Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes

Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 10; pp. 3092 - 3096
Main Authors Gu, Yu, Xu, Hong‐Yu, Zhang, Xia‐Guang, Wang, Wei‐Wei, He, Jun‐Wu, Tang, Shuai, Yan, Jia‐Wei, Wu, De‐Yin, Zheng, Ming‐Sen, Dong, Quan‐Feng, Mao, Bing‐Wei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 04.03.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐scale design of Cu‐CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)‐preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid–electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal–electrolyte interphases towards practical applications of Li anodes prepared on CCs. Get in touch with lithium: The generation of surface lithiophilicity on planar and 3D Cu hosts for Li metal anodes is reported. Enabled by a lattice matching of Cu(100) and Li(110), smooth deposition of Li thin films and the creation of ultra‐smooth ultra‐thin SEI on the Cu hosts is made possible. This allows a high utilization of not only the surface but also cavities of the Cu hosts.
AbstractList Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin-film anodes prepared on current collectors (CCs) and Li-free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic-scale design of Cu-CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)-preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid-electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal-electrolyte interphases towards practical applications of Li anodes prepared on CCs.
Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐scale design of Cu‐CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)‐preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid–electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal–electrolyte interphases towards practical applications of Li anodes prepared on CCs. Get in touch with lithium: The generation of surface lithiophilicity on planar and 3D Cu hosts for Li metal anodes is reported. Enabled by a lattice matching of Cu(100) and Li(110), smooth deposition of Li thin films and the creation of ultra‐smooth ultra‐thin SEI on the Cu hosts is made possible. This allows a high utilization of not only the surface but also cavities of the Cu hosts.
Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin-film anodes prepared on current collectors (CCs) and Li-free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic-scale design of Cu-CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)-preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid-electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal-electrolyte interphases towards practical applications of Li anodes prepared on CCs.Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin-film anodes prepared on current collectors (CCs) and Li-free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic-scale design of Cu-CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)-preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid-electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal-electrolyte interphases towards practical applications of Li anodes prepared on CCs.
Author Tang, Shuai
Gu, Yu
Yan, Jia‐Wei
Wu, De‐Yin
Dong, Quan‐Feng
Zheng, Ming‐Sen
He, Jun‐Wu
Zhang, Xia‐Guang
Mao, Bing‐Wei
Wang, Wei‐Wei
Xu, Hong‐Yu
Author_xml – sequence: 1
  givenname: Yu
  surname: Gu
  fullname: Gu, Yu
  organization: Xiamen University
– sequence: 2
  givenname: Hong‐Yu
  surname: Xu
  fullname: Xu, Hong‐Yu
  organization: Xiamen University
– sequence: 3
  givenname: Xia‐Guang
  surname: Zhang
  fullname: Zhang, Xia‐Guang
  organization: Xiamen University
– sequence: 4
  givenname: Wei‐Wei
  surname: Wang
  fullname: Wang, Wei‐Wei
  organization: Xiamen University
– sequence: 5
  givenname: Jun‐Wu
  surname: He
  fullname: He, Jun‐Wu
  organization: Xiamen University
– sequence: 6
  givenname: Shuai
  surname: Tang
  fullname: Tang, Shuai
  organization: Xiamen University
– sequence: 7
  givenname: Jia‐Wei
  surname: Yan
  fullname: Yan, Jia‐Wei
  organization: Xiamen University
– sequence: 8
  givenname: De‐Yin
  surname: Wu
  fullname: Wu, De‐Yin
  email: dywu@xmu.edu.cn
  organization: Xiamen University
– sequence: 9
  givenname: Ming‐Sen
  surname: Zheng
  fullname: Zheng, Ming‐Sen
  organization: Xiamen University
– sequence: 10
  givenname: Quan‐Feng
  surname: Dong
  fullname: Dong, Quan‐Feng
  organization: Xiamen University
– sequence: 11
  givenname: Bing‐Wei
  orcidid: 0000-0002-9015-0162
  surname: Mao
  fullname: Mao, Bing‐Wei
  email: bwmao@xmu.edu.cn
  organization: Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30589160$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD-vHJElLuWwiydOHIfbatWylRY4tD1bjjNmXSXxYjtF5dfjdrsgVUKcPLKe59Vo3mNyMPoRCXkLbA6MFR_16HBeMJBQVAV_RY6gKmDG65of5LnkfFbLCg7JcYx3mZeSiTfkkLNKNiDYERnWLm2c325c7wy91AYTdnQ5nef0D_R6CjZ_xU905b5v6G3K1C-dnB-pt3TlY9ojVI9Z0_cuOYzU-kCfgqeBfsGke7oYfYfxlLy2uo949vyekNvLi5vlarb-9vlquVjPDK_zytBaXTBWN7ppdYcoWtO2wDRjDbMIRhetaGwHkqMtKmtKY0uBQlpgHCwv-Qk53-Vug_8xYUxqcNFg3-sR_RRVAQKYKAGajL5_gd75KYx5u0zJSkguJMvUu2dqagfs1Da4QYcHtT9kBsodYIKPMaBVxqWnS6WgXa-Aqce-1GNf6k9fWZu_0PbJ_xSanfDT9fjwH1otvl5d_HV_A9SlpsQ
CitedBy_id crossref_primary_10_26599_NRE_2023_9120048
crossref_primary_10_1007_s12274_022_5227_0
crossref_primary_10_1016_j_jallcom_2021_162389
crossref_primary_10_1016_j_ensm_2022_07_019
crossref_primary_10_1016_j_ensm_2022_12_043
crossref_primary_10_1016_j_mtphys_2023_101253
crossref_primary_10_1002_aenm_202203744
crossref_primary_10_1039_D1TA00419K
crossref_primary_10_1038_s41467_022_31507_w
crossref_primary_10_1021_acsenergylett_4c02403
crossref_primary_10_1021_acs_nanolett_3c02777
crossref_primary_10_1016_j_coelec_2020_100671
crossref_primary_10_1016_j_cej_2023_143084
crossref_primary_10_1016_j_ensm_2023_102916
crossref_primary_10_1007_s41918_023_00185_7
crossref_primary_10_1016_j_ensm_2020_02_030
crossref_primary_10_1149_1945_7111_ac53d0
crossref_primary_10_1002_adma_202004379
crossref_primary_10_1002_eom2_12264
crossref_primary_10_1038_s41467_023_39192_z
crossref_primary_10_1016_j_ensm_2021_03_008
crossref_primary_10_1021_acsami_1c07624
crossref_primary_10_1002_smll_202404437
crossref_primary_10_1002_adfm_202103309
crossref_primary_10_1016_j_ensm_2020_07_004
crossref_primary_10_1039_D0NR03833D
crossref_primary_10_1007_s12274_022_5066_z
crossref_primary_10_1016_j_electacta_2024_144689
crossref_primary_10_1002_anie_202407064
crossref_primary_10_1039_D3EE02372A
crossref_primary_10_1002_eom2_12269
crossref_primary_10_1021_acsnano_2c08684
crossref_primary_10_1021_acs_jpcc_3c03096
crossref_primary_10_1039_D2CS00606E
crossref_primary_10_1039_D1TA05394A
crossref_primary_10_1002_ente_202400374
crossref_primary_10_1002_adfm_202205304
crossref_primary_10_1021_acs_nanolett_3c02784
crossref_primary_10_1007_s12598_023_02477_9
crossref_primary_10_1016_j_ensm_2021_10_028
crossref_primary_10_1002_aenm_202302205
crossref_primary_10_1038_s41557_024_01689_5
crossref_primary_10_1007_s40195_020_01022_2
crossref_primary_10_1002_adfm_202008514
crossref_primary_10_1002_advs_202002144
crossref_primary_10_1016_j_cej_2025_160406
crossref_primary_10_1149_1945_7111_acc697
crossref_primary_10_1002_smll_202306829
crossref_primary_10_1007_s12274_024_6853_5
crossref_primary_10_1002_aenm_202203573
crossref_primary_10_1149_1945_7111_ac638c
crossref_primary_10_1002_anie_201912217
crossref_primary_10_1063_5_0216220
crossref_primary_10_1002_smll_202205233
crossref_primary_10_1002_aenm_202002736
crossref_primary_10_1002_adma_201907079
crossref_primary_10_1177_09506608251318467
crossref_primary_10_1002_aenm_201901796
crossref_primary_10_1021_acsaem_2c00218
crossref_primary_10_1016_j_ensm_2022_12_016
crossref_primary_10_1021_acsenergylett_9b01987
crossref_primary_10_1039_D1TA02657G
crossref_primary_10_1002_adma_202210130
crossref_primary_10_1021_acsami_9b17727
crossref_primary_10_1016_j_chempr_2020_07_014
crossref_primary_10_1002_admi_202000154
crossref_primary_10_1002_smll_202311393
crossref_primary_10_1021_acsami_2c08278
crossref_primary_10_1039_C9CS00883G
crossref_primary_10_1002_adma_202204636
crossref_primary_10_1002_ange_202407064
crossref_primary_10_1016_j_cej_2020_124922
crossref_primary_10_1016_j_electacta_2022_140333
crossref_primary_10_1016_j_jcis_2022_10_025
crossref_primary_10_1149_1945_7111_ac5cf1
crossref_primary_10_1016_j_cej_2024_158547
crossref_primary_10_1002_smll_202004688
crossref_primary_10_1016_j_est_2024_113683
crossref_primary_10_1002_adfm_202006950
crossref_primary_10_1021_acsaem_1c01407
crossref_primary_10_1002_anie_202000162
crossref_primary_10_1002_celc_202001277
crossref_primary_10_1002_adfm_202315201
crossref_primary_10_1039_D2NR01097F
crossref_primary_10_1002_adma_202403570
crossref_primary_10_1149_1945_7111_ac62c4
crossref_primary_10_1039_D4EE01766H
crossref_primary_10_1149_2_0091908jes
crossref_primary_10_1016_j_nanoen_2020_105507
crossref_primary_10_1002_aenm_202400564
crossref_primary_10_1016_j_electacta_2022_141011
crossref_primary_10_1002_smll_202205416
crossref_primary_10_1002_adma_202411757
crossref_primary_10_1039_D2TA04078F
crossref_primary_10_1016_j_ensm_2020_01_025
crossref_primary_10_1002_adfm_202002522
crossref_primary_10_1002_ange_201912217
crossref_primary_10_6023_A22100413
crossref_primary_10_1039_D4EE05862C
crossref_primary_10_3390_inorganics10010005
crossref_primary_10_1016_j_xcrp_2023_101324
crossref_primary_10_1016_j_ensm_2025_104200
crossref_primary_10_1021_acsami_3c00740
crossref_primary_10_1016_j_est_2024_113508
crossref_primary_10_1016_j_ensm_2022_09_006
crossref_primary_10_1021_acs_nanolett_4c03945
crossref_primary_10_1039_D2EE00617K
crossref_primary_10_1021_acsami_0c17302
crossref_primary_10_1039_D2TA04974K
crossref_primary_10_1016_j_ensm_2021_03_010
crossref_primary_10_1016_j_ensm_2021_01_012
crossref_primary_10_1002_sstr_202200114
crossref_primary_10_34133_2020_7163948
crossref_primary_10_1016_j_ensm_2021_01_014
crossref_primary_10_1016_j_pmatsci_2022_100996
crossref_primary_10_1149_1945_7111_abe089
crossref_primary_10_1039_D1FD00043H
crossref_primary_10_1016_j_mtener_2021_100751
crossref_primary_10_1126_sciadv_abq6321
crossref_primary_10_1016_j_mtener_2021_100871
crossref_primary_10_1002_ange_202309247
crossref_primary_10_1002_smll_202306868
crossref_primary_10_1002_adfm_202009805
crossref_primary_10_1016_j_ensm_2022_08_046
crossref_primary_10_1002_eem2_12392
crossref_primary_10_1021_acsami_9b13174
crossref_primary_10_1016_j_electacta_2024_145154
crossref_primary_10_1016_j_mtnano_2020_100103
crossref_primary_10_1039_D0TA03929B
crossref_primary_10_23919_IEN_2022_0029
crossref_primary_10_1002_adma_202415258
crossref_primary_10_1002_aenm_202103972
crossref_primary_10_1016_j_ensm_2025_104176
crossref_primary_10_1021_acssuschemeng_9b04085
crossref_primary_10_1039_C9TA08312J
crossref_primary_10_1016_j_jmst_2020_10_017
crossref_primary_10_1016_j_est_2024_110880
crossref_primary_10_1002_smll_202303745
crossref_primary_10_1007_s12274_023_5795_7
crossref_primary_10_1093_nsr_nwac031
crossref_primary_10_1063_5_0165498
crossref_primary_10_1021_acssuschemeng_0c08572
crossref_primary_10_1002_ange_202000162
crossref_primary_10_1002_anie_202309247
Cites_doi 10.1038/nenergy.2016.128
10.1002/ange.201808154
10.1021/ja312241y
10.1149/MA2018-02/5/309
10.1038/s41467-018-03466-8
10.1021/acsami.6b08775
10.1039/C3EE40795K
10.1021/jacs.7b01763
10.1016/j.electacta.2016.02.102
10.1002/ange.200802248
10.1002/adma.201802156
10.1039/C7EE02555F
10.1002/ange.201805456
10.1002/adma.201705830
10.1021/acsami.8b07362
10.1038/ncomms9058
10.1021/acs.chemrev.7b00115
10.1002/anie.201710806
10.1126/science.aap8787
10.1021/jacs.5b09385
10.1038/nenergy.2016.10
10.1038/nnano.2014.152
10.1002/aenm.201502151
10.1002/adfm.201602353
10.1038/nenergy.2016.114
10.1126/science.aam6014
10.1016/j.chempr.2017.01.003
10.1002/anie.201808154
10.1007/s12274-017-1596-1
10.1002/aenm.201800635
10.1002/celc.201800907
10.1002/anie.200802248
10.1002/anie.201805456
10.1016/j.ensm.2018.05.021
10.1073/pnas.1518188113
10.1038/nnano.2017.16
10.1002/ange.201710806
10.1002/aenm.201703404
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201812523
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 3096
ExternalDocumentID 30589160
10_1002_anie_201812523
ANIE201812523
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2015CB251102; 2015CB932303; 2012CB932902
– fundername: National Natural Science Foundation of China
  funderid: 21533006; 21621091; U1805254
– fundername: National Natural Science Foundation of China
  grantid: U1805254
– fundername: National Natural Science Foundation of China
  grantid: 21533006
– fundername: National Natural Science Foundation of China
  grantid: U1305246
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2015CB251102
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2012CB932902
– fundername: National Natural Science Foundation of China
  grantid: 21621091
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2015CB932303
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3733-1bfa20079a9badee6bcbb10a0090fe1ca2b69fd183ef25fc4cf46e68f1031f343
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:49:48 EDT 2025
Fri Jul 25 10:46:44 EDT 2025
Mon Jul 21 05:58:19 EDT 2025
Tue Jul 01 02:26:40 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Wed Jan 22 16:25:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords lithiophilicity
Li metal anodes
solid-electrolyte interphase
Li underpotential deposition
Cu preference
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-1bfa20079a9badee6bcbb10a0090fe1ca2b69fd183ef25fc4cf46e68f1031f343
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9015-0162
PMID 30589160
PQID 2185683680
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2161064119
proquest_journals_2185683680
pubmed_primary_30589160
crossref_citationtrail_10_1002_anie_201812523
crossref_primary_10_1002_anie_201812523
wiley_primary_10_1002_anie_201812523_ANIE201812523
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 4, 2019
PublicationDateYYYYMMDD 2019-03-04
PublicationDate_xml – month: 03
  year: 2019
  text: March 4, 2019
  day: 04
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 6
2017; 2
2009 2009; 48 121
2017; 358
2017; 117
2017; 139
1978
2018; 6
2018; 9
2016; 6
2018; 8
2016; 1
2018; 359
2015; 137
2018 2018; 57 130
2017; 10
2017; 12
2016; 113
2013; 135
2018; 30
2014; 9
2018; 11
2014; 7
2018; 10
2016; 26
2016; 8
2018; 14
2016; 194
e_1_2_2_3_2
e_1_2_2_4_2
e_1_2_2_24_1
e_1_2_2_5_2
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_20_3
e_1_2_2_21_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_1_1
e_1_2_2_2_2
e_1_2_2_40_2
e_1_2_2_42_1
e_1_2_2_29_2
Kolb D. M. (e_1_2_2_41_1) 1978
e_1_2_2_43_1
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_9_1
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_44_1
e_1_2_2_26_2
e_1_2_2_27_1
e_1_2_2_25_2
e_1_2_2_36_2
e_1_2_2_12_2
e_1_2_2_13_1
e_1_2_2_37_2
e_1_2_2_10_3
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_31_1
e_1_2_2_17_3
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_18_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_35_1
e_1_2_2_14_2
References_xml – volume: 8
  start-page: 1800635
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 359
  start-page: 1513
  year: 2018
  end-page: 1516
  publication-title: Science
– volume: 135
  start-page: 4450
  year: 2013
  end-page: 4456
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1339
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  start-page: 181
  year: 2018
  end-page: 188
  publication-title: ChemElectroChem
– volume: 26
  start-page: 7094
  year: 2016
  end-page: 7102
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 1802156
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1703404
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 48 121
  start-page: 60 62
  year: 2009 2009
  end-page: 103 108
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 26801
  year: 2016
  end-page: 26808
  publication-title: ACS Appl. Mater. Interfaces
– volume: 358
  start-page: 506
  year: 2017
  end-page: 510
  publication-title: Science
– volume: 57 130
  start-page: 1505 1521
  year: 2018 2018
  end-page: 1509 1525
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  publication-title: Chem. Rev.
– volume: 10
  start-page: 4003
  year: 2017
  end-page: 4026
  publication-title: Nano Res.
– volume: 57 130
  start-page: 13206 13390
  year: 2018 2018
  end-page: 13210 13394
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 9795 9943
  year: 2018 2018
  end-page: 9798 9946
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 16128
  year: 2016
  publication-title: Nat. Energy
– volume: 7
  start-page: 513
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 8058
  year: 2015
  publication-title: Nat. Commun.
– volume: 1
  start-page: 16114
  year: 2016
  publication-title: Nat. Energy
– volume: 14
  start-page: 345
  year: 2018
  end-page: 350
  publication-title: Energy Storage Mater.
– volume: 30
  start-page: 1705830
  year: 2018
  publication-title: Adv. Mater.
– volume: 113
  start-page: 2862
  year: 2016
  end-page: 2867
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 137
  start-page: 15209
  year: 2015
  end-page: 15216
  publication-title: J. Am. Chem. Soc.
– start-page: 125
  year: 1978
– volume: 11
  start-page: 527
  year: 2018
  end-page: 543
  publication-title: Energy Environ. Sci.
– volume: 194
  start-page: 330
  year: 2016
  end-page: 337
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 258
  year: 2017
  end-page: 270
  publication-title: Chem
– volume: 9
  start-page: 618
  year: 2014
  end-page: 623
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 27764
  year: 2018
  end-page: 27770
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 1502151
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 16010
  year: 2016
  publication-title: Nat. Energy
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  publication-title: Nat. Nanotechnol.
– volume: 139
  start-page: 5916
  year: 2017
  end-page: 5922
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_2_5_2
  doi: 10.1038/nenergy.2016.128
– ident: e_1_2_2_17_3
  doi: 10.1002/ange.201808154
– ident: e_1_2_2_23_1
  doi: 10.1021/ja312241y
– ident: e_1_2_2_1_1
– ident: e_1_2_2_44_1
  doi: 10.1149/MA2018-02/5/309
– ident: e_1_2_2_32_1
– ident: e_1_2_2_14_2
  doi: 10.1038/s41467-018-03466-8
– ident: e_1_2_2_21_2
  doi: 10.1021/acsami.6b08775
– ident: e_1_2_2_4_2
  doi: 10.1039/C3EE40795K
– ident: e_1_2_2_27_1
– ident: e_1_2_2_30_2
  doi: 10.1021/jacs.7b01763
– ident: e_1_2_2_35_1
– ident: e_1_2_2_26_2
  doi: 10.1016/j.electacta.2016.02.102
– ident: e_1_2_2_43_2
  doi: 10.1002/ange.200802248
– ident: e_1_2_2_31_1
  doi: 10.1002/adma.201802156
– ident: e_1_2_2_8_2
  doi: 10.1039/C7EE02555F
– ident: e_1_2_2_10_3
  doi: 10.1002/ange.201805456
– ident: e_1_2_2_40_2
  doi: 10.1002/adma.201705830
– ident: e_1_2_2_39_2
  doi: 10.1021/acsami.8b07362
– ident: e_1_2_2_28_2
  doi: 10.1038/ncomms9058
– ident: e_1_2_2_7_2
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_2_20_2
  doi: 10.1002/anie.201710806
– ident: e_1_2_2_11_2
  doi: 10.1126/science.aap8787
– ident: e_1_2_2_12_2
  doi: 10.1021/jacs.5b09385
– ident: e_1_2_2_38_2
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_2_19_2
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_2_22_1
  doi: 10.1002/aenm.201502151
– ident: e_1_2_2_25_2
  doi: 10.1002/adfm.201602353
– ident: e_1_2_2_18_1
– ident: e_1_2_2_3_2
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_2_42_1
  doi: 10.1126/science.aam6014
– ident: e_1_2_2_16_2
  doi: 10.1016/j.chempr.2017.01.003
– ident: e_1_2_2_17_2
  doi: 10.1002/anie.201808154
– ident: e_1_2_2_34_2
  doi: 10.1007/s12274-017-1596-1
– start-page: 125
  volume-title: Advances in Electrochemistry and Electrochemical Engineering, Vol. 11
  year: 1978
  ident: e_1_2_2_41_1
– ident: e_1_2_2_29_2
  doi: 10.1002/aenm.201800635
– ident: e_1_2_2_15_2
  doi: 10.1002/celc.201800907
– ident: e_1_2_2_43_1
  doi: 10.1002/anie.200802248
– ident: e_1_2_2_13_1
– ident: e_1_2_2_10_2
  doi: 10.1002/anie.201805456
– ident: e_1_2_2_6_1
– ident: e_1_2_2_24_1
– ident: e_1_2_2_33_2
  doi: 10.1016/j.ensm.2018.05.021
– ident: e_1_2_2_37_2
  doi: 10.1073/pnas.1518188113
– ident: e_1_2_2_2_2
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_2_20_3
  doi: 10.1002/ange.201710806
– ident: e_1_2_2_9_1
– ident: e_1_2_2_36_2
  doi: 10.1002/aenm.201703404
SSID ssj0028806
Score 2.6175368
Snippet Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current...
Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin-film anodes prepared on current...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3092
SubjectTerms Anodes
Cavities
Copper
Cu preference
Electrochemistry
Electrolytes
Hazards
Holes
Lattice matching
Li metal anodes
Li underpotential deposition
lithiophilicity
Lithium
Nucleation
solid–electrolyte interphase
Surface matching
Thin films
Title Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201812523
https://www.ncbi.nlm.nih.gov/pubmed/30589160
https://www.proquest.com/docview/2185683680
https://www.proquest.com/docview/2161064119
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCIJ6qLZNm229Lcsuq6gHdcFbSdIEF9dW3NaDv96ZvnQVEfTW0qSdJpnMl2TmG0IOYBXRRttjYTJty5MOckD6odWOhXKC0LhC4NbA1TUfDL2Le__-UxR_yQ_RbLihZhTzNSq4kJPTD9JQjMBG1yywULCYgkkYHbYQFd00_FEuDM4yvIgxC7PQ16yNtns6XX3aKn2DmtPItTA9_UUiaqFLj5PHkzyTJ-rtC5_jf_5qiSxUuJR2yoG0TGZ0skLmunU6uFXydDnKHkbpM27AKNoXCtB2TLv5EbzymN7mLwadu84oOo7QYTYaVwGeNDV0kE6yuggVCVQTrwWTKwXITIsX50_0SmcoQZLGerJGhv3eXXdgVbkaLMXa0LqONAK3PUMRShFrzaWS0rEFQDjbaEcJV_LQxDCBaOP6RnnKeFzzwGCaCcM8tk5mkzTRm4T67dAVeL7JmPEUA8yijA6YsDWsvZgftohV91WkKiJzzKcxjkoKZjfCRoyaRmyRw6b8c0nh8WPJnbrro0qVJxFgIJ8HjAd2i-w3j6Hx8WRFJDrNsQygUO45Dgi3UQ6Z5lOsSNzIobZbdPwvMkSd6_Nec7f1l0rbZB6uw8JTztshs9lLrncBOmVyr1CPd-owDLw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygXaMtraQuuVAk4pE3ixJv0Vq262tLdPUBX4hbZji1WtEnVTTjw65lxHtVSISQ4JvE4Ez_iz-OZbwCOcBcxpLXHo2TaXqQC4oCMU2-YSx0kqQ2lJNPAbC4mi-jT17jzJqRYmIYfoje40cxw_2ua4GSQPrlnDaUQbPLNwiUKd1OPYZPSertd1eeeQSrE4dkEGHHuUR76jrfRD0_W5dfXpQdgcx27usVn_AxUp3bjc_L9uK7Usf75G6Pjf33XNjxtoSk7a8bSDjwyxS5sjbqMcM_hZrqsvi3LW7LBaDaWGgF3zkb1B6zyI_tS31ny7zpl5DvCFtXyuo3xZKVlk3JVdUWYLFBM_nBkrgxRM3MV1zdsZirSoChzs3oBi_H51WjitekaPM2H2LyBspIsn6lMlcyNEUorFfgSUZxvTaBlqERqc_yHGBvGVkfaRsKIxFKmCcsj_hI2irIwr4HFwzSUdMTJuY00R9iirUm49A1uv3icDsDrOivTLZc5pdS4zhoW5jCjRsz6RhzA-778bcPi8ceS-13fZ-1sXmUIg2KRcJH4AzjsH2Pj0-GKLExZUxkEoiIKAlTuVTNm-ldxl7tRoHToev4vOmRn84vz_urNvwi9g63J1WyaTS_ml3vwBO-nznEu2oeN6q42B4ikKvXWzZVfu4IQ1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIlEuvFroQilGQgIOaZPY8Sbcqm1XW2hXiLJSb5Ht2GLVNll1Ew78embyggUhpPaYxHYmtif-PJ75BuAN7iKGtPZ4lEzbEzogDsgo8YaZMkGcuFApMg2cTuVkJj6eR-e_RfE3_BC9wY00o_5fk4IvMrf_izSUIrDJNQtXKNxMrcFdIf2Y5vXhl55AKsTZ2cQXce5RGvqOttEP91frry5Lf2HNVeharz3jh6A6qRuXk4u9qtR75scfhI63-axH8KAFpuygmUmP4Y7Nn8DGqMsHtwlXJ_Py27xYkAXGsLEyCLczNqreYZPv2Vl17ci76wMjzxE2K-eXbYQnKxybFMuyK8JUjtXU95rKlSFmZnXD1RU7tSVJkBeZXW7BbHz0dTTx2mQNnuFD7N1AO0V2z0QlWmXWSm20DnyFGM53NjAq1DJxGf5BrAsjZ4RxQloZO8oz4bjgT2E9L3K7DSwaJqGiA07OnTAcQYtxNubKt7j54lEyAK8bq9S0TOaUUOMybTiYw5Q6Me07cQBv-_KLhsPjnyV3uqFPW11epgiCIhlzGfsDeN0_xs6noxWV26KiMghDpQgCFO5ZM2X6V_E6c6PE2mE98P-RIT2YHh_1V89vUukV3Pt8OE5PjqefXsB9vJ3UXnNiB9bL68q-RBhV6t1aU34CiuMPjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithiophilic+Faceted+Cu%28100%29+Surfaces%3A+High+Utilization+of+Host+Surface+and+Cavities+for+Lithium+Metal+Anodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gu%2C+Yu&rft.au=Xu%2C+Hong%E2%80%90Yu&rft.au=Zhang%2C+Xia%E2%80%90Guang&rft.au=Wang%2C+Wei%E2%80%90Wei&rft.date=2019-03-04&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=10&rft.spage=3092&rft.epage=3096&rft_id=info:doi/10.1002%2Fanie.201812523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201812523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon