Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes
Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 10; pp. 3092 - 3096 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
04.03.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐scale design of Cu‐CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)‐preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid–electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal–electrolyte interphases towards practical applications of Li anodes prepared on CCs.
Get in touch with lithium: The generation of surface lithiophilicity on planar and 3D Cu hosts for Li metal anodes is reported. Enabled by a lattice matching of Cu(100) and Li(110), smooth deposition of Li thin films and the creation of ultra‐smooth ultra‐thin SEI on the Cu hosts is made possible. This allows a high utilization of not only the surface but also cavities of the Cu hosts. |
---|---|
AbstractList | Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin-film anodes prepared on current collectors (CCs) and Li-free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic-scale design of Cu-CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)-preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid-electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal-electrolyte interphases towards practical applications of Li anodes prepared on CCs. Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐scale design of Cu‐CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)‐preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid–electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal–electrolyte interphases towards practical applications of Li anodes prepared on CCs. Get in touch with lithium: The generation of surface lithiophilicity on planar and 3D Cu hosts for Li metal anodes is reported. Enabled by a lattice matching of Cu(100) and Li(110), smooth deposition of Li thin films and the creation of ultra‐smooth ultra‐thin SEI on the Cu hosts is made possible. This allows a high utilization of not only the surface but also cavities of the Cu hosts. Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin-film anodes prepared on current collectors (CCs) and Li-free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic-scale design of Cu-CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)-preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid-electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal-electrolyte interphases towards practical applications of Li anodes prepared on CCs.Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin-film anodes prepared on current collectors (CCs) and Li-free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic-scale design of Cu-CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)-preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid-electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal-electrolyte interphases towards practical applications of Li anodes prepared on CCs. |
Author | Tang, Shuai Gu, Yu Yan, Jia‐Wei Wu, De‐Yin Dong, Quan‐Feng Zheng, Ming‐Sen He, Jun‐Wu Zhang, Xia‐Guang Mao, Bing‐Wei Wang, Wei‐Wei Xu, Hong‐Yu |
Author_xml | – sequence: 1 givenname: Yu surname: Gu fullname: Gu, Yu organization: Xiamen University – sequence: 2 givenname: Hong‐Yu surname: Xu fullname: Xu, Hong‐Yu organization: Xiamen University – sequence: 3 givenname: Xia‐Guang surname: Zhang fullname: Zhang, Xia‐Guang organization: Xiamen University – sequence: 4 givenname: Wei‐Wei surname: Wang fullname: Wang, Wei‐Wei organization: Xiamen University – sequence: 5 givenname: Jun‐Wu surname: He fullname: He, Jun‐Wu organization: Xiamen University – sequence: 6 givenname: Shuai surname: Tang fullname: Tang, Shuai organization: Xiamen University – sequence: 7 givenname: Jia‐Wei surname: Yan fullname: Yan, Jia‐Wei organization: Xiamen University – sequence: 8 givenname: De‐Yin surname: Wu fullname: Wu, De‐Yin email: dywu@xmu.edu.cn organization: Xiamen University – sequence: 9 givenname: Ming‐Sen surname: Zheng fullname: Zheng, Ming‐Sen organization: Xiamen University – sequence: 10 givenname: Quan‐Feng surname: Dong fullname: Dong, Quan‐Feng organization: Xiamen University – sequence: 11 givenname: Bing‐Wei orcidid: 0000-0002-9015-0162 surname: Mao fullname: Mao, Bing‐Wei email: bwmao@xmu.edu.cn organization: Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30589160$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD-vHJElLuWwiydOHIfbatWylRY4tD1bjjNmXSXxYjtF5dfjdrsgVUKcPLKe59Vo3mNyMPoRCXkLbA6MFR_16HBeMJBQVAV_RY6gKmDG65of5LnkfFbLCg7JcYx3mZeSiTfkkLNKNiDYERnWLm2c325c7wy91AYTdnQ5nef0D_R6CjZ_xU905b5v6G3K1C-dnB-pt3TlY9ojVI9Z0_cuOYzU-kCfgqeBfsGke7oYfYfxlLy2uo949vyekNvLi5vlarb-9vlquVjPDK_zytBaXTBWN7ppdYcoWtO2wDRjDbMIRhetaGwHkqMtKmtKY0uBQlpgHCwv-Qk53-Vug_8xYUxqcNFg3-sR_RRVAQKYKAGajL5_gd75KYx5u0zJSkguJMvUu2dqagfs1Da4QYcHtT9kBsodYIKPMaBVxqWnS6WgXa-Aqce-1GNf6k9fWZu_0PbJ_xSanfDT9fjwH1otvl5d_HV_A9SlpsQ |
CitedBy_id | crossref_primary_10_26599_NRE_2023_9120048 crossref_primary_10_1007_s12274_022_5227_0 crossref_primary_10_1016_j_jallcom_2021_162389 crossref_primary_10_1016_j_ensm_2022_07_019 crossref_primary_10_1016_j_ensm_2022_12_043 crossref_primary_10_1016_j_mtphys_2023_101253 crossref_primary_10_1002_aenm_202203744 crossref_primary_10_1039_D1TA00419K crossref_primary_10_1038_s41467_022_31507_w crossref_primary_10_1021_acsenergylett_4c02403 crossref_primary_10_1021_acs_nanolett_3c02777 crossref_primary_10_1016_j_coelec_2020_100671 crossref_primary_10_1016_j_cej_2023_143084 crossref_primary_10_1016_j_ensm_2023_102916 crossref_primary_10_1007_s41918_023_00185_7 crossref_primary_10_1016_j_ensm_2020_02_030 crossref_primary_10_1149_1945_7111_ac53d0 crossref_primary_10_1002_adma_202004379 crossref_primary_10_1002_eom2_12264 crossref_primary_10_1038_s41467_023_39192_z crossref_primary_10_1016_j_ensm_2021_03_008 crossref_primary_10_1021_acsami_1c07624 crossref_primary_10_1002_smll_202404437 crossref_primary_10_1002_adfm_202103309 crossref_primary_10_1016_j_ensm_2020_07_004 crossref_primary_10_1039_D0NR03833D crossref_primary_10_1007_s12274_022_5066_z crossref_primary_10_1016_j_electacta_2024_144689 crossref_primary_10_1002_anie_202407064 crossref_primary_10_1039_D3EE02372A crossref_primary_10_1002_eom2_12269 crossref_primary_10_1021_acsnano_2c08684 crossref_primary_10_1021_acs_jpcc_3c03096 crossref_primary_10_1039_D2CS00606E crossref_primary_10_1039_D1TA05394A crossref_primary_10_1002_ente_202400374 crossref_primary_10_1002_adfm_202205304 crossref_primary_10_1021_acs_nanolett_3c02784 crossref_primary_10_1007_s12598_023_02477_9 crossref_primary_10_1016_j_ensm_2021_10_028 crossref_primary_10_1002_aenm_202302205 crossref_primary_10_1038_s41557_024_01689_5 crossref_primary_10_1007_s40195_020_01022_2 crossref_primary_10_1002_adfm_202008514 crossref_primary_10_1002_advs_202002144 crossref_primary_10_1016_j_cej_2025_160406 crossref_primary_10_1149_1945_7111_acc697 crossref_primary_10_1002_smll_202306829 crossref_primary_10_1007_s12274_024_6853_5 crossref_primary_10_1002_aenm_202203573 crossref_primary_10_1149_1945_7111_ac638c crossref_primary_10_1002_anie_201912217 crossref_primary_10_1063_5_0216220 crossref_primary_10_1002_smll_202205233 crossref_primary_10_1002_aenm_202002736 crossref_primary_10_1002_adma_201907079 crossref_primary_10_1177_09506608251318467 crossref_primary_10_1002_aenm_201901796 crossref_primary_10_1021_acsaem_2c00218 crossref_primary_10_1016_j_ensm_2022_12_016 crossref_primary_10_1021_acsenergylett_9b01987 crossref_primary_10_1039_D1TA02657G crossref_primary_10_1002_adma_202210130 crossref_primary_10_1021_acsami_9b17727 crossref_primary_10_1016_j_chempr_2020_07_014 crossref_primary_10_1002_admi_202000154 crossref_primary_10_1002_smll_202311393 crossref_primary_10_1021_acsami_2c08278 crossref_primary_10_1039_C9CS00883G crossref_primary_10_1002_adma_202204636 crossref_primary_10_1002_ange_202407064 crossref_primary_10_1016_j_cej_2020_124922 crossref_primary_10_1016_j_electacta_2022_140333 crossref_primary_10_1016_j_jcis_2022_10_025 crossref_primary_10_1149_1945_7111_ac5cf1 crossref_primary_10_1016_j_cej_2024_158547 crossref_primary_10_1002_smll_202004688 crossref_primary_10_1016_j_est_2024_113683 crossref_primary_10_1002_adfm_202006950 crossref_primary_10_1021_acsaem_1c01407 crossref_primary_10_1002_anie_202000162 crossref_primary_10_1002_celc_202001277 crossref_primary_10_1002_adfm_202315201 crossref_primary_10_1039_D2NR01097F crossref_primary_10_1002_adma_202403570 crossref_primary_10_1149_1945_7111_ac62c4 crossref_primary_10_1039_D4EE01766H crossref_primary_10_1149_2_0091908jes crossref_primary_10_1016_j_nanoen_2020_105507 crossref_primary_10_1002_aenm_202400564 crossref_primary_10_1016_j_electacta_2022_141011 crossref_primary_10_1002_smll_202205416 crossref_primary_10_1002_adma_202411757 crossref_primary_10_1039_D2TA04078F crossref_primary_10_1016_j_ensm_2020_01_025 crossref_primary_10_1002_adfm_202002522 crossref_primary_10_1002_ange_201912217 crossref_primary_10_6023_A22100413 crossref_primary_10_1039_D4EE05862C crossref_primary_10_3390_inorganics10010005 crossref_primary_10_1016_j_xcrp_2023_101324 crossref_primary_10_1016_j_ensm_2025_104200 crossref_primary_10_1021_acsami_3c00740 crossref_primary_10_1016_j_est_2024_113508 crossref_primary_10_1016_j_ensm_2022_09_006 crossref_primary_10_1021_acs_nanolett_4c03945 crossref_primary_10_1039_D2EE00617K crossref_primary_10_1021_acsami_0c17302 crossref_primary_10_1039_D2TA04974K crossref_primary_10_1016_j_ensm_2021_03_010 crossref_primary_10_1016_j_ensm_2021_01_012 crossref_primary_10_1002_sstr_202200114 crossref_primary_10_34133_2020_7163948 crossref_primary_10_1016_j_ensm_2021_01_014 crossref_primary_10_1016_j_pmatsci_2022_100996 crossref_primary_10_1149_1945_7111_abe089 crossref_primary_10_1039_D1FD00043H crossref_primary_10_1016_j_mtener_2021_100751 crossref_primary_10_1126_sciadv_abq6321 crossref_primary_10_1016_j_mtener_2021_100871 crossref_primary_10_1002_ange_202309247 crossref_primary_10_1002_smll_202306868 crossref_primary_10_1002_adfm_202009805 crossref_primary_10_1016_j_ensm_2022_08_046 crossref_primary_10_1002_eem2_12392 crossref_primary_10_1021_acsami_9b13174 crossref_primary_10_1016_j_electacta_2024_145154 crossref_primary_10_1016_j_mtnano_2020_100103 crossref_primary_10_1039_D0TA03929B crossref_primary_10_23919_IEN_2022_0029 crossref_primary_10_1002_adma_202415258 crossref_primary_10_1002_aenm_202103972 crossref_primary_10_1016_j_ensm_2025_104176 crossref_primary_10_1021_acssuschemeng_9b04085 crossref_primary_10_1039_C9TA08312J crossref_primary_10_1016_j_jmst_2020_10_017 crossref_primary_10_1016_j_est_2024_110880 crossref_primary_10_1002_smll_202303745 crossref_primary_10_1007_s12274_023_5795_7 crossref_primary_10_1093_nsr_nwac031 crossref_primary_10_1063_5_0165498 crossref_primary_10_1021_acssuschemeng_0c08572 crossref_primary_10_1002_ange_202000162 crossref_primary_10_1002_anie_202309247 |
Cites_doi | 10.1038/nenergy.2016.128 10.1002/ange.201808154 10.1021/ja312241y 10.1149/MA2018-02/5/309 10.1038/s41467-018-03466-8 10.1021/acsami.6b08775 10.1039/C3EE40795K 10.1021/jacs.7b01763 10.1016/j.electacta.2016.02.102 10.1002/ange.200802248 10.1002/adma.201802156 10.1039/C7EE02555F 10.1002/ange.201805456 10.1002/adma.201705830 10.1021/acsami.8b07362 10.1038/ncomms9058 10.1021/acs.chemrev.7b00115 10.1002/anie.201710806 10.1126/science.aap8787 10.1021/jacs.5b09385 10.1038/nenergy.2016.10 10.1038/nnano.2014.152 10.1002/aenm.201502151 10.1002/adfm.201602353 10.1038/nenergy.2016.114 10.1126/science.aam6014 10.1016/j.chempr.2017.01.003 10.1002/anie.201808154 10.1007/s12274-017-1596-1 10.1002/aenm.201800635 10.1002/celc.201800907 10.1002/anie.200802248 10.1002/anie.201805456 10.1016/j.ensm.2018.05.021 10.1073/pnas.1518188113 10.1038/nnano.2017.16 10.1002/ange.201710806 10.1002/aenm.201703404 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201812523 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 3096 |
ExternalDocumentID | 30589160 10_1002_anie_201812523 ANIE201812523 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2015CB251102; 2015CB932303; 2012CB932902 – fundername: National Natural Science Foundation of China funderid: 21533006; 21621091; U1805254 – fundername: National Natural Science Foundation of China grantid: U1805254 – fundername: National Natural Science Foundation of China grantid: 21533006 – fundername: National Natural Science Foundation of China grantid: U1305246 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2015CB251102 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2012CB932902 – fundername: National Natural Science Foundation of China grantid: 21621091 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2015CB932303 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3733-1bfa20079a9badee6bcbb10a0090fe1ca2b69fd183ef25fc4cf46e68f1031f343 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 22:49:48 EDT 2025 Fri Jul 25 10:46:44 EDT 2025 Mon Jul 21 05:58:19 EDT 2025 Tue Jul 01 02:26:40 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Wed Jan 22 16:25:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | lithiophilicity Li metal anodes solid-electrolyte interphase Li underpotential deposition Cu preference |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-1bfa20079a9badee6bcbb10a0090fe1ca2b69fd183ef25fc4cf46e68f1031f343 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9015-0162 |
PMID | 30589160 |
PQID | 2185683680 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2161064119 proquest_journals_2185683680 pubmed_primary_30589160 crossref_citationtrail_10_1002_anie_201812523 crossref_primary_10_1002_anie_201812523 wiley_primary_10_1002_anie_201812523_ANIE201812523 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 4, 2019 |
PublicationDateYYYYMMDD | 2019-03-04 |
PublicationDate_xml | – month: 03 year: 2019 text: March 4, 2019 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 6 2017; 2 2009 2009; 48 121 2017; 358 2017; 117 2017; 139 1978 2018; 6 2018; 9 2016; 6 2018; 8 2016; 1 2018; 359 2015; 137 2018 2018; 57 130 2017; 10 2017; 12 2016; 113 2013; 135 2018; 30 2014; 9 2018; 11 2014; 7 2018; 10 2016; 26 2016; 8 2018; 14 2016; 194 e_1_2_2_3_2 e_1_2_2_4_2 e_1_2_2_24_1 e_1_2_2_5_2 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_20_3 e_1_2_2_21_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_1_1 e_1_2_2_2_2 e_1_2_2_40_2 e_1_2_2_42_1 e_1_2_2_29_2 Kolb D. M. (e_1_2_2_41_1) 1978 e_1_2_2_43_1 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_9_1 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_44_1 e_1_2_2_26_2 e_1_2_2_27_1 e_1_2_2_25_2 e_1_2_2_36_2 e_1_2_2_12_2 e_1_2_2_13_1 e_1_2_2_37_2 e_1_2_2_10_3 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_31_1 e_1_2_2_17_3 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_35_1 e_1_2_2_14_2 |
References_xml | – volume: 8 start-page: 1800635 year: 2018 publication-title: Adv. Energy Mater. – volume: 359 start-page: 1513 year: 2018 end-page: 1516 publication-title: Science – volume: 135 start-page: 4450 year: 2013 end-page: 4456 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1339 year: 2018 publication-title: Nat. Commun. – volume: 6 start-page: 181 year: 2018 end-page: 188 publication-title: ChemElectroChem – volume: 26 start-page: 7094 year: 2016 end-page: 7102 publication-title: Adv. Funct. Mater. – volume: 30 start-page: 1802156 year: 2018 publication-title: Adv. Mater. – volume: 8 start-page: 1703404 year: 2018 publication-title: Adv. Energy Mater. – volume: 48 121 start-page: 60 62 year: 2009 2009 end-page: 103 108 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 26801 year: 2016 end-page: 26808 publication-title: ACS Appl. Mater. Interfaces – volume: 358 start-page: 506 year: 2017 end-page: 510 publication-title: Science – volume: 57 130 start-page: 1505 1521 year: 2018 2018 end-page: 1509 1525 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 10403 year: 2017 end-page: 10473 publication-title: Chem. Rev. – volume: 10 start-page: 4003 year: 2017 end-page: 4026 publication-title: Nano Res. – volume: 57 130 start-page: 13206 13390 year: 2018 2018 end-page: 13210 13394 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 9795 9943 year: 2018 2018 end-page: 9798 9946 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 16128 year: 2016 publication-title: Nat. Energy – volume: 7 start-page: 513 year: 2014 publication-title: Energy Environ. Sci. – volume: 6 start-page: 8058 year: 2015 publication-title: Nat. Commun. – volume: 1 start-page: 16114 year: 2016 publication-title: Nat. Energy – volume: 14 start-page: 345 year: 2018 end-page: 350 publication-title: Energy Storage Mater. – volume: 30 start-page: 1705830 year: 2018 publication-title: Adv. Mater. – volume: 113 start-page: 2862 year: 2016 end-page: 2867 publication-title: Proc. Natl. Acad. Sci. USA – volume: 137 start-page: 15209 year: 2015 end-page: 15216 publication-title: J. Am. Chem. Soc. – start-page: 125 year: 1978 – volume: 11 start-page: 527 year: 2018 end-page: 543 publication-title: Energy Environ. Sci. – volume: 194 start-page: 330 year: 2016 end-page: 337 publication-title: Electrochim. Acta – volume: 2 start-page: 258 year: 2017 end-page: 270 publication-title: Chem – volume: 9 start-page: 618 year: 2014 end-page: 623 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 27764 year: 2018 end-page: 27770 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 1502151 year: 2016 publication-title: Adv. Energy Mater. – volume: 1 start-page: 16010 year: 2016 publication-title: Nat. Energy – volume: 12 start-page: 194 year: 2017 end-page: 206 publication-title: Nat. Nanotechnol. – volume: 139 start-page: 5916 year: 2017 end-page: 5922 publication-title: J. Am. Chem. Soc. – ident: e_1_2_2_5_2 doi: 10.1038/nenergy.2016.128 – ident: e_1_2_2_17_3 doi: 10.1002/ange.201808154 – ident: e_1_2_2_23_1 doi: 10.1021/ja312241y – ident: e_1_2_2_1_1 – ident: e_1_2_2_44_1 doi: 10.1149/MA2018-02/5/309 – ident: e_1_2_2_32_1 – ident: e_1_2_2_14_2 doi: 10.1038/s41467-018-03466-8 – ident: e_1_2_2_21_2 doi: 10.1021/acsami.6b08775 – ident: e_1_2_2_4_2 doi: 10.1039/C3EE40795K – ident: e_1_2_2_27_1 – ident: e_1_2_2_30_2 doi: 10.1021/jacs.7b01763 – ident: e_1_2_2_35_1 – ident: e_1_2_2_26_2 doi: 10.1016/j.electacta.2016.02.102 – ident: e_1_2_2_43_2 doi: 10.1002/ange.200802248 – ident: e_1_2_2_31_1 doi: 10.1002/adma.201802156 – ident: e_1_2_2_8_2 doi: 10.1039/C7EE02555F – ident: e_1_2_2_10_3 doi: 10.1002/ange.201805456 – ident: e_1_2_2_40_2 doi: 10.1002/adma.201705830 – ident: e_1_2_2_39_2 doi: 10.1021/acsami.8b07362 – ident: e_1_2_2_28_2 doi: 10.1038/ncomms9058 – ident: e_1_2_2_7_2 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_2_20_2 doi: 10.1002/anie.201710806 – ident: e_1_2_2_11_2 doi: 10.1126/science.aap8787 – ident: e_1_2_2_12_2 doi: 10.1021/jacs.5b09385 – ident: e_1_2_2_38_2 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_2_19_2 doi: 10.1038/nnano.2014.152 – ident: e_1_2_2_22_1 doi: 10.1002/aenm.201502151 – ident: e_1_2_2_25_2 doi: 10.1002/adfm.201602353 – ident: e_1_2_2_18_1 – ident: e_1_2_2_3_2 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_2_42_1 doi: 10.1126/science.aam6014 – ident: e_1_2_2_16_2 doi: 10.1016/j.chempr.2017.01.003 – ident: e_1_2_2_17_2 doi: 10.1002/anie.201808154 – ident: e_1_2_2_34_2 doi: 10.1007/s12274-017-1596-1 – start-page: 125 volume-title: Advances in Electrochemistry and Electrochemical Engineering, Vol. 11 year: 1978 ident: e_1_2_2_41_1 – ident: e_1_2_2_29_2 doi: 10.1002/aenm.201800635 – ident: e_1_2_2_15_2 doi: 10.1002/celc.201800907 – ident: e_1_2_2_43_1 doi: 10.1002/anie.200802248 – ident: e_1_2_2_13_1 – ident: e_1_2_2_10_2 doi: 10.1002/anie.201805456 – ident: e_1_2_2_6_1 – ident: e_1_2_2_24_1 – ident: e_1_2_2_33_2 doi: 10.1016/j.ensm.2018.05.021 – ident: e_1_2_2_37_2 doi: 10.1073/pnas.1518188113 – ident: e_1_2_2_2_2 doi: 10.1038/nnano.2017.16 – ident: e_1_2_2_20_3 doi: 10.1002/ange.201710806 – ident: e_1_2_2_9_1 – ident: e_1_2_2_36_2 doi: 10.1002/aenm.201703404 |
SSID | ssj0028806 |
Score | 2.6175368 |
Snippet | Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current... Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin-film anodes prepared on current... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3092 |
SubjectTerms | Anodes Cavities Copper Cu preference Electrochemistry Electrolytes Hazards Holes Lattice matching Li metal anodes Li underpotential deposition lithiophilicity Lithium Nucleation solid–electrolyte interphase Surface matching Thin films |
Title | Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201812523 https://www.ncbi.nlm.nih.gov/pubmed/30589160 https://www.proquest.com/docview/2185683680 https://www.proquest.com/docview/2161064119 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCIJ6qLZNm229Lcsuq6gHdcFbSdIEF9dW3NaDv96ZvnQVEfTW0qSdJpnMl2TmG0IOYBXRRttjYTJty5MOckD6odWOhXKC0LhC4NbA1TUfDL2Le__-UxR_yQ_RbLihZhTzNSq4kJPTD9JQjMBG1yywULCYgkkYHbYQFd00_FEuDM4yvIgxC7PQ16yNtns6XX3aKn2DmtPItTA9_UUiaqFLj5PHkzyTJ-rtC5_jf_5qiSxUuJR2yoG0TGZ0skLmunU6uFXydDnKHkbpM27AKNoXCtB2TLv5EbzymN7mLwadu84oOo7QYTYaVwGeNDV0kE6yuggVCVQTrwWTKwXITIsX50_0SmcoQZLGerJGhv3eXXdgVbkaLMXa0LqONAK3PUMRShFrzaWS0rEFQDjbaEcJV_LQxDCBaOP6RnnKeFzzwGCaCcM8tk5mkzTRm4T67dAVeL7JmPEUA8yijA6YsDWsvZgftohV91WkKiJzzKcxjkoKZjfCRoyaRmyRw6b8c0nh8WPJnbrro0qVJxFgIJ8HjAd2i-w3j6Hx8WRFJDrNsQygUO45Dgi3UQ6Z5lOsSNzIobZbdPwvMkSd6_Nec7f1l0rbZB6uw8JTztshs9lLrncBOmVyr1CPd-owDLw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygXaMtraQuuVAk4pE3ixJv0Vq262tLdPUBX4hbZji1WtEnVTTjw65lxHtVSISQ4JvE4Ez_iz-OZbwCOcBcxpLXHo2TaXqQC4oCMU2-YSx0kqQ2lJNPAbC4mi-jT17jzJqRYmIYfoje40cxw_2ua4GSQPrlnDaUQbPLNwiUKd1OPYZPSertd1eeeQSrE4dkEGHHuUR76jrfRD0_W5dfXpQdgcx27usVn_AxUp3bjc_L9uK7Usf75G6Pjf33XNjxtoSk7a8bSDjwyxS5sjbqMcM_hZrqsvi3LW7LBaDaWGgF3zkb1B6zyI_tS31ny7zpl5DvCFtXyuo3xZKVlk3JVdUWYLFBM_nBkrgxRM3MV1zdsZirSoChzs3oBi_H51WjitekaPM2H2LyBspIsn6lMlcyNEUorFfgSUZxvTaBlqERqc_yHGBvGVkfaRsKIxFKmCcsj_hI2irIwr4HFwzSUdMTJuY00R9iirUm49A1uv3icDsDrOivTLZc5pdS4zhoW5jCjRsz6RhzA-778bcPi8ceS-13fZ-1sXmUIg2KRcJH4AzjsH2Pj0-GKLExZUxkEoiIKAlTuVTNm-ldxl7tRoHToev4vOmRn84vz_urNvwi9g63J1WyaTS_ml3vwBO-nznEu2oeN6q42B4ikKvXWzZVfu4IQ1w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIlEuvFroQilGQgIOaZPY8Sbcqm1XW2hXiLJSb5Ht2GLVNll1Ew78embyggUhpPaYxHYmtif-PJ75BuAN7iKGtPZ4lEzbEzogDsgo8YaZMkGcuFApMg2cTuVkJj6eR-e_RfE3_BC9wY00o_5fk4IvMrf_izSUIrDJNQtXKNxMrcFdIf2Y5vXhl55AKsTZ2cQXce5RGvqOttEP91frry5Lf2HNVeharz3jh6A6qRuXk4u9qtR75scfhI63-axH8KAFpuygmUmP4Y7Nn8DGqMsHtwlXJ_Py27xYkAXGsLEyCLczNqreYZPv2Vl17ci76wMjzxE2K-eXbYQnKxybFMuyK8JUjtXU95rKlSFmZnXD1RU7tSVJkBeZXW7BbHz0dTTx2mQNnuFD7N1AO0V2z0QlWmXWSm20DnyFGM53NjAq1DJxGf5BrAsjZ4RxQloZO8oz4bjgT2E9L3K7DSwaJqGiA07OnTAcQYtxNubKt7j54lEyAK8bq9S0TOaUUOMybTiYw5Q6Me07cQBv-_KLhsPjnyV3uqFPW11epgiCIhlzGfsDeN0_xs6noxWV26KiMghDpQgCFO5ZM2X6V_E6c6PE2mE98P-RIT2YHh_1V89vUukV3Pt8OE5PjqefXsB9vJ3UXnNiB9bL68q-RBhV6t1aU34CiuMPjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithiophilic+Faceted+Cu%28100%29+Surfaces%3A+High+Utilization+of+Host+Surface+and+Cavities+for+Lithium+Metal+Anodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gu%2C+Yu&rft.au=Xu%2C+Hong%E2%80%90Yu&rft.au=Zhang%2C+Xia%E2%80%90Guang&rft.au=Wang%2C+Wei%E2%80%90Wei&rft.date=2019-03-04&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=10&rft.spage=3092&rft.epage=3096&rft_id=info:doi/10.1002%2Fanie.201812523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201812523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |