Priority and Prospect of Sulfide‐Based Solid‐Electrolyte Membrane
All‐solid‐state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy‐dense integration and critical intrinsic safety, yet they still require cost‐effective manufacturing and the integration of thin membrane‐based SE separators i...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 50; pp. e2206013 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | All‐solid‐state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy‐dense integration and critical intrinsic safety, yet they still require cost‐effective manufacturing and the integration of thin membrane‐based SE separators into large‐format cells to achieve scalable deployment. This review, based on an overview of sulfide SE materials, is expounded on why implementing a thin membrane‐based separator is the priority for mass production of ASSLBs and critical criteria for capturing a high‐quality thin sulfide SE membrane are identified. Moreover, from the aspects of material availability, membrane processing, and cell integration, the major challenges and associated strategies are described to meet these criteria throughout the whole manufacturing chain to provide a realistic assessment of the current status of sulfide SE membranes. Finally, future directions and prospects for scalable and manufacturable sulfide SE membranes for ASSLBs are presented.
This review expounds on why implementing a membrane‐based electrolyte is the priority for mass production of all‐solid‐state lithium batteries and identifies critical criteria for capturing a high‐quality thin sulfide electrolyte membrane. The challenges and associated strategies for achieving these criteria in terms of material availability, membrane processing, and cell integration are systematically analyzed and summarized. |
---|---|
AbstractList | All‐solid‐state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy‐dense integration and critical intrinsic safety, yet they still require cost‐effective manufacturing and the integration of thin membrane‐based SE separators into large‐format cells to achieve scalable deployment. This review, based on an overview of sulfide SE materials, is expounded on why implementing a thin membrane‐based separator is the priority for mass production of ASSLBs and critical criteria for capturing a high‐quality thin sulfide SE membrane are identified. Moreover, from the aspects of material availability, membrane processing, and cell integration, the major challenges and associated strategies are described to meet these criteria throughout the whole manufacturing chain to provide a realistic assessment of the current status of sulfide SE membranes. Finally, future directions and prospects for scalable and manufacturable sulfide SE membranes for ASSLBs are presented. All‐solid‐state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy‐dense integration and critical intrinsic safety, yet they still require cost‐effective manufacturing and the integration of thin membrane‐based SE separators into large‐format cells to achieve scalable deployment. This review, based on an overview of sulfide SE materials, is expounded on why implementing a thin membrane‐based separator is the priority for mass production of ASSLBs and critical criteria for capturing a high‐quality thin sulfide SE membrane are identified. Moreover, from the aspects of material availability, membrane processing, and cell integration, the major challenges and associated strategies are described to meet these criteria throughout the whole manufacturing chain to provide a realistic assessment of the current status of sulfide SE membranes. Finally, future directions and prospects for scalable and manufacturable sulfide SE membranes for ASSLBs are presented. This review expounds on why implementing a membrane‐based electrolyte is the priority for mass production of all‐solid‐state lithium batteries and identifies critical criteria for capturing a high‐quality thin sulfide electrolyte membrane. The challenges and associated strategies for achieving these criteria in terms of material availability, membrane processing, and cell integration are systematically analyzed and summarized. All-solid-state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy-dense integration and critical intrinsic safety, yet they still require cost-effective manufacturing and the integration of thin membrane-based SE separators into large-format cells to achieve scalable deployment. This review, based on an overview of sulfide SE materials, is expounded on why implementing a thin membrane-based separator is the priority for mass production of ASSLBs and critical criteria for capturing a high-quality thin sulfide SE membrane are identified. Moreover, from the aspects of material availability, membrane processing, and cell integration, the major challenges and associated strategies are described to meet these criteria throughout the whole manufacturing chain to provide a realistic assessment of the current status of sulfide SE membranes. Finally, future directions and prospects for scalable and manufacturable sulfide SE membranes for ASSLBs are presented.All-solid-state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy-dense integration and critical intrinsic safety, yet they still require cost-effective manufacturing and the integration of thin membrane-based SE separators into large-format cells to achieve scalable deployment. This review, based on an overview of sulfide SE materials, is expounded on why implementing a thin membrane-based separator is the priority for mass production of ASSLBs and critical criteria for capturing a high-quality thin sulfide SE membrane are identified. Moreover, from the aspects of material availability, membrane processing, and cell integration, the major challenges and associated strategies are described to meet these criteria throughout the whole manufacturing chain to provide a realistic assessment of the current status of sulfide SE membranes. Finally, future directions and prospects for scalable and manufacturable sulfide SE membranes for ASSLBs are presented. |
Author | Liang, Yuhao Yan, Xiaoqin Wang, Chao Li, Dabing Fan, Li‐Zhen Liu, Hong Nan, Ce‐Wen |
Author_xml | – sequence: 1 givenname: Hong surname: Liu fullname: Liu, Hong organization: University of Science and Technology Beijing – sequence: 2 givenname: Yuhao surname: Liang fullname: Liang, Yuhao organization: University of Science and Technology Beijing – sequence: 3 givenname: Chao surname: Wang fullname: Wang, Chao organization: University of Science and Technology Beijing – sequence: 4 givenname: Dabing surname: Li fullname: Li, Dabing organization: University of Science and Technology Beijing – sequence: 5 givenname: Xiaoqin orcidid: 0000-0002-0717-0710 surname: Yan fullname: Yan, Xiaoqin email: xqyan@mater.ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 6 givenname: Ce‐Wen surname: Nan fullname: Nan, Ce‐Wen organization: Tsinghua University – sequence: 7 givenname: Li‐Zhen surname: Fan fullname: Fan, Li‐Zhen email: fanlizhen@ustb.edu.cn organization: University of Science and Technology Beijing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35984755$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoNU7G1161IG3LiZ60kySSbLa71-QIuF6jpk8gEpmck1maHcnT_B39hf0pTbKhTEVTjwPIeT9z1BR1OaHEKvMawxAHmv7ajXBAgBDpg-QyvMCG47kOwIrUBS1kre9cfopJRrAJAc-At0TJnsO8HYCm0vc0g5zPtGT7a5zKnsnJmb5JurJfpg3e2v3x90cba5SjHYOm1jBXKK-9k1F24csp7cS_Tc61jcq4f3FP34tP1-9qU9__b569nmvDVUUNpi6IhhtmeYG0GlsZwRaoZBe99ZwsFxa7X03BDvvOg1N173zHIx8MEL4-gpenfYu8vp5-LKrMZQjIux3pCWooiAruf116Kib5-g12nJU71OEVmjktAJXKk3D9QyjM6qXQ6jznv1GFAFugNgajQlO69MmPUc0jRnHaLCoO57UPc9qD89VG39RHvc_E9BHoSbEN3-P7TafLzY_HXvAMFmm_E |
CitedBy_id | crossref_primary_10_1002_aenm_202301018 crossref_primary_10_1021_acsaem_4c02011 crossref_primary_10_1016_j_elecom_2023_107438 crossref_primary_10_1039_D4TA01753F crossref_primary_10_1039_D4TC01736F crossref_primary_10_1016_j_est_2024_114859 crossref_primary_10_1016_j_mser_2025_100950 crossref_primary_10_1002_aenm_202203631 crossref_primary_10_1002_sus2_218 crossref_primary_10_1002_cssc_202400840 crossref_primary_10_1038_s41467_025_56366_z crossref_primary_10_1002_aenm_202402064 crossref_primary_10_1007_s41918_025_00240_5 crossref_primary_10_1002_celc_202400612 crossref_primary_10_1002_adfm_202409403 crossref_primary_10_1002_adma_202410948 crossref_primary_10_1039_D4IM00066H crossref_primary_10_20517_energymater_2024_39 crossref_primary_10_1002_adfm_202411171 crossref_primary_10_1007_s11581_024_05653_8 crossref_primary_10_1557_s43577_023_00649_7 crossref_primary_10_1016_j_cej_2024_155029 crossref_primary_10_1002_aenm_202301230 crossref_primary_10_1021_acsenergylett_3c00560 crossref_primary_10_1039_D4QI01916D crossref_primary_10_1021_acsenergylett_4c01360 crossref_primary_10_1002_aenm_202405760 crossref_primary_10_1002_advs_202404307 crossref_primary_10_1039_D4QI02717E crossref_primary_10_1002_smtd_202402220 crossref_primary_10_1002_adfm_202310739 crossref_primary_10_1016_j_etran_2024_100319 crossref_primary_10_1002_bte2_20220059 crossref_primary_10_1002_wene_544 crossref_primary_10_1021_acsami_3c03466 crossref_primary_10_1002_smll_202307260 crossref_primary_10_3390_molecules28104081 crossref_primary_10_1002_smll_202307342 crossref_primary_10_1021_acs_nanolett_4c05892 crossref_primary_10_1038_s43246_024_00482_8 crossref_primary_10_1002_aenm_202402048 crossref_primary_10_1039_D3CS00439B crossref_primary_10_1039_D4NJ03064H crossref_primary_10_1002_inf2_12606 crossref_primary_10_1007_s12209_024_00394_1 crossref_primary_10_1002_advs_202307726 crossref_primary_10_1021_acsenergylett_4c00057 crossref_primary_10_1021_acsmaterialslett_4c02029 crossref_primary_10_1007_s11426_024_2515_2 crossref_primary_10_1016_j_cej_2024_149575 |
Cites_doi | 10.1016/j.ssi.2007.05.020 10.1002/aenm.201602923 10.1016/j.jpowsour.2016.04.018 10.1002/adma.202001702 10.1016/j.jpowsour.2018.10.037 10.1149/2.0951712jes 10.1038/s41563-019-0438-9 10.1038/s41560-018-0130-3 10.1016/j.jpowsour.2015.05.093 10.1016/j.ensm.2018.02.020 10.1002/adma.201808100 10.1016/j.jmat.2019.12.010 10.1021/acs.chemmater.5b01384 10.1021/acsomega.0c03453 10.1016/j.ssi.2004.02.025 10.1016/j.jpowsour.2020.229325 10.1002/adma.201901131 10.1002/ente.201901237 10.1038/natrevmats.2016.103 10.1002/adma.202107346 10.1021/cm3011315 10.1021/acsenergylett.1c02261 10.1038/natrevmats.2016.13 10.1002/aesr.202000077 10.1002/adfm.202007598 10.1016/j.ensm.2020.06.029 10.1002/adfm.202110876 10.1039/c3ta10247e 10.1038/s41598-018-19398-8 10.1021/acs.chemmater.0c04650 10.1021/acsaem.9b01111 10.1016/j.nanoen.2020.105097 10.1038/s41560-020-0565-1 10.1021/acs.chemrev.8b00241 10.1016/j.jpowsour.2013.09.117 10.1016/0025-5408(78)90075-2 10.1039/C3EE43306D 10.1038/s41578-019-0165-5 10.1557/s43581-021-00004-w 10.1038/s41560-017-0047-2 10.1111/j.1151-2916.2001.tb00685.x 10.1002/adma.202200083 10.1016/0167-2738(94)90232-1 10.1002/aenm.202003583 10.1016/j.jpowsour.2020.228708 10.1039/C6TA10142A 10.1016/j.jpowsour.2020.228062 10.1021/acs.chemmater.7b00931 10.1038/s41467-020-20314-w 10.1002/cssc.201700409 10.1016/j.chempr.2018.11.013 10.1002/ange.202007621 10.1021/acsaem.1c01917 10.1016/j.ssi.2012.03.013 10.1149/1.1392498 10.1039/D1EE03032A 10.1039/C0JM01090A 10.1016/j.jpowsour.2014.08.024 10.1016/j.cej.2021.129965 10.1016/j.jpowsour.2017.11.031 10.1039/C4TA05231E 10.3390/en14051406 10.1016/j.jechem.2020.09.038 10.1002/anie.202201249 10.1016/j.joule.2022.02.007 10.1016/j.ssi.2015.10.014 10.1021/acs.nanolett.1c01344 10.1039/C8EE02692K 10.1038/nnano.2017.16 10.1007/s10008-011-1572-8 10.1002/advs.202001207 10.1038/s41467-019-12938-4 10.1038/s41467-020-19726-5 10.1021/acs.nanolett.9b02678 10.1021/acsenergylett.9b02660 10.1016/j.ensm.2018.07.008 10.1039/C8EE00907D 10.1016/j.jpowsour.2019.227338 10.1039/C5CP01841B 10.1007/s11581-017-2035-8 10.1002/adfm.202203858 10.1016/j.jpowsour.2018.02.062 10.1002/inf2.12248 10.1016/j.nanoen.2021.105858 10.1007/s13391-012-2038-6 10.1149/2.1341709jes 10.1002/aenm.202003154 10.1039/C7TA06067J 10.1006/jssc.2002.9701 10.1016/j.ssi.2010.10.013 10.1016/j.jpowsour.2018.09.070 10.1021/acs.nanolett.6b01754 10.1021/acs.nanolett.7b00330 10.1016/j.elecom.2009.07.028 10.1016/j.ssi.2008.02.014 10.1021/acsenergylett.0c00251 10.1039/D1EE01530C 10.1149/1945-7111/ab7221 10.1002/anie.201608924 10.1016/j.cossms.2022.101003 10.1039/C5NR05116A 10.1021/jacs.7b06327 10.1002/adfm.202008165 10.1016/j.ssi.2004.08.028 10.1039/D1QM00071C 10.1016/j.progpolymsci.2017.12.004 10.1038/ncomms15893 10.1002/batt.202000051 10.1021/acs.accounts.1c00333 10.1021/ja508723m 10.1149/1.2403248 10.2109/jcersj2.16321 10.1021/acsami.1c10294 10.1016/0167-2738(95)00094-M 10.1016/j.ccr.2016.08.002 10.1016/j.ensm.2022.03.012 10.1021/acs.chemmater.9b00420 10.1039/c3cp51059j 10.1002/aenm.202102259 10.1039/c3cs35455e 10.1016/j.ensm.2020.04.042 10.1002/adma.201803075 10.1002/aenm.202003766 10.1002/aenm.201800035 10.1039/c2ee21892e 10.1016/j.xcrp.2022.100756 10.1016/j.ijpe.2020.107982 10.1016/j.mtphys.2021.100397 10.1002/admi.201701328 10.1002/adfm.202101523 10.1021/acsenergylett.2c00438 10.1038/nenergy.2016.141 10.1039/C4FD00143E 10.1039/D1TA04799J 10.1016/j.ensm.2018.11.011 10.1016/j.ssi.2017.09.007 10.1016/j.ensm.2020.04.014 10.1016/j.ssi.2010.10.001 10.1021/acsaem.9b00290 10.1021/acsami.5b07517 10.1021/acs.chemrev.0c00101 10.1021/acs.accounts.0c00874 10.1016/j.jpowsour.2022.231085 10.1002/smll.201902138 10.1039/C1CS15171A 10.1002/aenm.202103473 10.1149/1.1850854 10.1002/adfm.202202919 10.1021/acssuschemeng.1c06035 10.1002/batt.201800149 10.1016/j.jechem.2022.04.048 10.1021/acsami.7b11530 10.1002/adfm.201900392 10.1021/acsenergylett.1c00332 10.1038/s41560-021-00952-0 10.1002/pssa.201001117 10.1039/D1TA03343C 10.1021/acsami.9b13955 10.1002/adma.202000751 10.1002/adma.201502636 10.1021/cm5037524 10.1039/c3ee41728j 10.1007/s41918-020-00081-4 10.1038/s41560-020-00759-5 10.1016/j.ensm.2022.07.006 10.1016/j.jechem.2019.05.015 10.1021/acsenergylett.1c02756 10.1016/j.apmt.2020.100918 10.1002/aenm.201501590 10.1007/s40820-022-00844-2 10.1016/j.ssi.2015.08.001 10.1021/jacs.0c00134 10.1021/cm901452z 10.1021/acsenergylett.0c02617 10.1038/s41563-019-0431-3 10.1016/S0167-2738(00)00277-0 10.1021/acs.chemrev.5b00563 10.1002/aenm.202200660 10.1016/j.ensm.2020.05.007 10.1149/1.1379028 10.1016/0167-2738(86)90139-6 10.1016/j.jpowsour.2015.02.160 10.1021/acsenergylett.8b01726 10.1016/S0167-2738(02)00889-5 10.1021/acsenergylett.2c00003 10.1016/j.electacta.2016.09.155 10.1149/2.0961816jes 10.1038/451652a 10.1039/C3EE43357A 10.1016/j.ensm.2020.05.017 10.1016/j.ssi.2010.06.018 10.1038/s41578-019-0103-6 10.1039/D1RA03194E 10.1126/sciadv.abn4372 10.1002/aenm.201802927 10.1021/acsami.6b00833 10.1149/2.0981805jes 10.1002/sstr.202100146 10.1016/0254-0584(89)90015-1 10.1016/j.ssi.2018.07.013 10.1002/anie.201814222 10.1016/j.ensm.2021.06.027 10.1021/acsami.8b07476 10.1016/j.ssi.2014.05.002 10.1038/s41560-020-0597-6 10.1038/nenergy.2016.30 10.1016/j.mtener.2019.05.005 10.1016/j.jallcom.2018.03.027 10.1126/sciadv.aau9245 10.1038/35104644 10.1016/S0079-6425(03)00034-3 10.1021/acsenergylett.1c00627 10.1021/acsami.0c08261 10.1002/smll.201900235 10.1016/j.ceja.2021.100218 10.1021/jacs.9b08357 10.1021/acsenergylett.0c01905 10.1021/acssuschemeng.0c05549 10.1002/adma.202100921 10.1016/j.ssi.2015.06.001 10.1016/j.joule.2018.08.017 10.1039/C4CP02046D 10.1016/j.jechem.2019.02.006 10.1016/j.cej.2020.124706 10.1016/j.jnoncrysol.2012.12.044 10.1002/adma.200502604 10.1002/zaac.201100158 10.1002/aenm.202101864 10.1016/j.ensm.2017.09.007 10.1038/s41560-019-0513-0 10.1002/aenm.201903422 10.1038/s41586-021-03723-9 10.1021/acs.chemmater.0c03738 10.1021/acsami.7b01137 10.1016/j.ensm.2021.03.017 10.1021/acsami.7b16176 10.1021/ja407393y 10.1021/acs.chemrev.0c00431 10.1021/cm203303y 10.1149/2.064301jes 10.1002/aenm.202002508 10.1021/acs.chemrev.9b00747 10.1002/adma.201505008 10.1021/acs.chemmater.6b04990 10.1021/acs.chemmater.9b03852 10.1002/aenm.201902125 10.1002/aenm.202002153 10.1016/j.jnoncrysol.2007.08.058 10.1016/j.jpowsour.2012.09.097 10.1021/acs.chemmater.9b04764 10.1016/S0167-2738(02)00492-7 10.1016/j.ssi.2019.01.017 10.1038/srep08869 10.1038/ngeo2699 10.1039/D0EE02241A 10.1016/0167-2738(86)90142-6 10.1038/nmat4369 10.1016/0167-2738(80)90048-X 10.1021/acsenergylett.8b01997 10.1021/accountsmr.1c00137 10.1016/j.electacta.2016.08.081 10.1002/celc.202100010 10.1021/acs.chemrev.9b00268 10.1038/s41560-020-0575-z 10.1002/adfm.201910123 10.1016/j.ensm.2019.10.020 10.1002/adma.202200401 10.1016/j.cej.2021.134019 10.1016/j.nanoen.2018.09.061 10.1021/acsami.0c02085 10.1021/acsenergylett.0c00256 10.1021/acsenergylett.0c00207 10.1016/j.matt.2020.02.003 10.1021/acssuschemeng.1c00904 10.1016/j.joule.2020.12.001 10.1039/c1ee01598b 10.1038/nmat3066 10.1021/acsami.0c00393 10.1002/adma.202006577 10.1021/ja3110895 10.1002/aenm.201902881 10.1016/j.jpowsour.2016.05.100 10.1016/0025-5408(83)90080-6 10.1016/j.cej.2021.132991 10.1002/aenm.201703644 10.1021/acs.chemmater.9b00505 10.1016/j.ensm.2019.05.019 10.1021/acs.chemmater.7b00013 10.1016/j.ensm.2019.05.033 10.1016/0022-3093(80)90430-5 10.1002/aenm.202102348 10.1002/adma.200401286 10.1038/s41560-018-0107-2 10.1021/acsenergylett.8b00275 10.1038/s41578-019-0157-5 10.1126/sciadv.aas9820 10.1002/inf2.12292 10.1016/j.ssi.2005.03.001 10.1038/s41578-021-00320-0 10.1002/anie.200703900 10.1002/aenm.202101521 10.1021/acsenergylett.9b00430 10.1016/j.ensm.2021.08.028 10.1038/s41467-020-18736-7 10.1002/ppsc.201300358 10.1126/science.1212741 10.1002/aenm.201401408 10.1021/acs.chemmater.6b03630 10.1016/j.ssi.2012.06.008 10.1002/adfm.202101985 10.1016/j.nanoen.2020.104686 10.1021/acs.nanolett.5b00538 10.1021/acsenergylett.1c02428 10.1039/C7TA06873E 10.1016/0167-2738(84)90097-3 10.1126/science.abg7217 10.1002/smtd.201900261 10.1016/j.joule.2019.03.019 10.1149/1.2108425 10.1002/adfm.202201528 10.1002/aenm.202200948 10.1149/2.jes113225 10.1016/j.jnoncrysol.2010.05.016 10.1002/adma.202105505 10.1039/D0CS00305K 10.1002/adma.202007298 10.1002/adma.201705702 10.1016/j.jpowsour.2016.08.115 10.1002/celc.202101479 10.1016/j.nanoen.2019.104252 10.1039/C3EE41655K 10.1021/acs.chemmater.1c01431 10.1021/acs.chemmater.0c03090 10.1021/acsenergylett.8b01564 10.1149/1945-7111/aba36f 10.1016/j.ssi.2006.04.017 10.1002/adma.202104666 10.1021/acsami.1c06328 10.1002/aenm.201800014 10.1021/acs.chemmater.6b00610 10.1149/2.0501412jes 10.1038/s41467-019-13774-2 10.1016/j.ensm.2017.08.015 10.1021/cm5016959 10.1021/jacs.8b10282 10.1111/j.1151-2916.1999.tb01923.x 10.1002/aenm.201500865 10.1016/j.ensm.2021.06.015 10.1038/nenergy.2017.119 10.1021/acsenergylett.9b01676 10.1016/j.nanoen.2022.107104 10.1021/acs.jpcc.1c05034 10.1039/D1TA09846B 10.1038/s41560-020-00748-8 10.1016/j.nanoen.2021.106542 10.1016/j.nanoen.2020.105015 10.1016/j.nanoen.2021.106142 10.1038/s41565-020-0657-x 10.1002/advs.201600517 10.1016/j.matt.2022.01.011 10.1039/C7TA05031C 10.1016/j.mattod.2021.01.006 10.1039/C7TA01147D 10.1002/cber.18860190156 10.1021/jp301193r 10.1021/acs.chemmater.5b04082 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202206013 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35984755 10_1002_adma_202206013 ADMA202206013 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U21A2080; 51872027 – fundername: Beijing Natural Science Foundation funderid: Z200011 – fundername: Beijing Natural Science Foundation grantid: Z200011 – fundername: National Natural Science Foundation of China grantid: U21A2080 – fundername: National Natural Science Foundation of China grantid: 51872027 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3733-1042c5d8516c739cd6523cbbaff4d260e6dda9f6c2fef78a6cfa85d67b6bf7ce3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 05:36:35 EDT 2025 Fri Jul 25 07:44:31 EDT 2025 Mon Jul 21 06:04:46 EDT 2025 Tue Jul 01 02:33:20 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Wed Jan 22 16:15:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | all-solid-state lithium batteries cell integration membrane processing sulfide solid electrolyte |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-1042c5d8516c739cd6523cbbaff4d260e6dda9f6c2fef78a6cfa85d67b6bf7ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0717-0710 |
PMID | 35984755 |
PQID | 2901390471 |
PQPubID | 2045203 |
PageCount | 57 |
ParticipantIDs | proquest_miscellaneous_2704869357 proquest_journals_2901390471 pubmed_primary_35984755 crossref_citationtrail_10_1002_adma_202206013 crossref_primary_10_1002_adma_202206013 wiley_primary_10_1002_adma_202206013_ADMA202206013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1886; 19 2005; 176 2020; 20 2019; 11 2019; 10 2019; 13 2019; 12 2019; 15 2018; 324 2019; 17 2013; 364 2020; 15 2019; 18 2020; 167 2020; 12 2020; 11 2020; 10 1983; 18 2003; 158 2001; 148 1980; 38 2007; 178 2015; 137 2016; 318 2019; 21 2019; 23 2019; 29 2017; 164 2021; 83 2008; 354 2012; 24 2021; 43 2019; 31 2021; 421 2016; 329 2020; 41 2004; 49 2020; 40 2020; 142 1973; 120 1986; 18 2013; 224 2016; 326 2020; 33 2016; 324 2020; 32 2011; 4 2016; 16 2017; 139 2021; 58 2016; 6 2021; 54 2016; 1 2020; 31 2022; 3 2022; 4 2016; 219 2020; 30 2020; 393 2022; 5 2018; 118 2022; 6 2022; 7 2022; 8 2022; 9 2017; 56 2008; 47 2020; 25 2022; 96 2016; 215 2016; 28 2016; 8 2016; 9 2012; 41 2018; 402 2020; 120 2021; 125 2019; 58 2018; 81 2018; 407 2021; 485 2014; 176 2020; 8 2020; 7 2015; 293 2020; 6 2020; 5 2011; 208 2013; 15 2020; 3 2020; 2 1984; 14 2021; 596 2020; 132 2020; 9 2020; 49 2014; 161 2016; 116 2021; 232 2014; 7 2022; 524 2017; 125 2015; 284 2021; 9 2022; 430 2021; 8 2015; 283 2022; 431 2011; 334 2021; 6 2021; 5 2015; 5 1989; 23 2021; 4 2021; 86 2005; 152 2015; 3 2021; 2 2020; 460 2013; 42 2017; 23 2006; 18 1999; 146 2017; 29 2020; 77 1978; 13 2020; 76 2015; 7 2021; 90 2017; 17 2020; 72 2015; 278 1980; 1 2017; 10 2017; 12 2020; 479 2020; 67 2018; 318 2008; 451 2018; 53 2018; 165 2011; 637 2013; 1 2002; 154 2020; 446 2014; 26 1994; 68 2000; 130 2022; 26 2011; 192 2013; 6 2006; 177 2010; 22 2009; 11 2014; 248 2018; 8 2004; 175 2018; 3 2018; 2 2018; 5 2018; 4 2004; 170 2010; 356 2014; 16 2022; 34 2018; 30 2022; 32 2001; 414 2019; 9 2019; 4 2019; 3 2012; 221 2019; 5 2019; 2 2014; 271 2018; 747 2012; 225 2016; 285 2022; 12 1997; 39 2019; 333 2022; 14 2022; 15 2021; 373 2022; 10 2018; 11 2005; 17 2018; 10 2012; 116 2014; 263 2018; 14 2014; 31 2017; 5 2017; 7 2017; 8 2021; 21 2017; 2 2021; 22 2017; 4 2022; 71 1986; 133 1995; 78 2012; 160 2011; 10 1999; 82 2011; 16 2001; 84 2017; 9 2018; 375 2021; 38 2021; 31 2021; 33 2011; 21 2011; 24 2021; 41 2015; 15 2015; 14 2015; 17 2018; 140 2018; 382 2022; 51 2022; 48 2019; 141 2021; 14 2021; 13 2015; 28 2015; 27 2021; 12 2021; 11 2022; 61 2002; 168 2021; 18 2021; 17 2013; 135 2022; 53 2008; 179 2012; 159 2012; 5 2011; 182 2012; 8 e_1_2_10_271_1 e_1_2_10_339_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_210_1 e_1_2_10_233_1 e_1_2_10_256_1 e_1_2_10_279_1 e_1_2_10_294_1 e_1_2_10_158_1 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_304_1 e_1_2_10_327_1 e_1_2_10_342_1 e_1_2_10_365_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_260_1 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_245_1 e_1_2_10_268_1 e_1_2_10_283_1 e_1_2_10_147_1 e_1_2_10_219_1 e_1_2_10_330_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_338_1 e_1_2_10_353_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_315_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_272_1 e_1_2_10_41_1 e_1_2_10_211_1 e_1_2_10_257_1 e_1_2_10_295_1 e_1_2_10_234_1 e_1_2_10_341_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_349_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_326_1 e_1_2_10_364_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_303_1 e_1_2_10_261_1 e_1_2_10_269_1 e_1_2_10_200_1 e_1_2_10_246_1 e_1_2_10_284_1 e_1_2_10_223_1 e_1_2_10_352_1 e_1_2_10_148_1 e_1_2_10_337_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_314_1 e_1_2_10_26_1 e_1_2_10_250_1 e_1_2_10_273_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_258_1 e_1_2_10_212_1 e_1_2_10_235_1 e_1_2_10_296_1 e_1_2_10_340_1 e_1_2_10_363_1 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_348_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_302_1 e_1_2_10_325_1 e_1_2_10_175_1 e_1_2_10_262_1 e_1_2_10_30_1 e_1_2_10_247_1 e_1_2_10_201_1 e_1_2_10_224_1 e_1_2_10_285_1 e_1_2_10_351_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_336_1 e_1_2_10_359_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_313_1 e_1_2_10_274_1 e_1_2_10_43_1 e_1_2_10_251_1 e_1_2_10_20_1 e_1_2_10_236_1 e_1_2_10_259_1 e_1_2_10_213_1 e_1_2_10_297_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_362_1 e_1_2_10_92_1 e_1_2_10_301_1 e_1_2_10_347_1 e_1_2_10_115_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_324_1 e_1_2_10_263_1 e_1_2_10_309_1 e_1_2_10_240_1 e_1_2_10_31_1 e_1_2_10_225_1 e_1_2_10_248_1 e_1_2_10_202_1 e_1_2_10_286_1 e_1_2_10_350_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_312_1 e_1_2_10_335_1 e_1_2_10_358_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_252_1 e_1_2_10_275_1 e_1_2_10_298_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_214_1 e_1_2_10_237_1 e_1_2_10_290_1 e_1_2_10_361_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_300_1 e_1_2_10_323_1 e_1_2_10_346_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_241_1 e_1_2_10_264_1 e_1_2_10_287_1 e_1_2_10_308_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_249_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_334_1 e_1_2_10_357_1 e_1_2_10_128_1 e_1_2_10_311_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_253_1 e_1_2_10_299_1 e_1_2_10_319_1 e_1_2_10_22_1 e_1_2_10_230_1 e_1_2_10_215_1 e_1_2_10_291_1 e_1_2_10_238_1 e_1_2_10_276_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_360_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_322_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_345_1 e_1_2_10_242_1 e_1_2_10_288_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_307_1 Hart P. W. (e_1_2_10_138_1) 1997; 39 e_1_2_10_204_1 e_1_2_10_280_1 e_1_2_10_227_1 e_1_2_10_265_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_333_1 e_1_2_10_310_1 e_1_2_10_68_1 e_1_2_10_356_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_231_1 e_1_2_10_318_1 e_1_2_10_239_1 e_1_2_10_292_1 e_1_2_10_216_1 e_1_2_10_254_1 e_1_2_10_277_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_321_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_344_1 e_1_2_10_367_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_289_1 e_1_2_10_306_1 e_1_2_10_329_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_281_1 e_1_2_10_243_1 e_1_2_10_266_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_332_1 e_1_2_10_160_1 e_1_2_10_355_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_317_1 e_1_2_10_270_1 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_293_1 e_1_2_10_232_1 e_1_2_10_278_1 e_1_2_10_255_1 e_1_2_10_157_1 e_1_2_10_229_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_320_1 e_1_2_10_305_1 e_1_2_10_343_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_366_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_328_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_282_1 e_1_2_10_221_1 e_1_2_10_267_1 e_1_2_10_244_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_331_1 e_1_2_10_316_1 e_1_2_10_354_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
References_xml | – volume: 4 year: 2021 publication-title: InfoMat – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 43 start-page: 53 year: 2021 publication-title: Energy Storage Mater. – volume: 39 start-page: 31 year: 1997 publication-title: Cost Eng. – volume: 3 start-page: 596 year: 2020 publication-title: Batteries Supercaps – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 485 year: 2021 publication-title: J. Power Sources – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 7 start-page: 1092 year: 2022 publication-title: ACS Energy Lett. – volume: 177 start-page: 2721 year: 2006 publication-title: Solid State Ionics – volume: 4 start-page: 312 year: 2019 publication-title: Nat. Rev. Mater. – volume: 21 start-page: 390 year: 2019 publication-title: Energy Storage Mater. – volume: 373 start-page: 1494 year: 2021 publication-title: Science – volume: 24 start-page: 15 year: 2011 publication-title: Chem. Mater. – volume: 6 start-page: 70 year: 2020 publication-title: J. Materiomics – volume: 5 start-page: 105 year: 2019 publication-title: Nat. Rev. Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 519 year: 1980 publication-title: Solid State Ionics – volume: 12 start-page: 1818 year: 2019 publication-title: Energy Environ. Sci. – volume: 460 year: 2020 publication-title: J. Power Sources – volume: 165 start-page: A957 year: 2018 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 2480 year: 2019 publication-title: ACS Energy Lett. – volume: 14 start-page: 4712 year: 2021 publication-title: Energy Environ. Sci. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 144 year: 2019 publication-title: Energy Storage Mater. – volume: 176 start-page: 83 year: 2014 publication-title: Faraday Discuss. – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 6 start-page: 227 year: 2021 publication-title: Nat. Energy – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 21 start-page: 5233 year: 2021 publication-title: Nano Lett. – volume: 9 year: 2022 publication-title: ChemElectroChem – volume: 6 start-page: 862 year: 2021 publication-title: ACS Energy Lett. – volume: 7 start-page: 627 year: 2014 publication-title: Energy Environ. Sci. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 22 year: 2021 publication-title: Appl. Mater. Today – volume: 17 start-page: 204 year: 2019 publication-title: Energy Storage Mater. – volume: 18 start-page: 1105 year: 2019 publication-title: Nat. Mater. – volume: 284 start-page: 206 year: 2015 publication-title: J. Power Sources – volume: 48 start-page: 458 year: 2022 publication-title: Energy Storage Mater. – volume: 15 start-page: 991 year: 2022 publication-title: Energy Environ. Sci. – volume: 72 year: 2020 publication-title: Nano Energy – volume: 7 start-page: 1492 year: 2022 publication-title: ACS Energy Lett. – volume: 31 start-page: 3694 year: 2019 publication-title: Chem. Mater. – volume: 208 start-page: 1804 year: 2011 publication-title: Phys. Status Solidi A – volume: 3 start-page: 992 year: 2018 publication-title: ACS Energy Lett. – volume: 132 year: 2020 publication-title: Angew. Chem. – volume: 9 year: 2022 publication-title: Chem. Eng. J. Adv. – volume: 49 start-page: 8790 year: 2020 publication-title: Chem. Soc. Rev. – volume: 263 start-page: 57 year: 2014 publication-title: Solid State Ionics – volume: 2 start-page: 524 year: 2019 publication-title: Batteries Supercaps – volume: 22 start-page: 587 year: 2010 publication-title: Chem. Mater. – volume: 8 start-page: 74 year: 2016 publication-title: Nanoscale – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 3 start-page: 438 year: 2015 publication-title: J. Mater. Chem. A – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 224 start-page: 225 year: 2013 publication-title: J. Power Sources – volume: 31 start-page: 639 year: 2014 publication-title: Part. Part. Syst. Charact. – volume: 8 start-page: 199 year: 2012 publication-title: Electron. Mater. Lett. – volume: 41 start-page: 171 year: 2020 publication-title: J. Energy Chem. – volume: 285 start-page: 79 year: 2016 publication-title: Solid State Ionics – volume: 17 start-page: 266 year: 2019 publication-title: Energy Storage Mater. – volume: 293 start-page: 941 year: 2015 publication-title: J. Power Sources – volume: 421 year: 2021 publication-title: Chem. Eng. J. – volume: 82 start-page: 1352 year: 1999 publication-title: J. Am. Ceram. Soc. – volume: 27 start-page: 5503 year: 2015 publication-title: Chem. Mater. – volume: 8 start-page: 386 year: 2021 publication-title: ChemElectroChem – volume: 28 start-page: 1874 year: 2016 publication-title: Adv. Mater. – volume: 10 start-page: 139 year: 2018 publication-title: Energy Storage Mater. – volume: 33 start-page: 146 year: 2020 publication-title: Chem. Mater. – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 5 start-page: 718 year: 2020 publication-title: ACS Energy Lett. – volume: 4 year: 2022 publication-title: InfoMat – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 259 year: 2020 publication-title: Nat. Energy – volume: 9 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 178 start-page: 1163 year: 2007 publication-title: Solid State Ionics – volume: 58 start-page: 8681 year: 2019 publication-title: Angew. Chem. – volume: 364 start-page: 57 year: 2013 publication-title: J. Non‐Cryst. Solids – volume: 18 start-page: 2226 year: 2006 publication-title: Adv. Mater. – volume: 6 start-page: 1831 year: 2021 publication-title: ACS Energy Lett. – volume: 225 start-page: 342 year: 2012 publication-title: Solid State Ionics – volume: 324 start-page: 207 year: 2018 publication-title: Solid State Ionics – volume: 2 start-page: 2016 year: 2018 publication-title: Joule – volume: 53 start-page: 958 year: 2018 publication-title: Nano Energy – volume: 5 start-page: 229 year: 2020 publication-title: Nat. Rev. Mater. – volume: 393 year: 2020 publication-title: Chem. Eng. J. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 29 start-page: 3883 year: 2017 publication-title: Chem. Mater. – volume: 1 start-page: 6320 year: 2013 publication-title: J. Mater. Chem. A – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 6 start-page: 3548 year: 2013 publication-title: Energy Environ. Sci. – volume: 11 start-page: 2142 year: 2018 publication-title: Energy Environ. Sci. – volume: 84 start-page: 477 year: 2001 publication-title: J. Am. Ceram. Soc. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 41 start-page: 448 year: 2021 publication-title: Energy Storage Mater. – volume: 130 start-page: 97 year: 2000 publication-title: Solid State Ionics – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 23 start-page: 29 year: 1989 publication-title: Mater. Chem. Phys. – volume: 375 start-page: 93 year: 2018 publication-title: J. Power Sources – volume: 15 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 267 year: 2018 publication-title: Nat. Energy – volume: 11 start-page: 5889 year: 2020 publication-title: Nat. Commun. – volume: 5 start-page: 1243 year: 2020 publication-title: ACS Energy Lett. – volume: 86 year: 2021 publication-title: Nano Energy – volume: 17 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 3 year: 2022 publication-title: Cell Rep. Phys. Sci. – volume: 175 start-page: 707 year: 2004 publication-title: Solid State Ionics – volume: 5 start-page: 753 year: 2019 publication-title: Chem – volume: 12 start-page: 1 year: 2021 publication-title: Nat. Commun. – volume: 9 start-page: 120 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 135 start-page: 975 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1026 year: 2015 publication-title: Nat. Mater. – volume: 10 year: 2019 publication-title: Adv. Energy Mater. – volume: 524 year: 2022 publication-title: J. Power Sources – volume: 637 start-page: 1287 year: 2011 publication-title: Z. Anorg. Allg. Chem. – volume: 18 start-page: 351 year: 1986 publication-title: Solid State Ionics – volume: 329 start-page: 530 year: 2016 publication-title: J. Power Sources – volume: 5 start-page: 7854 year: 2012 publication-title: Energy Environ. Sci. – volume: 38 start-page: 271 year: 1980 publication-title: J. Non‐Cryst. Solids – volume: 283 start-page: 75 year: 2015 publication-title: Solid State Ionics – volume: 38 start-page: 249 year: 2021 publication-title: Energy Storage Mater. – volume: 5 start-page: 564 year: 2021 publication-title: Joule – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 83 year: 2021 publication-title: Nano Energy – volume: 8 start-page: 1212 year: 2018 publication-title: Sci. Rep. – volume: 25 start-page: 145 year: 2020 publication-title: Energy Storage Mater. – volume: 278 start-page: 98 year: 2015 publication-title: Solid State Ionics – volume: 15 year: 2019 publication-title: Small – volume: 179 start-page: 1282 year: 2008 publication-title: Solid State Ionics – volume: 219 start-page: 235 year: 2016 publication-title: Electrochim. Acta – volume: 21 start-page: 118 year: 2011 publication-title: J. Mater. Chem. – volume: 30 start-page: 98 year: 2020 publication-title: Energy Storage Mater. – volume: 3 start-page: 290 year: 2018 publication-title: Nat. Energy – volume: 125 year: 2021 publication-title: J. Phys. Chem. C – volume: 61 year: 2022 publication-title: Angew. Chem. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 6542 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 3 year: 2019 publication-title: Small Methods – volume: 15 start-page: 170 year: 2020 publication-title: Nat. Nanotechnol. – volume: 27 start-page: 6922 year: 2015 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 5 start-page: 6310 year: 2017 publication-title: J. Mater. Chem. A – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 17 start-page: 918 year: 2005 publication-title: Adv. Mater. – volume: 4 start-page: 3243 year: 2011 publication-title: Energy Environ. Sci. – volume: 154 start-page: 789 year: 2002 publication-title: Solid State Ionics – volume: 407 start-page: 31 year: 2018 publication-title: J. Power Sources – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 148 start-page: A742 year: 2001 publication-title: J. Electrochem. Soc. – volume: 6 start-page: 123 year: 2021 publication-title: Nat. Energy – volume: 120 start-page: 1289 year: 1973 publication-title: J. Electrochem. Soc. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 5 start-page: 2829 year: 2017 publication-title: J. Mater. Chem. A – volume: 29 start-page: 5574 year: 2017 publication-title: Chem. Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 356 start-page: 2666 year: 2010 publication-title: J. Non‐Cryst. Solids – volume: 160 start-page: A77 year: 2012 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 171 year: 2022 publication-title: ACS Energy Lett. – volume: 18 year: 2021 publication-title: Mater. Today Phys. – volume: 318 start-page: 60 year: 2018 publication-title: Solid State Ionics – volume: 41 start-page: 571 year: 2021 publication-title: Energy Storage Mater. – volume: 67 year: 2020 publication-title: Nano Energy – volume: 333 start-page: 45 year: 2019 publication-title: Solid State Ionics – volume: 116 start-page: 140 year: 2016 publication-title: Chem. Rev. – volume: 7 start-page: 1776 year: 2022 publication-title: ACS Energy Lett. – volume: 382 start-page: 160 year: 2018 publication-title: J. Power Sources – volume: 152 start-page: A396 year: 2005 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 7155 year: 2022 publication-title: J. Mater. Chem. A – volume: 2 start-page: 805 year: 2020 publication-title: Matter – volume: 3 year: 2022 publication-title: Small Struct. – volume: 161 year: 2014 publication-title: J. Electrochem. Soc. – volume: 16 start-page: 1807 year: 2011 publication-title: J. Solid State Electrochem. – volume: 8 start-page: 7843 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 120 start-page: 6820 year: 2020 publication-title: Chem. Rev. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 5 year: 2020 publication-title: ACS Omega – volume: 28 start-page: 2400 year: 2016 publication-title: Chem. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 26 year: 2022 publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 13 start-page: 119 year: 2019 publication-title: Mater. Today Energy – volume: 7 start-page: 83 year: 2022 publication-title: Nat. Energy – volume: 354 start-page: 1475 year: 2008 publication-title: J. Non‐Cryst. Solids – volume: 27 start-page: 189 year: 2015 publication-title: Chem. Mater. – volume: 232 year: 2021 publication-title: Inter. J. Prod. Econ. – volume: 5 start-page: 1035 year: 2020 publication-title: ACS Energy Lett. – volume: 7 start-page: 1053 year: 2014 publication-title: Energy Environ. Sci. – volume: 2 start-page: 3523 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 596 start-page: 377 year: 2021 publication-title: Nature – volume: 13 start-page: 117 year: 1978 publication-title: Mater. Res. Bull. – volume: 271 start-page: 342 year: 2014 publication-title: J. Power Sources – volume: 479 year: 2020 publication-title: J. Power Sources – volume: 11 start-page: 93 year: 2020 publication-title: Nat. Commun. – volume: 10 start-page: 682 year: 2011 publication-title: Nat. Mater. – volume: 4 start-page: 265 year: 2018 publication-title: ACS Energy Lett. – volume: 9 start-page: 340 year: 2016 publication-title: Nat. Geosci. – volume: 11 start-page: 1830 year: 2009 publication-title: Electrochem. Commun. – volume: 5 start-page: 3468 year: 2020 publication-title: ACS Energy Lett. – volume: 192 start-page: 122 year: 2011 publication-title: Solid State Ionics – volume: 54 start-page: 2717 year: 2021 publication-title: Acc. Chem. Res. – volume: 14 start-page: 181 year: 1984 publication-title: Solid State Ionics – volume: 10 start-page: 2556 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 368 year: 1986 publication-title: Solid State Ionics – volume: 3 start-page: 2775 year: 2018 publication-title: ACS Energy Lett. – volume: 133 start-page: 2437 year: 1986 publication-title: J. Electrochem. Soc. – volume: 14 start-page: 12 year: 2021 publication-title: Energy Environ. Sci. – volume: 33 start-page: 2004 year: 2021 publication-title: Chem. Mater. – volume: 402 start-page: 506 year: 2018 publication-title: J. Power Sources – volume: 68 start-page: 35 year: 1994 publication-title: Solid State Ionics – volume: 14 start-page: 58 year: 2018 publication-title: Energy Storage Mater. – volume: 24 start-page: 2211 year: 2012 publication-title: Chem. Mater. – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 2 year: 2021 publication-title: Adv. Energy Sustainability Res. – volume: 125 start-page: 391 year: 2017 publication-title: J. Ceram. Soc. Jpn. – volume: 182 start-page: 116 year: 2011 publication-title: Solid State Ionics – volume: 26 start-page: 4248 year: 2014 publication-title: Chem. Mater. – volume: 17 year: 2021 publication-title: Small – volume: 49 start-page: 537 year: 2004 publication-title: Prog. Mater Sci. – volume: 19 start-page: 210 year: 1886 publication-title: Ber. Dtsch. Chem. Ges. – volume: 20 start-page: 1483 year: 2020 publication-title: Nano Lett. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 142 start-page: 7012 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 31 year: 2019 publication-title: Chem. Mater. – volume: 77 year: 2020 publication-title: Nano Energy – volume: 318 start-page: 210 year: 2016 publication-title: J. Power Sources – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 146 start-page: 3472 year: 1999 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 3344 year: 2021 publication-title: Mater. Chem. Front. – volume: 248 start-page: 939 year: 2014 publication-title: J. Power Sources – volume: 96 year: 2022 publication-title: Nano Energy – volume: 168 start-page: 140 year: 2002 publication-title: J. Solid State Chem. – volume: 4 start-page: 94 year: 2019 publication-title: ACS Energy Lett. – volume: 53 start-page: 7 year: 2022 publication-title: Mater. Today – volume: 8 year: 2020 publication-title: Energy Technol. – volume: 15 start-page: 3317 year: 2015 publication-title: Nano Lett. – volume: 41 start-page: 413 year: 2012 publication-title: Chem. Soc. Rev. – volume: 176 start-page: 1229 year: 2005 publication-title: Solid State Ionics – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 5 start-page: 299 year: 2020 publication-title: Nat. Energy – volume: 120 start-page: 7745 year: 2020 publication-title: Chem. Rev. – volume: 32 start-page: 2664 year: 2020 publication-title: Chem. Mater. – volume: 47 start-page: 755 year: 2008 publication-title: Angew. Chem. – volume: 33 start-page: 1435 year: 2021 publication-title: Chem. Mater. – volume: 120 start-page: 6878 year: 2020 publication-title: Chem. Rev. – volume: 6 start-page: 742 year: 2022 publication-title: Joule – volume: 31 start-page: 267 year: 2020 publication-title: Energy Storage Mater. – volume: 23 start-page: 2061 year: 2017 publication-title: Ionics – volume: 159 start-page: A538 year: 2012 publication-title: J. Electrochem. Soc. – volume: 40 start-page: 39 year: 2020 publication-title: J. Energy Chem. – volume: 58 start-page: 17 year: 2021 publication-title: J. Energy Chem. – volume: 4 start-page: 1073 year: 2019 publication-title: ACS Energy Lett. – volume: 28 start-page: 266 year: 2015 publication-title: Chem. Mater. – volume: 17 start-page: 3013 year: 2017 publication-title: Nano Lett. – volume: 3 start-page: 1190 year: 2019 publication-title: Joule – volume: 11 year: 2021 publication-title: RSC Adv. – volume: 51 start-page: 527 year: 2022 publication-title: Energy Storage Mater. – volume: 29 start-page: 1830 year: 2017 publication-title: Chem. Mater. – volume: 31 start-page: 344 year: 2020 publication-title: Energy Storage Mater. – volume: 54 start-page: 3390 year: 2021 publication-title: Acc. Chem. Res. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 165 year: 2018 publication-title: J. Electrochem. Soc. – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 3 start-page: 16 year: 2018 publication-title: Nat. Energy – volume: 16 start-page: 4521 year: 2016 publication-title: Nano Lett. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 6 start-page: 1639 year: 2021 publication-title: ACS Energy Lett. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 11 start-page: 4976 year: 2020 publication-title: Nat. Commun. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 5 start-page: 8869 year: 2015 publication-title: Sci. Rep. – volume: 28 start-page: 7955 year: 2016 publication-title: Chem. Mater. – volume: 7 start-page: 410 year: 2022 publication-title: ACS Energy Lett. – volume: 14 start-page: 1406 year: 2021 publication-title: Energies – volume: 118 start-page: 8936 year: 2018 publication-title: Chem. Rev. – volume: 8 start-page: 33 year: 2021 publication-title: MRS Energy Sustain. – volume: 18 start-page: 189 year: 1983 publication-title: Mater. Res. Bull. – volume: 170 start-page: 173 year: 2004 publication-title: Solid State Ionics – volume: 137 start-page: 1384 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 182 start-page: 53 year: 2011 publication-title: Solid State Ionics – volume: 76 year: 2020 publication-title: Nano Energy – volume: 10 start-page: 2605 year: 2017 publication-title: ChemSusChem – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 10 start-page: 4930 year: 2019 publication-title: Nat. Commun. – volume: 324 start-page: 798 year: 2016 publication-title: J. Power Sources – volume: 5 start-page: 876 year: 2022 publication-title: Matter – volume: 120 start-page: 5954 year: 2020 publication-title: Chem. Rev. – volume: 4 start-page: 9932 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 56 start-page: 753 year: 2017 publication-title: Angew. Chem. – volume: 90 year: 2021 publication-title: Nano Energy – volume: 221 start-page: 1 year: 2012 publication-title: Solid State Ionics – volume: 747 start-page: 227 year: 2018 publication-title: J. Alloys Compd. – volume: 326 start-page: 34 year: 2016 publication-title: Coord. Chem. Rev. – volume: 7 start-page: 662 year: 2014 publication-title: Energy Environ. Sci. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 42 start-page: 7660 year: 2013 publication-title: Chem. Soc. Rev. – volume: 33 start-page: 6029 year: 2021 publication-title: Chem. Mater. – volume: 78 start-page: 269 year: 1995 publication-title: Solid State Ionics – volume: 215 start-page: 93 year: 2016 publication-title: Electrochim. Acta – volume: 71 start-page: 612 year: 2022 publication-title: J. Energy Chem. – volume: 30 start-page: 67 year: 2020 publication-title: Energy Storage Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 18 start-page: 1278 year: 2019 publication-title: Nat. Mater. – volume: 5 start-page: 833 year: 2020 publication-title: ACS Energy Lett. – volume: 30 start-page: 238 year: 2020 publication-title: Energy Storage Mater. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 16 year: 2018 publication-title: Energy Storage Mater. – volume: 158 start-page: 275 year: 2003 publication-title: Solid State Ionics – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 4 start-page: 101 year: 2021 publication-title: Electrochem. Energy Rev. – volume: 5 start-page: 26 year: 2020 publication-title: Nat. Energy – volume: 446 year: 2020 publication-title: J. Power Sources – volume: 6 start-page: 1003 year: 2021 publication-title: Nat. Rev. Mater. – volume: 5 start-page: 278 year: 2020 publication-title: Nat. Energy – volume: 14 start-page: 94 year: 2022 publication-title: Nano‐Micro Lett. – volume: 81 start-page: 114 year: 2018 publication-title: Prog. Polym. Sci. – volume: 431 year: 2022 publication-title: Chem. Eng. J. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 21 year: 2022 publication-title: Acc. Mater. Res. – volume: 31 start-page: 3984 year: 2019 publication-title: Chem. Mater. – ident: e_1_2_10_70_1 doi: 10.1016/j.ssi.2007.05.020 – ident: e_1_2_10_333_1 doi: 10.1002/aenm.201602923 – ident: e_1_2_10_210_1 doi: 10.1016/j.jpowsour.2016.04.018 – ident: e_1_2_10_358_1 doi: 10.1002/adma.202001702 – ident: e_1_2_10_145_1 doi: 10.1016/j.jpowsour.2018.10.037 – ident: e_1_2_10_230_1 doi: 10.1149/2.0951712jes – ident: e_1_2_10_315_1 doi: 10.1038/s41563-019-0438-9 – ident: e_1_2_10_137_1 doi: 10.1038/s41560-018-0130-3 – ident: e_1_2_10_123_1 doi: 10.1016/j.jpowsour.2015.05.093 – ident: e_1_2_10_213_1 doi: 10.1016/j.ensm.2018.02.020 – ident: e_1_2_10_305_1 doi: 10.1002/adma.201808100 – ident: e_1_2_10_257_1 doi: 10.1016/j.jmat.2019.12.010 – ident: e_1_2_10_89_1 doi: 10.1021/acs.chemmater.5b01384 – ident: e_1_2_10_191_1 doi: 10.1021/acsomega.0c03453 – ident: e_1_2_10_85_1 doi: 10.1016/j.ssi.2004.02.025 – ident: e_1_2_10_234_1 doi: 10.1016/j.jpowsour.2020.229325 – ident: e_1_2_10_21_1 doi: 10.1002/adma.201901131 – ident: e_1_2_10_134_1 doi: 10.1002/ente.201901237 – ident: e_1_2_10_12_1 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_10_157_1 doi: 10.1002/adma.202107346 – ident: e_1_2_10_84_1 doi: 10.1021/cm3011315 – ident: e_1_2_10_245_1 doi: 10.1021/acsenergylett.1c02261 – ident: e_1_2_10_10_1 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_10_209_1 doi: 10.1002/aesr.202000077 – ident: e_1_2_10_309_1 doi: 10.1002/adfm.202007598 – ident: e_1_2_10_246_1 doi: 10.1016/j.ensm.2020.06.029 – ident: e_1_2_10_336_1 doi: 10.1002/adfm.202110876 – ident: e_1_2_10_173_1 doi: 10.1039/c3ta10247e – ident: e_1_2_10_201_1 doi: 10.1038/s41598-018-19398-8 – ident: e_1_2_10_52_1 doi: 10.1021/acs.chemmater.0c04650 – ident: e_1_2_10_190_1 doi: 10.1021/acsaem.9b01111 – ident: e_1_2_10_300_1 doi: 10.1016/j.nanoen.2020.105097 – ident: e_1_2_10_144_1 doi: 10.1038/s41560-020-0565-1 – ident: e_1_2_10_197_1 doi: 10.1021/acs.chemrev.8b00241 – ident: e_1_2_10_218_1 doi: 10.1016/j.jpowsour.2013.09.117 – ident: e_1_2_10_79_1 doi: 10.1016/0025-5408(78)90075-2 – ident: e_1_2_10_354_1 doi: 10.1039/C3EE43306D – ident: e_1_2_10_15_1 doi: 10.1038/s41578-019-0165-5 – ident: e_1_2_10_35_1 doi: 10.1557/s43581-021-00004-w – ident: e_1_2_10_136_1 doi: 10.1038/s41560-017-0047-2 – ident: e_1_2_10_60_1 doi: 10.1111/j.1151-2916.2001.tb00685.x – ident: e_1_2_10_121_1 doi: 10.1002/adma.202200083 – ident: e_1_2_10_63_1 doi: 10.1016/0167-2738(94)90232-1 – ident: e_1_2_10_292_1 doi: 10.1002/aenm.202003583 – ident: e_1_2_10_194_1 doi: 10.1016/j.jpowsour.2020.228708 – ident: e_1_2_10_78_1 doi: 10.1039/C6TA10142A – ident: e_1_2_10_348_1 doi: 10.1016/j.jpowsour.2020.228062 – ident: e_1_2_10_264_1 doi: 10.1021/acs.chemmater.7b00931 – ident: e_1_2_10_344_1 doi: 10.1038/s41467-020-20314-w – ident: e_1_2_10_221_1 doi: 10.1002/cssc.201700409 – ident: e_1_2_10_310_1 doi: 10.1016/j.chempr.2018.11.013 – ident: e_1_2_10_168_1 doi: 10.1002/ange.202007621 – ident: e_1_2_10_206_1 doi: 10.1021/acsaem.1c01917 – ident: e_1_2_10_68_1 doi: 10.1016/j.ssi.2012.03.013 – ident: e_1_2_10_66_1 doi: 10.1149/1.1392498 – ident: e_1_2_10_37_1 doi: 10.1039/D1EE03032A – ident: e_1_2_10_67_1 doi: 10.1039/C0JM01090A – ident: e_1_2_10_115_1 doi: 10.1016/j.jpowsour.2014.08.024 – ident: e_1_2_10_243_1 doi: 10.1016/j.cej.2021.129965 – ident: e_1_2_10_229_1 doi: 10.1016/j.jpowsour.2017.11.031 – ident: e_1_2_10_57_1 doi: 10.1039/C4TA05231E – ident: e_1_2_10_223_1 doi: 10.3390/en14051406 – ident: e_1_2_10_325_1 doi: 10.1016/j.jechem.2020.09.038 – ident: e_1_2_10_342_1 doi: 10.1002/anie.202201249 – ident: e_1_2_10_367_1 doi: 10.1016/j.joule.2022.02.007 – ident: e_1_2_10_174_1 doi: 10.1016/j.ssi.2015.10.014 – ident: e_1_2_10_244_1 doi: 10.1021/acs.nanolett.1c01344 – ident: e_1_2_10_129_1 doi: 10.1039/C8EE02692K – ident: e_1_2_10_11_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_10_101_1 doi: 10.1007/s10008-011-1572-8 – ident: e_1_2_10_133_1 doi: 10.1002/advs.202001207 – ident: e_1_2_10_361_1 doi: 10.1038/s41467-019-12938-4 – ident: e_1_2_10_262_1 doi: 10.1038/s41467-020-19726-5 – ident: e_1_2_10_285_1 doi: 10.1021/acs.nanolett.9b02678 – ident: e_1_2_10_321_1 doi: 10.1021/acsenergylett.9b02660 – ident: e_1_2_10_186_1 doi: 10.1016/j.ensm.2018.07.008 – ident: e_1_2_10_275_1 doi: 10.1039/C8EE00907D – ident: e_1_2_10_86_1 doi: 10.1016/j.jpowsour.2019.227338 – ident: e_1_2_10_104_1 doi: 10.1039/C5CP01841B – ident: e_1_2_10_216_1 doi: 10.1007/s11581-017-2035-8 – ident: e_1_2_10_188_1 doi: 10.1002/adfm.202203858 – ident: e_1_2_10_196_1 doi: 10.1016/j.jpowsour.2018.02.062 – ident: e_1_2_10_164_1 doi: 10.1002/inf2.12248 – ident: e_1_2_10_147_1 doi: 10.1016/j.nanoen.2021.105858 – ident: e_1_2_10_72_1 doi: 10.1007/s13391-012-2038-6 – ident: e_1_2_10_200_1 doi: 10.1149/2.1341709jes – ident: e_1_2_10_330_1 doi: 10.1002/aenm.202003154 – ident: e_1_2_10_62_1 doi: 10.1039/C7TA06067J – ident: e_1_2_10_83_1 doi: 10.1006/jssc.2002.9701 – ident: e_1_2_10_169_1 doi: 10.1016/j.ssi.2010.10.013 – ident: e_1_2_10_212_1 doi: 10.1016/j.jpowsour.2018.09.070 – ident: e_1_2_10_304_1 doi: 10.1021/acs.nanolett.6b01754 – ident: e_1_2_10_359_1 doi: 10.1021/acs.nanolett.7b00330 – ident: e_1_2_10_352_1 doi: 10.1016/j.elecom.2009.07.028 – ident: e_1_2_10_185_1 doi: 10.1016/j.ssi.2008.02.014 – ident: e_1_2_10_247_1 doi: 10.1021/acsenergylett.0c00251 – ident: e_1_2_10_36_1 doi: 10.1039/D1EE01530C – ident: e_1_2_10_142_1 doi: 10.1149/1945-7111/ab7221 – ident: e_1_2_10_177_1 doi: 10.1002/anie.201608924 – ident: e_1_2_10_141_1 doi: 10.1016/j.cossms.2022.101003 – ident: e_1_2_10_350_1 doi: 10.1039/C5NR05116A – ident: e_1_2_10_107_1 doi: 10.1021/jacs.7b06327 – ident: e_1_2_10_124_1 doi: 10.1002/adfm.202008165 – ident: e_1_2_10_153_1 doi: 10.1016/j.ssi.2004.08.028 – ident: e_1_2_10_365_1 doi: 10.1039/D1QM00071C – ident: e_1_2_10_225_1 doi: 10.1016/j.progpolymsci.2017.12.004 – ident: e_1_2_10_128_1 doi: 10.1038/ncomms15893 – ident: e_1_2_10_217_1 doi: 10.1002/batt.202000051 – ident: e_1_2_10_31_1 doi: 10.1021/acs.accounts.1c00333 – ident: e_1_2_10_160_1 doi: 10.1021/ja508723m – ident: e_1_2_10_40_1 doi: 10.1149/1.2403248 – ident: e_1_2_10_211_1 doi: 10.2109/jcersj2.16321 – ident: e_1_2_10_280_1 doi: 10.1021/acsami.1c10294 – ident: e_1_2_10_65_1 doi: 10.1016/0167-2738(95)00094-M – ident: e_1_2_10_349_1 doi: 10.1016/j.ccr.2016.08.002 – ident: e_1_2_10_366_1 doi: 10.1016/j.ensm.2022.03.012 – ident: e_1_2_10_49_1 doi: 10.1021/acs.chemmater.9b00420 – ident: e_1_2_10_314_1 doi: 10.1039/c3cp51059j – ident: e_1_2_10_340_1 doi: 10.1002/aenm.202102259 – ident: e_1_2_10_149_1 doi: 10.1039/c3cs35455e – ident: e_1_2_10_108_1 doi: 10.1016/j.ensm.2020.04.042 – ident: e_1_2_10_298_1 doi: 10.1002/adma.201803075 – ident: e_1_2_10_207_1 doi: 10.1002/aenm.202003766 – ident: e_1_2_10_38_1 doi: 10.1002/aenm.201800035 – ident: e_1_2_10_5_1 doi: 10.1039/c2ee21892e – ident: e_1_2_10_131_1 doi: 10.1016/j.xcrp.2022.100756 – ident: e_1_2_10_140_1 doi: 10.1016/j.ijpe.2020.107982 – ident: e_1_2_10_236_1 doi: 10.1016/j.mtphys.2021.100397 – ident: e_1_2_10_215_1 doi: 10.1002/admi.201701328 – ident: e_1_2_10_251_1 doi: 10.1002/adfm.202101523 – ident: e_1_2_10_139_1 doi: 10.1021/acsenergylett.2c00438 – ident: e_1_2_10_13_1 doi: 10.1038/nenergy.2016.141 – ident: e_1_2_10_93_1 doi: 10.1039/C4FD00143E – ident: e_1_2_10_175_1 doi: 10.1039/D1TA04799J – ident: e_1_2_10_293_1 doi: 10.1016/j.ensm.2018.11.011 – ident: e_1_2_10_306_1 doi: 10.1016/j.ssi.2017.09.007 – ident: e_1_2_10_109_1 doi: 10.1016/j.ensm.2020.04.014 – ident: e_1_2_10_158_1 doi: 10.1016/j.ssi.2010.10.001 – ident: e_1_2_10_238_1 doi: 10.1021/acsaem.9b00290 – ident: e_1_2_10_268_1 doi: 10.1021/acsami.5b07517 – ident: e_1_2_10_30_1 doi: 10.1021/acs.chemrev.0c00101 – ident: e_1_2_10_102_1 doi: 10.1021/acs.accounts.0c00874 – ident: e_1_2_10_166_1 doi: 10.1016/j.jpowsour.2022.231085 – ident: e_1_2_10_222_1 doi: 10.1002/smll.201902138 – ident: e_1_2_10_151_1 doi: 10.1039/C1CS15171A – ident: e_1_2_10_290_1 doi: 10.1002/aenm.202103473 – ident: e_1_2_10_143_1 doi: 10.1149/1.1850854 – ident: e_1_2_10_240_1 doi: 10.1002/adfm.202202919 – ident: e_1_2_10_308_1 doi: 10.1021/acssuschemeng.1c06035 – ident: e_1_2_10_341_1 doi: 10.1002/batt.201800149 – volume: 39 start-page: 31 year: 1997 ident: e_1_2_10_138_1 publication-title: Cost Eng. – ident: e_1_2_10_241_1 doi: 10.1016/j.jechem.2022.04.048 – ident: e_1_2_10_278_1 doi: 10.1021/acsami.7b11530 – ident: e_1_2_10_334_1 doi: 10.1002/adfm.201900392 – ident: e_1_2_10_205_1 doi: 10.1021/acsenergylett.1c00332 – ident: e_1_2_10_296_1 doi: 10.1038/s41560-021-00952-0 – ident: e_1_2_10_103_1 doi: 10.1002/pssa.201001117 – ident: e_1_2_10_338_1 doi: 10.1039/D1TA03343C – ident: e_1_2_10_276_1 doi: 10.1021/acsami.9b13955 – ident: e_1_2_10_23_1 doi: 10.1002/adma.202000751 – ident: e_1_2_10_237_1 doi: 10.1002/adma.201502636 – ident: e_1_2_10_178_1 doi: 10.1021/cm5037524 – ident: e_1_2_10_96_1 doi: 10.1039/c3ee41728j – ident: e_1_2_10_263_1 doi: 10.1007/s41918-020-00081-4 – ident: e_1_2_10_33_1 doi: 10.1038/s41560-020-00759-5 – ident: e_1_2_10_260_1 doi: 10.1016/j.ensm.2022.07.006 – ident: e_1_2_10_180_1 doi: 10.1016/j.jechem.2019.05.015 – ident: e_1_2_10_360_1 doi: 10.1021/acsenergylett.1c02756 – ident: e_1_2_10_176_1 doi: 10.1016/j.apmt.2020.100918 – ident: e_1_2_10_317_1 doi: 10.1002/aenm.201501590 – ident: e_1_2_10_301_1 doi: 10.1007/s40820-022-00844-2 – ident: e_1_2_10_281_1 doi: 10.1016/j.ssi.2015.08.001 – ident: e_1_2_10_299_1 doi: 10.1021/jacs.0c00134 – ident: e_1_2_10_272_1 doi: 10.1021/cm901452z – ident: e_1_2_10_347_1 doi: 10.1021/acsenergylett.0c02617 – ident: e_1_2_10_224_1 doi: 10.1038/s41563-019-0431-3 – ident: e_1_2_10_80_1 doi: 10.1016/S0167-2738(00)00277-0 – ident: e_1_2_10_125_1 doi: 10.1021/acs.chemrev.5b00563 – ident: e_1_2_10_253_1 doi: 10.1002/aenm.202200660 – ident: e_1_2_10_291_1 doi: 10.1016/j.ensm.2020.05.007 – ident: e_1_2_10_43_1 doi: 10.1149/1.1379028 – ident: e_1_2_10_42_1 doi: 10.1016/0167-2738(86)90139-6 – ident: e_1_2_10_75_1 doi: 10.1016/j.jpowsour.2015.02.160 – ident: e_1_2_10_255_1 doi: 10.1021/acsenergylett.8b01726 – ident: e_1_2_10_228_1 doi: 10.1016/S0167-2738(02)00889-5 – ident: e_1_2_10_313_1 doi: 10.1021/acsenergylett.2c00003 – ident: e_1_2_10_48_1 doi: 10.1016/j.electacta.2016.09.155 – ident: e_1_2_10_256_1 doi: 10.1149/2.0961816jes – ident: e_1_2_10_3_1 doi: 10.1038/451652a – ident: e_1_2_10_87_1 doi: 10.1039/C3EE43357A – ident: e_1_2_10_271_1 doi: 10.1016/j.ensm.2020.05.017 – ident: e_1_2_10_76_1 doi: 10.1016/j.ssi.2010.06.018 – ident: e_1_2_10_195_1 doi: 10.1038/s41578-019-0103-6 – ident: e_1_2_10_82_1 doi: 10.1039/D1RA03194E – ident: e_1_2_10_345_1 doi: 10.1126/sciadv.abn4372 – ident: e_1_2_10_233_1 doi: 10.1002/aenm.201802927 – ident: e_1_2_10_116_1 doi: 10.1021/acsami.6b00833 – ident: e_1_2_10_254_1 doi: 10.1149/2.0981805jes – ident: e_1_2_10_277_1 doi: 10.1002/sstr.202100146 – ident: e_1_2_10_61_1 doi: 10.1016/0254-0584(89)90015-1 – ident: e_1_2_10_353_1 doi: 10.1016/j.ssi.2018.07.013 – ident: e_1_2_10_50_1 doi: 10.1002/anie.201814222 – ident: e_1_2_10_270_1 doi: 10.1016/j.ensm.2021.06.027 – ident: e_1_2_10_46_1 doi: 10.1021/acsami.8b07476 – ident: e_1_2_10_74_1 doi: 10.1016/j.ssi.2014.05.002 – ident: e_1_2_10_356_1 doi: 10.1038/s41560-020-0597-6 – ident: e_1_2_10_25_1 doi: 10.1038/nenergy.2016.30 – ident: e_1_2_10_252_1 doi: 10.1016/j.mtener.2019.05.005 – ident: e_1_2_10_146_1 doi: 10.1016/j.jallcom.2018.03.027 – ident: e_1_2_10_323_1 doi: 10.1126/sciadv.aau9245 – ident: e_1_2_10_8_1 doi: 10.1038/35104644 – ident: e_1_2_10_150_1 doi: 10.1016/S0079-6425(03)00034-3 – ident: e_1_2_10_357_1 doi: 10.1021/acsenergylett.1c00627 – ident: e_1_2_10_189_1 doi: 10.1021/acsami.0c08261 – ident: e_1_2_10_294_1 doi: 10.1002/smll.201900235 – ident: e_1_2_10_363_1 doi: 10.1016/j.ceja.2021.100218 – ident: e_1_2_10_53_1 doi: 10.1021/jacs.9b08357 – ident: e_1_2_10_27_1 doi: 10.1021/acsenergylett.0c01905 – ident: e_1_2_10_54_1 doi: 10.1021/acssuschemeng.0c05549 – ident: e_1_2_10_193_1 doi: 10.1002/adma.202100921 – ident: e_1_2_10_319_1 doi: 10.1016/j.ssi.2015.06.001 – ident: e_1_2_10_269_1 doi: 10.1016/j.joule.2018.08.017 – ident: e_1_2_10_92_1 doi: 10.1039/C4CP02046D – ident: e_1_2_10_283_1 doi: 10.1016/j.jechem.2019.02.006 – ident: e_1_2_10_204_1 doi: 10.1016/j.cej.2020.124706 – ident: e_1_2_10_184_1 doi: 10.1016/j.jnoncrysol.2012.12.044 – ident: e_1_2_10_282_1 doi: 10.1002/adma.200502604 – ident: e_1_2_10_100_1 doi: 10.1002/zaac.201100158 – ident: e_1_2_10_266_1 doi: 10.1002/aenm.202101864 – ident: e_1_2_10_202_1 doi: 10.1016/j.ensm.2017.09.007 – ident: e_1_2_10_7_1 doi: 10.1038/s41560-019-0513-0 – ident: e_1_2_10_181_1 doi: 10.1002/aenm.201903422 – ident: e_1_2_10_2_1 doi: 10.1038/s41586-021-03723-9 – ident: e_1_2_10_105_1 doi: 10.1021/acs.chemmater.0c03738 – ident: e_1_2_10_287_1 doi: 10.1021/acsami.7b01137 – ident: e_1_2_10_259_1 doi: 10.1016/j.ensm.2021.03.017 – ident: e_1_2_10_326_1 doi: 10.1021/acsami.7b16176 – ident: e_1_2_10_95_1 doi: 10.1021/ja407393y – ident: e_1_2_10_320_1 doi: 10.1021/acs.chemrev.0c00431 – ident: e_1_2_10_90_1 doi: 10.1021/cm203303y – ident: e_1_2_10_351_1 doi: 10.1149/2.064301jes – ident: e_1_2_10_198_1 doi: 10.1002/aenm.202002508 – ident: e_1_2_10_127_1 doi: 10.1021/acs.chemrev.9b00747 – ident: e_1_2_10_120_1 doi: 10.1002/adma.201505008 – ident: e_1_2_10_274_1 doi: 10.1021/acs.chemmater.6b04990 – ident: e_1_2_10_148_1 doi: 10.1021/acs.chemmater.9b03852 – ident: e_1_2_10_327_1 doi: 10.1002/aenm.201902125 – ident: e_1_2_10_91_1 doi: 10.1002/aenm.202002153 – ident: e_1_2_10_170_1 doi: 10.1016/j.jnoncrysol.2007.08.058 – ident: e_1_2_10_161_1 doi: 10.1016/j.jpowsour.2012.09.097 – ident: e_1_2_10_58_1 doi: 10.1021/acs.chemmater.9b04764 – ident: e_1_2_10_81_1 doi: 10.1016/S0167-2738(02)00492-7 – ident: e_1_2_10_179_1 doi: 10.1016/j.ssi.2019.01.017 – ident: e_1_2_10_364_1 doi: 10.1038/srep08869 – ident: e_1_2_10_1_1 doi: 10.1038/ngeo2699 – ident: e_1_2_10_26_1 doi: 10.1039/D0EE02241A – ident: e_1_2_10_64_1 doi: 10.1016/0167-2738(86)90142-6 – ident: e_1_2_10_88_1 doi: 10.1038/nmat4369 – ident: e_1_2_10_112_1 doi: 10.1016/0167-2738(80)90048-X – ident: e_1_2_10_51_1 doi: 10.1021/acsenergylett.8b01997 – ident: e_1_2_10_303_1 doi: 10.1021/accountsmr.1c00137 – ident: e_1_2_10_154_1 doi: 10.1016/j.electacta.2016.08.081 – ident: e_1_2_10_332_1 doi: 10.1002/celc.202100010 – ident: e_1_2_10_19_1 doi: 10.1021/acs.chemrev.9b00268 – ident: e_1_2_10_231_1 doi: 10.1038/s41560-020-0575-z – ident: e_1_2_10_239_1 doi: 10.1002/adfm.201910123 – ident: e_1_2_10_258_1 doi: 10.1016/j.ensm.2019.10.020 – ident: e_1_2_10_343_1 doi: 10.1002/adma.202200401 – ident: e_1_2_10_329_1 doi: 10.1016/j.cej.2021.134019 – ident: e_1_2_10_324_1 doi: 10.1016/j.nanoen.2018.09.061 – ident: e_1_2_10_307_1 doi: 10.1021/acsami.0c02085 – ident: e_1_2_10_295_1 doi: 10.1021/acsenergylett.0c00256 – ident: e_1_2_10_337_1 doi: 10.1021/acsenergylett.0c00207 – ident: e_1_2_10_226_1 doi: 10.1016/j.matt.2020.02.003 – ident: e_1_2_10_235_1 doi: 10.1021/acssuschemeng.1c00904 – ident: e_1_2_10_39_1 doi: 10.1016/j.joule.2020.12.001 – ident: e_1_2_10_6_1 doi: 10.1039/c1ee01598b – ident: e_1_2_10_24_1 doi: 10.1038/nmat3066 – ident: e_1_2_10_187_1 doi: 10.1021/acsami.0c00393 – ident: e_1_2_10_167_1 doi: 10.1002/adma.202006577 – ident: e_1_2_10_119_1 doi: 10.1021/ja3110895 – ident: e_1_2_10_289_1 doi: 10.1002/aenm.201902881 – ident: e_1_2_10_98_1 doi: 10.1016/j.jpowsour.2016.05.100 – ident: e_1_2_10_59_1 doi: 10.1016/0025-5408(83)90080-6 – ident: e_1_2_10_249_1 doi: 10.1016/j.cej.2021.132991 – ident: e_1_2_10_335_1 doi: 10.1002/aenm.201703644 – ident: e_1_2_10_122_1 doi: 10.1021/acs.chemmater.9b00505 – ident: e_1_2_10_132_1 doi: 10.1016/j.ensm.2019.05.019 – ident: e_1_2_10_159_1 doi: 10.1021/acs.chemmater.7b00013 – ident: e_1_2_10_242_1 doi: 10.1016/j.ensm.2019.05.033 – ident: e_1_2_10_41_1 doi: 10.1016/0022-3093(80)90430-5 – ident: e_1_2_10_192_1 doi: 10.1002/aenm.202102348 – ident: e_1_2_10_44_1 doi: 10.1002/adma.200401286 – ident: e_1_2_10_135_1 doi: 10.1038/s41560-018-0107-2 – ident: e_1_2_10_288_1 doi: 10.1021/acsenergylett.8b00275 – ident: e_1_2_10_28_1 doi: 10.1038/s41578-019-0157-5 – ident: e_1_2_10_9_1 doi: 10.1126/sciadv.aas9820 – ident: e_1_2_10_22_1 doi: 10.1002/inf2.12292 – ident: e_1_2_10_114_1 doi: 10.1016/j.ssi.2005.03.001 – ident: e_1_2_10_14_1 doi: 10.1038/s41578-021-00320-0 – ident: e_1_2_10_45_1 doi: 10.1002/anie.200703900 – ident: e_1_2_10_182_1 doi: 10.1002/aenm.202101521 – ident: e_1_2_10_248_1 doi: 10.1021/acsenergylett.9b00430 – ident: e_1_2_10_279_1 doi: 10.1016/j.ensm.2021.08.028 – ident: e_1_2_10_16_1 doi: 10.1038/s41467-020-18736-7 – ident: e_1_2_10_162_1 doi: 10.1002/ppsc.201300358 – ident: e_1_2_10_4_1 doi: 10.1126/science.1212741 – ident: e_1_2_10_17_1 doi: 10.1002/aenm.201401408 – ident: e_1_2_10_106_1 doi: 10.1021/acs.chemmater.6b03630 – ident: e_1_2_10_155_1 doi: 10.1016/j.ssi.2012.06.008 – ident: e_1_2_10_250_1 doi: 10.1002/adfm.202101985 – ident: e_1_2_10_284_1 doi: 10.1016/j.nanoen.2020.104686 – ident: e_1_2_10_220_1 doi: 10.1021/acs.nanolett.5b00538 – ident: e_1_2_10_55_1 doi: 10.1021/acsenergylett.1c02428 – ident: e_1_2_10_219_1 doi: 10.1039/C7TA06873E – ident: e_1_2_10_118_1 doi: 10.1016/0167-2738(84)90097-3 – ident: e_1_2_10_355_1 doi: 10.1126/science.abg7217 – ident: e_1_2_10_286_1 doi: 10.1002/smtd.201900261 – ident: e_1_2_10_130_1 doi: 10.1016/j.joule.2019.03.019 – ident: e_1_2_10_113_1 doi: 10.1149/1.2108425 – ident: e_1_2_10_165_1 doi: 10.1002/adfm.202201528 – ident: e_1_2_10_29_1 doi: 10.1002/aenm.202200948 – ident: e_1_2_10_71_1 doi: 10.1149/2.jes113225 – ident: e_1_2_10_117_1 doi: 10.1016/j.jnoncrysol.2010.05.016 – ident: e_1_2_10_227_1 doi: 10.1002/adma.202105505 – ident: e_1_2_10_20_1 doi: 10.1039/D0CS00305K – ident: e_1_2_10_302_1 doi: 10.1002/adma.202007298 – ident: e_1_2_10_18_1 doi: 10.1002/adma.201705702 – ident: e_1_2_10_97_1 doi: 10.1016/j.jpowsour.2016.08.115 – ident: e_1_2_10_163_1 doi: 10.1002/celc.202101479 – ident: e_1_2_10_273_1 doi: 10.1016/j.nanoen.2019.104252 – ident: e_1_2_10_47_1 doi: 10.1039/C3EE41655K – ident: e_1_2_10_346_1 doi: 10.1021/acs.chemmater.1c01431 – ident: e_1_2_10_56_1 doi: 10.1021/acs.chemmater.0c03090 – ident: e_1_2_10_331_1 doi: 10.1021/acsenergylett.8b01564 – ident: e_1_2_10_214_1 doi: 10.1149/1945-7111/aba36f – ident: e_1_2_10_69_1 doi: 10.1016/j.ssi.2006.04.017 – ident: e_1_2_10_322_1 doi: 10.1002/adma.202104666 – ident: e_1_2_10_73_1 doi: 10.1021/acsami.1c06328 – ident: e_1_2_10_203_1 doi: 10.1002/aenm.201800014 – ident: e_1_2_10_318_1 doi: 10.1021/acs.chemmater.6b00610 – ident: e_1_2_10_94_1 doi: 10.1149/2.0501412jes – ident: e_1_2_10_311_1 doi: 10.1038/s41467-019-13774-2 – ident: e_1_2_10_126_1 doi: 10.1016/j.ensm.2017.08.015 – ident: e_1_2_10_261_1 doi: 10.1021/cm5016959 – ident: e_1_2_10_110_1 doi: 10.1021/jacs.8b10282 – ident: e_1_2_10_111_1 doi: 10.1111/j.1151-2916.1999.tb01923.x – ident: e_1_2_10_232_1 doi: 10.1002/aenm.201500865 – ident: e_1_2_10_312_1 doi: 10.1016/j.ensm.2021.06.015 – ident: e_1_2_10_339_1 doi: 10.1038/nenergy.2017.119 – ident: e_1_2_10_265_1 doi: 10.1021/acsenergylett.9b01676 – ident: e_1_2_10_328_1 doi: 10.1016/j.nanoen.2022.107104 – ident: e_1_2_10_171_1 doi: 10.1021/acs.jpcc.1c05034 – ident: e_1_2_10_172_1 doi: 10.1039/D1TA09846B – ident: e_1_2_10_34_1 doi: 10.1038/s41560-020-00748-8 – ident: e_1_2_10_183_1 doi: 10.1016/j.nanoen.2021.106542 – ident: e_1_2_10_297_1 doi: 10.1016/j.nanoen.2020.105015 – ident: e_1_2_10_362_1 doi: 10.1016/j.nanoen.2021.106142 – ident: e_1_2_10_32_1 doi: 10.1038/s41565-020-0657-x – ident: e_1_2_10_316_1 doi: 10.1002/advs.201600517 – ident: e_1_2_10_199_1 doi: 10.1016/j.matt.2022.01.011 – ident: e_1_2_10_156_1 doi: 10.1039/C7TA05031C – ident: e_1_2_10_208_1 doi: 10.1016/j.mattod.2021.01.006 – ident: e_1_2_10_77_1 doi: 10.1039/C7TA01147D – ident: e_1_2_10_99_1 doi: 10.1002/cber.18860190156 – ident: e_1_2_10_152_1 doi: 10.1021/jp301193r – ident: e_1_2_10_267_1 doi: 10.1021/acs.chemmater.5b04082 |
SSID | ssj0009606 |
Score | 2.6368444 |
SecondaryResourceType | review_article |
Snippet | All‐solid‐state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy‐dense integration... All-solid-state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy-dense integration... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2206013 |
SubjectTerms | all‐solid‐state lithium batteries cell integration Criteria Electrolytic cells Energy storage Lithium batteries Manufacturing Mass production Materials science membrane processing Membranes Molten salt electrolytes Separators Solid electrolytes Storage systems sulfide solid electrolyte Supply chains |
Title | Priority and Prospect of Sulfide‐Based Solid‐Electrolyte Membrane |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202206013 https://www.ncbi.nlm.nih.gov/pubmed/35984755 https://www.proquest.com/docview/2901390471 https://www.proquest.com/docview/2704869357 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCoKnutskTdrjqruIoCzqgrfSvGBxbWUfBz35E_yN_hKTvtZVRNBjaELTzEznm2TyDcCRz7AvdcQ9n5tIhwgaeTwQ3BMEY0WlT0OVZ1tc04seubwP7j_d4i_4IeoNN2sZ-f_aGnjCR40paWgic94ghCyjiKX7tAlbFhXdTPmjLDzPyfZw4EWUhBVrYxM1ZofPeqVvUHMWueaup7MMSTXpIuPk4WQy5ifi5Quf43--agWWSlzqtgpFWoU5la7B4ie2wnVod4f9zNa6c5NUut1hlt_SdDPt3k4Gui_V--vbqXGK0r3NBn1pWu2ixs7geazcK_Vo5pWqDeh12ndnF15ZhcETmGGbuEaQCKRBZlQwHAlJTewqOE-0JtJEQ0aiMok0FUgrzcKECp2EgaSMU66ZUHgT5tMsVdvgUoWpibAIUkgRX6LIoB-Ow0BFTCEutQNeJYVYlBTltlLGIC7IlVFslyeul8eB47r_U0HO8WPPvUqocWmko9geIeOoadyzA4f1Y2Ne9szELEg2MX2Y5SQ0-sMc2CqUoX6VJT8kLAgcQLlIf5lD3Dq_atWtnb8M2oUFW-6-SKfZg_nxcKL2DSga84Nc8T8AC_wDrw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0q7aKwgPIOFDASiFXaxnbsZMFiykw1fUxV0VbqLsQvacSQoOmMUFnxCfwKv8In8CW9TiYpA6qQKnXB0omTOPdhn-vHuQCvIski41IVRgojHa5FGqpYq1BzxqwwkUhstdtiX_SP-c5JfLIAP5qzMDU_RDvh5j2j6q-9g_sJ6fUL1tDcVMRBlHpKkSZ_9a49-4JR2-nb7S6q-DWlW72jd_1wllgg1EwyvxeLUx0bBBtCS5ZqIzAc00rlznGDAB8bafLUCU2ddTLJhXZ5EhshlVBOasvwvTdgyacR93T93fcXjFU-IKjo_VgcpoInDU_kBl2fb-_8OPgXuJ3HytVgt3UHfjZiqve4fFybTtSa_voHg-R_JccVuD2D3qRT-8pdWLDFPbj1GyHjfegdjIelT-dH8sKQg3FZHUQlpSOH05EbGvvr2_dNHPcNOSxHQ4OlXp1GaHQ2sWRgP6EgCvsAjq_lPx7CYlEW9jEQYZnAIJJTSy2PDE0R4CmWxDaVlirjAggbtWd6xsLuk4GMspo_mmZeHVmrjgDetPU_1_wjl9Zcbawom_VDp5lfJWfpBiKQAF62t7EH8ctCKJByinWkp11Eg5UBPKqtr_2U53fkMo4DoJUN_aMNWac76LSlJ1d56AUs948Ge9ne9v7uU7iJ11k947UKi5Px1D5DDDhRzyuvI_Dhus3zHMx4ZQc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVkJwKOW3gQJBAnFKu7EdOz5wWNhdtZRWK0ql3tL4T1qxTartrqpy4hF4FF6FV-BJGCeblAUhJKQeOCZxEmd-7G_i8TcAz2NBY-OkimKFkQ7TXEYq0SrSjFLLTcxTW2Vb7PPtQ_b2KDlagq_NXpiaH6L94eY9oxqvvYOfGrd1SRqam4o3iBDPKNKUr961F-cYtJ292umhhl8QMuh_eLMdzesKRJoK6lOxGNGJQazBtaBSG47RmFYqd44ZxPfYR5NLxzVx1ok059rlaWK4UFw5oS3F516DFcY70heL6L2_JKzy8UDF7keTSHKWNjSRHbK12N_FafA3bLsIlau5bnALvjVSqlNcPm7OpmpTf_qFQPJ_EuMarM6Bd9itPeU2LNniDtz8iY7xLvSHk1Hpi_mFeWHC4aSstqGGpQsPZmM3Mvb75y-vcdY34UE5Hhk86tdFhMYXUxvu2ROUQ2HvweGVfMd9WC7Kwq5DyC3lGEIyYollsSES4Z2iaWKlsEQZF0DUaD3Tcw52XwpknNXs0STz6shadQTwsm1_WrOP_LHlRmNE2XwUOsv8GjmVHcQfATxrL-P44ReFUCDlDNsIT7qI9ioCeFAbX_sqz-7IRJIEQCoT-ksfsm5vr9sePfyXm57C9WFvkL3b2d99BDfwNK1ThzZgeTqZ2ccIAKfqSeVzIRxftXX-ACRyY7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Priority+and+Prospect+of+Sulfide%E2%80%90Based+Solid%E2%80%90Electrolyte+Membrane&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Hong&rft.au=Liang%2C+Yuhao&rft.au=Wang%2C+Chao&rft.au=Li%2C+Dabing&rft.date=2023-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=50&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202206013&rft.externalDBID=10.1002%252Fadma.202206013&rft.externalDocID=ADMA202206013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |