In Situ Transformable Fibrillar Clusters Disrupt Intracellular Copper Metabolic Homeostasis by Comprehensive Blockage of Cuprous Ions Efflux

Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 1; pp. e2406802 - n/a
Main Authors Chen, Yichi, Wang, Yijun, Zhang, Ruotian, Wang, Fengyi, Lin, Xin, Wang, Tong, Zhang, Wenyuan, Deng, Fuan, Wu, Bolin, Shang, Haitao, Cheng, Wen, Zhang, Lu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable peptide is modular and designed for various tumor‐related proteins, which can affect protein function and distribution. Here, a fibrillar transformation peptidic (FTP) nanoparticle is synthesized, which can bind ATP7B membrane proteins (cuprous ions transporter) and transform into nanofibrils/ATP7B clusters, inducing “copper‐free cuproptosis” in vivo. Without adding exogenous copper ions, the spherical FTP nanoparticles bound the high distribution regions of ATP7B membrane proteins, transforming into fibrillar networks in situ with prolonged retention. The cage‐like fibrillar network would further capture unbound or newly generated free ATP7B membrane proteins, thereby significantly and consistently preventing cuprous ions efflux. The FTP nanoparticles would not undergo in situ fibrillar transformation on the low expression region of ATP7B membrane proteins but enter the cell for safe degradation, which exhibited high specificity and safety in vivo. By disrupting intracellular copper homeostasis, the transformable fibrillar clusters displayed a long‐term anti‐tumor effect on subcutaneous transplantation and liver metastatic CRC models. Transformable peptides blockage copper efflux protein channels, regulating metabolic homeostasis in vivo. Schematic illustration of tumor, accumulation, receptor‐ligand interaction, and in situ fibrillar transformation on the cell membrane in colorectal cancer (CRC) tumor tissue, followed by extracellular and intracellular cuproptosis events.
AbstractList Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable peptide is modular and designed for various tumor‐related proteins, which can affect protein function and distribution. Here, a fibrillar transformation peptidic (FTP) nanoparticle is synthesized, which can bind ATP7B membrane proteins (cuprous ions transporter) and transform into nanofibrils/ATP7B clusters, inducing “copper‐free cuproptosis” in vivo. Without adding exogenous copper ions, the spherical FTP nanoparticles bound the high distribution regions of ATP7B membrane proteins, transforming into fibrillar networks in situ with prolonged retention. The cage‐like fibrillar network would further capture unbound or newly generated free ATP7B membrane proteins, thereby significantly and consistently preventing cuprous ions efflux. The FTP nanoparticles would not undergo in situ fibrillar transformation on the low expression region of ATP7B membrane proteins but enter the cell for safe degradation, which exhibited high specificity and safety in vivo. By disrupting intracellular copper homeostasis, the transformable fibrillar clusters displayed a long‐term anti‐tumor effect on subcutaneous transplantation and liver metastatic CRC models.
Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable peptide is modular and designed for various tumor‐related proteins, which can affect protein function and distribution. Here, a fibrillar transformation peptidic (FTP) nanoparticle is synthesized, which can bind ATP7B membrane proteins (cuprous ions transporter) and transform into nanofibrils/ATP7B clusters, inducing “copper‐free cuproptosis” in vivo. Without adding exogenous copper ions, the spherical FTP nanoparticles bound the high distribution regions of ATP7B membrane proteins, transforming into fibrillar networks in situ with prolonged retention. The cage‐like fibrillar network would further capture unbound or newly generated free ATP7B membrane proteins, thereby significantly and consistently preventing cuprous ions efflux. The FTP nanoparticles would not undergo in situ fibrillar transformation on the low expression region of ATP7B membrane proteins but enter the cell for safe degradation, which exhibited high specificity and safety in vivo. By disrupting intracellular copper homeostasis, the transformable fibrillar clusters displayed a long‐term anti‐tumor effect on subcutaneous transplantation and liver metastatic CRC models. Transformable peptides blockage copper efflux protein channels, regulating metabolic homeostasis in vivo. Schematic illustration of tumor, accumulation, receptor‐ligand interaction, and in situ fibrillar transformation on the cell membrane in colorectal cancer (CRC) tumor tissue, followed by extracellular and intracellular cuproptosis events.
Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable peptide is modular and designed for various tumor-related proteins, which can affect protein function and distribution. Here, a fibrillar transformation peptidic (FTP) nanoparticle is synthesized, which can bind ATP7B membrane proteins (cuprous ions transporter) and transform into nanofibrils/ATP7B clusters, inducing "copper-free cuproptosis" in vivo. Without adding exogenous copper ions, the spherical FTP nanoparticles bound the high distribution regions of ATP7B membrane proteins, transforming into fibrillar networks in situ with prolonged retention. The cage-like fibrillar network would further capture unbound or newly generated free ATP7B membrane proteins, thereby significantly and consistently preventing cuprous ions efflux. The FTP nanoparticles would not undergo in situ fibrillar transformation on the low expression region of ATP7B membrane proteins but enter the cell for safe degradation, which exhibited high specificity and safety in vivo. By disrupting intracellular copper homeostasis, the transformable fibrillar clusters displayed a long-term anti-tumor effect on subcutaneous transplantation and liver metastatic CRC models.Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable peptide is modular and designed for various tumor-related proteins, which can affect protein function and distribution. Here, a fibrillar transformation peptidic (FTP) nanoparticle is synthesized, which can bind ATP7B membrane proteins (cuprous ions transporter) and transform into nanofibrils/ATP7B clusters, inducing "copper-free cuproptosis" in vivo. Without adding exogenous copper ions, the spherical FTP nanoparticles bound the high distribution regions of ATP7B membrane proteins, transforming into fibrillar networks in situ with prolonged retention. The cage-like fibrillar network would further capture unbound or newly generated free ATP7B membrane proteins, thereby significantly and consistently preventing cuprous ions efflux. The FTP nanoparticles would not undergo in situ fibrillar transformation on the low expression region of ATP7B membrane proteins but enter the cell for safe degradation, which exhibited high specificity and safety in vivo. By disrupting intracellular copper homeostasis, the transformable fibrillar clusters displayed a long-term anti-tumor effect on subcutaneous transplantation and liver metastatic CRC models.
Author Wang, Fengyi
Lin, Xin
Zhang, Wenyuan
Zhang, Lu
Chen, Yichi
Deng, Fuan
Zhang, Ruotian
Cheng, Wen
Wu, Bolin
Wang, Tong
Wang, Yijun
Shang, Haitao
Author_xml – sequence: 1
  givenname: Yichi
  surname: Chen
  fullname: Chen, Yichi
  organization: Harbin Medical University Cancer Hospital
– sequence: 2
  givenname: Yijun
  surname: Wang
  fullname: Wang, Yijun
  organization: Southern University of Science and Technology
– sequence: 3
  givenname: Ruotian
  surname: Zhang
  fullname: Zhang, Ruotian
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Fengyi
  surname: Wang
  fullname: Wang, Fengyi
  organization: Southern University of Science and Technology
– sequence: 5
  givenname: Xin
  surname: Lin
  fullname: Lin, Xin
  organization: Harbin Medical University Cancer Hospital
– sequence: 6
  givenname: Tong
  surname: Wang
  fullname: Wang, Tong
  organization: Southern University of Science and Technology
– sequence: 7
  givenname: Wenyuan
  surname: Zhang
  fullname: Zhang, Wenyuan
  organization: Southern University of Science and Technology
– sequence: 8
  givenname: Fuan
  surname: Deng
  fullname: Deng, Fuan
  organization: Southern University of Science and Technology
– sequence: 9
  givenname: Bolin
  surname: Wu
  fullname: Wu, Bolin
  organization: Harbin Medical University Cancer Hospital
– sequence: 10
  givenname: Haitao
  surname: Shang
  fullname: Shang, Haitao
  organization: Harbin Medical University Cancer Hospital
– sequence: 11
  givenname: Wen
  surname: Cheng
  fullname: Cheng, Wen
  email: chengwen@hrbmu.edu.cn
  organization: Harbin Medical University Cancer Hospital
– sequence: 12
  givenname: Lu
  orcidid: 0000-0002-7492-6047
  surname: Zhang
  fullname: Zhang, Lu
  email: zhanglu@sustech.edu.cn
  organization: Southern University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39491511$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUha2qqI-BLUtkiU03M_iVTLKEoaUjTcWiZR3dODfg4sTBD8r8B340HqYMUiXEypbvd3zPPfecHI9uREJecrbgjIk3YbB2IZhQrKyYOCJnvORyXlaiPj7cOTsl5yHcMya5UMsTciprVfOC8zPycz3SWxMTvfMwht75AVqL9Mq03lgLnq5sChF9oO9N8GmKdD1GDxqtTb_LbprQ0xuM0DprNL12A7oQIZhA222uD5PHLzgG8x3pO-v0V_iM1PV0lSbvUqBrNwZ62fc2_XhOnvVgA754PGfk09Xl3ep6vvn4Yb16u5lruZRijgBVxTV0qhOy5KCh7Woui1bn97YqAYAxXei-VqxrWV8j6ALKJXaq4qou5Yxc7P_NDr4lDLEZTNiNBCNmS02OSVasELnbjLx-gt675MfsLlOFUEVVZ25GXj1SqR2wayZvBvDb5k_OGVjsAe1dCB77A8JZs1tks1tkc1hkFqgnAm0iRON26Rv7b1m9lz0Yi9v_NGlubzabv9pfXgm1gA
CitedBy_id crossref_primary_10_1021_acsmaterialslett_4c02423
Cites_doi 10.1016/j.actbio.2021.11.042
10.1021/acsnano.1c00498
10.1038/nrdp.2015.65
10.1186/s13045-024-01589-8
10.1021/acs.nanolett.3c00434
10.1038/s41573-020-0090-8
10.1126/science.abf0529
10.1126/science.abo3959
10.1002/adhm.202100862
10.1021/acs.nanolett.8b03644
10.1021/acsnano.8b05860
10.1002/adma.202008518
10.1002/adma.201703444
10.1002/adma.202204733
10.3390/cells8121516
10.1002/advs.202001493
10.1039/C9CS00373H
10.1016/j.bios.2021.113671
10.1016/S0968-0004(96)20008-8
10.1002/adma.202212267
10.1016/j.drup.2023.101018
10.3389/fmolb.2022.841814
10.1186/s11658-024-00608-3
10.1038/s41565-019-0626-4
10.1038/s41568-021-00417-2
10.1016/j.tem.2022.11.001
10.1038/s41423-022-00866-1
10.1016/j.molcel.2022.05.001
10.3322/caac.20107
10.1007/s10555-007-9045-3
10.1080/15548627.2023.2200554
10.1039/D1CS00918D
10.1016/j.addr.2022.114177
10.3164/jcbn.22-9
10.1021/acsnano.2c10251
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202406802
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39491511
10_1002_smll_202406802
SMLL202406802
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Guangdong Provincial Key Laboratory of Advanced Biomaterials
  funderid: 2022B1212010003
– fundername: Fundamental Research Funds for the Provincial Universities
  funderid: 2023‐KYYWF‐0150
– fundername: National Key Research and Development Program of China
  funderid: 2023YFA0915700
– fundername: Shenzhen Science and Technology Innovation Committee
  funderid: 20210324105012034; 20220530114405013
– fundername: National Natural Science Foundation of China
  funderid: 52273129; 82171947; 82202165; 82403810; 82202163
– fundername: First Affiliated Hospital of Harbin Medical University Fund for Excellent Young Scholars
  funderid: 2024YQ06
– fundername: National Natural Science Foundation of China
  grantid: 52273129
– fundername: National Natural Science Foundation of China
  grantid: 82202165
– fundername: National Key Research and Development Program of China
  grantid: 2023YFA0915700
– fundername: Shenzhen Science and Technology Innovation Committee
  grantid: 20220530114405013
– fundername: National Natural Science Foundation of China
  grantid: 82171947
– fundername: Shenzhen Science and Technology Innovation Committee
  grantid: 20210324105012034
– fundername: Fundamental Research Funds for the Provincial Universities
  grantid: 2023-KYYWF-0150
– fundername: National Natural Science Foundation of China
  grantid: 82403810
– fundername: First Affiliated Hospital of Harbin Medical University Fund for Excellent Young Scholars
  grantid: 2024YQ06
– fundername: Guangdong Provincial Key Laboratory of Advanced Biomaterials
  grantid: 2022B1212010003
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
53G
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3732-eaa881cad4d2361acabd9135bca88b86aaa00c5cf940db0f9eac5a67ed4814963
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 11:37:37 EDT 2025
Fri Jul 25 12:09:58 EDT 2025
Mon Jul 21 05:57:22 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Tue Jul 01 00:42:03 EDT 2025
Wed Jan 22 17:13:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords colorectal cancer
copper‐free cuproptosis
transformable fibrillar cluster
ATP7B protein
copper metabolic homeostasis
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-eaa881cad4d2361acabd9135bca88b86aaa00c5cf940db0f9eac5a67ed4814963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7492-6047
PMID 39491511
PQID 3152458952
PQPubID 1046358
PageCount 13
ParticipantIDs proquest_miscellaneous_3123805237
proquest_journals_3152458952
pubmed_primary_39491511
crossref_primary_10_1002_smll_202406802
crossref_citationtrail_10_1002_smll_202406802
wiley_primary_10_1002_smll_202406802_SMLL202406802
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 375
2019; 8
2015; 1
2021; 8
2023; 35
2022; 195
2021; 20
2023; 34
2023; 17
2022; 71
2022; 51
2023; 19
2011; 61
2024; 72
2020; 15
2019; 19
2022; 22
2024; 17
2021; 15
2021; 10
2022; 140
2023; 23
2021; 33
2022; 183
2022; 82
2022; 9
2022; 34
2020; 49
2018; 30
2018; 12
2024; 29
1996; 21
2007; 26
2022; 19
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 15
  start-page: 8039
  year: 2021
  publication-title: ACS Nano
– volume: 26
  start-page: 71
  year: 2007
  publication-title: Cancer Metastasis Rev.
– volume: 17
  start-page: 68
  year: 2024
  publication-title: J. Hematol. Oncol.
– volume: 49
  start-page: 3726
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 22
  start-page: 102
  year: 2022
  publication-title: Nat. Rev. Cancer
– volume: 20
  start-page: 101
  year: 2021
  publication-title: Nat. Rev. Drug Discovery
– volume: 82
  start-page: 1786
  year: 2022
  publication-title: Mol. Cell
– volume: 195
  year: 2022
  publication-title: Biosens. Bioelectron.
– volume: 61
  start-page: 69
  year: 2011
  publication-title: Ca‐Cancer J. Clin.
– volume: 19
  start-page: 674
  year: 2019
  publication-title: Nano Lett.
– volume: 375
  start-page: 1254
  year: 2022
  publication-title: Science
– volume: 375
  start-page: 1231
  year: 2022
  publication-title: Science
– volume: 19
  start-page: 867
  year: 2022
  publication-title: Cell Mol. Immunol.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 51
  start-page: 464
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 1
  year: 2015
  publication-title: Nat. Rev. Dis. Primers
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 23
  start-page: 3038
  year: 2023
  publication-title: Nano Lett.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 19
  start-page: 2175
  year: 2023
  publication-title: Autophagy
– volume: 17
  start-page: 4102
  year: 2023
  publication-title: ACS Nano
– volume: 140
  start-page: 492
  year: 2022
  publication-title: Acta Biomater.
– volume: 34
  start-page: 21
  year: 2023
  publication-title: Trends Endocrinol. Metab.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 21
  start-page: 83
  year: 1996
  publication-title: Trends Biochem. Sci.
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 72
  year: 2024
  publication-title: Drug Resist. Updat.
– volume: 8
  start-page: 1516
  year: 2019
  publication-title: Cells
– volume: 183
  year: 2022
  publication-title: Adv. Drug Delivery Rev.
– volume: 29
  start-page: 91
  year: 2024
  publication-title: Cell. Mol. Biol. Lett.
– volume: 15
  start-page: 145
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 71
  start-page: 22
  year: 2022
  publication-title: J. Clin. Biochem. Nutr.
– volume: 9
  year: 2022
  publication-title: Front. Mol. Biosci.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_8_4_1
  doi: 10.1016/j.actbio.2021.11.042
– ident: e_1_2_8_17_1
  doi: 10.1021/acsnano.1c00498
– ident: e_1_2_8_3_1
  doi: 10.1038/nrdp.2015.65
– ident: e_1_2_8_7_1
  doi: 10.1186/s13045-024-01589-8
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.nanolett.3c00434
– ident: e_1_2_8_30_1
  doi: 10.1038/s41573-020-0090-8
– ident: e_1_2_8_5_1
  doi: 10.1126/science.abf0529
– ident: e_1_2_8_6_1
  doi: 10.1126/science.abo3959
– ident: e_1_2_8_1_1
  doi: 10.1002/adhm.202100862
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.nanolett.8b03644
– ident: e_1_2_8_35_1
  doi: 10.1021/acsnano.8b05860
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.202008518
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.201703444
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.202204733
– ident: e_1_2_8_24_1
  doi: 10.3390/cells8121516
– ident: e_1_2_8_20_1
  doi: 10.1002/advs.202001493
– ident: e_1_2_8_13_1
  doi: 10.1039/C9CS00373H
– ident: e_1_2_8_26_1
  doi: 10.1016/j.bios.2021.113671
– ident: e_1_2_8_34_1
  doi: 10.1016/S0968-0004(96)20008-8
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.202212267
– ident: e_1_2_8_8_1
  doi: 10.1016/j.drup.2023.101018
– ident: e_1_2_8_19_1
  doi: 10.3389/fmolb.2022.841814
– ident: e_1_2_8_9_1
  doi: 10.1186/s11658-024-00608-3
– ident: e_1_2_8_21_1
  doi: 10.1038/s41565-019-0626-4
– ident: e_1_2_8_22_1
  doi: 10.1038/s41568-021-00417-2
– ident: e_1_2_8_12_1
  doi: 10.1016/j.tem.2022.11.001
– ident: e_1_2_8_11_1
  doi: 10.1038/s41423-022-00866-1
– ident: e_1_2_8_10_1
  doi: 10.1016/j.molcel.2022.05.001
– ident: e_1_2_8_2_1
  doi: 10.3322/caac.20107
– ident: e_1_2_8_28_1
  doi: 10.1007/s10555-007-9045-3
– ident: e_1_2_8_27_1
  doi: 10.1080/15548627.2023.2200554
– ident: e_1_2_8_18_1
  doi: 10.1039/D1CS00918D
– ident: e_1_2_8_32_1
  doi: 10.1016/j.addr.2022.114177
– ident: e_1_2_8_29_1
  doi: 10.3164/jcbn.22-9
– ident: e_1_2_8_15_1
  doi: 10.1021/acsnano.2c10251
SSID ssj0031247
Score 2.471315
Snippet Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2406802
SubjectTerms Animals
ATP7B protein
Cell Line, Tumor
Chemical synthesis
Clusters
colorectal cancer
Copper
Copper - chemistry
copper metabolic homeostasis
Copper-Transporting ATPases - metabolism
copper‐free cuproptosis
Efflux
Homeostasis
Homeostasis - drug effects
Humans
In vivo methods and tests
Ions
Membranes
Mice
Nanoparticles
Nanoparticles - chemistry
Proteins
Safety management
transformable fibrillar cluster
Tumors
Title In Situ Transformable Fibrillar Clusters Disrupt Intracellular Copper Metabolic Homeostasis by Comprehensive Blockage of Cuprous Ions Efflux
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202406802
https://www.ncbi.nlm.nih.gov/pubmed/39491511
https://www.proquest.com/docview/3152458952
https://www.proquest.com/docview/3123805237
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_Vha0CAhcUqbxHFiH2Hpqou6HGgr9RbZjiNWDdlVEkuU38CPZibZDV0QQoJj4rHix4zni-35hrHXcVzGWaF0kPDQUkiODkzkskAp1BYrbJEUFCi8-JieXCQfLsXljSj-gR9i3HAjy-jXazJwbdqjn6Sh7ZeKjg7II8meTZIubBEq-jTyR3F0Xn12FfRZARFvbVkbw_hot_quV_oNau4i1971zO4xvW30cOPk6tB35tB--4XP8X96dZ_d3eBSeDso0gN2y9UP2Z0bbIWP2Pd5DWfLzsP5CHZN5WBGQQOoTA1MK0-0Cy28X7aNX3cwp51jOhrwffFqvXYNLFyHilctLVCK9hWi03bZgrkGWpoa93m4UQ_v0Mte4WIHqxKmHvvuW5ijicBxWVb-62N2MTs-n54Em2QOgeUZjwOntZSR1Tj5xPeirTaFirgwFt8bmWqtwxCVo1RJWJiwVOgRhE4zVyQS_-JS_oTt1avaPWPARSRVah2B1USKUooCQaQ1RahVivITFmwnM7cbpnNKuFHlA0dznNMo5-MoT9ibUX49cHz8UfJgqxv5xtbbnCMESoRUAotfjcVopTS-unY4PiiD0Ih24LMJezro1PgprhKFuCuasLjXjL-0IT9bnJ6OT8__pdI-ux1TGuN-J-mA7XWNdy8QW3XmZW8_PwAshR31
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbQeAAeYPwubGAkJJ6yJXGc2I-sW9VCuwfWSbxFtuNo1UJaJbEE_A380dwlTaAghASPiW0ltu98n8--7wh5HYZ5mGRSeRHzDYbkKE8HNvGkBGkx3GRRhoHCi_N4ehm9-8j724QYC9PxQwwON9SMdr1GBUeH9PEP1tD6U4FnB2iSBNJJ3sS03u2u6sPAIMXAfLX5VcBqeUi91fM2-uHxbvtdu_Qb2NzFrq3xmdwjuv_t7s7J9ZFr9JH5-guj43_1a5_c3UJT-raTpfvkhi0fkDs_ERY-JN9mJb1YNY4uB7yrC0snGDcA8lTRceGQeaGmp6u6cpuGztB5jKcDri1ebza2ogvbgOwVK0MxS_saAGq9qqn-QnF1quxVd6menoChvYb1jq5zOnbQeVfTGWgJPcvzwn1-RC4nZ8vx1Nvmc_AMS1joWaWECIyC-UfKF2WUzmTAuDbwXotYKeX7IB-5jPxM-7kEo8BVnNgsErCRi9ljsleuS_uUUMYDIWNjEa9GgueCZ4Ajjc58JWOoPyJeP5up2ZKdY86NIu1omsMURzkdRnlE3gz1Nx3Nxx9rHvTCkW7VvU4ZoKCIC8mh-NVQDIqK46tKC-MDdQAdoRM-GZEnnVANn2IykgC9ghEJW9H4yz-kF4v5fHh69i-NXpJb0-Vins5n5--fk9shZjVuHUsHZK-pnD0EqNXoF60yfQf3YCIQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQkBA8MK6jY4CRkHjKlsRxYj9Cu2qFdkJsk_YW-RZRLaRRLhLwG_jRnJO0YQUhJHhMbCu-fMfniy_fIeRVGGZhYqXyIuYbvJKjPB24xJMS0GK4sZHFi8KL0_jkInp3yS-v3eLv9SGGBTe0jG6-RgMvbXb0UzS0_pzj1gF6JIFqkjej2BeI68nHQUCKgffqwquA0_JQeWsj2-iHR9vlt93Sb1xzm7p2vme6S9Sm1v2Rk6vDttGH5tsvgo7_06x75O6amNI3PZLukxuueEDuXJMrfEi-zwp6tmxaej6wXZ07OsVbA4Cmio7zFnUXajpZ1lVbNnSGS8e4N9B2yauydBVduAaQly8NxRjtK6Cn9bKm-ivFualyn_oj9fQtuNkrmO3oKqPjFtre1nQGNkKPsyxvvzwiF9Pj8_GJt47m4BmWsNBzSgkRGAWjj4IvyihtZcC4NvBei1gp5fuAjkxGvtV-JsElcBUnzkYCfuNi9pjsFKvCPSGU8UDI2Dhkq5HgmeAWWKTR1lcyhvwj4m0GMzVrqXOMuJGnvUhzmGIvp0Mvj8jrIX_Zi3z8MefBBhvp2tjrlAEHiriQHJJfDslgpti_qnDQP5AHuBEuwScjstdjavgUk5EE4hWMSNgh4y91SM8W8_nwtP8vhV6QWx8m03Q-O33_lNwOMaRxt6p0QHaaqnXPgGc1-nlnSj8AlPsgyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Transformable+Fibrillar+Clusters+Disrupt+Intracellular+Copper+Metabolic+Homeostasis+by+Comprehensive+Blockage+of+Cuprous+Ions+Efflux&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chen%2C+Yichi&rft.au=Wang%2C+Yijun&rft.au=Zhang%2C+Ruotian&rft.au=Wang%2C+Fengyi&rft.date=2025-01-01&rft.eissn=1613-6829&rft.volume=21&rft.issue=1&rft.spage=e2406802&rft_id=info:doi/10.1002%2Fsmll.202406802&rft_id=info%3Apmid%2F39491511&rft.externalDocID=39491511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon