlw |
CitedBy_id | crossref_primary_10_1002_ange_202416221 crossref_primary_10_1002_advs_202402840 crossref_primary_10_1021_acs_jpclett_4c00558 crossref_primary_10_1021_acs_jpclett_4c01715 crossref_primary_10_1039_D4NR04338C crossref_primary_10_1038_s41467_025_57624_w crossref_primary_10_1021_acs_nanolett_4c04295 crossref_primary_10_1002_adom_202402704 crossref_primary_10_1021_acsnano_4c17484 crossref_primary_10_1016_j_optcom_2024_130984 crossref_primary_10_1002_cctc_202400177 crossref_primary_10_1038_s41467_024_53705_4 crossref_primary_10_1002_smll_202408147 crossref_primary_10_1039_D3CS00316G crossref_primary_10_1360_SSC_2024_0069 crossref_primary_10_1364_JOSAB_534039 crossref_primary_10_1007_s11426_024_2355_0 crossref_primary_10_1016_j_jenvman_2024_123561 crossref_primary_10_1088_1361_6463_ad6f20 crossref_primary_10_1002_anie_202416221 |
Cites_doi | 10.1021/acs.nanolett.1c03503 10.1021/nn5037703 10.1021/acs.nanolett.6b02154 10.1038/nmat4525 10.1073/pnas.1821923116 10.1002/adom.202100907 10.1039/C7MH00966F 10.1039/C5CS00050E 10.1002/adma.202209539 10.1163/156939397X00549 10.1002/andp.201600103 10.1038/s41467-022-35016-8 10.1021/acsnano.3c04337 10.1038/nmat4125 10.1002/adma.202005506 10.1038/s41467-022-33443-1 10.1021/jacs.2c01214 10.1021/acs.jpcc.5b06904 10.1021/jacs.3c00503 10.1021/acsnano.6b08723 10.1002/adma.202209810 10.1016/S0168-1273(04)34003-1 10.1039/D3NH00008G 10.1021/acsnano.0c08274 10.1002/smll.202104301 10.1039/C7CS00894E 10.1021/acsnano.1c08824 10.1021/ac300437v 10.1002/adma.202107917 10.3390/magnetochemistry8090094 10.1021/jacs.9b00700 10.1021/acs.nanolett.2c02661 10.1021/acsami.1c23505 10.1021/ja207848e 10.1016/j.jphotochemrev.2017.05.004 10.1021/acsnano.5b04552 10.1021/acsnano.2c10955 10.1021/jacs.7b02523 10.1126/sciadv.1602735 10.1126/science.abd8576 10.1038/nchem.2280 10.1021/acs.chemrev.1c00370 10.1021/acsnano.6b06233 10.1016/j.apsusc.2020.146711 10.1007/s12274‐023‐5985‐3 10.1038/nnano.2010.209 10.1002/adfm.202215051 10.1021/ph5002632 10.1002/ppsc.201900338 10.1039/b800404h 10.1002/admi.202200369 10.1021/jacs.1c10526 10.1002/adom.202202104 10.1002/adma.201600697 10.1002/adma.201205178 10.1126/science.abf9645 10.1002/adma.201905758 10.1002/adom.201700182 10.1039/b711486a 10.1007/s12274-015-0926-4 10.1021/ja312327m 10.1021/acsnano.1c05489 10.1021/nn102969p 10.1016/j.bios.2018.04.007 10.1021/nl401107g 10.1002/advs.202104598 10.1039/c0nr00903b 10.1002/adma.201601261 10.1002/anie.201607563 10.1002/anie.201810693 10.1021/acs.chemrev.9b00443 10.1021/nl100010v 10.1002/smll.201906048 10.1002/adom.202001274 10.1039/C4TC00040D 10.1021/nn402370x 10.1021/cr00071a001 10.1364/OL.32.000856 10.1039/D1MA00915J 10.1002/smll.201601505 10.1111/j.1747-0285.2009.00847.x 10.1016/j.electacta.2017.04.155 10.1002/adma.201606864 10.1021/acs.chemrev.2c00078 10.1016/j.bios.2021.113109 10.1021/cr970096o 10.1021/acs.analchem.7b01723 10.31635/ccschem.022.202101596 10.1039/D3QM00200D 10.1021/acsaom.3c00147 10.1063/5.0050797 10.1021/acsanm.2c00657 10.1002/anie.201814282 10.1021/nl502237f 10.1038/nature02530 10.1021/acs.nanolett.8b03850 10.1039/C2CS35332F 10.1002/adfm.201403161 10.1002/smll.202107657 10.1038/s41586-018-0034-1 10.1103/PhysRevLett.114.203003 10.1016/j.aca.2022.340740 10.1021/ph500305z 10.1002/smll.201701112 10.1002/smll.202001473 10.1021/acsami.8b10594 10.1038/s41467-022-35699-z 10.1007/s11426‐023‐1685‐3 10.1039/C9CS00765B 10.1021/acs.nanolett.2c01953 10.1038/nmat3685 10.3390/nano8121027 10.1021/ja00278a029 10.1021/acsnano.0c03127 10.1038/s41467-023-36703-w 10.1038/s41467-019-12134-4 10.1021/acsami.6b13280 10.1021/acs.chemrev.9b00234 10.1039/C4NR00403E 10.1021/acs.nanolett.7b04139 10.1021/ja3066336 10.1007/s00604-020-04646-4 10.1039/c3nr05889a 10.1002/adfm.201200588 10.1016/j.nantod.2011.06.003 10.1021/acsnano.0c02026 10.1002/adom.201700040 10.1039/D1SC03327A 10.1073/pnas.80.12.3568 10.1021/cr300068p 10.1002/adom.201200011 10.1021/acsnano.1c04992 10.1002/anie.202210730 10.1021/acsnano.3c02798 10.1021/acsami.1c19404 10.1039/C9NR07421J 10.1021/acs.analchem.1c04981 10.1103/PhysRevLett.90.107404 10.1021/acs.chemrev.6b00755 10.1021/acsnano.2c08145 10.1002/adma.202005760 10.1021/acsami.2c13267 10.1002/(SICI)1521-3773(19991203)38:23<3418::AID-ANIE3418>3.0.CO;2-V 10.1021/jacs.9b11124 10.1103/PhysRevLett.91.247404 10.1021/acsnano.1c05819 10.1021/acsphotonics.9b01180 10.1126/science.aax5415 10.1038/ncomms13117 10.1002/anie.202206520 10.1021/acsami.1c14047 10.1021/acsnano.1c04693 10.1002/adfm.202000670 10.1039/c1jm12345a 10.1038/nature02020 10.1021/acs.nanolett.9b03853 10.1021/acsphotonics.0c00304 10.1364/OE.24.002242 10.1039/C5CC08505E 10.1021/acs.nanolett.3c00655 10.1002/adma.202107325 10.1002/adma.201804241 10.1002/smll.202003005 10.1021/jacs.0c03899 10.1021/acs.nanolett.6b01404 10.1002/adma.201900110 10.1021/acs.chemmater.3c01267 10.1021/acs.accounts.2c00756 10.1021/acs.chemrev.1c00860 10.1002/9783527625345.ch1 10.1002/adfm.201802372 10.1038/s41557-020-0453-0 10.1002/adma.202102337 10.1039/C6CC00320F 10.1038/s41467-021-23087-y 10.1021/nl402782d 10.1088/1367-2630/ac71be 10.1038/nature09150 10.1002/smll.201905734 10.1016/j.apcatb.2019.01.038 10.1021/acs.nanolett.0c01659 10.1007/s12274-022-4212-y 10.1364/OE.421839 10.1103/PhysRevLett.95.227401 10.1002/smll.201401641 10.1039/D0CS00558D 10.1021/acs.jpcc.0c08057 10.1021/acs.jpclett.9b02929 10.1038/s41377-019-0241-z 10.1002/chem.200400869 10.1002/chem.201501178 10.1002/lpor.201800276 10.1021/acsaom.2c00130 10.1021/nl080664n 10.1021/acsanm.9b01198 10.1126/science.aba0980 10.1038/s41586-021-04243-2 10.1002/ppsc.202000008 10.1364/OPN.27.7.000034 10.1002/smll.201702990 10.1002/adma.202305429 10.1038/nature10889 10.1039/D3NR01371E 10.1038/s41467-020-15388-5 10.1021/acs.nanolett.1c01322 10.1002/anie.201305389 10.1039/D0PY01558J 10.1002/adma.201501816 10.1021/nl3013715 10.1039/c3cs60139k 10.1021/acs.nanolett.9b03117 10.1021/jp304907s 10.1021/acs.nanolett.0c02013 10.1021/acs.nanolett.8b00929 10.1002/adfm.202010329 10.1021/acsnano.2c10077 10.1038/s41467-020-15728-5 10.1007/s40242-023-3064-7 10.1021/acs.chemrev.7b00364 10.1021/acsnano.9b04046 10.1021/jp1121432 10.1039/b515476f 10.1002/smll.201701883 10.1021/acsnano.9b08823 10.1038/s41467-023-39456-8 10.1039/D0CC07576K |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202309033 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 37944554 10_1002_adma_202309033 ADMA202309033 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22001201; 22075224 – fundername: National Natural Science Foundation of China grantid: 22001201 – fundername: National Natural Science Foundation of China grantid: 22075224 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH AEUQT AFPWT NPM RWI RWM WRC 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3733-24a0d7eec13c1040bf812129bbb8287acf96ab50c2fffc3c8e82447262274e23 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 23:35:11 EDT 2025 Fri Jul 25 08:18:40 EDT 2025 Wed Feb 19 02:04:39 EST 2025 Tue Jul 01 02:33:45 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Sun Jul 06 04:45:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | chiral applications chiral sensing chirality plasmonic hybrid nanostructures optical activity synthetic methods |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-24a0d7eec13c1040bf812129bbb8287acf96ab50c2fffc3c8e82447262274e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4054-8903 |
PMID | 37944554 |
PQID | 2915855969 |
PQPubID | 2045203 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_2889245874 proquest_journals_2915855969 pubmed_primary_37944554 crossref_citationtrail_10_1002_adma_202309033 crossref_primary_10_1002_adma_202309033 wiley_primary_10_1002_adma_202309033_ADMA202309033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022 2021; 16 16 2022 2018; 22 111 2011; 115 2012; 483 2020; 20 2019; 11 2019; 10 2010; 466 2020 2023; 16 14 1999 2013 1998 2003 1983; 38 42 17 425 80 2020; 16 2020; 15 2019; 19 2016 2022; 15 35 2020; 11 2012; 12 2020 2021; 11 372 1986 1998 2009; 108 98 1 2018; 8 2016 2021; 52 180 2020 2022; 20 4 2013; 52 2022 2022 2014; 14 34 6 2022; 35 2014; 14 2012 2019; 170 19 2022 2017 2016; 122 5 27 2022 2023; 9 8 2021 2009 2017; 50 38 5 2016 2021; 16 94 2018; 28 2016 2020; 12 12 2017 2021; 32 21 2019; 6 2020 2021 2023; 32 9 14 2020; 142 2019; 32 2020 2021; 14 13 2019; 37 2016 2014; 528 6 2020 2020; 30 14 2016; 10 2020; 37 2017 2020 2012; 11 14 22 2015 2016 2018; 138 28 30 2016; 16 2021 2023; 21 35 2016; 15 2011; 133 2022 2018 2015; 61 47 9 2017; 139 2004; 429 2018; 18 2016; 7 2021 2022; 12 24 2012; 112 2013 2017 2011; 42 117 3 2022; 5 2017 2020; 89 526 2018; 118 2022; 9 2005; 95 2022; 13 2021; 371 2022; 15 2020 2022; 125 14 2015; 119 2015 2022 2018 2015; 7 18 57 9 2013 2022; 13 22 2018; 10 2012; 116 2017 2022 2021; 13 35 2016; 8 2022; 16 2018; 14 2022; 18 2023 2017; 1239 56 2023; 34 2023; 39 2020; 120 2019 2019; 19 13 2023; 145 2021 2010 2015 2007 2003 2003; 118 5 27 32 90 91 2019; 58 2020; 368 2019; 245 2023; 1 2011 2023; 5 35 2019; 365 2023 1986 2021 2009; 14 86 50 74 2014; 1 2020; 7 2021; 33 2014; 2 2023; 23 2013; 13 2016 2004; 24 10 2013; 12 2022 2019; 16 116 2015; 44 2020; 9 2011; 21 2019; 119 2017; 241 2022 2008; 13 8 2023 2019 2020 2023; 14 10 142 33 2018 2016; 5 28 2012 2013; 11 7 2013 2017 2022 2010; 25 3 3 10 2023; 11 2023; 17 2023; 15 2020; 187 2016; 52 2022; 144 2021; 13 2021; 15 2019 2019; 13 2 2021; 12 2023 2018; 556 2022 2023 2015; 7 114 2013 2022; 1 8 2018 2021; 57 57 2022; 61 2016 2011; 3 6 2015 2019 2019 2022; 14 29 141 601 2017; 13 2015; 21 2012 2015; 134 25 2013; 135 2007 2023 2021 2004; 36 56 33 34 2017; 18 2022 2021; 122 123 2008 2014; 37 8 2015 2021; 137 29 2017 2014 2014; 29 1 10 2012; 84 e_1_2_8_49_1 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_132_1 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_1_4 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_64_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_120_2 e_1_2_8_99_1 Mason S. (e_1_2_8_1_3) 1998; 17 e_1_2_8_30_3 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_30_2 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_48_1 Zhao W. (e_1_2_8_40_2) 2019; 29 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_40_4 e_1_2_8_40_3 Li S. (e_1_2_8_70_1) 2015; 138 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_133_2 e_1_2_8_40_1 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_37_1 e_1_2_8_90_2 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_106_2 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_144_2 e_1_2_8_28_1 e_1_2_8_119_2 e_1_2_8_66_3 e_1_2_8_89_3 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_89_1 e_1_2_8_66_2 e_1_2_8_119_1 e_1_2_8_111_2 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_78_2 e_1_2_8_122_1 Govan J. (e_1_2_8_12_1) 2016 Biswas A. (e_1_2_8_88_1) 2012; 170 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_107_1 e_1_2_8_70_3 e_1_2_8_145_1 e_1_2_8_70_2 e_1_2_8_93_1 e_1_2_8_27_2 e_1_2_8_27_1 e_1_2_8_8_4 e_1_2_8_8_3 e_1_2_8_80_2 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_88_2 e_1_2_8_42_1 e_1_2_8_65_1 e_1_2_8_112_1 e_1_2_8_135_1 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_39_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_31_2 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_123_2 e_1_2_8_123_1 e_1_2_8_146_1 e_1_2_8_22_3 e_1_2_8_22_4 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_22_2 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_83_2 e_1_2_8_136_2 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_11_3 e_1_2_8_34_2 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_57_2 e_1_2_8_95_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_11_2 Dai Y. (e_1_2_8_66_1) 2022; 61 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_147_2 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_21_4 e_1_2_8_152_2 e_1_2_8_152_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_137_2 e_1_2_8_21_3 e_1_2_8_44_1 Tullius R. (e_1_2_8_120_1) 2015; 137 e_1_2_8_137_1 e_1_2_8_114_2 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_18_3 e_1_2_8_79_3 e_1_2_8_56_2 e_1_2_8_79_2 e_1_2_8_79_1 e_1_2_8_18_4 e_1_2_8_94_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_71_3 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_2 e_1_2_8_71_1 e_1_2_8_125_1 Cen M. (e_1_2_8_89_2) 2022; 34 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_24_2 Nguyen H. Q. (e_1_2_8_87_1) 2022; 16 e_1_2_8_3_1 e_1_2_8_3_3 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_3_2 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_36_2 Duan Y. (e_1_2_8_26_1) 2022 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_149_2 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_154_2 e_1_2_8_154_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_4_4 e_1_2_8_4_3 e_1_2_8_4_6 e_1_2_8_4_5 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_2 e_1_2_8_84_1 e_1_2_8_154_4 e_1_2_8_61_1 e_1_2_8_154_3 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_35_3 e_1_2_8_58_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_104_2 e_1_2_8_127_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 115 start-page: 7914 year: 2011 publication-title: J. Phys. Chem. C – volume: 36 56 33 34 start-page: 914 1359 289 year: 2007 2023 2021 2004 end-page: 357 publication-title: Chem. Soc. Rev. Acc. Chem. Res. Adv. Mater. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 18 year: 2022 publication-title: Small – volume: 11 7 start-page: 1459 6321 year: 2012 2013 publication-title: J. Electromagn. Waves Appl. ACS Nano – volume: 95 year: 2005 publication-title: Phys. Rev. Lett. – volume: 14 year: 2018 publication-title: Small – volume: 32 21 start-page: 40 4780 year: 2017 2021 publication-title: J Photoch. Photobio. C Nano Lett. – volume: 112 start-page: 5818 year: 2012 publication-title: Chem. Rev. – volume: 58 start-page: 3913 year: 2019 publication-title: Angew. Chem., Int. Ed. – year: 2023 publication-title: Nano Res. – volume: 37 year: 2019 publication-title: Part. Part. Syst. Charact. – volume: 15 start-page: 6574 year: 2022 publication-title: Nano Res. – volume: 9 8 start-page: 499 year: 2022 2023 publication-title: Adv. Mater. Interfaces Nanoscale Horiz. – volume: 119 year: 2019 publication-title: Chem. Rev. – volume: 7 start-page: 2682 year: 2020 publication-title: ACS Photonics – volume: 14 86 50 74 start-page: 81 1 8400 101 year: 2023 1986 2021 2009 publication-title: Nat. Commun. Chem. Rev. Chem. Soc. Rev. Chem. Biol. Drug Des. – year: 2022 publication-title: Adv. Mater. – volume: 16 14 start-page: 3783 year: 2020 2023 publication-title: Small Nat. Commun. – volume: 3 6 start-page: 381 year: 2016 2011 publication-title: Nano Today – volume: 12 start-page: 3283 year: 2012 publication-title: Nano Lett. – volume: 21 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 15 start-page: 461 year: 2016 publication-title: Nat. Mater. – volume: 9 year: 2020 publication-title: Adv. Opt. Mater. – volume: 6 start-page: 3241 year: 2019 publication-title: ACS Photonics – volume: 138 28 30 start-page: 306 5907 year: 2015 2016 2018 publication-title: J. Phys. Chem. C Adv. Mater. Adv. Mater. – volume: 42 117 3 start-page: 7028 8041 1374 year: 2013 2017 2011 publication-title: Chem. Soc. Rev. Chem. Rev. Nanoscale – volume: 17 start-page: 1427 year: 2023 publication-title: ACS Nano – volume: 11 year: 2019 publication-title: Nanoscale – volume: 7 114 start-page: 3259 year: 2023 2015 publication-title: Mater. Chem. Front. Phys. Rev. Lett. – volume: 135 start-page: 9659 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 5718 year: 2022 publication-title: Nat. Commun. – volume: 187 start-page: 676 year: 2020 publication-title: Mikrochim Acta – volume: 556 start-page: 360 year: 2018 publication-title: Nature – volume: 50 38 5 start-page: 3738 757 year: 2021 2009 2017 publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Adv. Opt. Mater. – volume: 122 123 start-page: 5411 3904 year: 2022 2021 publication-title: Chem. Rev. Chem. Rev. – volume: 365 start-page: 1475 year: 2019 publication-title: Science – volume: 17 start-page: 9850 year: 2023 publication-title: ACS Nano – volume: 12 24 start-page: 2974 year: 2021 2022 publication-title: Nat. Commun. New J. Phys. – volume: 29 1 10 start-page: 1189 4293 year: 2017 2014 2014 publication-title: Adv. Mater. ACS Photonics Small – volume: 13 8 start-page: 595 1929 year: 2022 2008 publication-title: Chem. Sci. Nano Lett. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 57 57 start-page: 3211 year: 2018 2021 publication-title: Angew. Chem., Int. Ed. Chem. Commun. – volume: 19 13 start-page: 8934 8659 year: 2019 2019 publication-title: Nano Lett. ACS Nano – year: 2023 publication-title: Sci. China Chem. – volume: 14 13 start-page: 7152 year: 2020 2021 publication-title: ACS Nano ACS Appl. Mater. Interfaces – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – volume: 15 year: 2023 publication-title: Nanoscale – volume: 145 start-page: 7495 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 1663 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 6585 year: 2022 publication-title: ACS Appl. Nano Mater. – volume: 1 start-page: 1231 year: 2014 publication-title: ACS Photonics – volume: 1 8 start-page: 10 94 year: 2013 2022 publication-title: Adv. Opt. Mater. Magnetochemistry – volume: 15 35 start-page: 461 year: 2016 2022 publication-title: Nat. Mater. Adv. Mater. – volume: 1 start-page: 1320 year: 2023 publication-title: ACS Appl. Opt. Mater. – volume: 13 35 year: 2017 2022 2021 publication-title: Small Adv. Mater. Adv. Funct. Mater. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 52 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2017 publication-title: Small – volume: 18 start-page: 302 year: 2017 publication-title: Nano Lett. – volume: 134 25 start-page: 850 year: 2012 2015 publication-title: J. Am. Chem. Soc. Adv. Funct. Mater. – volume: 21 year: 2011 publication-title: J. Mater. Chem. C – volume: 245 start-page: 691 year: 2019 publication-title: Appl. Catal. B – volume: 16 94 start-page: 5183 588 year: 2016 2021 publication-title: Nano Lett. Anal. Chem. – volume: 23 start-page: 4384 year: 2023 publication-title: Nano Lett. – volume: 5 35 start-page: 820 5689 year: 2011 2023 publication-title: ACS Nano Chem. Mater. – volume: 137 29 start-page: 8380 year: 2015 2021 publication-title: J. Phys. Chem. C Opt. Express – volume: 14 34 6 start-page: 3737 year: 2022 2022 2014 publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Nanoscale – volume: 144 start-page: 9707 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 24 10 start-page: 2242 6575 year: 2016 2004 publication-title: Opt. Express Chem. ‐ Eur. J. – volume: 12 start-page: 802 year: 2013 publication-title: Nat. Mater. – volume: 108 98 1 start-page: 5539 2391 year: 1986 1998 2009 publication-title: J. Am. Chem. Soc. Chem. Rev. – volume: 118 5 27 32 90 91 start-page: 783 5610 856 year: 2021 2010 2015 2007 2003 2003 publication-title: Appl. Phys. Lett. Nat. Nanotechnol. Adv. Mater. Opt. Lett. Phys. Rev. Lett. Phys. Rev. Lett. – volume: 16 116 start-page: 1089 year: 2022 2019 publication-title: ACS Nano Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 5792 year: 2020 publication-title: Nano Lett. – volume: 32 9 14 start-page: 81 year: 2020 2021 2023 publication-title: Adv. Mater. Adv. Opt. Mater. Nat. Commun. – volume: 39 start-page: 642 year: 2023 publication-title: Chem. Res. Chin. Univ. – volume: 13 start-page: 3145 year: 2013 publication-title: Nano Lett. – volume: 5 28 start-page: 141 year: 2018 2016 publication-title: Mater. Horiz. Adv. Mater. – volume: 1 start-page: 491 year: 2023 publication-title: ACS Appl. Opt. Mater. – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 139 start-page: 6070 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 16 year: 2020 publication-title: Small – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 15 start-page: 2292 year: 2020 publication-title: ACS Nano – volume: 9 start-page: 4 year: 2020 publication-title: Light Sci. Appl. – volume: 10 year: 2016 publication-title: ACS Nano – volume: 7 18 57 9 start-page: 591 451 year: 2015 2022 2018 2015 publication-title: Nat. Chem. Small Angew. Chem., Int. Ed. Nano Res. – volume: 30 14 start-page: 7454 year: 2020 2020 publication-title: Adv. Funct. Mater. ACS Nano – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 7289 year: 2022 publication-title: Nat. Commun. – volume: 34 year: 2023 publication-title: Adv. Mater. – volume: 14 10 142 33 start-page: 1067 7126 year: 2023 2019 2020 2023 publication-title: Nat. Commun. J. Phys. Chem. Lett. J. Am. Chem. Soc. Adv. Funct. Mater. – volume: 122 5 27 start-page: 34 year: 2022 2017 2016 publication-title: Chem. Rev. Adv. Opt. Mater. Opt Photonics News – volume: 11 start-page: 2046 year: 2020 publication-title: Nat. Commun. – volume: 25 3 3 10 start-page: 2517 186 1374 year: 2013 2017 2022 2010 publication-title: Adv. Mater. Sci. Adv. Adv. Mater. Nano Lett. – volume: 10 start-page: 4826 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 1857 year: 2021 publication-title: Polym. Chem. – volume: 35 year: 2022 publication-title: Adv. Mater. – volume: 84 start-page: 7330 year: 2012 publication-title: Anal. Chem. – volume: 16 start-page: 4887 year: 2016 publication-title: Nano Lett. – volume: 52 start-page: 2059 year: 2016 publication-title: Chem. Commun. – volume: 89 526 start-page: 9781 year: 2017 2020 publication-title: Anal. Chem. Appl. Surf. Sci. – volume: 17 year: 2023 publication-title: ACS Nano – volume: 14 29 141 601 start-page: 66 366 year: 2015 2019 2019 2022 publication-title: Nat. Mater. Adv. Funct. Mater. J. Am. Chem. Soc. Nature – volume: 13 2 start-page: 5681 year: 2019 2019 publication-title: Laser Photonics Rev. ACS Appl. Nano Mater. – volume: 11 year: 2023 publication-title: Adv. Opt. Mater. – volume: 22 111 start-page: 5022 102 year: 2022 2018 publication-title: Nano Lett. Biosens. Bioelectron. – volume: 2 start-page: 2702 year: 2014 publication-title: J. Mater. Chem. C – volume: 371 start-page: 1368 year: 2021 publication-title: Science – volume: 241 start-page: 386 year: 2017 publication-title: Electrochim. Acta – volume: 14 start-page: 6799 year: 2014 publication-title: Nano Lett. – volume: 118 start-page: 3100 year: 2018 publication-title: Chem. Rev. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 15 year: 2021 publication-title: ACS Nano – volume: 21 35 year: 2021 2023 publication-title: Nano Lett. Adv. Mater. – volume: 11 372 start-page: 1588 729 year: 2020 2021 publication-title: Nat. Commun. Science – volume: 13 22 start-page: 5277 8181 year: 2013 2022 publication-title: Nano Lett. Nano Lett. – volume: 37 8 start-page: 1792 7559 year: 2008 2014 publication-title: Chem. Soc. Rev. ACS Nano – volume: 368 start-page: 1472 year: 2020 publication-title: Science – volume: 528 6 start-page: 677 9457 year: 2016 2014 publication-title: Ann. Phys. Nanoscale – volume: 16 16 start-page: 148 year: 2022 2021 publication-title: ACS Nano ACS Nano – volume: 8 start-page: 1027 year: 2018 publication-title: Nanomaterials – volume: 11 14 22 start-page: 3806 4111 3784 year: 2017 2020 2012 publication-title: ACS Nano ACS Nano Adv. Funct. Mater. – volume: 17 start-page: 5548 year: 2023 publication-title: ACS Nano – volume: 18 start-page: 3209 year: 2018 publication-title: Nano Lett. – volume: 44 start-page: 2940 year: 2015 publication-title: Chem. Soc. Rev. – volume: 1239 56 start-page: 1283 year: 2023 2017 publication-title: Anal. Chim. Acta Angew. Chem., Int. Ed. – volume: 125 14 start-page: 716 year: 2020 2022 publication-title: J. Phys. Chem. C ACS Appl. Mater. Interfaces – volume: 142 start-page: 4193 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 20 4 start-page: 8453 3447 year: 2020 2022 publication-title: Nano Lett. CCS Chem. – volume: 466 start-page: 91 year: 2010 publication-title: Nature – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 52 180 start-page: 5432 year: 2016 2021 publication-title: Chem. Commun. Biosens. Bioelectron. – volume: 120 start-page: 2123 year: 2020 publication-title: Chem. Rev. – volume: 38 42 17 425 80 start-page: 3418 2930 347 487 3568 year: 1999 2013 1998 2003 1983 publication-title: Angew. Chem., Int. Ed. Chem. Soc. Rev. Chem Nature Proc. Natl. Acad. Sci. USA – volume: 483 start-page: 311 year: 2012 publication-title: Nature – volume: 170 19 start-page: 775 issue: 2 year: 2012 2019 publication-title: Adv. Colloid Interface Sci. Nano Lett. – volume: 32 year: 2019 publication-title: Adv. Mater. – volume: 37 year: 2020 publication-title: Part. Part. Syst. Charact. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 7427 year: 2019 publication-title: Nano Lett. – volume: 12 12 start-page: 5902 551 year: 2016 2020 publication-title: Small Nat. Chem. – volume: 61 47 9 start-page: 4677 year: 2022 2018 2015 publication-title: Angew. Chem., Int. Ed. Chem. Soc. Rev. ACS Nano – volume: 429 start-page: 277 year: 2004 publication-title: Nature – ident: e_1_2_8_106_1 doi: 10.1021/acs.nanolett.1c03503 – ident: e_1_2_8_31_2 doi: 10.1021/nn5037703 – ident: e_1_2_8_114_1 doi: 10.1021/acs.nanolett.6b02154 – ident: e_1_2_8_141_1 doi: 10.1038/nmat4525 – ident: e_1_2_8_24_2 doi: 10.1073/pnas.1821923116 – ident: e_1_2_8_35_2 doi: 10.1002/adom.202100907 – ident: e_1_2_8_55_1 doi: 10.1039/C7MH00966F – ident: e_1_2_8_134_1 doi: 10.1039/C5CS00050E – ident: e_1_2_8_144_2 doi: 10.1002/adma.202209539 – ident: e_1_2_8_2_1 doi: 10.1163/156939397X00549 – ident: e_1_2_8_57_1 doi: 10.1002/andp.201600103 – ident: e_1_2_8_48_1 doi: 10.1038/s41467-022-35016-8 – ident: e_1_2_8_153_1 doi: 10.1021/acsnano.3c04337 – ident: e_1_2_8_40_1 doi: 10.1038/nmat4125 – ident: e_1_2_8_127_1 doi: 10.1002/adma.202005506 – ident: e_1_2_8_150_1 doi: 10.1038/s41467-022-33443-1 – ident: e_1_2_8_131_1 doi: 10.1021/jacs.2c01214 – ident: e_1_2_8_117_1 doi: 10.1021/acs.jpcc.5b06904 – ident: e_1_2_8_74_1 doi: 10.1021/jacs.3c00503 – ident: e_1_2_8_79_1 doi: 10.1021/acsnano.6b08723 – ident: e_1_2_8_106_2 doi: 10.1002/adma.202209810 – ident: e_1_2_8_22_4 doi: 10.1016/S0168-1273(04)34003-1 – ident: e_1_2_8_123_2 doi: 10.1039/D3NH00008G – volume: 34 year: 2022 ident: e_1_2_8_89_2 publication-title: Adv. Mater. – ident: e_1_2_8_51_1 doi: 10.1021/acsnano.0c08274 – ident: e_1_2_8_122_1 doi: 10.1002/smll.202104301 – volume: 138 start-page: 306 year: 2015 ident: e_1_2_8_70_1 publication-title: J. Phys. Chem. C – ident: e_1_2_8_66_2 doi: 10.1039/C7CS00894E – ident: e_1_2_8_24_1 doi: 10.1021/acsnano.1c08824 – ident: e_1_2_8_124_1 doi: 10.1021/ac300437v – ident: e_1_2_8_11_2 doi: 10.1002/adma.202107917 – ident: e_1_2_8_136_2 doi: 10.3390/magnetochemistry8090094 – volume: 137 start-page: 8380 year: 2015 ident: e_1_2_8_120_1 publication-title: J. Phys. Chem. C – ident: e_1_2_8_40_3 doi: 10.1021/jacs.9b00700 – ident: e_1_2_8_56_2 doi: 10.1021/acs.nanolett.2c02661 – ident: e_1_2_8_111_2 doi: 10.1021/acsami.1c23505 – volume: 17 start-page: 347 year: 1998 ident: e_1_2_8_1_3 publication-title: Chem – ident: e_1_2_8_53_1 doi: 10.1021/ja207848e – ident: e_1_2_8_152_1 doi: 10.1016/j.jphotochemrev.2017.05.004 – ident: e_1_2_8_66_3 doi: 10.1021/acsnano.5b04552 – ident: e_1_2_8_140_1 doi: 10.1021/acsnano.2c10955 – ident: e_1_2_8_92_1 doi: 10.1021/jacs.7b02523 – ident: e_1_2_8_8_2 doi: 10.1126/sciadv.1602735 – ident: e_1_2_8_128_1 doi: 10.1126/science.abd8576 – ident: e_1_2_8_18_1 doi: 10.1038/nchem.2280 – ident: e_1_2_8_137_1 doi: 10.1021/acs.chemrev.1c00370 – ident: e_1_2_8_64_1 doi: 10.1021/acsnano.6b06233 – ident: e_1_2_8_44_2 doi: 10.1016/j.apsusc.2020.146711 – ident: e_1_2_8_139_1 doi: 10.1007/s12274‐023‐5985‐3 – ident: e_1_2_8_4_2 doi: 10.1038/nnano.2010.209 – ident: e_1_2_8_154_4 doi: 10.1002/adfm.202215051 – ident: e_1_2_8_71_2 doi: 10.1021/ph5002632 – ident: e_1_2_8_50_1 doi: 10.1002/ppsc.201900338 – ident: e_1_2_8_9_2 doi: 10.1039/b800404h – ident: e_1_2_8_123_1 doi: 10.1002/admi.202200369 – ident: e_1_2_8_38_1 doi: 10.1021/jacs.1c10526 – ident: e_1_2_8_145_1 doi: 10.1002/adom.202202104 – ident: e_1_2_8_55_2 doi: 10.1002/adma.201600697 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201205178 – ident: e_1_2_8_149_2 doi: 10.1126/science.abf9645 – ident: e_1_2_8_62_1 doi: 10.1002/adma.201905758 – ident: e_1_2_8_30_2 doi: 10.1002/adom.201700182 – ident: e_1_2_8_31_1 doi: 10.1039/b711486a – ident: e_1_2_8_18_4 doi: 10.1007/s12274-015-0926-4 – ident: e_1_2_8_42_1 doi: 10.1021/ja312327m – ident: e_1_2_8_54_1 doi: 10.1021/acsnano.1c05489 – ident: e_1_2_8_16_1 doi: 10.1021/nn102969p – ident: e_1_2_8_109_1 doi: 10.1002/adom.202202104 – ident: e_1_2_8_133_2 doi: 10.1016/j.bios.2018.04.007 – ident: e_1_2_8_20_1 doi: 10.1021/nl401107g – ident: e_1_2_8_103_1 doi: 10.1002/advs.202104598 – ident: e_1_2_8_7_3 doi: 10.1039/c0nr00903b – ident: e_1_2_8_70_2 doi: 10.1002/adma.201601261 – ident: e_1_2_8_104_2 doi: 10.1002/anie.201607563 – ident: e_1_2_8_18_3 doi: 10.1002/anie.201810693 – ident: e_1_2_8_142_1 doi: 10.1021/acs.chemrev.9b00443 – ident: e_1_2_8_8_4 doi: 10.1021/nl100010v – ident: e_1_2_8_15_1 doi: 10.1002/smll.201906048 – ident: e_1_2_8_52_1 doi: 10.1002/adom.202001274 – ident: e_1_2_8_102_1 doi: 10.1039/C4TC00040D – ident: e_1_2_8_2_2 doi: 10.1021/nn402370x – ident: e_1_2_8_21_2 doi: 10.1021/cr00071a001 – ident: e_1_2_8_4_4 doi: 10.1364/OL.32.000856 – ident: e_1_2_8_8_3 doi: 10.1039/D1MA00915J – ident: e_1_2_8_58_1 doi: 10.1002/smll.201601505 – ident: e_1_2_8_21_4 doi: 10.1111/j.1747-0285.2009.00847.x – ident: e_1_2_8_108_1 doi: 10.1016/j.electacta.2017.04.155 – ident: e_1_2_8_71_1 doi: 10.1002/adma.201606864 – ident: e_1_2_8_30_1 doi: 10.1021/acs.chemrev.2c00078 – ident: e_1_2_8_83_2 doi: 10.1016/j.bios.2021.113109 – ident: e_1_2_8_3_2 doi: 10.1021/cr970096o – ident: e_1_2_8_44_1 doi: 10.1021/acs.analchem.7b01723 – ident: e_1_2_8_80_2 doi: 10.31635/ccschem.022.202101596 – ident: e_1_2_8_34_1 doi: 10.1039/D3QM00200D – ident: e_1_2_8_65_1 doi: 10.1021/acsaom.3c00147 – volume: 170 issue: 2 year: 2012 ident: e_1_2_8_88_1 publication-title: Adv. Colloid Interface Sci. – ident: e_1_2_8_4_1 doi: 10.1063/5.0050797 – ident: e_1_2_8_67_1 doi: 10.1021/acsanm.2c00657 – ident: e_1_2_8_72_1 doi: 10.1002/anie.201814282 – ident: e_1_2_8_94_1 doi: 10.1021/nl502237f – ident: e_1_2_8_81_1 doi: 10.1038/nature02530 – ident: e_1_2_8_88_2 doi: 10.1021/acs.nanolett.8b03850 – ident: e_1_2_8_1_2 doi: 10.1039/C2CS35332F – ident: e_1_2_8_37_2 doi: 10.1002/adfm.201403161 – ident: e_1_2_8_18_2 doi: 10.1002/smll.202107657 – ident: e_1_2_8_10_1 doi: 10.1038/s41586-018-0034-1 – ident: e_1_2_8_34_2 doi: 10.1103/PhysRevLett.114.203003 – ident: e_1_2_8_104_1 doi: 10.1016/j.aca.2022.340740 – ident: e_1_2_8_95_1 doi: 10.1021/ph500305z – volume: 61 year: 2022 ident: e_1_2_8_66_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_8_60_1 doi: 10.1002/smll.201701112 – ident: e_1_2_8_59_1 doi: 10.1002/smll.202001473 – ident: e_1_2_8_129_1 doi: 10.1021/acsami.8b10594 – ident: e_1_2_8_35_3 doi: 10.1038/s41467-022-35699-z – ident: e_1_2_8_73_1 doi: 10.1007/s11426‐023‐1685‐3 – ident: e_1_2_8_9_1 doi: 10.1039/C9CS00765B – ident: e_1_2_8_133_1 doi: 10.1021/acs.nanolett.2c01953 – ident: e_1_2_8_41_1 doi: 10.1038/nmat3685 – ident: e_1_2_8_93_1 doi: 10.3390/nano8121027 – ident: e_1_2_8_3_1 doi: 10.1021/ja00278a029 – ident: e_1_2_8_14_2 doi: 10.1021/acsnano.0c03127 – ident: e_1_2_8_154_1 doi: 10.1038/s41467-023-36703-w – ident: e_1_2_8_98_1 doi: 10.1038/s41467-019-12134-4 – ident: e_1_2_8_76_1 doi: 10.1021/acsami.6b13280 – ident: e_1_2_8_125_1 doi: 10.1021/acs.chemrev.9b00234 – ident: e_1_2_8_57_2 doi: 10.1039/C4NR00403E – ident: e_1_2_8_110_1 doi: 10.1021/acs.nanolett.7b04139 – ident: e_1_2_8_37_1 doi: 10.1021/ja3066336 – ident: e_1_2_8_121_1 doi: 10.1007/s00604-020-04646-4 – ident: e_1_2_8_89_3 doi: 10.1039/c3nr05889a – ident: e_1_2_8_79_3 doi: 10.1002/adfm.201200588 – ident: e_1_2_8_12_2 doi: 10.1016/j.nantod.2011.06.003 – ident: e_1_2_8_39_1 doi: 10.1021/acsnano.0c02026 – ident: e_1_2_8_9_3 doi: 10.1002/adom.201700040 – ident: e_1_2_8_78_1 doi: 10.1039/D1SC03327A – ident: e_1_2_8_1_5 doi: 10.1073/pnas.80.12.3568 – ident: e_1_2_8_138_1 doi: 10.1021/cr300068p – ident: e_1_2_8_136_1 doi: 10.1002/adom.201200011 – ident: e_1_2_8_25_1 doi: 10.1021/acsnano.1c04992 – ident: e_1_2_8_107_1 doi: 10.1002/anie.202210730 – ident: e_1_2_8_19_1 doi: 10.1021/acsnano.3c02798 – volume: 29 year: 2019 ident: e_1_2_8_40_2 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_68_1 doi: 10.1021/acsami.1c19404 – ident: e_1_2_8_43_1 doi: 10.1039/C9NR07421J – ident: e_1_2_8_114_2 doi: 10.1021/acs.analchem.1c04981 – ident: e_1_2_8_4_5 doi: 10.1103/PhysRevLett.90.107404 – ident: e_1_2_8_7_2 doi: 10.1021/acs.chemrev.6b00755 – ident: e_1_2_8_119_1 doi: 10.1021/acsnano.2c08145 – ident: e_1_2_8_22_3 doi: 10.1002/adma.202005760 – ident: e_1_2_8_89_1 doi: 10.1021/acsami.2c13267 – ident: e_1_2_8_1_1 doi: 10.1002/(SICI)1521-3773(19991203)38:23<3418::AID-ANIE3418>3.0.CO;2-V – ident: e_1_2_8_13_1 doi: 10.1021/jacs.9b11124 – ident: e_1_2_8_4_6 doi: 10.1103/PhysRevLett.91.247404 – ident: e_1_2_8_77_1 doi: 10.1021/acsnano.1c05819 – ident: e_1_2_8_113_1 doi: 10.1021/acsphotonics.9b01180 – ident: e_1_2_8_151_1 doi: 10.1126/science.aax5415 – ident: e_1_2_8_118_1 doi: 10.1038/ncomms13117 – ident: e_1_2_8_130_1 doi: 10.1002/anie.202206520 – volume-title: Nanoscience year: 2016 ident: e_1_2_8_12_1 – ident: e_1_2_8_39_2 doi: 10.1021/acsami.1c14047 – ident: e_1_2_8_119_2 doi: 10.1021/acsnano.1c04693 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.202000670 – ident: e_1_2_8_63_1 doi: 10.1039/c1jm12345a – ident: e_1_2_8_1_4 doi: 10.1038/nature02020 – ident: e_1_2_8_27_1 doi: 10.1021/acs.nanolett.9b03853 – ident: e_1_2_8_28_1 doi: 10.1021/acsphotonics.0c00304 – ident: e_1_2_8_6_1 doi: 10.1364/OE.24.002242 – ident: e_1_2_8_45_1 doi: 10.1039/C5CC08505E – ident: e_1_2_8_132_1 doi: 10.1021/acs.nanolett.3c00655 – ident: e_1_2_8_29_1 doi: 10.1002/adma.202107325 – ident: e_1_2_8_70_3 doi: 10.1002/adma.201804241 – ident: e_1_2_8_84_1 doi: 10.1002/smll.202003005 – ident: e_1_2_8_154_3 doi: 10.1021/jacs.0c03899 – ident: e_1_2_8_96_1 doi: 10.1021/acs.nanolett.6b01404 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201900110 – ident: e_1_2_8_16_2 doi: 10.1021/acs.chemmater.3c01267 – ident: e_1_2_8_22_2 doi: 10.1021/acs.accounts.2c00756 – ident: e_1_2_8_137_2 doi: 10.1021/acs.chemrev.1c00860 – ident: e_1_2_8_3_3 doi: 10.1002/9783527625345.ch1 – ident: e_1_2_8_46_1 doi: 10.1002/adfm.201802372 – ident: e_1_2_8_58_2 doi: 10.1038/s41557-020-0453-0 – ident: e_1_2_8_49_1 doi: 10.1002/adma.202102337 – ident: e_1_2_8_83_1 doi: 10.1039/C6CC00320F – ident: e_1_2_8_147_1 doi: 10.1038/s41467-021-23087-y – ident: e_1_2_8_56_1 doi: 10.1021/nl402782d – ident: e_1_2_8_147_2 doi: 10.1088/1367-2630/ac71be – ident: e_1_2_8_143_1 doi: 10.1038/nature09150 – ident: e_1_2_8_75_1 doi: 10.1002/smll.201905734 – ident: e_1_2_8_97_1 doi: 10.1016/j.apcatb.2019.01.038 – ident: e_1_2_8_17_1 doi: 10.1021/acs.nanolett.0c01659 – ident: e_1_2_8_85_1 doi: 10.1007/s12274-022-4212-y – ident: e_1_2_8_120_2 doi: 10.1364/OE.421839 – ident: e_1_2_8_5_1 doi: 10.1103/PhysRevLett.95.227401 – ident: e_1_2_8_71_3 doi: 10.1002/smll.201401641 – ident: e_1_2_8_21_3 doi: 10.1039/D0CS00558D – ident: e_1_2_8_111_1 doi: 10.1021/acs.jpcc.0c08057 – ident: e_1_2_8_154_2 doi: 10.1021/acs.jpclett.9b02929 – ident: e_1_2_8_135_1 doi: 10.1038/s41377-019-0241-z – ident: e_1_2_8_144_1 doi: 10.1038/nmat4525 – ident: e_1_2_8_6_2 doi: 10.1002/chem.200400869 – ident: e_1_2_8_23_1 doi: 10.1002/chem.201501178 – ident: e_1_2_8_36_1 doi: 10.1002/lpor.201800276 – ident: e_1_2_8_115_1 doi: 10.1021/acsaom.2c00130 – ident: e_1_2_8_78_2 doi: 10.1021/nl080664n – ident: e_1_2_8_36_2 doi: 10.1021/acsanm.9b01198 – ident: e_1_2_8_47_1 doi: 10.1126/science.aba0980 – ident: e_1_2_8_21_1 doi: 10.1038/s41467-022-35699-z – ident: e_1_2_8_40_4 doi: 10.1038/s41586-021-04243-2 – ident: e_1_2_8_101_1 doi: 10.1002/ppsc.202000008 – ident: e_1_2_8_30_3 doi: 10.1364/OPN.27.7.000034 – ident: e_1_2_8_105_1 doi: 10.1002/smll.201702990 – ident: e_1_2_8_91_1 doi: 10.1002/adma.202305429 – ident: e_1_2_8_69_1 doi: 10.1038/nature10889 – ident: e_1_2_8_99_1 doi: 10.1039/D3NR01371E – ident: e_1_2_8_149_1 doi: 10.1038/s41467-020-15388-5 – ident: e_1_2_8_152_2 doi: 10.1021/acs.nanolett.1c01322 – ident: e_1_2_8_82_1 doi: 10.1002/anie.201305389 – ident: e_1_2_8_116_1 doi: 10.1039/D0PY01558J – ident: e_1_2_8_4_3 doi: 10.1002/adma.201501816 – year: 2022 ident: e_1_2_8_26_1 publication-title: Adv. Mater. – ident: e_1_2_8_33_1 doi: 10.1021/nl3013715 – ident: e_1_2_8_7_1 doi: 10.1039/c3cs60139k – ident: e_1_2_8_61_1 doi: 10.1021/acs.nanolett.9b03117 – ident: e_1_2_8_146_1 doi: 10.1021/jp304907s – ident: e_1_2_8_80_1 doi: 10.1021/acs.nanolett.0c02013 – ident: e_1_2_8_90_1 doi: 10.1002/anie.201810693 – volume: 16 year: 2022 ident: e_1_2_8_87_1 publication-title: ACS Nano – ident: e_1_2_8_86_1 doi: 10.1021/acs.nanolett.8b00929 – ident: e_1_2_8_11_3 doi: 10.1002/adfm.202010329 – ident: e_1_2_8_112_1 doi: 10.1021/acsnano.2c10077 – ident: e_1_2_8_148_1 doi: 10.1038/s41467-020-15728-5 – ident: e_1_2_8_100_1 doi: 10.1007/s40242-023-3064-7 – ident: e_1_2_8_126_1 doi: 10.1021/acs.chemrev.7b00364 – ident: e_1_2_8_27_2 doi: 10.1021/acsnano.9b04046 – ident: e_1_2_8_32_1 doi: 10.1021/jp1121432 – ident: e_1_2_8_22_1 doi: 10.1039/b515476f – ident: e_1_2_8_11_1 doi: 10.1002/smll.201701883 – ident: e_1_2_8_79_2 doi: 10.1021/acsnano.9b08823 – ident: e_1_2_8_84_2 doi: 10.1038/s41467-023-39456-8 – ident: e_1_2_8_90_2 doi: 10.1039/D0CC07576K |
SSID | ssj0009606 |
Score | 2.5742333 |
SecondaryResourceType | review_article |
Snippet | Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2309033 |
SubjectTerms | chiral applications chiral sensing Chirality Nanomaterials Nanostructure Optical activity plasmonic hybrid nanostructures Plasmonics Synthesis synthetic methods |
Title | Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202309033 https://www.ncbi.nlm.nih.gov/pubmed/37944554 https://www.proquest.com/docview/2915855969 https://www.proquest.com/docview/2889245874 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6hPsHD-DkIFGQkJJ7SprHj2LxF3aoKqQhBJ_Utsh1boG1NtbYP21_POU7TlgkhwVuinBXHd2d_d7G_A_ggK57l1KqYc-ViVjEbC0-vLSvNnFDSZE0dstkXPr1gnxfZ4uAUf-CH6BJu3jOa-do7uNLr4Z40VFUNbxBCaJlQT_fpN2x5VPRtzx_l4XlDtkezWHImdqyNSTo8bn68Kt2DmsfItVl6Jo9B7ToddpxcDrYbPTB3v_E5_s9XPYGTFpeSIhjSU3hgl8_g0QFb4XP4Pv7x8wZlviLgvvaMumR66897EZyh68BDu8Xg_RMpSJuTI5uaFO0mA-Jb16smdU5mahMs_wXMJ-fz8TRuazLEhua-7BtTSZVba0bUYCSXaIcIATGD1tpT5yvjJFc6S0zqnDPUCCsQQOQpTzH8tSk9hd6yXtpXQCw3ibAIH_zx1kpTqbhSaCHcUVY5mkQQ71RSmpav3JfNuCoD03Ja-rEqu7GK4GMnvwpMHX-U7O80XLYeuy5TOcLIKZNcRvC-e4y-5n-gqKWttygjBIarmchZBC-DZXSvojixMcRmEaSNfv_Sh7I4mxXd3et_afQGHuI1C_mgPvRQz_YtIqSNftd4wS_aJAYC |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LbtQwFECvqrIAFrwfgQJGArFKm9qOYyOxiDpUU9qpEAxSd5Ht2AIBk6ozI1S-il_hj7iOk5QBISSkLlgmsZXEvk8nPhfgiapFXjCnUyG0T3nNXSoDXlvVhnuplc3bOmSTQzF-x18d5Udr8K3fCxP5EMOCW9CM1l4HBQ8L0ltn1FBdt-AgjKFVxvr61fvu9AtmbfMXeyOc4qeU7r6c7ozTrrBAalkRapdxndWFc3abWUxHMuPRzaHjM8YE_ru2Xglt8sxS771lVjqJXrCggmIO5wLqAI3-hVBFPND6R2_OgFUhH2jpfixPleCyx0RmdGv1cVfd4G-x7Wqo3Pq63avwvR-l-IvLx83lwmzar78AJP-nYbwGV7rAm5RRU67DmpvdgMs_4Rhvwtud9x9OsM1rzCg-B2QwGZ-GDW0EXVATQbvLEzd_TkrSLTqSRUPK7i8KEno3x-23ATLRi6jat2B6Hi91G9ZnzczdBeKEzaTD-Cjs360NU1pojSogPOO1Z1kCaS8Cle2A7KEuyKcqoqRpFaamGqYmgWdD--OIIvljy41eoqrOJM0rqrYxNcyVUAk8Hi6jMQlfiPTMNUtsIyXm47kseAJ3oiQOt2JouTkGnwnQVp7-8gxVOZqUw9G9f-n0CC6Op5OD6mDvcP8-XMLzPC5-bcA6zrl7gOHgwjxsNZBAdc6i-gPaMWJn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxQxFD6UCqIPrXenrRpB8WnaaZLJTAQfhq7L1rqlaIW-hSSToFR3lu4u0v4p_4o_yZO51VVEEPrg48yckEzOPZfvADyTpUgz5nQshPYxL7mL8wCvLUvDfa6lTes6ZONDMfrA35ykJyvwrbsL0-BD9AtuQTNqex0UfFr6nUvQUF3WuEEYQsuEdeWrD9z5V0zaZq_2B8jh55QOXx_vjeK2rkBsWRZKl3GdlJlzdpdZzEYS49HLod8zxgT4d229FNqkiaXee8ts7nJ0ghkVFFM4F5AO0OZf4wI7DlHYu0u8qpAO1OB-LI2l4HmHEpnQneXhLnvB30Lb5Ui5dnXDdfjeTVJzwuV0ezE32_biF_zI_2gWb8FaG3aTotGT27DiJnfg5k9gjHfh_d7HT2dIc4T5xJcAGExG5-E6G0EHVDUwu4szN3tJCtIuOZJ5RYr2DAUJratpvTNAxnreKPY9OL6Kn7oPq5Nq4h4CccImucPoKNzeLQ2TWmiNCiA846VnSQRxJwHKtnDsoSrIZ9UASVMVWKN61kTwoqefNkAkf6Tc6gRKtQZppqjcxcQwlUJG8LT_jKYk7A_piasWSJPnmI2necYjeNAIYt8VQ7vNMfSMgNbi9JcxqGIwLvqnjX9p9ASuHw2G6u3-4cEm3MDXvFn52oJVZLl7hLHg3Dyu9Y-AumJJ_QEp0mEW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Plasmonic+Hybrid+Nanostructures%3A+A+Gateway+to+Advanced+Chiroptical+Materials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tan%2C+Lili&rft.au=Fu%2C+Wenlong&rft.au=Gao%2C+Qi&rft.au=Wang%2C+Peng-Peng&rft.date=2024-01-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=36&rft.issue=3&rft.spage=e2309033&rft_id=info:doi/10.1002%2Fadma.202309033&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |