Recognition and Removal of Amyloid‐β by a Heteromultivalent Macrocyclic Coassembly: A Potential Strategy for the Treatment of Alzheimer's Disease
The imbalance of amyloid‐β (Aβ) production and clearance causes aggregation of Aβ1‐42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequen...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 4; pp. e2006483 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The imbalance of amyloid‐β (Aβ) production and clearance causes aggregation of Aβ1‐42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ1‐42 is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ1‐42, inhibit Aβ1‐42 fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD‐like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti‐Aβ therapy agent. The CD–CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ1‐42 monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD‐like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self‐assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment.
A heteromultivalent coassembly composed of cyclodextrin and calixarene (CD–CA coassembly) according to the composition of amino acids in Aβ1‐42 effectively recognizes and disaggregates Aβ1‐42 fibrils. Intranasal administration of the CD–CA coassembly eliminates amyloid plaque and neurodegeneration in the brain, and improves cognitive deficits in 5xFAD mice. This supramolecular approach is a promising novel strategy for treatment of Alzheimer's disease (AD). |
---|---|
AbstractList | The imbalance of amyloid‐β (Aβ) production and clearance causes aggregation of Aβ1‐42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ1‐42 is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ1‐42, inhibit Aβ1‐42 fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD‐like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti‐Aβ therapy agent. The CD–CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ1‐42 monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD‐like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self‐assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment.
A heteromultivalent coassembly composed of cyclodextrin and calixarene (CD–CA coassembly) according to the composition of amino acids in Aβ1‐42 effectively recognizes and disaggregates Aβ1‐42 fibrils. Intranasal administration of the CD–CA coassembly eliminates amyloid plaque and neurodegeneration in the brain, and improves cognitive deficits in 5xFAD mice. This supramolecular approach is a promising novel strategy for treatment of Alzheimer's disease (AD). The imbalance of amyloid‐β (Aβ) production and clearance causes aggregation of Aβ 1‐42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ 1‐42 is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ 1‐42 , inhibit Aβ 1‐42 fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD‐like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti‐Aβ therapy agent. The CD–CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ 1‐42 monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD‐like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self‐assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment. The imbalance of amyloid‐β (Aβ) production and clearance causes aggregation of Aβ1‐42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ1‐42 is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ1‐42, inhibit Aβ1‐42 fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD‐like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti‐Aβ therapy agent. The CD–CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ1‐42 monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD‐like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self‐assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment. The imbalance of amyloid-β (Aβ) production and clearance causes aggregation of Aβ monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ , inhibit Aβ fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD-like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti-Aβ therapy agent. The CD-CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD-like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self-assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment. The imbalance of amyloid-β (Aβ) production and clearance causes aggregation of Aβ1-42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ1-42 is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ1-42 , inhibit Aβ1-42 fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD-like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti-Aβ therapy agent. The CD-CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ1-42 monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD-like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self-assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment.The imbalance of amyloid-β (Aβ) production and clearance causes aggregation of Aβ1-42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ1-42 is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ1-42 , inhibit Aβ1-42 fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD-like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti-Aβ therapy agent. The CD-CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ1-42 monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD-like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self-assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment. |
Author | Yan, YuXing Chen, RunWen Pan, Yu‐Chen Wang, Hui Xu, XinXin Guo, Dong‐Sheng Hu, Xin‐Yue Ravoo, Bart Jan Zhang, Tao |
Author_xml | – sequence: 1 givenname: Hui surname: Wang fullname: Wang, Hui organization: Nankai University – sequence: 2 givenname: XinXin surname: Xu fullname: Xu, XinXin organization: Nankai University – sequence: 3 givenname: Yu‐Chen surname: Pan fullname: Pan, Yu‐Chen organization: State Key Laboratory of Elemento‐Organic Chemistry – sequence: 4 givenname: YuXing surname: Yan fullname: Yan, YuXing organization: Nankai University – sequence: 5 givenname: Xin‐Yue surname: Hu fullname: Hu, Xin‐Yue organization: State Key Laboratory of Elemento‐Organic Chemistry – sequence: 6 givenname: RunWen surname: Chen fullname: Chen, RunWen organization: Nankai University – sequence: 7 givenname: Bart Jan surname: Ravoo fullname: Ravoo, Bart Jan organization: Westfälische Wilhelms‐Universität Münster – sequence: 8 givenname: Dong‐Sheng orcidid: 0000-0002-0765-5427 surname: Guo fullname: Guo, Dong‐Sheng email: dshguo@nankai.edu.cn organization: State Key Laboratory of Elemento‐Organic Chemistry – sequence: 9 givenname: Tao surname: Zhang fullname: Zhang, Tao email: zhangtao@nankai.edu.cn organization: Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33325586$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKeFLUtkiQXdzOC_ODG7aAoUqRWolHXkODetKydubQ8oXfEILHgSHoSH4ElwNC1IlRArW_I511fft4d2Rj8CQk8pWVFC2EvdDXrFCCNEioo_QAtaMLoURBU7aEEUL5YqP-yivRgvCSFKEvkI7XLOWVFUcoG-n4Lx56NN1o9Yjx0-hcF_1g77HtfD5Lztfn399vMHbies8REkCH7YuGQzA2PCJ9oEbybjrMFrr2OEoXXTK1zjDz5lwOZRH1PQCc4n3PuA0wXgswA6DbM-_-JuLsAOEF5EfGgj6AiP0cNeuwhPbs999OnN67P10fL4_dt36_p4aXjJ-ZJWIGihWsmrXvem7DtJTSWkYG3LuZIyX7XIwSjFCO8EqwTVhBlZFKVqRcv30cF27lXw1xuIqRlsNOCcHsFvYsNESSQrSUkz-vweeuk3YczbZaoiVElGq0w9u6U27QBdcxXsoMPU3OWdAbEFcmoxBugbY5Oew88ZWddQ0sy1NnOtzZ9as7a6p91N_qegtsIX62D6D93Uhyf1X_c3geC2LA |
CitedBy_id | crossref_primary_10_3390_molecules27092967 crossref_primary_10_1016_j_cej_2023_142679 crossref_primary_10_1021_acs_accounts_3c00585 crossref_primary_10_1021_acsnano_1c08377 crossref_primary_10_1002_ange_202109068 crossref_primary_10_1002_EXP_20230048 crossref_primary_10_1002_adma_202104310 crossref_primary_10_1016_j_bbr_2022_114260 crossref_primary_10_34133_research_0130 crossref_primary_10_1080_1061186X_2021_1927055 crossref_primary_10_1016_j_nantod_2023_101756 crossref_primary_10_1002_adma_202100746 crossref_primary_10_1002_adom_202300101 crossref_primary_10_1016_j_exger_2024_112422 crossref_primary_10_1080_10610278_2023_2283423 crossref_primary_10_1002_smll_202107534 crossref_primary_10_1002_adma_202210879 crossref_primary_10_3390_ijms232012092 crossref_primary_10_1007_s11427_022_2357_x crossref_primary_10_1021_acsami_4c22621 crossref_primary_10_1002_macp_202400531 crossref_primary_10_1016_j_talanta_2023_125311 crossref_primary_10_1021_acsnano_2c11186 crossref_primary_10_1002_adhm_202402732 crossref_primary_10_1021_acschemneuro_2c00202 crossref_primary_10_1039_D4BM00586D crossref_primary_10_1021_acsanm_3c01650 crossref_primary_10_1039_D2CC04963E crossref_primary_10_1007_s11426_024_1971_4 crossref_primary_10_1007_s11426_023_1859_4 crossref_primary_10_1002_agt2_161 crossref_primary_10_3390_ijms232113505 crossref_primary_10_1007_s11426_023_1857_2 crossref_primary_10_1093_gerona_glab142 crossref_primary_10_3390_pharmaceutics16121611 crossref_primary_10_1021_acsami_4c02825 crossref_primary_10_1021_acs_nanolett_4c03672 crossref_primary_10_1016_j_bpc_2023_107022 crossref_primary_10_1016_j_nantod_2024_102434 crossref_primary_10_1016_j_toxlet_2022_07_749 crossref_primary_10_1002_anie_202109068 crossref_primary_10_1134_S1062359023602586 crossref_primary_10_1002_adfm_202102953 crossref_primary_10_1002_adma_202308393 crossref_primary_10_1038_s41467_022_31986_x crossref_primary_10_3390_polym13111684 crossref_primary_10_1021_acschemneuro_1c00035 crossref_primary_10_1002_smll_202302176 crossref_primary_10_1002_EXP_20210089 crossref_primary_10_1002_cjoc_202100646 |
Cites_doi | 10.1007/s12031-002-0010-x 10.1146/annurev.neuro.27.070203.144130 10.1016/j.nbd.2008.10.006 10.1038/nature11060 10.1039/C6SC04854D 10.1038/nrneurol.2010.157 10.1007/s00401-019-02013-z 10.1007/s12035-014-9073-2 10.1111/bph.13139 10.1016/j.toxlet.2017.10.021 10.1007/s12035-016-9687-7 10.1038/s41582-020-0397-4 10.1523/JNEUROSCI.1202-06.2006 10.1113/jphysiol.2002.031369 10.1021/ja8041806 10.1093/brain/awg191 10.1039/C6CP03582E 10.1016/j.jconrel.2018.07.020 10.1021/ja107196s 10.1016/j.ejpb.2013.07.002 10.1038/nature19323 10.1074/jbc.273.49.32730 10.1021/acs.nanolett.8b03644 10.1021/acschemneuro.7b00188 10.1016/S1474-4422(13)70044-9 10.1016/S1474-4422(09)70298-4 10.1016/j.bbapap.2010.04.001 10.1021/acschemneuro.7b00477 10.1038/nrneurol.2013.87 10.1002/chem.201704932 10.1126/science.1091230 10.1016/j.neuroscience.2009.04.046 10.1038/nature25158 10.1021/bm700753q 10.1021/acs.jpcb.9b01206 10.1016/j.jneumeth.2014.07.007 10.1038/361031a0 10.1523/JNEUROSCI.21-19-07551.2001 10.1042/BSR20171611 10.1021/ja055696g 10.1039/C9SC03042E 10.1021/acs.chemmater.9b01613 10.3233/JAD-2011-110977 10.1016/S0140-6736(94)92338-8 10.1021/acsnano.7b07625 10.1002/asia.201601461 10.1021/acsami.9b12319 10.1016/j.nantod.2020.100937 10.1038/s41557-018-0164-y 10.1016/S0891-5849(03)00244-2 10.1016/S1474-4422(15)70016-5 10.1038/srep39374 10.1021/cr500638n 10.1016/j.cell.2005.02.008 10.1038/s41467-019-11762-0 10.1007/BF03401828 10.1111/j.1750-3639.2008.00132.x 10.1002/advs.201970024 10.1083/jcb.201306030 10.1021/jacs.6b11748 10.1523/JNEUROSCI.2021-09.2009 10.4049/jimmunol.1101121 10.1002/smll.201701817 10.1016/j.cclet.2020.01.042 10.1001/jama.2019.2000 10.3233/JAD-2012-120982 10.1038/s41582-018-0116-6 10.1038/ncb1499 10.3233/JAD-2010-1414 10.1016/j.neuron.2018.02.002 10.1021/ja806606y 10.1074/jbc.M404751200 10.1038/s41565-018-0179-y 10.1016/j.fct.2009.06.007 10.1002/anie.201400735 10.1021/acs.jpcb.9b05288 10.1152/physrev.00014.2003 10.1038/nature.2016.21045 10.1016/j.neurobiolaging.2017.08.022 10.1073/pnas.0811698106 10.1038/s41583-019-0132-6 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202006483 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 33325586 10_1002_adma_202006483 ADMA202006483 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NSFC funderid: 32070988; 31900733; 51873090; 31961143004 – fundername: Committee for Animal Care at Nankai University funderid: 20160004 – fundername: Fundamental Research Funds for the Central Universities – fundername: Higher Education Discipline Innovation Project funderid: B08011 – fundername: Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences – fundername: 111 Project funderid: B08011 – fundername: National Natural Science Foundation of China funderid: 32070988; 31900733; 51873090; 31961143004 – fundername: 111 Project grantid: B08011 – fundername: Higher Education Discipline Innovation Project grantid: B08011 – fundername: National Natural Science Foundation of China grantid: 32070988 – fundername: NSFC grantid: 51873090 – fundername: NSFC grantid: 32070988 – fundername: National Natural Science Foundation of China grantid: 51873090 – fundername: National Natural Science Foundation of China grantid: 31900733 – fundername: NSFC grantid: 31900733 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3733-18e4159b638fafc7fd61c84642bb33966464a406499203d42841a02c65579b4b3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:31:42 EDT 2025 Mon Jul 14 10:05:21 EDT 2025 Mon Jul 21 06:03:46 EDT 2025 Tue Jul 01 02:32:56 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Wed Jan 22 16:30:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | heteromultivalent recognition cognition Alzheimer's disease pathological impairment amyloid plaques |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-18e4159b638fafc7fd61c84642bb33966464a406499203d42841a02c65579b4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0765-5427 |
PMID | 33325586 |
PQID | 2480196218 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2470627071 proquest_journals_2480196218 pubmed_primary_33325586 crossref_citationtrail_10_1002_adma_202006483 crossref_primary_10_1002_adma_202006483 wiley_primary_10_1002_adma_202006483_ADMA202006483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 286 2012; 485 2000; 6 2019; 11 2004; 27 2019; 10 2019 2018; 19 12 2013; 203 2019; 15 2006 2009 2013; 26 33 33 2019 2010; 20 6 2016; 540 2017; 552 2019; 321 2013; 9 2010; 21 2018; 9 2009 2012 2016 2017 2019 2019; 29 28 537 13 6 19 2017 2020; 8 16 2013; 12 2010; 1804 2007 2013; 8 85 2009 2018; 47 282 2014; 53 2015; 14 2019 2018; 138 38 2009 2003; 162 546 2012; 188 2017; 60 2016 2003; 6 126 2006; 12 2001 2017 2003 2004; 21 139 35 304 2005 1994; 120 344 2006; 8 2016; 53 1998 2008; 273 18 2020; 35 2014; 235 2005; 280 2015; 115 2017; 54 2010; 132 2009; 8 2019 2005; 31 127 2008 2020; 130 31 2019 2019; 123 123 1993 2004; 361 84 2002 2016 2017 2017 2017; 19 18 12 23 8 2018; 97 2008; 130 2016; 173 2009; 106 2018; 13 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_21_3 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_21_2 e_1_2_4_42_2 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_21_4 e_1_2_4_27_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_9_3 e_1_2_4_9_2 e_1_2_4_52_1 e_1_2_4_9_5 e_1_2_4_9_4 e_1_2_4_50_1 e_1_2_4_9_6 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_33_2 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_12_2 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_14_2 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_2 e_1_2_4_39_1 e_1_2_4_18_2 Wyss‐Coray T. (e_1_2_4_46_1) 2006; 12 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_41_2 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_2 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_2 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_2 e_1_2_4_26_3 e_1_2_4_28_1 e_1_2_4_2_2 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_51_2 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_30_2 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_11_2 e_1_2_4_53_2 e_1_2_4_11_3 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_11_4 e_1_2_4_34_2 e_1_2_4_11_5 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 485 start-page: 651 year: 2012 publication-title: Nature – volume: 6 126 start-page: 1935 year: 2016 2003 publication-title: Sci. Rep. Brain – volume: 29 28 537 13 6 19 start-page: 49 50 674 year: 2009 2012 2016 2017 2019 2019 publication-title: J. Neurosci. J. Alzheimer's Dis. Nature Small Adv. Sci. Nano Lett. – volume: 14 start-page: 388 year: 2015 publication-title: Lancet Neurol. – volume: 60 start-page: 173 year: 2017 publication-title: Neurobiol. Aging – volume: 235 start-page: 193 year: 2014 publication-title: J. Neurosci. Methods – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 357 year: 2013 publication-title: Lancet Neurol. – volume: 53 start-page: 8985 year: 2014 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 273 18 start-page: 240 year: 1998 2008 publication-title: J. Biol. Chem. Brain Pathol. – volume: 115 start-page: 3518 year: 2015 publication-title: Chem. Rev. – volume: 203 start-page: 175 year: 2013 publication-title: J. Cell Biol. – volume: 120 344 start-page: 545 769 year: 2005 1994 publication-title: Cell Lancet – volume: 106 start-page: 4012 year: 2009 publication-title: Proc. Natl. Acad. Sci. USA – volume: 280 start-page: 5892 year: 2005 publication-title: J. Biol. Chem. – volume: 31 127 start-page: 4889 year: 2019 2005 publication-title: Chem. Mater. J. Am. Chem. Soc. – volume: 47 282 start-page: 2689 100 year: 2009 2018 publication-title: Food Chem. Toxicol. Toxicol. Lett. – volume: 130 31 start-page: 1873 year: 2008 2020 publication-title: J. Am. Chem. Soc. Chin. Chem. Lett. – volume: 19 18 12 23 8 start-page: 51 341 2003 year: 2002 2016 2017 2017 2017 publication-title: J. Mol. Neurosci. Phys. Chem. Chem. Phys. Chem. ‐ Asian J. Chem. ‐ Eur. J. Chem. Sci. – volume: 8 start-page: 1348 year: 2006 publication-title: Nat. Cell Biol. – volume: 123 123 start-page: 6750 3643 year: 2019 2019 publication-title: J. Phys. Chem. B J. Phys. Chem. B – volume: 540 start-page: 15 year: 2016 publication-title: Nature – volume: 9 start-page: 198 year: 2018 publication-title: ACS Chem. Neurosci. – volume: 53 start-page: 1718 year: 2016 publication-title: Mol. Neurobiol. – volume: 361 84 start-page: 31 87 year: 1993 2004 publication-title: Nature Physiol. Rev. – volume: 27 start-page: 279 year: 2004 publication-title: Annu. Rev. Neurosci. – volume: 13 start-page: 812 year: 2018 publication-title: Nat. Nanotechnol. – volume: 19 12 start-page: 674 1321 year: 2019 2018 publication-title: Nano Lett. ACS Nano – volume: 188 start-page: 1098 year: 2012 publication-title: J. Immunol. – volume: 6 start-page: 936 year: 2000 publication-title: Mol. Med. – volume: 321 start-page: 1286 year: 2019 publication-title: JAMA, J. Am. Med. Assoc. – volume: 162 546 start-page: 234 859 year: 2009 2003 publication-title: Neuroscience J. Physiol. – volume: 8 start-page: 1082 year: 2009 publication-title: Lancet Neurol. – volume: 26 33 33 start-page: 229 781 year: 2006 2009 2013 publication-title: J. Neurosci. Neurobiol. Dis. J. Alzheimer's Dis. – volume: 10 start-page: 3780 year: 2019 publication-title: Nat. Commun. – volume: 21 139 35 304 start-page: 7551 966 45 448 year: 2001 2017 2003 2004 publication-title: J. Neurosci. J. Am. Chem. Soc. Free Radical Biol. Med. Science – volume: 20 6 start-page: 148 587 year: 2019 2010 publication-title: Nat. Rev. Neurosci. Nat. Rev. Neurol. – volume: 12 start-page: 1005 year: 2006 publication-title: Nat. Med. – volume: 286 start-page: 145 year: 2018 publication-title: J. Controlled Release – volume: 8 16 start-page: 1435 661 year: 2017 2020 publication-title: ACS Chem. Neurosci. Nat. Rev. Neurol. – volume: 138 38 start-page: 251 year: 2019 2018 publication-title: Acta Neuropathol. Biosci. Rep. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 300 year: 2013 publication-title: Nat. Rev. Neurol. – volume: 54 start-page: 819 year: 2017 publication-title: Mol. Neurobiol. – volume: 8 85 start-page: 3651 427 year: 2007 2013 publication-title: Biomacromolecules Eur. J. Pharm. Biopharm. – volume: 15 start-page: 73 year: 2019 publication-title: Nat. Rev. Neurol. – volume: 1804 start-page: 1405 year: 2010 publication-title: Biochim. Biophys. Acta – volume: 11 start-page: 86 year: 2019 publication-title: Nat. Chem. – volume: 10 year: 2019 publication-title: Chem. Sci. – volume: 21 start-page: 1 year: 2010 publication-title: J. Alzheimer's Dis. – volume: 130 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 552 start-page: 355 year: 2017 publication-title: Nature – volume: 173 start-page: 649 year: 2016 publication-title: Br. J. Pharmacol. – volume: 97 start-page: 1032 year: 2018 publication-title: Neuron – volume: 35 year: 2020 publication-title: Nano Today – ident: e_1_2_4_11_1 doi: 10.1007/s12031-002-0010-x – ident: e_1_2_4_36_1 doi: 10.1146/annurev.neuro.27.070203.144130 – ident: e_1_2_4_26_2 doi: 10.1016/j.nbd.2008.10.006 – ident: e_1_2_4_32_1 doi: 10.1038/nature11060 – volume: 12 start-page: 1005 year: 2006 ident: e_1_2_4_46_1 publication-title: Nat. Med. – ident: e_1_2_4_11_5 doi: 10.1039/C6SC04854D – ident: e_1_2_4_42_2 doi: 10.1038/nrneurol.2010.157 – ident: e_1_2_4_34_1 doi: 10.1007/s00401-019-02013-z – ident: e_1_2_4_25_1 doi: 10.1007/s12035-014-9073-2 – ident: e_1_2_4_47_1 doi: 10.1111/bph.13139 – ident: e_1_2_4_24_2 doi: 10.1016/j.toxlet.2017.10.021 – ident: e_1_2_4_37_1 doi: 10.1007/s12035-016-9687-7 – ident: e_1_2_4_51_2 doi: 10.1038/s41582-020-0397-4 – ident: e_1_2_4_26_1 doi: 10.1523/JNEUROSCI.1202-06.2006 – ident: e_1_2_4_41_2 doi: 10.1113/jphysiol.2002.031369 – ident: e_1_2_4_53_1 doi: 10.1021/ja8041806 – ident: e_1_2_4_12_2 doi: 10.1093/brain/awg191 – ident: e_1_2_4_11_2 doi: 10.1039/C6CP03582E – ident: e_1_2_4_29_1 doi: 10.1016/j.jconrel.2018.07.020 – ident: e_1_2_4_27_1 doi: 10.1021/ja107196s – ident: e_1_2_4_28_2 doi: 10.1016/j.ejpb.2013.07.002 – ident: e_1_2_4_9_3 doi: 10.1038/nature19323 – ident: e_1_2_4_33_1 doi: 10.1074/jbc.273.49.32730 – ident: e_1_2_4_14_1 doi: 10.1021/acs.nanolett.8b03644 – ident: e_1_2_4_51_1 doi: 10.1021/acschemneuro.7b00188 – ident: e_1_2_4_3_1 doi: 10.1016/S1474-4422(13)70044-9 – ident: e_1_2_4_1_1 doi: 10.1016/S1474-4422(09)70298-4 – ident: e_1_2_4_20_1 doi: 10.1016/j.bbapap.2010.04.001 – ident: e_1_2_4_55_1 doi: 10.1021/acschemneuro.7b00477 – ident: e_1_2_4_5_1 doi: 10.1038/nrneurol.2013.87 – ident: e_1_2_4_11_4 doi: 10.1002/chem.201704932 – ident: e_1_2_4_21_4 doi: 10.1126/science.1091230 – ident: e_1_2_4_41_1 doi: 10.1016/j.neuroscience.2009.04.046 – ident: e_1_2_4_48_1 doi: 10.1038/nature25158 – ident: e_1_2_4_28_1 doi: 10.1021/bm700753q – ident: e_1_2_4_9_6 doi: 10.1021/acs.nanolett.8b03644 – ident: e_1_2_4_30_2 doi: 10.1021/acs.jpcb.9b01206 – ident: e_1_2_4_40_1 doi: 10.1016/j.jneumeth.2014.07.007 – ident: e_1_2_4_39_1 doi: 10.1038/361031a0 – ident: e_1_2_4_21_1 doi: 10.1523/JNEUROSCI.21-19-07551.2001 – ident: e_1_2_4_34_2 doi: 10.1042/BSR20171611 – ident: e_1_2_4_18_2 doi: 10.1021/ja055696g – ident: e_1_2_4_6_1 doi: 10.1039/C9SC03042E – ident: e_1_2_4_18_1 doi: 10.1021/acs.chemmater.9b01613 – ident: e_1_2_4_9_2 doi: 10.3233/JAD-2011-110977 – ident: e_1_2_4_2_2 doi: 10.1016/S0140-6736(94)92338-8 – ident: e_1_2_4_14_2 doi: 10.1021/acsnano.7b07625 – ident: e_1_2_4_11_3 doi: 10.1002/asia.201601461 – ident: e_1_2_4_16_1 doi: 10.1021/acsami.9b12319 – ident: e_1_2_4_13_1 doi: 10.1016/j.nantod.2020.100937 – ident: e_1_2_4_19_1 doi: 10.1038/s41557-018-0164-y – ident: e_1_2_4_21_3 doi: 10.1016/S0891-5849(03)00244-2 – ident: e_1_2_4_44_1 doi: 10.1016/S1474-4422(15)70016-5 – ident: e_1_2_4_12_1 doi: 10.1038/srep39374 – ident: e_1_2_4_31_1 doi: 10.1021/cr500638n – ident: e_1_2_4_2_1 doi: 10.1016/j.cell.2005.02.008 – ident: e_1_2_4_15_1 doi: 10.1038/s41467-019-11762-0 – ident: e_1_2_4_22_1 doi: 10.1007/BF03401828 – ident: e_1_2_4_33_2 doi: 10.1111/j.1750-3639.2008.00132.x – ident: e_1_2_4_9_5 doi: 10.1002/advs.201970024 – ident: e_1_2_4_38_1 doi: 10.1083/jcb.201306030 – ident: e_1_2_4_21_2 doi: 10.1021/jacs.6b11748 – ident: e_1_2_4_9_1 doi: 10.1523/JNEUROSCI.2021-09.2009 – ident: e_1_2_4_50_1 doi: 10.4049/jimmunol.1101121 – ident: e_1_2_4_9_4 doi: 10.1002/smll.201701817 – ident: e_1_2_4_53_2 doi: 10.1016/j.cclet.2020.01.042 – ident: e_1_2_4_35_1 doi: 10.1001/jama.2019.2000 – ident: e_1_2_4_26_3 doi: 10.3233/JAD-2012-120982 – ident: e_1_2_4_8_1 doi: 10.1038/s41582-018-0116-6 – ident: e_1_2_4_23_1 doi: 10.1038/ncb1499 – ident: e_1_2_4_43_1 doi: 10.3233/JAD-2010-1414 – ident: e_1_2_4_45_1 doi: 10.1016/j.neuron.2018.02.002 – ident: e_1_2_4_54_1 doi: 10.1021/ja806606y – ident: e_1_2_4_10_1 doi: 10.1074/jbc.M404751200 – ident: e_1_2_4_17_1 doi: 10.1038/s41565-018-0179-y – ident: e_1_2_4_24_1 doi: 10.1016/j.fct.2009.06.007 – ident: e_1_2_4_7_1 doi: 10.1002/anie.201400735 – ident: e_1_2_4_30_1 doi: 10.1021/acs.jpcb.9b05288 – ident: e_1_2_4_39_2 doi: 10.1152/physrev.00014.2003 – ident: e_1_2_4_52_1 doi: 10.1038/nature.2016.21045 – ident: e_1_2_4_49_1 doi: 10.1016/j.neurobiolaging.2017.08.022 – ident: e_1_2_4_4_1 doi: 10.1073/pnas.0811698106 – ident: e_1_2_4_42_1 doi: 10.1038/s41583-019-0132-6 |
SSID | ssj0009606 |
Score | 2.5432146 |
Snippet | The imbalance of amyloid‐β (Aβ) production and clearance causes aggregation of Aβ1‐42 monomers to form fibrils and amyloid plaques, which is an indispensable... The imbalance of amyloid‐β (Aβ) production and clearance causes aggregation of Aβ 1‐42 monomers to form fibrils and amyloid plaques, which is an indispensable... The imbalance of amyloid-β (Aβ) production and clearance causes aggregation of Aβ monomers to form fibrils and amyloid plaques, which is an indispensable... The imbalance of amyloid-β (Aβ) production and clearance causes aggregation of Aβ1-42 monomers to form fibrils and amyloid plaques, which is an indispensable... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2006483 |
SubjectTerms | Alzheimer Disease - drug therapy Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer's disease Amyloid beta-Peptides - chemistry Amyloid beta-Peptides - metabolism amyloid plaques Animals Apoptosis Apoptosis - drug effects Calixarenes Calixarenes - chemistry Cognition Cyclodextrins Cyclodextrins - chemistry Fibrillation heteromultivalent recognition Humans Impairment Macrocyclic Compounds - chemistry Macrocyclic Compounds - pharmacology Materials science Mice Microglia - drug effects Microglia - metabolism Monomers Oxidizing agents Pathogenesis pathological impairment Pathology Peptide Fragments - chemistry Peptide Fragments - metabolism Plaque, Amyloid - drug therapy Plaque, Amyloid - metabolism Recognition Strategy |
Title | Recognition and Removal of Amyloid‐β by a Heteromultivalent Macrocyclic Coassembly: A Potential Strategy for the Treatment of Alzheimer's Disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202006483 https://www.ncbi.nlm.nih.gov/pubmed/33325586 https://www.proquest.com/docview/2480196218 https://www.proquest.com/docview/2470627071 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFL1CXZUFUJ6mBQ0SUlduE9_xi53VUkVIQShqpe6seYqIxEZNskhXfEIXfAkfwkf0S3pn_GgDQkiws-U7nofv9Zw7c3wM8JbrWCihMbSEHkJus5hibqBCLo2gCVxq6xX4xh-T0Rn_cB6f3_mKv9GH6BfcXGT497ULcCEXh7eioUJ73SCXEvPMyX06wpZDRZNb_SgHz73YHsZhTmadauMgOtwsvjkr_QY1N5Grn3pOHoLoGt0wTr4crJbyQF3-ouf4P716BA9aXMqKxpF24J6pHsP9O2qFT-D7pCMb1RUTlWYTM6_JUVltWTGnxH-qr79d_fzB5JoJNnI8m9rzFcmGpjY2FtR5tVazqWJHNYF2M5ez9TtWsE_10pGW6FatWO6aEZZmhE3ZaUeE97XMLj-b6dxc7C_YcbOz9BTOTt6fHo3C9qcOocIUMRxmhjBDLinurbAqtToZKgJBPJISkZIvOhSEMigTiwaoKTviQzGIVBLHaS65xGewVdWVeQEMjYm1zRJUmHOVpkJLVEagzWMhM50GEHYPtVSt4rn78casbLSao9KNdtmPdgD7vf3XRuvjj5Z7nY-Ubcwvysgp8eQJYaYA3vSXKVrdFoyoTL1yNqnThSZcF8Dzxrf6qhCR8rssCSDyHvKXNpTF8bjoz17-S6Fd2I4cRcevKO3B1vJiZV4RxlrK1z6ObgDNFx-P |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcgAO_EMNBRYJ1JPbZNe_SByshiqlTYWiVOrN3T-LqImNmkTIPfEIHHgReBAOPAJPwuz6pwSEkJB64GbL4_Vqd2bnm93xNwDPPOVzyRVzM0QPrpdFPtpcR7qe0BwduFCZZeAbHAT9Q-_1kX-0Ap-bf2Eqfoh2w81Yhl2vjYGbDemtc9ZQrixxkImJvaipX72ny_cYtc1e7vZwip9TuvNqtN1368ICrmQhY2430ui3YoG6l_FMhpkKuhIdsUeFYAwDALzk6OkwGqAdphChe13eoTLw_TAWnmDY7iW4bMqIG7r-3vCcscoEBJbej_lujP1qeCI7dGu5v8t-8Ddwu4yVrbPbuQHfmmGqclxONhdzsSnPfmGQ_K_G8SZcr6E3SSpbuQUrOr8N134iZLwDn4ZNPlWRE54rMtTTAm2RFBlJpuWkGKvvHz5-_UJESTjpm1SiwqZkogx6bzLgONqylJOxJNsFxiV6KiblC5KQN8Xc5GVhUzUfcEkwXCAIv8moyfW3X5mcvdXjqT7dmJFedXh2Fw4vZFjuwWpe5HoNCNPaV1kUMMliT4YhV4JJzVkW-1xEKnTAbbQolTWpu6ktMkkrOmqamtlN29l1YKOVf1fRmfxRcr1RyrRe1mYpNWRDcYCw0IGn7WNckMwpE891sTAyoaG-RujqwP1KmdtPMcYwhI0CB6hVyb_0IU16g6S9e_AvLz2BK_3RYD_d3z3YewhXqclIshto67A6P13oRwgp5-KxNWICxxet7T8AWVp4-g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UCmIfvF-iVUdQ-pQ2m5ncBB9C47K1bilLC32Lcwsu3U1KdxdJn_wJPvhDxB8i-Bf8JZ7Jra4igtAH3xJyMhnOnDPnOzMn3wA8Y8rjkitqZ4gebJaFHvqcI20mNMcALlRWMfAN9_zBIXt95B2twOf2X5iaH6JbcDOeUc3XxsFPVLZ1ThrKVcUbZFJiFrbHV-_q8j0mbbOXOwmO8HPX7b862B7YzbkCtqQBpXYv1Bi2IoGml_FMBpnyexLjMHOFoBTxP15yDHSYDLgOVQjQWY87rvQ9L4gEExTbvQSXme9E5rCIZHROWGXygYrdj3p2hP1qaSIdd2u5v8th8DdsuwyVq1jXvw7fWi3VJS7Hm4u52JRnvxBI_k9qvAHXGuBN4tpTbsKKzm_B2k90jLfh06itpipywnNFRnpaoCeSIiPxtJwUY_X9w8evX4goCScDU0hUVAWZKIOxmww5KluWcjKWZLvArERPxaR8QWKyX8xNVRY21bABlwSTBYLgmxy0lf7VVyZn7_R4qk83ZiSpt87uwOGFqOUurOZFru8DoVp7Kgt9KmnEZBBwJajUnGaRx0WoAgvs1ohS2VC6m5NFJmlNRu2mZnTTbnQt2OjkT2oykz9Krrc2mTaT2ix1DdVQ5CMotOBp9xinI7PHxHNdLIxMYIivEbhacK-25e5TlFJMYEPfAreyyL_0IY2TYdzdPfiXl57Alf2kn77Z2dt9CFddU45UrZ6tw-r8dKEfIZ6ci8eVCxN4e9HG_gNP5nep |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+and+Removal+of+Amyloid%E2%80%90%CE%B2+by+a+Heteromultivalent+Macrocyclic+Coassembly%3A+A+Potential+Strategy+for+the+Treatment+of+Alzheimer%27s+Disease&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Hui&rft.au=Xu%2C+XinXin&rft.au=Pan%2C+Yu%E2%80%90Chen&rft.au=Yan%2C+YuXing&rft.date=2021-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202006483&rft.externalDBID=10.1002%252Fadma.202006483&rft.externalDocID=ADMA202006483 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |