Priority and Prospect of Sulfide‐Based Solid‐Electrolyte Membrane

All‐solid‐state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy‐dense integration and critical intrinsic safety, yet they still require cost‐effective manufacturing and the integration of thin membrane‐based SE separators i...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 50; pp. e2206013 - n/a
Main Authors Liu, Hong, Liang, Yuhao, Wang, Chao, Li, Dabing, Yan, Xiaoqin, Nan, Ce‐Wen, Fan, Li‐Zhen
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract All‐solid‐state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy‐dense integration and critical intrinsic safety, yet they still require cost‐effective manufacturing and the integration of thin membrane‐based SE separators into large‐format cells to achieve scalable deployment. This review, based on an overview of sulfide SE materials, is expounded on why implementing a thin membrane‐based separator is the priority for mass production of ASSLBs and critical criteria for capturing a high‐quality thin sulfide SE membrane are identified. Moreover, from the aspects of material availability, membrane processing, and cell integration, the major challenges and associated strategies are described to meet these criteria throughout the whole manufacturing chain to provide a realistic assessment of the current status of sulfide SE membranes. Finally, future directions and prospects for scalable and manufacturable sulfide SE membranes for ASSLBs are presented. This review expounds on why implementing a membrane‐based electrolyte is the priority for mass production of all‐solid‐state lithium batteries and identifies critical criteria for capturing a high‐quality thin sulfide electrolyte membrane. The challenges and associated strategies for achieving these criteria in terms of material availability, membrane processing, and cell integration are systematically analyzed and summarized.
AbstractList All‐solid‐state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy‐dense integration and critical intrinsic safety, yet they still require cost‐effective manufacturing and the integration of thin membrane‐based SE separators into large‐format cells to achieve scalable deployment. This review, based on an overview of sulfide SE materials, is expounded on why implementing a thin membrane‐based separator is the priority for mass production of ASSLBs and critical criteria for capturing a high‐quality thin sulfide SE membrane are identified. Moreover, from the aspects of material availability, membrane processing, and cell integration, the major challenges and associated strategies are described to meet these criteria throughout the whole manufacturing chain to provide a realistic assessment of the current status of sulfide SE membranes. Finally, future directions and prospects for scalable and manufacturable sulfide SE membranes for ASSLBs are presented.
All‐solid‐state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy‐dense integration and critical intrinsic safety, yet they still require cost‐effective manufacturing and the integration of thin membrane‐based SE separators into large‐format cells to achieve scalable deployment. This review, based on an overview of sulfide SE materials, is expounded on why implementing a thin membrane‐based separator is the priority for mass production of ASSLBs and critical criteria for capturing a high‐quality thin sulfide SE membrane are identified. Moreover, from the aspects of material availability, membrane processing, and cell integration, the major challenges and associated strategies are described to meet these criteria throughout the whole manufacturing chain to provide a realistic assessment of the current status of sulfide SE membranes. Finally, future directions and prospects for scalable and manufacturable sulfide SE membranes for ASSLBs are presented. This review expounds on why implementing a membrane‐based electrolyte is the priority for mass production of all‐solid‐state lithium batteries and identifies critical criteria for capturing a high‐quality thin sulfide electrolyte membrane. The challenges and associated strategies for achieving these criteria in terms of material availability, membrane processing, and cell integration are systematically analyzed and summarized.
All-solid-state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy-dense integration and critical intrinsic safety, yet they still require cost-effective manufacturing and the integration of thin membrane-based SE separators into large-format cells to achieve scalable deployment. This review, based on an overview of sulfide SE materials, is expounded on why implementing a thin membrane-based separator is the priority for mass production of ASSLBs and critical criteria for capturing a high-quality thin sulfide SE membrane are identified. Moreover, from the aspects of material availability, membrane processing, and cell integration, the major challenges and associated strategies are described to meet these criteria throughout the whole manufacturing chain to provide a realistic assessment of the current status of sulfide SE membranes. Finally, future directions and prospects for scalable and manufacturable sulfide SE membranes for ASSLBs are presented.All-solid-state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy-dense integration and critical intrinsic safety, yet they still require cost-effective manufacturing and the integration of thin membrane-based SE separators into large-format cells to achieve scalable deployment. This review, based on an overview of sulfide SE materials, is expounded on why implementing a thin membrane-based separator is the priority for mass production of ASSLBs and critical criteria for capturing a high-quality thin sulfide SE membrane are identified. Moreover, from the aspects of material availability, membrane processing, and cell integration, the major challenges and associated strategies are described to meet these criteria throughout the whole manufacturing chain to provide a realistic assessment of the current status of sulfide SE membranes. Finally, future directions and prospects for scalable and manufacturable sulfide SE membranes for ASSLBs are presented.
Author Liang, Yuhao
Yan, Xiaoqin
Wang, Chao
Li, Dabing
Fan, Li‐Zhen
Liu, Hong
Nan, Ce‐Wen
Author_xml – sequence: 1
  givenname: Hong
  surname: Liu
  fullname: Liu, Hong
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Yuhao
  surname: Liang
  fullname: Liang, Yuhao
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: University of Science and Technology Beijing
– sequence: 4
  givenname: Dabing
  surname: Li
  fullname: Li, Dabing
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Xiaoqin
  orcidid: 0000-0002-0717-0710
  surname: Yan
  fullname: Yan, Xiaoqin
  email: xqyan@mater.ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 6
  givenname: Ce‐Wen
  surname: Nan
  fullname: Nan, Ce‐Wen
  organization: Tsinghua University
– sequence: 7
  givenname: Li‐Zhen
  surname: Fan
  fullname: Fan, Li‐Zhen
  email: fanlizhen@ustb.edu.cn
  organization: University of Science and Technology Beijing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35984755$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7G1161IG3LiZ60kySSbLa71-QIuF6jpk8gEpmck1maHcnT_B39hf0pTbKhTEVTjwPIeT9z1BR1OaHEKvMawxAHmv7ajXBAgBDpg-QyvMCG47kOwIrUBS1kre9cfopJRrAJAc-At0TJnsO8HYCm0vc0g5zPtGT7a5zKnsnJmb5JurJfpg3e2v3x90cba5SjHYOm1jBXKK-9k1F24csp7cS_Tc61jcq4f3FP34tP1-9qU9__b569nmvDVUUNpi6IhhtmeYG0GlsZwRaoZBe99ZwsFxa7X03BDvvOg1N173zHIx8MEL4-gpenfYu8vp5-LKrMZQjIux3pCWooiAruf116Kib5-g12nJU71OEVmjktAJXKk3D9QyjM6qXQ6jznv1GFAFugNgajQlO69MmPUc0jRnHaLCoO57UPc9qD89VG39RHvc_E9BHoSbEN3-P7TafLzY_HXvAMFmm_E
CitedBy_id crossref_primary_10_1002_aenm_202301018
crossref_primary_10_1021_acsaem_4c02011
crossref_primary_10_1016_j_elecom_2023_107438
crossref_primary_10_1039_D4TA01753F
crossref_primary_10_1039_D4TC01736F
crossref_primary_10_1016_j_est_2024_114859
crossref_primary_10_1016_j_mser_2025_100950
crossref_primary_10_1002_aenm_202203631
crossref_primary_10_1002_sus2_218
crossref_primary_10_1002_cssc_202400840
crossref_primary_10_1038_s41467_025_56366_z
crossref_primary_10_1002_aenm_202402064
crossref_primary_10_1007_s41918_025_00240_5
crossref_primary_10_1002_celc_202400612
crossref_primary_10_1002_adfm_202409403
crossref_primary_10_1002_adma_202410948
crossref_primary_10_1039_D4IM00066H
crossref_primary_10_20517_energymater_2024_39
crossref_primary_10_1002_adfm_202411171
crossref_primary_10_1007_s11581_024_05653_8
crossref_primary_10_1557_s43577_023_00649_7
crossref_primary_10_1016_j_cej_2024_155029
crossref_primary_10_1002_aenm_202301230
crossref_primary_10_1021_acsenergylett_3c00560
crossref_primary_10_1039_D4QI01916D
crossref_primary_10_1021_acsenergylett_4c01360
crossref_primary_10_1002_aenm_202405760
crossref_primary_10_1002_advs_202404307
crossref_primary_10_1039_D4QI02717E
crossref_primary_10_1002_smtd_202402220
crossref_primary_10_1002_adfm_202310739
crossref_primary_10_1016_j_etran_2024_100319
crossref_primary_10_1002_bte2_20220059
crossref_primary_10_1002_wene_544
crossref_primary_10_1021_acsami_3c03466
crossref_primary_10_1002_smll_202307260
crossref_primary_10_3390_molecules28104081
crossref_primary_10_1002_smll_202307342
crossref_primary_10_1021_acs_nanolett_4c05892
crossref_primary_10_1038_s43246_024_00482_8
crossref_primary_10_1002_aenm_202402048
crossref_primary_10_1039_D3CS00439B
crossref_primary_10_1039_D4NJ03064H
crossref_primary_10_1002_inf2_12606
crossref_primary_10_1007_s12209_024_00394_1
crossref_primary_10_1002_advs_202307726
crossref_primary_10_1021_acsenergylett_4c00057
crossref_primary_10_1021_acsmaterialslett_4c02029
crossref_primary_10_1007_s11426_024_2515_2
crossref_primary_10_1016_j_cej_2024_149575
Cites_doi 10.1016/j.ssi.2007.05.020
10.1002/aenm.201602923
10.1016/j.jpowsour.2016.04.018
10.1002/adma.202001702
10.1016/j.jpowsour.2018.10.037
10.1149/2.0951712jes
10.1038/s41563-019-0438-9
10.1038/s41560-018-0130-3
10.1016/j.jpowsour.2015.05.093
10.1016/j.ensm.2018.02.020
10.1002/adma.201808100
10.1016/j.jmat.2019.12.010
10.1021/acs.chemmater.5b01384
10.1021/acsomega.0c03453
10.1016/j.ssi.2004.02.025
10.1016/j.jpowsour.2020.229325
10.1002/adma.201901131
10.1002/ente.201901237
10.1038/natrevmats.2016.103
10.1002/adma.202107346
10.1021/cm3011315
10.1021/acsenergylett.1c02261
10.1038/natrevmats.2016.13
10.1002/aesr.202000077
10.1002/adfm.202007598
10.1016/j.ensm.2020.06.029
10.1002/adfm.202110876
10.1039/c3ta10247e
10.1038/s41598-018-19398-8
10.1021/acs.chemmater.0c04650
10.1021/acsaem.9b01111
10.1016/j.nanoen.2020.105097
10.1038/s41560-020-0565-1
10.1021/acs.chemrev.8b00241
10.1016/j.jpowsour.2013.09.117
10.1016/0025-5408(78)90075-2
10.1039/C3EE43306D
10.1038/s41578-019-0165-5
10.1557/s43581-021-00004-w
10.1038/s41560-017-0047-2
10.1111/j.1151-2916.2001.tb00685.x
10.1002/adma.202200083
10.1016/0167-2738(94)90232-1
10.1002/aenm.202003583
10.1016/j.jpowsour.2020.228708
10.1039/C6TA10142A
10.1016/j.jpowsour.2020.228062
10.1021/acs.chemmater.7b00931
10.1038/s41467-020-20314-w
10.1002/cssc.201700409
10.1016/j.chempr.2018.11.013
10.1002/ange.202007621
10.1021/acsaem.1c01917
10.1016/j.ssi.2012.03.013
10.1149/1.1392498
10.1039/D1EE03032A
10.1039/C0JM01090A
10.1016/j.jpowsour.2014.08.024
10.1016/j.cej.2021.129965
10.1016/j.jpowsour.2017.11.031
10.1039/C4TA05231E
10.3390/en14051406
10.1016/j.jechem.2020.09.038
10.1002/anie.202201249
10.1016/j.joule.2022.02.007
10.1016/j.ssi.2015.10.014
10.1021/acs.nanolett.1c01344
10.1039/C8EE02692K
10.1038/nnano.2017.16
10.1007/s10008-011-1572-8
10.1002/advs.202001207
10.1038/s41467-019-12938-4
10.1038/s41467-020-19726-5
10.1021/acs.nanolett.9b02678
10.1021/acsenergylett.9b02660
10.1016/j.ensm.2018.07.008
10.1039/C8EE00907D
10.1016/j.jpowsour.2019.227338
10.1039/C5CP01841B
10.1007/s11581-017-2035-8
10.1002/adfm.202203858
10.1016/j.jpowsour.2018.02.062
10.1002/inf2.12248
10.1016/j.nanoen.2021.105858
10.1007/s13391-012-2038-6
10.1149/2.1341709jes
10.1002/aenm.202003154
10.1039/C7TA06067J
10.1006/jssc.2002.9701
10.1016/j.ssi.2010.10.013
10.1016/j.jpowsour.2018.09.070
10.1021/acs.nanolett.6b01754
10.1021/acs.nanolett.7b00330
10.1016/j.elecom.2009.07.028
10.1016/j.ssi.2008.02.014
10.1021/acsenergylett.0c00251
10.1039/D1EE01530C
10.1149/1945-7111/ab7221
10.1002/anie.201608924
10.1016/j.cossms.2022.101003
10.1039/C5NR05116A
10.1021/jacs.7b06327
10.1002/adfm.202008165
10.1016/j.ssi.2004.08.028
10.1039/D1QM00071C
10.1016/j.progpolymsci.2017.12.004
10.1038/ncomms15893
10.1002/batt.202000051
10.1021/acs.accounts.1c00333
10.1021/ja508723m
10.1149/1.2403248
10.2109/jcersj2.16321
10.1021/acsami.1c10294
10.1016/0167-2738(95)00094-M
10.1016/j.ccr.2016.08.002
10.1016/j.ensm.2022.03.012
10.1021/acs.chemmater.9b00420
10.1039/c3cp51059j
10.1002/aenm.202102259
10.1039/c3cs35455e
10.1016/j.ensm.2020.04.042
10.1002/adma.201803075
10.1002/aenm.202003766
10.1002/aenm.201800035
10.1039/c2ee21892e
10.1016/j.xcrp.2022.100756
10.1016/j.ijpe.2020.107982
10.1016/j.mtphys.2021.100397
10.1002/admi.201701328
10.1002/adfm.202101523
10.1021/acsenergylett.2c00438
10.1038/nenergy.2016.141
10.1039/C4FD00143E
10.1039/D1TA04799J
10.1016/j.ensm.2018.11.011
10.1016/j.ssi.2017.09.007
10.1016/j.ensm.2020.04.014
10.1016/j.ssi.2010.10.001
10.1021/acsaem.9b00290
10.1021/acsami.5b07517
10.1021/acs.chemrev.0c00101
10.1021/acs.accounts.0c00874
10.1016/j.jpowsour.2022.231085
10.1002/smll.201902138
10.1039/C1CS15171A
10.1002/aenm.202103473
10.1149/1.1850854
10.1002/adfm.202202919
10.1021/acssuschemeng.1c06035
10.1002/batt.201800149
10.1016/j.jechem.2022.04.048
10.1021/acsami.7b11530
10.1002/adfm.201900392
10.1021/acsenergylett.1c00332
10.1038/s41560-021-00952-0
10.1002/pssa.201001117
10.1039/D1TA03343C
10.1021/acsami.9b13955
10.1002/adma.202000751
10.1002/adma.201502636
10.1021/cm5037524
10.1039/c3ee41728j
10.1007/s41918-020-00081-4
10.1038/s41560-020-00759-5
10.1016/j.ensm.2022.07.006
10.1016/j.jechem.2019.05.015
10.1021/acsenergylett.1c02756
10.1016/j.apmt.2020.100918
10.1002/aenm.201501590
10.1007/s40820-022-00844-2
10.1016/j.ssi.2015.08.001
10.1021/jacs.0c00134
10.1021/cm901452z
10.1021/acsenergylett.0c02617
10.1038/s41563-019-0431-3
10.1016/S0167-2738(00)00277-0
10.1021/acs.chemrev.5b00563
10.1002/aenm.202200660
10.1016/j.ensm.2020.05.007
10.1149/1.1379028
10.1016/0167-2738(86)90139-6
10.1016/j.jpowsour.2015.02.160
10.1021/acsenergylett.8b01726
10.1016/S0167-2738(02)00889-5
10.1021/acsenergylett.2c00003
10.1016/j.electacta.2016.09.155
10.1149/2.0961816jes
10.1038/451652a
10.1039/C3EE43357A
10.1016/j.ensm.2020.05.017
10.1016/j.ssi.2010.06.018
10.1038/s41578-019-0103-6
10.1039/D1RA03194E
10.1126/sciadv.abn4372
10.1002/aenm.201802927
10.1021/acsami.6b00833
10.1149/2.0981805jes
10.1002/sstr.202100146
10.1016/0254-0584(89)90015-1
10.1016/j.ssi.2018.07.013
10.1002/anie.201814222
10.1016/j.ensm.2021.06.027
10.1021/acsami.8b07476
10.1016/j.ssi.2014.05.002
10.1038/s41560-020-0597-6
10.1038/nenergy.2016.30
10.1016/j.mtener.2019.05.005
10.1016/j.jallcom.2018.03.027
10.1126/sciadv.aau9245
10.1038/35104644
10.1016/S0079-6425(03)00034-3
10.1021/acsenergylett.1c00627
10.1021/acsami.0c08261
10.1002/smll.201900235
10.1016/j.ceja.2021.100218
10.1021/jacs.9b08357
10.1021/acsenergylett.0c01905
10.1021/acssuschemeng.0c05549
10.1002/adma.202100921
10.1016/j.ssi.2015.06.001
10.1016/j.joule.2018.08.017
10.1039/C4CP02046D
10.1016/j.jechem.2019.02.006
10.1016/j.cej.2020.124706
10.1016/j.jnoncrysol.2012.12.044
10.1002/adma.200502604
10.1002/zaac.201100158
10.1002/aenm.202101864
10.1016/j.ensm.2017.09.007
10.1038/s41560-019-0513-0
10.1002/aenm.201903422
10.1038/s41586-021-03723-9
10.1021/acs.chemmater.0c03738
10.1021/acsami.7b01137
10.1016/j.ensm.2021.03.017
10.1021/acsami.7b16176
10.1021/ja407393y
10.1021/acs.chemrev.0c00431
10.1021/cm203303y
10.1149/2.064301jes
10.1002/aenm.202002508
10.1021/acs.chemrev.9b00747
10.1002/adma.201505008
10.1021/acs.chemmater.6b04990
10.1021/acs.chemmater.9b03852
10.1002/aenm.201902125
10.1002/aenm.202002153
10.1016/j.jnoncrysol.2007.08.058
10.1016/j.jpowsour.2012.09.097
10.1021/acs.chemmater.9b04764
10.1016/S0167-2738(02)00492-7
10.1016/j.ssi.2019.01.017
10.1038/srep08869
10.1038/ngeo2699
10.1039/D0EE02241A
10.1016/0167-2738(86)90142-6
10.1038/nmat4369
10.1016/0167-2738(80)90048-X
10.1021/acsenergylett.8b01997
10.1021/accountsmr.1c00137
10.1016/j.electacta.2016.08.081
10.1002/celc.202100010
10.1021/acs.chemrev.9b00268
10.1038/s41560-020-0575-z
10.1002/adfm.201910123
10.1016/j.ensm.2019.10.020
10.1002/adma.202200401
10.1016/j.cej.2021.134019
10.1016/j.nanoen.2018.09.061
10.1021/acsami.0c02085
10.1021/acsenergylett.0c00256
10.1021/acsenergylett.0c00207
10.1016/j.matt.2020.02.003
10.1021/acssuschemeng.1c00904
10.1016/j.joule.2020.12.001
10.1039/c1ee01598b
10.1038/nmat3066
10.1021/acsami.0c00393
10.1002/adma.202006577
10.1021/ja3110895
10.1002/aenm.201902881
10.1016/j.jpowsour.2016.05.100
10.1016/0025-5408(83)90080-6
10.1016/j.cej.2021.132991
10.1002/aenm.201703644
10.1021/acs.chemmater.9b00505
10.1016/j.ensm.2019.05.019
10.1021/acs.chemmater.7b00013
10.1016/j.ensm.2019.05.033
10.1016/0022-3093(80)90430-5
10.1002/aenm.202102348
10.1002/adma.200401286
10.1038/s41560-018-0107-2
10.1021/acsenergylett.8b00275
10.1038/s41578-019-0157-5
10.1126/sciadv.aas9820
10.1002/inf2.12292
10.1016/j.ssi.2005.03.001
10.1038/s41578-021-00320-0
10.1002/anie.200703900
10.1002/aenm.202101521
10.1021/acsenergylett.9b00430
10.1016/j.ensm.2021.08.028
10.1038/s41467-020-18736-7
10.1002/ppsc.201300358
10.1126/science.1212741
10.1002/aenm.201401408
10.1021/acs.chemmater.6b03630
10.1016/j.ssi.2012.06.008
10.1002/adfm.202101985
10.1016/j.nanoen.2020.104686
10.1021/acs.nanolett.5b00538
10.1021/acsenergylett.1c02428
10.1039/C7TA06873E
10.1016/0167-2738(84)90097-3
10.1126/science.abg7217
10.1002/smtd.201900261
10.1016/j.joule.2019.03.019
10.1149/1.2108425
10.1002/adfm.202201528
10.1002/aenm.202200948
10.1149/2.jes113225
10.1016/j.jnoncrysol.2010.05.016
10.1002/adma.202105505
10.1039/D0CS00305K
10.1002/adma.202007298
10.1002/adma.201705702
10.1016/j.jpowsour.2016.08.115
10.1002/celc.202101479
10.1016/j.nanoen.2019.104252
10.1039/C3EE41655K
10.1021/acs.chemmater.1c01431
10.1021/acs.chemmater.0c03090
10.1021/acsenergylett.8b01564
10.1149/1945-7111/aba36f
10.1016/j.ssi.2006.04.017
10.1002/adma.202104666
10.1021/acsami.1c06328
10.1002/aenm.201800014
10.1021/acs.chemmater.6b00610
10.1149/2.0501412jes
10.1038/s41467-019-13774-2
10.1016/j.ensm.2017.08.015
10.1021/cm5016959
10.1021/jacs.8b10282
10.1111/j.1151-2916.1999.tb01923.x
10.1002/aenm.201500865
10.1016/j.ensm.2021.06.015
10.1038/nenergy.2017.119
10.1021/acsenergylett.9b01676
10.1016/j.nanoen.2022.107104
10.1021/acs.jpcc.1c05034
10.1039/D1TA09846B
10.1038/s41560-020-00748-8
10.1016/j.nanoen.2021.106542
10.1016/j.nanoen.2020.105015
10.1016/j.nanoen.2021.106142
10.1038/s41565-020-0657-x
10.1002/advs.201600517
10.1016/j.matt.2022.01.011
10.1039/C7TA05031C
10.1016/j.mattod.2021.01.006
10.1039/C7TA01147D
10.1002/cber.18860190156
10.1021/jp301193r
10.1021/acs.chemmater.5b04082
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202206013
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35984755
10_1002_adma_202206013
ADMA202206013
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U21A2080; 51872027
– fundername: Beijing Natural Science Foundation
  funderid: Z200011
– fundername: Beijing Natural Science Foundation
  grantid: Z200011
– fundername: National Natural Science Foundation of China
  grantid: U21A2080
– fundername: National Natural Science Foundation of China
  grantid: 51872027
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3733-1042c5d8516c739cd6523cbbaff4d260e6dda9f6c2fef78a6cfa85d67b6bf7ce3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 05:36:35 EDT 2025
Fri Jul 25 07:44:31 EDT 2025
Mon Jul 21 06:04:46 EDT 2025
Tue Jul 01 02:33:20 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Wed Jan 22 16:15:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords all-solid-state lithium batteries
cell integration
membrane processing
sulfide solid electrolyte
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-1042c5d8516c739cd6523cbbaff4d260e6dda9f6c2fef78a6cfa85d67b6bf7ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0717-0710
PMID 35984755
PQID 2901390471
PQPubID 2045203
PageCount 57
ParticipantIDs proquest_miscellaneous_2704869357
proquest_journals_2901390471
pubmed_primary_35984755
crossref_citationtrail_10_1002_adma_202206013
crossref_primary_10_1002_adma_202206013
wiley_primary_10_1002_adma_202206013_ADMA202206013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1886; 19
2005; 176
2020; 20
2019; 11
2019; 10
2019; 13
2019; 12
2019; 15
2018; 324
2019; 17
2013; 364
2020; 15
2019; 18
2020; 167
2020; 12
2020; 11
2020; 10
1983; 18
2003; 158
2001; 148
1980; 38
2007; 178
2015; 137
2016; 318
2019; 21
2019; 23
2019; 29
2017; 164
2021; 83
2008; 354
2012; 24
2021; 43
2019; 31
2021; 421
2016; 329
2020; 41
2004; 49
2020; 40
2020; 142
1973; 120
1986; 18
2013; 224
2016; 326
2020; 33
2016; 324
2020; 32
2011; 4
2016; 16
2017; 139
2021; 58
2016; 6
2021; 54
2016; 1
2020; 31
2022; 3
2022; 4
2016; 219
2020; 30
2020; 393
2022; 5
2018; 118
2022; 6
2022; 7
2022; 8
2022; 9
2017; 56
2008; 47
2020; 25
2022; 96
2016; 215
2016; 28
2016; 8
2016; 9
2012; 41
2018; 402
2020; 120
2021; 125
2019; 58
2018; 81
2018; 407
2021; 485
2014; 176
2020; 8
2020; 7
2015; 293
2020; 6
2020; 5
2011; 208
2013; 15
2020; 3
2020; 2
1984; 14
2021; 596
2020; 132
2020; 9
2020; 49
2014; 161
2016; 116
2021; 232
2014; 7
2022; 524
2017; 125
2015; 284
2021; 9
2022; 430
2021; 8
2015; 283
2022; 431
2011; 334
2021; 6
2021; 5
2015; 5
1989; 23
2021; 4
2021; 86
2005; 152
2015; 3
2021; 2
2020; 460
2013; 42
2017; 23
2006; 18
1999; 146
2017; 29
2020; 77
1978; 13
2020; 76
2015; 7
2021; 90
2017; 17
2020; 72
2015; 278
1980; 1
2017; 10
2017; 12
2020; 479
2020; 67
2018; 318
2008; 451
2018; 53
2018; 165
2011; 637
2013; 1
2002; 154
2020; 446
2014; 26
1994; 68
2000; 130
2022; 26
2011; 192
2013; 6
2006; 177
2010; 22
2009; 11
2014; 248
2018; 8
2004; 175
2018; 3
2018; 2
2018; 5
2018; 4
2004; 170
2010; 356
2014; 16
2022; 34
2018; 30
2022; 32
2001; 414
2019; 9
2019; 4
2019; 3
2012; 221
2019; 5
2019; 2
2014; 271
2018; 747
2012; 225
2016; 285
2022; 12
1997; 39
2019; 333
2022; 14
2022; 15
2021; 373
2022; 10
2018; 11
2005; 17
2018; 10
2012; 116
2014; 263
2018; 14
2014; 31
2017; 5
2017; 7
2017; 8
2021; 21
2017; 2
2021; 22
2017; 4
2022; 71
1986; 133
1995; 78
2012; 160
2011; 10
1999; 82
2011; 16
2001; 84
2017; 9
2018; 375
2021; 38
2021; 31
2021; 33
2011; 21
2011; 24
2021; 41
2015; 15
2015; 14
2015; 17
2018; 140
2018; 382
2022; 51
2022; 48
2019; 141
2021; 14
2021; 13
2015; 28
2015; 27
2021; 12
2021; 11
2022; 61
2002; 168
2021; 18
2021; 17
2013; 135
2022; 53
2008; 179
2012; 159
2012; 5
2011; 182
2012; 8
e_1_2_10_271_1
e_1_2_10_339_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_210_1
e_1_2_10_233_1
e_1_2_10_256_1
e_1_2_10_279_1
e_1_2_10_294_1
e_1_2_10_158_1
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_304_1
e_1_2_10_327_1
e_1_2_10_342_1
e_1_2_10_365_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_260_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_245_1
e_1_2_10_268_1
e_1_2_10_283_1
e_1_2_10_147_1
e_1_2_10_219_1
e_1_2_10_330_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_338_1
e_1_2_10_353_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_315_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_272_1
e_1_2_10_41_1
e_1_2_10_211_1
e_1_2_10_257_1
e_1_2_10_295_1
e_1_2_10_234_1
e_1_2_10_341_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_349_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_326_1
e_1_2_10_364_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_303_1
e_1_2_10_261_1
e_1_2_10_269_1
e_1_2_10_200_1
e_1_2_10_246_1
e_1_2_10_284_1
e_1_2_10_223_1
e_1_2_10_352_1
e_1_2_10_148_1
e_1_2_10_337_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_314_1
e_1_2_10_26_1
e_1_2_10_250_1
e_1_2_10_273_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_258_1
e_1_2_10_212_1
e_1_2_10_235_1
e_1_2_10_296_1
e_1_2_10_340_1
e_1_2_10_363_1
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_348_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_302_1
e_1_2_10_325_1
e_1_2_10_175_1
e_1_2_10_262_1
e_1_2_10_30_1
e_1_2_10_247_1
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_285_1
e_1_2_10_351_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_336_1
e_1_2_10_359_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_313_1
e_1_2_10_274_1
e_1_2_10_43_1
e_1_2_10_251_1
e_1_2_10_20_1
e_1_2_10_236_1
e_1_2_10_259_1
e_1_2_10_213_1
e_1_2_10_297_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_362_1
e_1_2_10_92_1
e_1_2_10_301_1
e_1_2_10_347_1
e_1_2_10_115_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_324_1
e_1_2_10_263_1
e_1_2_10_309_1
e_1_2_10_240_1
e_1_2_10_31_1
e_1_2_10_225_1
e_1_2_10_248_1
e_1_2_10_202_1
e_1_2_10_286_1
e_1_2_10_350_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_312_1
e_1_2_10_335_1
e_1_2_10_358_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_252_1
e_1_2_10_275_1
e_1_2_10_298_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_214_1
e_1_2_10_237_1
e_1_2_10_290_1
e_1_2_10_361_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_300_1
e_1_2_10_323_1
e_1_2_10_346_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_241_1
e_1_2_10_264_1
e_1_2_10_287_1
e_1_2_10_308_1
e_1_2_10_32_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_249_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_334_1
e_1_2_10_357_1
e_1_2_10_128_1
e_1_2_10_311_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_253_1
e_1_2_10_299_1
e_1_2_10_319_1
e_1_2_10_22_1
e_1_2_10_230_1
e_1_2_10_215_1
e_1_2_10_291_1
e_1_2_10_238_1
e_1_2_10_276_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_360_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_322_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_345_1
e_1_2_10_242_1
e_1_2_10_288_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_307_1
Hart P. W. (e_1_2_10_138_1) 1997; 39
e_1_2_10_204_1
e_1_2_10_280_1
e_1_2_10_227_1
e_1_2_10_265_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_333_1
e_1_2_10_310_1
e_1_2_10_68_1
e_1_2_10_356_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_231_1
e_1_2_10_318_1
e_1_2_10_239_1
e_1_2_10_292_1
e_1_2_10_216_1
e_1_2_10_254_1
e_1_2_10_277_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_321_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_344_1
e_1_2_10_367_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_289_1
e_1_2_10_306_1
e_1_2_10_329_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_281_1
e_1_2_10_243_1
e_1_2_10_266_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_332_1
e_1_2_10_160_1
e_1_2_10_355_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_317_1
e_1_2_10_270_1
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_293_1
e_1_2_10_232_1
e_1_2_10_278_1
e_1_2_10_255_1
e_1_2_10_157_1
e_1_2_10_229_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_320_1
e_1_2_10_305_1
e_1_2_10_343_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_366_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_328_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_282_1
e_1_2_10_221_1
e_1_2_10_267_1
e_1_2_10_244_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_331_1
e_1_2_10_316_1
e_1_2_10_354_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 4
  year: 2021
  publication-title: InfoMat
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 43
  start-page: 53
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 39
  start-page: 31
  year: 1997
  publication-title: Cost Eng.
– volume: 3
  start-page: 596
  year: 2020
  publication-title: Batteries Supercaps
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 485
  year: 2021
  publication-title: J. Power Sources
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 7
  start-page: 1092
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 177
  start-page: 2721
  year: 2006
  publication-title: Solid State Ionics
– volume: 4
  start-page: 312
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 21
  start-page: 390
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 373
  start-page: 1494
  year: 2021
  publication-title: Science
– volume: 24
  start-page: 15
  year: 2011
  publication-title: Chem. Mater.
– volume: 6
  start-page: 70
  year: 2020
  publication-title: J. Materiomics
– volume: 5
  start-page: 105
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 519
  year: 1980
  publication-title: Solid State Ionics
– volume: 12
  start-page: 1818
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 460
  year: 2020
  publication-title: J. Power Sources
– volume: 165
  start-page: A957
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 2480
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 4712
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 144
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 176
  start-page: 83
  year: 2014
  publication-title: Faraday Discuss.
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 6
  start-page: 227
  year: 2021
  publication-title: Nat. Energy
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 21
  start-page: 5233
  year: 2021
  publication-title: Nano Lett.
– volume: 9
  year: 2022
  publication-title: ChemElectroChem
– volume: 6
  start-page: 862
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 627
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 22
  year: 2021
  publication-title: Appl. Mater. Today
– volume: 17
  start-page: 204
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 18
  start-page: 1105
  year: 2019
  publication-title: Nat. Mater.
– volume: 284
  start-page: 206
  year: 2015
  publication-title: J. Power Sources
– volume: 48
  start-page: 458
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 15
  start-page: 991
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 72
  year: 2020
  publication-title: Nano Energy
– volume: 7
  start-page: 1492
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 31
  start-page: 3694
  year: 2019
  publication-title: Chem. Mater.
– volume: 208
  start-page: 1804
  year: 2011
  publication-title: Phys. Status Solidi A
– volume: 3
  start-page: 992
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 132
  year: 2020
  publication-title: Angew. Chem.
– volume: 9
  year: 2022
  publication-title: Chem. Eng. J. Adv.
– volume: 49
  start-page: 8790
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 263
  start-page: 57
  year: 2014
  publication-title: Solid State Ionics
– volume: 2
  start-page: 524
  year: 2019
  publication-title: Batteries Supercaps
– volume: 22
  start-page: 587
  year: 2010
  publication-title: Chem. Mater.
– volume: 8
  start-page: 74
  year: 2016
  publication-title: Nanoscale
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 3
  start-page: 438
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 224
  start-page: 225
  year: 2013
  publication-title: J. Power Sources
– volume: 31
  start-page: 639
  year: 2014
  publication-title: Part. Part. Syst. Charact.
– volume: 8
  start-page: 199
  year: 2012
  publication-title: Electron. Mater. Lett.
– volume: 41
  start-page: 171
  year: 2020
  publication-title: J. Energy Chem.
– volume: 285
  start-page: 79
  year: 2016
  publication-title: Solid State Ionics
– volume: 17
  start-page: 266
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 293
  start-page: 941
  year: 2015
  publication-title: J. Power Sources
– volume: 421
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 82
  start-page: 1352
  year: 1999
  publication-title: J. Am. Ceram. Soc.
– volume: 27
  start-page: 5503
  year: 2015
  publication-title: Chem. Mater.
– volume: 8
  start-page: 386
  year: 2021
  publication-title: ChemElectroChem
– volume: 28
  start-page: 1874
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 139
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 33
  start-page: 146
  year: 2020
  publication-title: Chem. Mater.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 5
  start-page: 718
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 4
  year: 2022
  publication-title: InfoMat
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 259
  year: 2020
  publication-title: Nat. Energy
– volume: 9
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 178
  start-page: 1163
  year: 2007
  publication-title: Solid State Ionics
– volume: 58
  start-page: 8681
  year: 2019
  publication-title: Angew. Chem.
– volume: 364
  start-page: 57
  year: 2013
  publication-title: J. Non‐Cryst. Solids
– volume: 18
  start-page: 2226
  year: 2006
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1831
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 225
  start-page: 342
  year: 2012
  publication-title: Solid State Ionics
– volume: 324
  start-page: 207
  year: 2018
  publication-title: Solid State Ionics
– volume: 2
  start-page: 2016
  year: 2018
  publication-title: Joule
– volume: 53
  start-page: 958
  year: 2018
  publication-title: Nano Energy
– volume: 5
  start-page: 229
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 393
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 29
  start-page: 3883
  year: 2017
  publication-title: Chem. Mater.
– volume: 1
  start-page: 6320
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 6
  start-page: 3548
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 2142
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 84
  start-page: 477
  year: 2001
  publication-title: J. Am. Ceram. Soc.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 41
  start-page: 448
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 130
  start-page: 97
  year: 2000
  publication-title: Solid State Ionics
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 29
  year: 1989
  publication-title: Mater. Chem. Phys.
– volume: 375
  start-page: 93
  year: 2018
  publication-title: J. Power Sources
– volume: 15
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 267
  year: 2018
  publication-title: Nat. Energy
– volume: 11
  start-page: 5889
  year: 2020
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1243
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 86
  year: 2021
  publication-title: Nano Energy
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  year: 2022
  publication-title: Cell Rep. Phys. Sci.
– volume: 175
  start-page: 707
  year: 2004
  publication-title: Solid State Ionics
– volume: 5
  start-page: 753
  year: 2019
  publication-title: Chem
– volume: 12
  start-page: 1
  year: 2021
  publication-title: Nat. Commun.
– volume: 9
  start-page: 120
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 135
  start-page: 975
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1026
  year: 2015
  publication-title: Nat. Mater.
– volume: 10
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 524
  year: 2022
  publication-title: J. Power Sources
– volume: 637
  start-page: 1287
  year: 2011
  publication-title: Z. Anorg. Allg. Chem.
– volume: 18
  start-page: 351
  year: 1986
  publication-title: Solid State Ionics
– volume: 329
  start-page: 530
  year: 2016
  publication-title: J. Power Sources
– volume: 5
  start-page: 7854
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 38
  start-page: 271
  year: 1980
  publication-title: J. Non‐Cryst. Solids
– volume: 283
  start-page: 75
  year: 2015
  publication-title: Solid State Ionics
– volume: 38
  start-page: 249
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 564
  year: 2021
  publication-title: Joule
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 83
  year: 2021
  publication-title: Nano Energy
– volume: 8
  start-page: 1212
  year: 2018
  publication-title: Sci. Rep.
– volume: 25
  start-page: 145
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 278
  start-page: 98
  year: 2015
  publication-title: Solid State Ionics
– volume: 15
  year: 2019
  publication-title: Small
– volume: 179
  start-page: 1282
  year: 2008
  publication-title: Solid State Ionics
– volume: 219
  start-page: 235
  year: 2016
  publication-title: Electrochim. Acta
– volume: 21
  start-page: 118
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 30
  start-page: 98
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 290
  year: 2018
  publication-title: Nat. Energy
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 61
  year: 2022
  publication-title: Angew. Chem.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 6542
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 15
  start-page: 170
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 27
  start-page: 6922
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 6310
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 17
  start-page: 918
  year: 2005
  publication-title: Adv. Mater.
– volume: 4
  start-page: 3243
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 154
  start-page: 789
  year: 2002
  publication-title: Solid State Ionics
– volume: 407
  start-page: 31
  year: 2018
  publication-title: J. Power Sources
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 148
  start-page: A742
  year: 2001
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 123
  year: 2021
  publication-title: Nat. Energy
– volume: 120
  start-page: 1289
  year: 1973
  publication-title: J. Electrochem. Soc.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 5
  start-page: 2829
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 5574
  year: 2017
  publication-title: Chem. Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 356
  start-page: 2666
  year: 2010
  publication-title: J. Non‐Cryst. Solids
– volume: 160
  start-page: A77
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 171
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 18
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 318
  start-page: 60
  year: 2018
  publication-title: Solid State Ionics
– volume: 41
  start-page: 571
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 333
  start-page: 45
  year: 2019
  publication-title: Solid State Ionics
– volume: 116
  start-page: 140
  year: 2016
  publication-title: Chem. Rev.
– volume: 7
  start-page: 1776
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 382
  start-page: 160
  year: 2018
  publication-title: J. Power Sources
– volume: 152
  start-page: A396
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 7155
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 805
  year: 2020
  publication-title: Matter
– volume: 3
  year: 2022
  publication-title: Small Struct.
– volume: 161
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 16
  start-page: 1807
  year: 2011
  publication-title: J. Solid State Electrochem.
– volume: 8
  start-page: 7843
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 120
  start-page: 6820
  year: 2020
  publication-title: Chem. Rev.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  year: 2020
  publication-title: ACS Omega
– volume: 28
  start-page: 2400
  year: 2016
  publication-title: Chem. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 26
  year: 2022
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 13
  start-page: 119
  year: 2019
  publication-title: Mater. Today Energy
– volume: 7
  start-page: 83
  year: 2022
  publication-title: Nat. Energy
– volume: 354
  start-page: 1475
  year: 2008
  publication-title: J. Non‐Cryst. Solids
– volume: 27
  start-page: 189
  year: 2015
  publication-title: Chem. Mater.
– volume: 232
  year: 2021
  publication-title: Inter. J. Prod. Econ.
– volume: 5
  start-page: 1035
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 1053
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 3523
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 596
  start-page: 377
  year: 2021
  publication-title: Nature
– volume: 13
  start-page: 117
  year: 1978
  publication-title: Mater. Res. Bull.
– volume: 271
  start-page: 342
  year: 2014
  publication-title: J. Power Sources
– volume: 479
  year: 2020
  publication-title: J. Power Sources
– volume: 11
  start-page: 93
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  start-page: 682
  year: 2011
  publication-title: Nat. Mater.
– volume: 4
  start-page: 265
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 340
  year: 2016
  publication-title: Nat. Geosci.
– volume: 11
  start-page: 1830
  year: 2009
  publication-title: Electrochem. Commun.
– volume: 5
  start-page: 3468
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 192
  start-page: 122
  year: 2011
  publication-title: Solid State Ionics
– volume: 54
  start-page: 2717
  year: 2021
  publication-title: Acc. Chem. Res.
– volume: 14
  start-page: 181
  year: 1984
  publication-title: Solid State Ionics
– volume: 10
  start-page: 2556
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 368
  year: 1986
  publication-title: Solid State Ionics
– volume: 3
  start-page: 2775
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 133
  start-page: 2437
  year: 1986
  publication-title: J. Electrochem. Soc.
– volume: 14
  start-page: 12
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 33
  start-page: 2004
  year: 2021
  publication-title: Chem. Mater.
– volume: 402
  start-page: 506
  year: 2018
  publication-title: J. Power Sources
– volume: 68
  start-page: 35
  year: 1994
  publication-title: Solid State Ionics
– volume: 14
  start-page: 58
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 24
  start-page: 2211
  year: 2012
  publication-title: Chem. Mater.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 2
  year: 2021
  publication-title: Adv. Energy Sustainability Res.
– volume: 125
  start-page: 391
  year: 2017
  publication-title: J. Ceram. Soc. Jpn.
– volume: 182
  start-page: 116
  year: 2011
  publication-title: Solid State Ionics
– volume: 26
  start-page: 4248
  year: 2014
  publication-title: Chem. Mater.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 49
  start-page: 537
  year: 2004
  publication-title: Prog. Mater Sci.
– volume: 19
  start-page: 210
  year: 1886
  publication-title: Ber. Dtsch. Chem. Ges.
– volume: 20
  start-page: 1483
  year: 2020
  publication-title: Nano Lett.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 142
  start-page: 7012
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 31
  year: 2019
  publication-title: Chem. Mater.
– volume: 77
  year: 2020
  publication-title: Nano Energy
– volume: 318
  start-page: 210
  year: 2016
  publication-title: J. Power Sources
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 146
  start-page: 3472
  year: 1999
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 3344
  year: 2021
  publication-title: Mater. Chem. Front.
– volume: 248
  start-page: 939
  year: 2014
  publication-title: J. Power Sources
– volume: 96
  year: 2022
  publication-title: Nano Energy
– volume: 168
  start-page: 140
  year: 2002
  publication-title: J. Solid State Chem.
– volume: 4
  start-page: 94
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 53
  start-page: 7
  year: 2022
  publication-title: Mater. Today
– volume: 8
  year: 2020
  publication-title: Energy Technol.
– volume: 15
  start-page: 3317
  year: 2015
  publication-title: Nano Lett.
– volume: 41
  start-page: 413
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 176
  start-page: 1229
  year: 2005
  publication-title: Solid State Ionics
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 5
  start-page: 299
  year: 2020
  publication-title: Nat. Energy
– volume: 120
  start-page: 7745
  year: 2020
  publication-title: Chem. Rev.
– volume: 32
  start-page: 2664
  year: 2020
  publication-title: Chem. Mater.
– volume: 47
  start-page: 755
  year: 2008
  publication-title: Angew. Chem.
– volume: 33
  start-page: 1435
  year: 2021
  publication-title: Chem. Mater.
– volume: 120
  start-page: 6878
  year: 2020
  publication-title: Chem. Rev.
– volume: 6
  start-page: 742
  year: 2022
  publication-title: Joule
– volume: 31
  start-page: 267
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 23
  start-page: 2061
  year: 2017
  publication-title: Ionics
– volume: 159
  start-page: A538
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 40
  start-page: 39
  year: 2020
  publication-title: J. Energy Chem.
– volume: 58
  start-page: 17
  year: 2021
  publication-title: J. Energy Chem.
– volume: 4
  start-page: 1073
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 266
  year: 2015
  publication-title: Chem. Mater.
– volume: 17
  start-page: 3013
  year: 2017
  publication-title: Nano Lett.
– volume: 3
  start-page: 1190
  year: 2019
  publication-title: Joule
– volume: 11
  year: 2021
  publication-title: RSC Adv.
– volume: 51
  start-page: 527
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 29
  start-page: 1830
  year: 2017
  publication-title: Chem. Mater.
– volume: 31
  start-page: 344
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 54
  start-page: 3390
  year: 2021
  publication-title: Acc. Chem. Res.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 165
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 16
  year: 2018
  publication-title: Nat. Energy
– volume: 16
  start-page: 4521
  year: 2016
  publication-title: Nano Lett.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1639
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 4976
  year: 2020
  publication-title: Nat. Commun.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 5
  start-page: 8869
  year: 2015
  publication-title: Sci. Rep.
– volume: 28
  start-page: 7955
  year: 2016
  publication-title: Chem. Mater.
– volume: 7
  start-page: 410
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 1406
  year: 2021
  publication-title: Energies
– volume: 118
  start-page: 8936
  year: 2018
  publication-title: Chem. Rev.
– volume: 8
  start-page: 33
  year: 2021
  publication-title: MRS Energy Sustain.
– volume: 18
  start-page: 189
  year: 1983
  publication-title: Mater. Res. Bull.
– volume: 170
  start-page: 173
  year: 2004
  publication-title: Solid State Ionics
– volume: 137
  start-page: 1384
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 182
  start-page: 53
  year: 2011
  publication-title: Solid State Ionics
– volume: 76
  year: 2020
  publication-title: Nano Energy
– volume: 10
  start-page: 2605
  year: 2017
  publication-title: ChemSusChem
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 4930
  year: 2019
  publication-title: Nat. Commun.
– volume: 324
  start-page: 798
  year: 2016
  publication-title: J. Power Sources
– volume: 5
  start-page: 876
  year: 2022
  publication-title: Matter
– volume: 120
  start-page: 5954
  year: 2020
  publication-title: Chem. Rev.
– volume: 4
  start-page: 9932
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 56
  start-page: 753
  year: 2017
  publication-title: Angew. Chem.
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 221
  start-page: 1
  year: 2012
  publication-title: Solid State Ionics
– volume: 747
  start-page: 227
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 326
  start-page: 34
  year: 2016
  publication-title: Coord. Chem. Rev.
– volume: 7
  start-page: 662
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 42
  start-page: 7660
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 33
  start-page: 6029
  year: 2021
  publication-title: Chem. Mater.
– volume: 78
  start-page: 269
  year: 1995
  publication-title: Solid State Ionics
– volume: 215
  start-page: 93
  year: 2016
  publication-title: Electrochim. Acta
– volume: 71
  start-page: 612
  year: 2022
  publication-title: J. Energy Chem.
– volume: 30
  start-page: 67
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 18
  start-page: 1278
  year: 2019
  publication-title: Nat. Mater.
– volume: 5
  start-page: 833
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 30
  start-page: 238
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 16
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 158
  start-page: 275
  year: 2003
  publication-title: Solid State Ionics
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 101
  year: 2021
  publication-title: Electrochem. Energy Rev.
– volume: 5
  start-page: 26
  year: 2020
  publication-title: Nat. Energy
– volume: 446
  year: 2020
  publication-title: J. Power Sources
– volume: 6
  start-page: 1003
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 5
  start-page: 278
  year: 2020
  publication-title: Nat. Energy
– volume: 14
  start-page: 94
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 81
  start-page: 114
  year: 2018
  publication-title: Prog. Polym. Sci.
– volume: 431
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 21
  year: 2022
  publication-title: Acc. Mater. Res.
– volume: 31
  start-page: 3984
  year: 2019
  publication-title: Chem. Mater.
– ident: e_1_2_10_70_1
  doi: 10.1016/j.ssi.2007.05.020
– ident: e_1_2_10_333_1
  doi: 10.1002/aenm.201602923
– ident: e_1_2_10_210_1
  doi: 10.1016/j.jpowsour.2016.04.018
– ident: e_1_2_10_358_1
  doi: 10.1002/adma.202001702
– ident: e_1_2_10_145_1
  doi: 10.1016/j.jpowsour.2018.10.037
– ident: e_1_2_10_230_1
  doi: 10.1149/2.0951712jes
– ident: e_1_2_10_315_1
  doi: 10.1038/s41563-019-0438-9
– ident: e_1_2_10_137_1
  doi: 10.1038/s41560-018-0130-3
– ident: e_1_2_10_123_1
  doi: 10.1016/j.jpowsour.2015.05.093
– ident: e_1_2_10_213_1
  doi: 10.1016/j.ensm.2018.02.020
– ident: e_1_2_10_305_1
  doi: 10.1002/adma.201808100
– ident: e_1_2_10_257_1
  doi: 10.1016/j.jmat.2019.12.010
– ident: e_1_2_10_89_1
  doi: 10.1021/acs.chemmater.5b01384
– ident: e_1_2_10_191_1
  doi: 10.1021/acsomega.0c03453
– ident: e_1_2_10_85_1
  doi: 10.1016/j.ssi.2004.02.025
– ident: e_1_2_10_234_1
  doi: 10.1016/j.jpowsour.2020.229325
– ident: e_1_2_10_21_1
  doi: 10.1002/adma.201901131
– ident: e_1_2_10_134_1
  doi: 10.1002/ente.201901237
– ident: e_1_2_10_12_1
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_10_157_1
  doi: 10.1002/adma.202107346
– ident: e_1_2_10_84_1
  doi: 10.1021/cm3011315
– ident: e_1_2_10_245_1
  doi: 10.1021/acsenergylett.1c02261
– ident: e_1_2_10_10_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_10_209_1
  doi: 10.1002/aesr.202000077
– ident: e_1_2_10_309_1
  doi: 10.1002/adfm.202007598
– ident: e_1_2_10_246_1
  doi: 10.1016/j.ensm.2020.06.029
– ident: e_1_2_10_336_1
  doi: 10.1002/adfm.202110876
– ident: e_1_2_10_173_1
  doi: 10.1039/c3ta10247e
– ident: e_1_2_10_201_1
  doi: 10.1038/s41598-018-19398-8
– ident: e_1_2_10_52_1
  doi: 10.1021/acs.chemmater.0c04650
– ident: e_1_2_10_190_1
  doi: 10.1021/acsaem.9b01111
– ident: e_1_2_10_300_1
  doi: 10.1016/j.nanoen.2020.105097
– ident: e_1_2_10_144_1
  doi: 10.1038/s41560-020-0565-1
– ident: e_1_2_10_197_1
  doi: 10.1021/acs.chemrev.8b00241
– ident: e_1_2_10_218_1
  doi: 10.1016/j.jpowsour.2013.09.117
– ident: e_1_2_10_79_1
  doi: 10.1016/0025-5408(78)90075-2
– ident: e_1_2_10_354_1
  doi: 10.1039/C3EE43306D
– ident: e_1_2_10_15_1
  doi: 10.1038/s41578-019-0165-5
– ident: e_1_2_10_35_1
  doi: 10.1557/s43581-021-00004-w
– ident: e_1_2_10_136_1
  doi: 10.1038/s41560-017-0047-2
– ident: e_1_2_10_60_1
  doi: 10.1111/j.1151-2916.2001.tb00685.x
– ident: e_1_2_10_121_1
  doi: 10.1002/adma.202200083
– ident: e_1_2_10_63_1
  doi: 10.1016/0167-2738(94)90232-1
– ident: e_1_2_10_292_1
  doi: 10.1002/aenm.202003583
– ident: e_1_2_10_194_1
  doi: 10.1016/j.jpowsour.2020.228708
– ident: e_1_2_10_78_1
  doi: 10.1039/C6TA10142A
– ident: e_1_2_10_348_1
  doi: 10.1016/j.jpowsour.2020.228062
– ident: e_1_2_10_264_1
  doi: 10.1021/acs.chemmater.7b00931
– ident: e_1_2_10_344_1
  doi: 10.1038/s41467-020-20314-w
– ident: e_1_2_10_221_1
  doi: 10.1002/cssc.201700409
– ident: e_1_2_10_310_1
  doi: 10.1016/j.chempr.2018.11.013
– ident: e_1_2_10_168_1
  doi: 10.1002/ange.202007621
– ident: e_1_2_10_206_1
  doi: 10.1021/acsaem.1c01917
– ident: e_1_2_10_68_1
  doi: 10.1016/j.ssi.2012.03.013
– ident: e_1_2_10_66_1
  doi: 10.1149/1.1392498
– ident: e_1_2_10_37_1
  doi: 10.1039/D1EE03032A
– ident: e_1_2_10_67_1
  doi: 10.1039/C0JM01090A
– ident: e_1_2_10_115_1
  doi: 10.1016/j.jpowsour.2014.08.024
– ident: e_1_2_10_243_1
  doi: 10.1016/j.cej.2021.129965
– ident: e_1_2_10_229_1
  doi: 10.1016/j.jpowsour.2017.11.031
– ident: e_1_2_10_57_1
  doi: 10.1039/C4TA05231E
– ident: e_1_2_10_223_1
  doi: 10.3390/en14051406
– ident: e_1_2_10_325_1
  doi: 10.1016/j.jechem.2020.09.038
– ident: e_1_2_10_342_1
  doi: 10.1002/anie.202201249
– ident: e_1_2_10_367_1
  doi: 10.1016/j.joule.2022.02.007
– ident: e_1_2_10_174_1
  doi: 10.1016/j.ssi.2015.10.014
– ident: e_1_2_10_244_1
  doi: 10.1021/acs.nanolett.1c01344
– ident: e_1_2_10_129_1
  doi: 10.1039/C8EE02692K
– ident: e_1_2_10_11_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_10_101_1
  doi: 10.1007/s10008-011-1572-8
– ident: e_1_2_10_133_1
  doi: 10.1002/advs.202001207
– ident: e_1_2_10_361_1
  doi: 10.1038/s41467-019-12938-4
– ident: e_1_2_10_262_1
  doi: 10.1038/s41467-020-19726-5
– ident: e_1_2_10_285_1
  doi: 10.1021/acs.nanolett.9b02678
– ident: e_1_2_10_321_1
  doi: 10.1021/acsenergylett.9b02660
– ident: e_1_2_10_186_1
  doi: 10.1016/j.ensm.2018.07.008
– ident: e_1_2_10_275_1
  doi: 10.1039/C8EE00907D
– ident: e_1_2_10_86_1
  doi: 10.1016/j.jpowsour.2019.227338
– ident: e_1_2_10_104_1
  doi: 10.1039/C5CP01841B
– ident: e_1_2_10_216_1
  doi: 10.1007/s11581-017-2035-8
– ident: e_1_2_10_188_1
  doi: 10.1002/adfm.202203858
– ident: e_1_2_10_196_1
  doi: 10.1016/j.jpowsour.2018.02.062
– ident: e_1_2_10_164_1
  doi: 10.1002/inf2.12248
– ident: e_1_2_10_147_1
  doi: 10.1016/j.nanoen.2021.105858
– ident: e_1_2_10_72_1
  doi: 10.1007/s13391-012-2038-6
– ident: e_1_2_10_200_1
  doi: 10.1149/2.1341709jes
– ident: e_1_2_10_330_1
  doi: 10.1002/aenm.202003154
– ident: e_1_2_10_62_1
  doi: 10.1039/C7TA06067J
– ident: e_1_2_10_83_1
  doi: 10.1006/jssc.2002.9701
– ident: e_1_2_10_169_1
  doi: 10.1016/j.ssi.2010.10.013
– ident: e_1_2_10_212_1
  doi: 10.1016/j.jpowsour.2018.09.070
– ident: e_1_2_10_304_1
  doi: 10.1021/acs.nanolett.6b01754
– ident: e_1_2_10_359_1
  doi: 10.1021/acs.nanolett.7b00330
– ident: e_1_2_10_352_1
  doi: 10.1016/j.elecom.2009.07.028
– ident: e_1_2_10_185_1
  doi: 10.1016/j.ssi.2008.02.014
– ident: e_1_2_10_247_1
  doi: 10.1021/acsenergylett.0c00251
– ident: e_1_2_10_36_1
  doi: 10.1039/D1EE01530C
– ident: e_1_2_10_142_1
  doi: 10.1149/1945-7111/ab7221
– ident: e_1_2_10_177_1
  doi: 10.1002/anie.201608924
– ident: e_1_2_10_141_1
  doi: 10.1016/j.cossms.2022.101003
– ident: e_1_2_10_350_1
  doi: 10.1039/C5NR05116A
– ident: e_1_2_10_107_1
  doi: 10.1021/jacs.7b06327
– ident: e_1_2_10_124_1
  doi: 10.1002/adfm.202008165
– ident: e_1_2_10_153_1
  doi: 10.1016/j.ssi.2004.08.028
– ident: e_1_2_10_365_1
  doi: 10.1039/D1QM00071C
– ident: e_1_2_10_225_1
  doi: 10.1016/j.progpolymsci.2017.12.004
– ident: e_1_2_10_128_1
  doi: 10.1038/ncomms15893
– ident: e_1_2_10_217_1
  doi: 10.1002/batt.202000051
– ident: e_1_2_10_31_1
  doi: 10.1021/acs.accounts.1c00333
– ident: e_1_2_10_160_1
  doi: 10.1021/ja508723m
– ident: e_1_2_10_40_1
  doi: 10.1149/1.2403248
– ident: e_1_2_10_211_1
  doi: 10.2109/jcersj2.16321
– ident: e_1_2_10_280_1
  doi: 10.1021/acsami.1c10294
– ident: e_1_2_10_65_1
  doi: 10.1016/0167-2738(95)00094-M
– ident: e_1_2_10_349_1
  doi: 10.1016/j.ccr.2016.08.002
– ident: e_1_2_10_366_1
  doi: 10.1016/j.ensm.2022.03.012
– ident: e_1_2_10_49_1
  doi: 10.1021/acs.chemmater.9b00420
– ident: e_1_2_10_314_1
  doi: 10.1039/c3cp51059j
– ident: e_1_2_10_340_1
  doi: 10.1002/aenm.202102259
– ident: e_1_2_10_149_1
  doi: 10.1039/c3cs35455e
– ident: e_1_2_10_108_1
  doi: 10.1016/j.ensm.2020.04.042
– ident: e_1_2_10_298_1
  doi: 10.1002/adma.201803075
– ident: e_1_2_10_207_1
  doi: 10.1002/aenm.202003766
– ident: e_1_2_10_38_1
  doi: 10.1002/aenm.201800035
– ident: e_1_2_10_5_1
  doi: 10.1039/c2ee21892e
– ident: e_1_2_10_131_1
  doi: 10.1016/j.xcrp.2022.100756
– ident: e_1_2_10_140_1
  doi: 10.1016/j.ijpe.2020.107982
– ident: e_1_2_10_236_1
  doi: 10.1016/j.mtphys.2021.100397
– ident: e_1_2_10_215_1
  doi: 10.1002/admi.201701328
– ident: e_1_2_10_251_1
  doi: 10.1002/adfm.202101523
– ident: e_1_2_10_139_1
  doi: 10.1021/acsenergylett.2c00438
– ident: e_1_2_10_13_1
  doi: 10.1038/nenergy.2016.141
– ident: e_1_2_10_93_1
  doi: 10.1039/C4FD00143E
– ident: e_1_2_10_175_1
  doi: 10.1039/D1TA04799J
– ident: e_1_2_10_293_1
  doi: 10.1016/j.ensm.2018.11.011
– ident: e_1_2_10_306_1
  doi: 10.1016/j.ssi.2017.09.007
– ident: e_1_2_10_109_1
  doi: 10.1016/j.ensm.2020.04.014
– ident: e_1_2_10_158_1
  doi: 10.1016/j.ssi.2010.10.001
– ident: e_1_2_10_238_1
  doi: 10.1021/acsaem.9b00290
– ident: e_1_2_10_268_1
  doi: 10.1021/acsami.5b07517
– ident: e_1_2_10_30_1
  doi: 10.1021/acs.chemrev.0c00101
– ident: e_1_2_10_102_1
  doi: 10.1021/acs.accounts.0c00874
– ident: e_1_2_10_166_1
  doi: 10.1016/j.jpowsour.2022.231085
– ident: e_1_2_10_222_1
  doi: 10.1002/smll.201902138
– ident: e_1_2_10_151_1
  doi: 10.1039/C1CS15171A
– ident: e_1_2_10_290_1
  doi: 10.1002/aenm.202103473
– ident: e_1_2_10_143_1
  doi: 10.1149/1.1850854
– ident: e_1_2_10_240_1
  doi: 10.1002/adfm.202202919
– ident: e_1_2_10_308_1
  doi: 10.1021/acssuschemeng.1c06035
– ident: e_1_2_10_341_1
  doi: 10.1002/batt.201800149
– volume: 39
  start-page: 31
  year: 1997
  ident: e_1_2_10_138_1
  publication-title: Cost Eng.
– ident: e_1_2_10_241_1
  doi: 10.1016/j.jechem.2022.04.048
– ident: e_1_2_10_278_1
  doi: 10.1021/acsami.7b11530
– ident: e_1_2_10_334_1
  doi: 10.1002/adfm.201900392
– ident: e_1_2_10_205_1
  doi: 10.1021/acsenergylett.1c00332
– ident: e_1_2_10_296_1
  doi: 10.1038/s41560-021-00952-0
– ident: e_1_2_10_103_1
  doi: 10.1002/pssa.201001117
– ident: e_1_2_10_338_1
  doi: 10.1039/D1TA03343C
– ident: e_1_2_10_276_1
  doi: 10.1021/acsami.9b13955
– ident: e_1_2_10_23_1
  doi: 10.1002/adma.202000751
– ident: e_1_2_10_237_1
  doi: 10.1002/adma.201502636
– ident: e_1_2_10_178_1
  doi: 10.1021/cm5037524
– ident: e_1_2_10_96_1
  doi: 10.1039/c3ee41728j
– ident: e_1_2_10_263_1
  doi: 10.1007/s41918-020-00081-4
– ident: e_1_2_10_33_1
  doi: 10.1038/s41560-020-00759-5
– ident: e_1_2_10_260_1
  doi: 10.1016/j.ensm.2022.07.006
– ident: e_1_2_10_180_1
  doi: 10.1016/j.jechem.2019.05.015
– ident: e_1_2_10_360_1
  doi: 10.1021/acsenergylett.1c02756
– ident: e_1_2_10_176_1
  doi: 10.1016/j.apmt.2020.100918
– ident: e_1_2_10_317_1
  doi: 10.1002/aenm.201501590
– ident: e_1_2_10_301_1
  doi: 10.1007/s40820-022-00844-2
– ident: e_1_2_10_281_1
  doi: 10.1016/j.ssi.2015.08.001
– ident: e_1_2_10_299_1
  doi: 10.1021/jacs.0c00134
– ident: e_1_2_10_272_1
  doi: 10.1021/cm901452z
– ident: e_1_2_10_347_1
  doi: 10.1021/acsenergylett.0c02617
– ident: e_1_2_10_224_1
  doi: 10.1038/s41563-019-0431-3
– ident: e_1_2_10_80_1
  doi: 10.1016/S0167-2738(00)00277-0
– ident: e_1_2_10_125_1
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_10_253_1
  doi: 10.1002/aenm.202200660
– ident: e_1_2_10_291_1
  doi: 10.1016/j.ensm.2020.05.007
– ident: e_1_2_10_43_1
  doi: 10.1149/1.1379028
– ident: e_1_2_10_42_1
  doi: 10.1016/0167-2738(86)90139-6
– ident: e_1_2_10_75_1
  doi: 10.1016/j.jpowsour.2015.02.160
– ident: e_1_2_10_255_1
  doi: 10.1021/acsenergylett.8b01726
– ident: e_1_2_10_228_1
  doi: 10.1016/S0167-2738(02)00889-5
– ident: e_1_2_10_313_1
  doi: 10.1021/acsenergylett.2c00003
– ident: e_1_2_10_48_1
  doi: 10.1016/j.electacta.2016.09.155
– ident: e_1_2_10_256_1
  doi: 10.1149/2.0961816jes
– ident: e_1_2_10_3_1
  doi: 10.1038/451652a
– ident: e_1_2_10_87_1
  doi: 10.1039/C3EE43357A
– ident: e_1_2_10_271_1
  doi: 10.1016/j.ensm.2020.05.017
– ident: e_1_2_10_76_1
  doi: 10.1016/j.ssi.2010.06.018
– ident: e_1_2_10_195_1
  doi: 10.1038/s41578-019-0103-6
– ident: e_1_2_10_82_1
  doi: 10.1039/D1RA03194E
– ident: e_1_2_10_345_1
  doi: 10.1126/sciadv.abn4372
– ident: e_1_2_10_233_1
  doi: 10.1002/aenm.201802927
– ident: e_1_2_10_116_1
  doi: 10.1021/acsami.6b00833
– ident: e_1_2_10_254_1
  doi: 10.1149/2.0981805jes
– ident: e_1_2_10_277_1
  doi: 10.1002/sstr.202100146
– ident: e_1_2_10_61_1
  doi: 10.1016/0254-0584(89)90015-1
– ident: e_1_2_10_353_1
  doi: 10.1016/j.ssi.2018.07.013
– ident: e_1_2_10_50_1
  doi: 10.1002/anie.201814222
– ident: e_1_2_10_270_1
  doi: 10.1016/j.ensm.2021.06.027
– ident: e_1_2_10_46_1
  doi: 10.1021/acsami.8b07476
– ident: e_1_2_10_74_1
  doi: 10.1016/j.ssi.2014.05.002
– ident: e_1_2_10_356_1
  doi: 10.1038/s41560-020-0597-6
– ident: e_1_2_10_25_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_10_252_1
  doi: 10.1016/j.mtener.2019.05.005
– ident: e_1_2_10_146_1
  doi: 10.1016/j.jallcom.2018.03.027
– ident: e_1_2_10_323_1
  doi: 10.1126/sciadv.aau9245
– ident: e_1_2_10_8_1
  doi: 10.1038/35104644
– ident: e_1_2_10_150_1
  doi: 10.1016/S0079-6425(03)00034-3
– ident: e_1_2_10_357_1
  doi: 10.1021/acsenergylett.1c00627
– ident: e_1_2_10_189_1
  doi: 10.1021/acsami.0c08261
– ident: e_1_2_10_294_1
  doi: 10.1002/smll.201900235
– ident: e_1_2_10_363_1
  doi: 10.1016/j.ceja.2021.100218
– ident: e_1_2_10_53_1
  doi: 10.1021/jacs.9b08357
– ident: e_1_2_10_27_1
  doi: 10.1021/acsenergylett.0c01905
– ident: e_1_2_10_54_1
  doi: 10.1021/acssuschemeng.0c05549
– ident: e_1_2_10_193_1
  doi: 10.1002/adma.202100921
– ident: e_1_2_10_319_1
  doi: 10.1016/j.ssi.2015.06.001
– ident: e_1_2_10_269_1
  doi: 10.1016/j.joule.2018.08.017
– ident: e_1_2_10_92_1
  doi: 10.1039/C4CP02046D
– ident: e_1_2_10_283_1
  doi: 10.1016/j.jechem.2019.02.006
– ident: e_1_2_10_204_1
  doi: 10.1016/j.cej.2020.124706
– ident: e_1_2_10_184_1
  doi: 10.1016/j.jnoncrysol.2012.12.044
– ident: e_1_2_10_282_1
  doi: 10.1002/adma.200502604
– ident: e_1_2_10_100_1
  doi: 10.1002/zaac.201100158
– ident: e_1_2_10_266_1
  doi: 10.1002/aenm.202101864
– ident: e_1_2_10_202_1
  doi: 10.1016/j.ensm.2017.09.007
– ident: e_1_2_10_7_1
  doi: 10.1038/s41560-019-0513-0
– ident: e_1_2_10_181_1
  doi: 10.1002/aenm.201903422
– ident: e_1_2_10_2_1
  doi: 10.1038/s41586-021-03723-9
– ident: e_1_2_10_105_1
  doi: 10.1021/acs.chemmater.0c03738
– ident: e_1_2_10_287_1
  doi: 10.1021/acsami.7b01137
– ident: e_1_2_10_259_1
  doi: 10.1016/j.ensm.2021.03.017
– ident: e_1_2_10_326_1
  doi: 10.1021/acsami.7b16176
– ident: e_1_2_10_95_1
  doi: 10.1021/ja407393y
– ident: e_1_2_10_320_1
  doi: 10.1021/acs.chemrev.0c00431
– ident: e_1_2_10_90_1
  doi: 10.1021/cm203303y
– ident: e_1_2_10_351_1
  doi: 10.1149/2.064301jes
– ident: e_1_2_10_198_1
  doi: 10.1002/aenm.202002508
– ident: e_1_2_10_127_1
  doi: 10.1021/acs.chemrev.9b00747
– ident: e_1_2_10_120_1
  doi: 10.1002/adma.201505008
– ident: e_1_2_10_274_1
  doi: 10.1021/acs.chemmater.6b04990
– ident: e_1_2_10_148_1
  doi: 10.1021/acs.chemmater.9b03852
– ident: e_1_2_10_327_1
  doi: 10.1002/aenm.201902125
– ident: e_1_2_10_91_1
  doi: 10.1002/aenm.202002153
– ident: e_1_2_10_170_1
  doi: 10.1016/j.jnoncrysol.2007.08.058
– ident: e_1_2_10_161_1
  doi: 10.1016/j.jpowsour.2012.09.097
– ident: e_1_2_10_58_1
  doi: 10.1021/acs.chemmater.9b04764
– ident: e_1_2_10_81_1
  doi: 10.1016/S0167-2738(02)00492-7
– ident: e_1_2_10_179_1
  doi: 10.1016/j.ssi.2019.01.017
– ident: e_1_2_10_364_1
  doi: 10.1038/srep08869
– ident: e_1_2_10_1_1
  doi: 10.1038/ngeo2699
– ident: e_1_2_10_26_1
  doi: 10.1039/D0EE02241A
– ident: e_1_2_10_64_1
  doi: 10.1016/0167-2738(86)90142-6
– ident: e_1_2_10_88_1
  doi: 10.1038/nmat4369
– ident: e_1_2_10_112_1
  doi: 10.1016/0167-2738(80)90048-X
– ident: e_1_2_10_51_1
  doi: 10.1021/acsenergylett.8b01997
– ident: e_1_2_10_303_1
  doi: 10.1021/accountsmr.1c00137
– ident: e_1_2_10_154_1
  doi: 10.1016/j.electacta.2016.08.081
– ident: e_1_2_10_332_1
  doi: 10.1002/celc.202100010
– ident: e_1_2_10_19_1
  doi: 10.1021/acs.chemrev.9b00268
– ident: e_1_2_10_231_1
  doi: 10.1038/s41560-020-0575-z
– ident: e_1_2_10_239_1
  doi: 10.1002/adfm.201910123
– ident: e_1_2_10_258_1
  doi: 10.1016/j.ensm.2019.10.020
– ident: e_1_2_10_343_1
  doi: 10.1002/adma.202200401
– ident: e_1_2_10_329_1
  doi: 10.1016/j.cej.2021.134019
– ident: e_1_2_10_324_1
  doi: 10.1016/j.nanoen.2018.09.061
– ident: e_1_2_10_307_1
  doi: 10.1021/acsami.0c02085
– ident: e_1_2_10_295_1
  doi: 10.1021/acsenergylett.0c00256
– ident: e_1_2_10_337_1
  doi: 10.1021/acsenergylett.0c00207
– ident: e_1_2_10_226_1
  doi: 10.1016/j.matt.2020.02.003
– ident: e_1_2_10_235_1
  doi: 10.1021/acssuschemeng.1c00904
– ident: e_1_2_10_39_1
  doi: 10.1016/j.joule.2020.12.001
– ident: e_1_2_10_6_1
  doi: 10.1039/c1ee01598b
– ident: e_1_2_10_24_1
  doi: 10.1038/nmat3066
– ident: e_1_2_10_187_1
  doi: 10.1021/acsami.0c00393
– ident: e_1_2_10_167_1
  doi: 10.1002/adma.202006577
– ident: e_1_2_10_119_1
  doi: 10.1021/ja3110895
– ident: e_1_2_10_289_1
  doi: 10.1002/aenm.201902881
– ident: e_1_2_10_98_1
  doi: 10.1016/j.jpowsour.2016.05.100
– ident: e_1_2_10_59_1
  doi: 10.1016/0025-5408(83)90080-6
– ident: e_1_2_10_249_1
  doi: 10.1016/j.cej.2021.132991
– ident: e_1_2_10_335_1
  doi: 10.1002/aenm.201703644
– ident: e_1_2_10_122_1
  doi: 10.1021/acs.chemmater.9b00505
– ident: e_1_2_10_132_1
  doi: 10.1016/j.ensm.2019.05.019
– ident: e_1_2_10_159_1
  doi: 10.1021/acs.chemmater.7b00013
– ident: e_1_2_10_242_1
  doi: 10.1016/j.ensm.2019.05.033
– ident: e_1_2_10_41_1
  doi: 10.1016/0022-3093(80)90430-5
– ident: e_1_2_10_192_1
  doi: 10.1002/aenm.202102348
– ident: e_1_2_10_44_1
  doi: 10.1002/adma.200401286
– ident: e_1_2_10_135_1
  doi: 10.1038/s41560-018-0107-2
– ident: e_1_2_10_288_1
  doi: 10.1021/acsenergylett.8b00275
– ident: e_1_2_10_28_1
  doi: 10.1038/s41578-019-0157-5
– ident: e_1_2_10_9_1
  doi: 10.1126/sciadv.aas9820
– ident: e_1_2_10_22_1
  doi: 10.1002/inf2.12292
– ident: e_1_2_10_114_1
  doi: 10.1016/j.ssi.2005.03.001
– ident: e_1_2_10_14_1
  doi: 10.1038/s41578-021-00320-0
– ident: e_1_2_10_45_1
  doi: 10.1002/anie.200703900
– ident: e_1_2_10_182_1
  doi: 10.1002/aenm.202101521
– ident: e_1_2_10_248_1
  doi: 10.1021/acsenergylett.9b00430
– ident: e_1_2_10_279_1
  doi: 10.1016/j.ensm.2021.08.028
– ident: e_1_2_10_16_1
  doi: 10.1038/s41467-020-18736-7
– ident: e_1_2_10_162_1
  doi: 10.1002/ppsc.201300358
– ident: e_1_2_10_4_1
  doi: 10.1126/science.1212741
– ident: e_1_2_10_17_1
  doi: 10.1002/aenm.201401408
– ident: e_1_2_10_106_1
  doi: 10.1021/acs.chemmater.6b03630
– ident: e_1_2_10_155_1
  doi: 10.1016/j.ssi.2012.06.008
– ident: e_1_2_10_250_1
  doi: 10.1002/adfm.202101985
– ident: e_1_2_10_284_1
  doi: 10.1016/j.nanoen.2020.104686
– ident: e_1_2_10_220_1
  doi: 10.1021/acs.nanolett.5b00538
– ident: e_1_2_10_55_1
  doi: 10.1021/acsenergylett.1c02428
– ident: e_1_2_10_219_1
  doi: 10.1039/C7TA06873E
– ident: e_1_2_10_118_1
  doi: 10.1016/0167-2738(84)90097-3
– ident: e_1_2_10_355_1
  doi: 10.1126/science.abg7217
– ident: e_1_2_10_286_1
  doi: 10.1002/smtd.201900261
– ident: e_1_2_10_130_1
  doi: 10.1016/j.joule.2019.03.019
– ident: e_1_2_10_113_1
  doi: 10.1149/1.2108425
– ident: e_1_2_10_165_1
  doi: 10.1002/adfm.202201528
– ident: e_1_2_10_29_1
  doi: 10.1002/aenm.202200948
– ident: e_1_2_10_71_1
  doi: 10.1149/2.jes113225
– ident: e_1_2_10_117_1
  doi: 10.1016/j.jnoncrysol.2010.05.016
– ident: e_1_2_10_227_1
  doi: 10.1002/adma.202105505
– ident: e_1_2_10_20_1
  doi: 10.1039/D0CS00305K
– ident: e_1_2_10_302_1
  doi: 10.1002/adma.202007298
– ident: e_1_2_10_18_1
  doi: 10.1002/adma.201705702
– ident: e_1_2_10_97_1
  doi: 10.1016/j.jpowsour.2016.08.115
– ident: e_1_2_10_163_1
  doi: 10.1002/celc.202101479
– ident: e_1_2_10_273_1
  doi: 10.1016/j.nanoen.2019.104252
– ident: e_1_2_10_47_1
  doi: 10.1039/C3EE41655K
– ident: e_1_2_10_346_1
  doi: 10.1021/acs.chemmater.1c01431
– ident: e_1_2_10_56_1
  doi: 10.1021/acs.chemmater.0c03090
– ident: e_1_2_10_331_1
  doi: 10.1021/acsenergylett.8b01564
– ident: e_1_2_10_214_1
  doi: 10.1149/1945-7111/aba36f
– ident: e_1_2_10_69_1
  doi: 10.1016/j.ssi.2006.04.017
– ident: e_1_2_10_322_1
  doi: 10.1002/adma.202104666
– ident: e_1_2_10_73_1
  doi: 10.1021/acsami.1c06328
– ident: e_1_2_10_203_1
  doi: 10.1002/aenm.201800014
– ident: e_1_2_10_318_1
  doi: 10.1021/acs.chemmater.6b00610
– ident: e_1_2_10_94_1
  doi: 10.1149/2.0501412jes
– ident: e_1_2_10_311_1
  doi: 10.1038/s41467-019-13774-2
– ident: e_1_2_10_126_1
  doi: 10.1016/j.ensm.2017.08.015
– ident: e_1_2_10_261_1
  doi: 10.1021/cm5016959
– ident: e_1_2_10_110_1
  doi: 10.1021/jacs.8b10282
– ident: e_1_2_10_111_1
  doi: 10.1111/j.1151-2916.1999.tb01923.x
– ident: e_1_2_10_232_1
  doi: 10.1002/aenm.201500865
– ident: e_1_2_10_312_1
  doi: 10.1016/j.ensm.2021.06.015
– ident: e_1_2_10_339_1
  doi: 10.1038/nenergy.2017.119
– ident: e_1_2_10_265_1
  doi: 10.1021/acsenergylett.9b01676
– ident: e_1_2_10_328_1
  doi: 10.1016/j.nanoen.2022.107104
– ident: e_1_2_10_171_1
  doi: 10.1021/acs.jpcc.1c05034
– ident: e_1_2_10_172_1
  doi: 10.1039/D1TA09846B
– ident: e_1_2_10_34_1
  doi: 10.1038/s41560-020-00748-8
– ident: e_1_2_10_183_1
  doi: 10.1016/j.nanoen.2021.106542
– ident: e_1_2_10_297_1
  doi: 10.1016/j.nanoen.2020.105015
– ident: e_1_2_10_362_1
  doi: 10.1016/j.nanoen.2021.106142
– ident: e_1_2_10_32_1
  doi: 10.1038/s41565-020-0657-x
– ident: e_1_2_10_316_1
  doi: 10.1002/advs.201600517
– ident: e_1_2_10_199_1
  doi: 10.1016/j.matt.2022.01.011
– ident: e_1_2_10_156_1
  doi: 10.1039/C7TA05031C
– ident: e_1_2_10_208_1
  doi: 10.1016/j.mattod.2021.01.006
– ident: e_1_2_10_77_1
  doi: 10.1039/C7TA01147D
– ident: e_1_2_10_99_1
  doi: 10.1002/cber.18860190156
– ident: e_1_2_10_152_1
  doi: 10.1021/jp301193r
– ident: e_1_2_10_267_1
  doi: 10.1021/acs.chemmater.5b04082
SSID ssj0009606
Score 2.6368444
SecondaryResourceType review_article
Snippet All‐solid‐state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy‐dense integration...
All-solid-state lithium batteries (ASSLBs) employing sulfide solid electrolytes (SEs) promise sustainable energy storage systems with energy-dense integration...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2206013
SubjectTerms all‐solid‐state lithium batteries
cell integration
Criteria
Electrolytic cells
Energy storage
Lithium batteries
Manufacturing
Mass production
Materials science
membrane processing
Membranes
Molten salt electrolytes
Separators
Solid electrolytes
Storage systems
sulfide solid electrolyte
Supply chains
Title Priority and Prospect of Sulfide‐Based Solid‐Electrolyte Membrane
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202206013
https://www.ncbi.nlm.nih.gov/pubmed/35984755
https://www.proquest.com/docview/2901390471
https://www.proquest.com/docview/2704869357
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCoKnutskTdrjqruIoCzqgrfSvGBxbWUfBz35E_yN_hKTvtZVRNBjaELTzEznm2TyDcCRz7AvdcQ9n5tIhwgaeTwQ3BMEY0WlT0OVZ1tc04seubwP7j_d4i_4IeoNN2sZ-f_aGnjCR40paWgic94ghCyjiKX7tAlbFhXdTPmjLDzPyfZw4EWUhBVrYxM1ZofPeqVvUHMWueaup7MMSTXpIuPk4WQy5ifi5Quf43--agWWSlzqtgpFWoU5la7B4ie2wnVod4f9zNa6c5NUut1hlt_SdDPt3k4Gui_V--vbqXGK0r3NBn1pWu2ixs7geazcK_Vo5pWqDeh12ndnF15ZhcETmGGbuEaQCKRBZlQwHAlJTewqOE-0JtJEQ0aiMok0FUgrzcKECp2EgaSMU66ZUHgT5tMsVdvgUoWpibAIUkgRX6LIoB-Ow0BFTCEutQNeJYVYlBTltlLGIC7IlVFslyeul8eB47r_U0HO8WPPvUqocWmko9geIeOoadyzA4f1Y2Ne9szELEg2MX2Y5SQ0-sMc2CqUoX6VJT8kLAgcQLlIf5lD3Dq_atWtnb8M2oUFW-6-SKfZg_nxcKL2DSga84Nc8T8AC_wDrw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0q7aKwgPIOFDASiFXaxnbsZMFiykw1fUxV0VbqLsQvacSQoOmMUFnxCfwKv8In8CW9TiYpA6qQKnXB0omTOPdhn-vHuQCvIski41IVRgojHa5FGqpYq1BzxqwwkUhstdtiX_SP-c5JfLIAP5qzMDU_RDvh5j2j6q-9g_sJ6fUL1tDcVMRBlHpKkSZ_9a49-4JR2-nb7S6q-DWlW72jd_1wllgg1EwyvxeLUx0bBBtCS5ZqIzAc00rlznGDAB8bafLUCU2ddTLJhXZ5EhshlVBOasvwvTdgyacR93T93fcXjFU-IKjo_VgcpoInDU_kBl2fb-_8OPgXuJ3HytVgt3UHfjZiqve4fFybTtSa_voHg-R_JccVuD2D3qRT-8pdWLDFPbj1GyHjfegdjIelT-dH8sKQg3FZHUQlpSOH05EbGvvr2_dNHPcNOSxHQ4OlXp1GaHQ2sWRgP6EgCvsAjq_lPx7CYlEW9jEQYZnAIJJTSy2PDE0R4CmWxDaVlirjAggbtWd6xsLuk4GMspo_mmZeHVmrjgDetPU_1_wjl9Zcbawom_VDp5lfJWfpBiKQAF62t7EH8ctCKJByinWkp11Eg5UBPKqtr_2U53fkMo4DoJUN_aMNWac76LSlJ1d56AUs948Ge9ne9v7uU7iJ11k947UKi5Px1D5DDDhRzyuvI_Dhus3zHMx4ZQc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVkJwKOW3gQJBAnFKu7EdOz5wWNhdtZRWK0ql3tL4T1qxTartrqpy4hF4FF6FV-BJGCeblAUhJKQeOCZxEmd-7G_i8TcAz2NBY-OkimKFkQ7TXEYq0SrSjFLLTcxTW2Vb7PPtQ_b2KDlagq_NXpiaH6L94eY9oxqvvYOfGrd1SRqam4o3iBDPKNKUr961F-cYtJ292umhhl8QMuh_eLMdzesKRJoK6lOxGNGJQazBtaBSG47RmFYqd44ZxPfYR5NLxzVx1ok059rlaWK4UFw5oS3F516DFcY70heL6L2_JKzy8UDF7keTSHKWNjSRHbK12N_FafA3bLsIlau5bnALvjVSqlNcPm7OpmpTf_qFQPJ_EuMarM6Bd9itPeU2LNniDtz8iY7xLvSHk1Hpi_mFeWHC4aSstqGGpQsPZmM3Mvb75y-vcdY34UE5Hhk86tdFhMYXUxvu2ROUQ2HvweGVfMd9WC7Kwq5DyC3lGEIyYollsSES4Z2iaWKlsEQZF0DUaD3Tcw52XwpknNXs0STz6shadQTwsm1_WrOP_LHlRmNE2XwUOsv8GjmVHcQfATxrL-P44ReFUCDlDNsIT7qI9ioCeFAbX_sqz-7IRJIEQCoT-ksfsm5vr9sePfyXm57C9WFvkL3b2d99BDfwNK1ThzZgeTqZ2ccIAKfqSeVzIRxftXX-ACRyY7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Priority+and+Prospect+of+Sulfide%E2%80%90Based+Solid%E2%80%90Electrolyte+Membrane&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Hong&rft.au=Liang%2C+Yuhao&rft.au=Wang%2C+Chao&rft.au=Li%2C+Dabing&rft.date=2023-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=50&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202206013&rft.externalDBID=10.1002%252Fadma.202206013&rft.externalDocID=ADMA202206013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon