In Situ Transformable Fibrillar Clusters Disrupt Intracellular Copper Metabolic Homeostasis by Comprehensive Blockage of Cuprous Ions Efflux
Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 1; pp. e2406802 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable peptide is modular and designed for various tumor‐related proteins, which can affect protein function and distribution. Here, a fibrillar transformation peptidic (FTP) nanoparticle is synthesized, which can bind ATP7B membrane proteins (cuprous ions transporter) and transform into nanofibrils/ATP7B clusters, inducing “copper‐free cuproptosis” in vivo. Without adding exogenous copper ions, the spherical FTP nanoparticles bound the high distribution regions of ATP7B membrane proteins, transforming into fibrillar networks in situ with prolonged retention. The cage‐like fibrillar network would further capture unbound or newly generated free ATP7B membrane proteins, thereby significantly and consistently preventing cuprous ions efflux. The FTP nanoparticles would not undergo in situ fibrillar transformation on the low expression region of ATP7B membrane proteins but enter the cell for safe degradation, which exhibited high specificity and safety in vivo. By disrupting intracellular copper homeostasis, the transformable fibrillar clusters displayed a long‐term anti‐tumor effect on subcutaneous transplantation and liver metastatic CRC models.
Transformable peptides blockage copper efflux protein channels, regulating metabolic homeostasis in vivo. Schematic illustration of tumor, accumulation, receptor‐ligand interaction, and in situ fibrillar transformation on the cell membrane in colorectal cancer (CRC) tumor tissue, followed by extracellular and intracellular cuproptosis events. |
---|---|
AbstractList | Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable peptide is modular and designed for various tumor‐related proteins, which can affect protein function and distribution. Here, a fibrillar transformation peptidic (FTP) nanoparticle is synthesized, which can bind ATP7B membrane proteins (cuprous ions transporter) and transform into nanofibrils/ATP7B clusters, inducing “copper‐free cuproptosis” in vivo. Without adding exogenous copper ions, the spherical FTP nanoparticles bound the high distribution regions of ATP7B membrane proteins, transforming into fibrillar networks in situ with prolonged retention. The cage‐like fibrillar network would further capture unbound or newly generated free ATP7B membrane proteins, thereby significantly and consistently preventing cuprous ions efflux. The FTP nanoparticles would not undergo in situ fibrillar transformation on the low expression region of ATP7B membrane proteins but enter the cell for safe degradation, which exhibited high specificity and safety in vivo. By disrupting intracellular copper homeostasis, the transformable fibrillar clusters displayed a long‐term anti‐tumor effect on subcutaneous transplantation and liver metastatic CRC models. Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable peptide is modular and designed for various tumor‐related proteins, which can affect protein function and distribution. Here, a fibrillar transformation peptidic (FTP) nanoparticle is synthesized, which can bind ATP7B membrane proteins (cuprous ions transporter) and transform into nanofibrils/ATP7B clusters, inducing “copper‐free cuproptosis” in vivo. Without adding exogenous copper ions, the spherical FTP nanoparticles bound the high distribution regions of ATP7B membrane proteins, transforming into fibrillar networks in situ with prolonged retention. The cage‐like fibrillar network would further capture unbound or newly generated free ATP7B membrane proteins, thereby significantly and consistently preventing cuprous ions efflux. The FTP nanoparticles would not undergo in situ fibrillar transformation on the low expression region of ATP7B membrane proteins but enter the cell for safe degradation, which exhibited high specificity and safety in vivo. By disrupting intracellular copper homeostasis, the transformable fibrillar clusters displayed a long‐term anti‐tumor effect on subcutaneous transplantation and liver metastatic CRC models. Transformable peptides blockage copper efflux protein channels, regulating metabolic homeostasis in vivo. Schematic illustration of tumor, accumulation, receptor‐ligand interaction, and in situ fibrillar transformation on the cell membrane in colorectal cancer (CRC) tumor tissue, followed by extracellular and intracellular cuproptosis events. Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable peptide is modular and designed for various tumor-related proteins, which can affect protein function and distribution. Here, a fibrillar transformation peptidic (FTP) nanoparticle is synthesized, which can bind ATP7B membrane proteins (cuprous ions transporter) and transform into nanofibrils/ATP7B clusters, inducing "copper-free cuproptosis" in vivo. Without adding exogenous copper ions, the spherical FTP nanoparticles bound the high distribution regions of ATP7B membrane proteins, transforming into fibrillar networks in situ with prolonged retention. The cage-like fibrillar network would further capture unbound or newly generated free ATP7B membrane proteins, thereby significantly and consistently preventing cuprous ions efflux. The FTP nanoparticles would not undergo in situ fibrillar transformation on the low expression region of ATP7B membrane proteins but enter the cell for safe degradation, which exhibited high specificity and safety in vivo. By disrupting intracellular copper homeostasis, the transformable fibrillar clusters displayed a long-term anti-tumor effect on subcutaneous transplantation and liver metastatic CRC models.Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have attempted to induce cuproptosis by delivering lethal doses of copper ions into tumor cells, often with systemic safety risks. In vivo, transformable peptide is modular and designed for various tumor-related proteins, which can affect protein function and distribution. Here, a fibrillar transformation peptidic (FTP) nanoparticle is synthesized, which can bind ATP7B membrane proteins (cuprous ions transporter) and transform into nanofibrils/ATP7B clusters, inducing "copper-free cuproptosis" in vivo. Without adding exogenous copper ions, the spherical FTP nanoparticles bound the high distribution regions of ATP7B membrane proteins, transforming into fibrillar networks in situ with prolonged retention. The cage-like fibrillar network would further capture unbound or newly generated free ATP7B membrane proteins, thereby significantly and consistently preventing cuprous ions efflux. The FTP nanoparticles would not undergo in situ fibrillar transformation on the low expression region of ATP7B membrane proteins but enter the cell for safe degradation, which exhibited high specificity and safety in vivo. By disrupting intracellular copper homeostasis, the transformable fibrillar clusters displayed a long-term anti-tumor effect on subcutaneous transplantation and liver metastatic CRC models. |
Author | Wang, Fengyi Lin, Xin Zhang, Wenyuan Zhang, Lu Chen, Yichi Deng, Fuan Zhang, Ruotian Cheng, Wen Wu, Bolin Wang, Tong Wang, Yijun Shang, Haitao |
Author_xml | – sequence: 1 givenname: Yichi surname: Chen fullname: Chen, Yichi organization: Harbin Medical University Cancer Hospital – sequence: 2 givenname: Yijun surname: Wang fullname: Wang, Yijun organization: Southern University of Science and Technology – sequence: 3 givenname: Ruotian surname: Zhang fullname: Zhang, Ruotian organization: Southern University of Science and Technology – sequence: 4 givenname: Fengyi surname: Wang fullname: Wang, Fengyi organization: Southern University of Science and Technology – sequence: 5 givenname: Xin surname: Lin fullname: Lin, Xin organization: Harbin Medical University Cancer Hospital – sequence: 6 givenname: Tong surname: Wang fullname: Wang, Tong organization: Southern University of Science and Technology – sequence: 7 givenname: Wenyuan surname: Zhang fullname: Zhang, Wenyuan organization: Southern University of Science and Technology – sequence: 8 givenname: Fuan surname: Deng fullname: Deng, Fuan organization: Southern University of Science and Technology – sequence: 9 givenname: Bolin surname: Wu fullname: Wu, Bolin organization: Harbin Medical University Cancer Hospital – sequence: 10 givenname: Haitao surname: Shang fullname: Shang, Haitao organization: Harbin Medical University Cancer Hospital – sequence: 11 givenname: Wen surname: Cheng fullname: Cheng, Wen email: chengwen@hrbmu.edu.cn organization: Harbin Medical University Cancer Hospital – sequence: 12 givenname: Lu orcidid: 0000-0002-7492-6047 surname: Zhang fullname: Zhang, Lu email: zhanglu@sustech.edu.cn organization: Southern University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39491511$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUha2qqI-BLUtkiU03M_iVTLKEoaUjTcWiZR3dODfg4sTBD8r8B340HqYMUiXEypbvd3zPPfecHI9uREJecrbgjIk3YbB2IZhQrKyYOCJnvORyXlaiPj7cOTsl5yHcMya5UMsTciprVfOC8zPycz3SWxMTvfMwht75AVqL9Mq03lgLnq5sChF9oO9N8GmKdD1GDxqtTb_LbprQ0xuM0DprNL12A7oQIZhA222uD5PHLzgG8x3pO-v0V_iM1PV0lSbvUqBrNwZ62fc2_XhOnvVgA754PGfk09Xl3ep6vvn4Yb16u5lruZRijgBVxTV0qhOy5KCh7Woui1bn97YqAYAxXei-VqxrWV8j6ALKJXaq4qou5Yxc7P_NDr4lDLEZTNiNBCNmS02OSVasELnbjLx-gt675MfsLlOFUEVVZ25GXj1SqR2wayZvBvDb5k_OGVjsAe1dCB77A8JZs1tks1tkc1hkFqgnAm0iRON26Rv7b1m9lz0Yi9v_NGlubzabv9pfXgm1gA |
CitedBy_id | crossref_primary_10_1021_acsmaterialslett_4c02423 |
Cites_doi | 10.1016/j.actbio.2021.11.042 10.1021/acsnano.1c00498 10.1038/nrdp.2015.65 10.1186/s13045-024-01589-8 10.1021/acs.nanolett.3c00434 10.1038/s41573-020-0090-8 10.1126/science.abf0529 10.1126/science.abo3959 10.1002/adhm.202100862 10.1021/acs.nanolett.8b03644 10.1021/acsnano.8b05860 10.1002/adma.202008518 10.1002/adma.201703444 10.1002/adma.202204733 10.3390/cells8121516 10.1002/advs.202001493 10.1039/C9CS00373H 10.1016/j.bios.2021.113671 10.1016/S0968-0004(96)20008-8 10.1002/adma.202212267 10.1016/j.drup.2023.101018 10.3389/fmolb.2022.841814 10.1186/s11658-024-00608-3 10.1038/s41565-019-0626-4 10.1038/s41568-021-00417-2 10.1016/j.tem.2022.11.001 10.1038/s41423-022-00866-1 10.1016/j.molcel.2022.05.001 10.3322/caac.20107 10.1007/s10555-007-9045-3 10.1080/15548627.2023.2200554 10.1039/D1CS00918D 10.1016/j.addr.2022.114177 10.3164/jcbn.22-9 10.1021/acsnano.2c10251 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202406802 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 39491511 10_1002_smll_202406802 SMLL202406802 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Guangdong Provincial Key Laboratory of Advanced Biomaterials funderid: 2022B1212010003 – fundername: Fundamental Research Funds for the Provincial Universities funderid: 2023‐KYYWF‐0150 – fundername: National Key Research and Development Program of China funderid: 2023YFA0915700 – fundername: Shenzhen Science and Technology Innovation Committee funderid: 20210324105012034; 20220530114405013 – fundername: National Natural Science Foundation of China funderid: 52273129; 82171947; 82202165; 82403810; 82202163 – fundername: First Affiliated Hospital of Harbin Medical University Fund for Excellent Young Scholars funderid: 2024YQ06 – fundername: National Natural Science Foundation of China grantid: 52273129 – fundername: National Natural Science Foundation of China grantid: 82202165 – fundername: National Key Research and Development Program of China grantid: 2023YFA0915700 – fundername: Shenzhen Science and Technology Innovation Committee grantid: 20220530114405013 – fundername: National Natural Science Foundation of China grantid: 82171947 – fundername: Shenzhen Science and Technology Innovation Committee grantid: 20210324105012034 – fundername: Fundamental Research Funds for the Provincial Universities grantid: 2023-KYYWF-0150 – fundername: National Natural Science Foundation of China grantid: 82403810 – fundername: First Affiliated Hospital of Harbin Medical University Fund for Excellent Young Scholars grantid: 2024YQ06 – fundername: Guangdong Provincial Key Laboratory of Advanced Biomaterials grantid: 2022B1212010003 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ 53G AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3732-eaa881cad4d2361acabd9135bca88b86aaa00c5cf940db0f9eac5a67ed4814963 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 11:37:37 EDT 2025 Fri Jul 25 12:09:58 EDT 2025 Mon Jul 21 05:57:22 EDT 2025 Thu Apr 24 22:53:19 EDT 2025 Tue Jul 01 00:42:03 EDT 2025 Wed Jan 22 17:13:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | colorectal cancer copper‐free cuproptosis transformable fibrillar cluster ATP7B protein copper metabolic homeostasis |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-eaa881cad4d2361acabd9135bca88b86aaa00c5cf940db0f9eac5a67ed4814963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7492-6047 |
PMID | 39491511 |
PQID | 3152458952 |
PQPubID | 1046358 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3123805237 proquest_journals_3152458952 pubmed_primary_39491511 crossref_primary_10_1002_smll_202406802 crossref_citationtrail_10_1002_smll_202406802 wiley_primary_10_1002_smll_202406802_SMLL202406802 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 375 2019; 8 2015; 1 2021; 8 2023; 35 2022; 195 2021; 20 2023; 34 2023; 17 2022; 71 2022; 51 2023; 19 2011; 61 2024; 72 2020; 15 2019; 19 2022; 22 2024; 17 2021; 15 2021; 10 2022; 140 2023; 23 2021; 33 2022; 183 2022; 82 2022; 9 2022; 34 2020; 49 2018; 30 2018; 12 2024; 29 1996; 21 2007; 26 2022; 19 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 15 start-page: 8039 year: 2021 publication-title: ACS Nano – volume: 26 start-page: 71 year: 2007 publication-title: Cancer Metastasis Rev. – volume: 17 start-page: 68 year: 2024 publication-title: J. Hematol. Oncol. – volume: 49 start-page: 3726 year: 2020 publication-title: Chem. Soc. Rev. – volume: 22 start-page: 102 year: 2022 publication-title: Nat. Rev. Cancer – volume: 20 start-page: 101 year: 2021 publication-title: Nat. Rev. Drug Discovery – volume: 82 start-page: 1786 year: 2022 publication-title: Mol. Cell – volume: 195 year: 2022 publication-title: Biosens. Bioelectron. – volume: 61 start-page: 69 year: 2011 publication-title: Ca‐Cancer J. Clin. – volume: 19 start-page: 674 year: 2019 publication-title: Nano Lett. – volume: 375 start-page: 1254 year: 2022 publication-title: Science – volume: 375 start-page: 1231 year: 2022 publication-title: Science – volume: 19 start-page: 867 year: 2022 publication-title: Cell Mol. Immunol. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 51 start-page: 464 year: 2022 publication-title: Chem. Soc. Rev. – volume: 1 year: 2015 publication-title: Nat. Rev. Dis. Primers – volume: 12 year: 2018 publication-title: ACS Nano – volume: 23 start-page: 3038 year: 2023 publication-title: Nano Lett. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 19 start-page: 2175 year: 2023 publication-title: Autophagy – volume: 17 start-page: 4102 year: 2023 publication-title: ACS Nano – volume: 140 start-page: 492 year: 2022 publication-title: Acta Biomater. – volume: 34 start-page: 21 year: 2023 publication-title: Trends Endocrinol. Metab. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 21 start-page: 83 year: 1996 publication-title: Trends Biochem. Sci. – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 72 year: 2024 publication-title: Drug Resist. Updat. – volume: 8 start-page: 1516 year: 2019 publication-title: Cells – volume: 183 year: 2022 publication-title: Adv. Drug Delivery Rev. – volume: 29 start-page: 91 year: 2024 publication-title: Cell. Mol. Biol. Lett. – volume: 15 start-page: 145 year: 2020 publication-title: Nat. Nanotechnol. – volume: 71 start-page: 22 year: 2022 publication-title: J. Clin. Biochem. Nutr. – volume: 9 year: 2022 publication-title: Front. Mol. Biosci. – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_8_4_1 doi: 10.1016/j.actbio.2021.11.042 – ident: e_1_2_8_17_1 doi: 10.1021/acsnano.1c00498 – ident: e_1_2_8_3_1 doi: 10.1038/nrdp.2015.65 – ident: e_1_2_8_7_1 doi: 10.1186/s13045-024-01589-8 – ident: e_1_2_8_16_1 doi: 10.1021/acs.nanolett.3c00434 – ident: e_1_2_8_30_1 doi: 10.1038/s41573-020-0090-8 – ident: e_1_2_8_5_1 doi: 10.1126/science.abf0529 – ident: e_1_2_8_6_1 doi: 10.1126/science.abo3959 – ident: e_1_2_8_1_1 doi: 10.1002/adhm.202100862 – ident: e_1_2_8_25_1 doi: 10.1021/acs.nanolett.8b03644 – ident: e_1_2_8_35_1 doi: 10.1021/acsnano.8b05860 – ident: e_1_2_8_23_1 doi: 10.1002/adma.202008518 – ident: e_1_2_8_31_1 doi: 10.1002/adma.201703444 – ident: e_1_2_8_33_1 doi: 10.1002/adma.202204733 – ident: e_1_2_8_24_1 doi: 10.3390/cells8121516 – ident: e_1_2_8_20_1 doi: 10.1002/advs.202001493 – ident: e_1_2_8_13_1 doi: 10.1039/C9CS00373H – ident: e_1_2_8_26_1 doi: 10.1016/j.bios.2021.113671 – ident: e_1_2_8_34_1 doi: 10.1016/S0968-0004(96)20008-8 – ident: e_1_2_8_14_1 doi: 10.1002/adma.202212267 – ident: e_1_2_8_8_1 doi: 10.1016/j.drup.2023.101018 – ident: e_1_2_8_19_1 doi: 10.3389/fmolb.2022.841814 – ident: e_1_2_8_9_1 doi: 10.1186/s11658-024-00608-3 – ident: e_1_2_8_21_1 doi: 10.1038/s41565-019-0626-4 – ident: e_1_2_8_22_1 doi: 10.1038/s41568-021-00417-2 – ident: e_1_2_8_12_1 doi: 10.1016/j.tem.2022.11.001 – ident: e_1_2_8_11_1 doi: 10.1038/s41423-022-00866-1 – ident: e_1_2_8_10_1 doi: 10.1016/j.molcel.2022.05.001 – ident: e_1_2_8_2_1 doi: 10.3322/caac.20107 – ident: e_1_2_8_28_1 doi: 10.1007/s10555-007-9045-3 – ident: e_1_2_8_27_1 doi: 10.1080/15548627.2023.2200554 – ident: e_1_2_8_18_1 doi: 10.1039/D1CS00918D – ident: e_1_2_8_32_1 doi: 10.1016/j.addr.2022.114177 – ident: e_1_2_8_29_1 doi: 10.3164/jcbn.22-9 – ident: e_1_2_8_15_1 doi: 10.1021/acsnano.2c10251 |
SSID | ssj0031247 |
Score | 2.471315 |
Snippet | Dysregulation of copper metabolism is intricately associated with the occurrence and therapeutic management of colorectal cancer. Previous studies have... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2406802 |
SubjectTerms | Animals ATP7B protein Cell Line, Tumor Chemical synthesis Clusters colorectal cancer Copper Copper - chemistry copper metabolic homeostasis Copper-Transporting ATPases - metabolism copper‐free cuproptosis Efflux Homeostasis Homeostasis - drug effects Humans In vivo methods and tests Ions Membranes Mice Nanoparticles Nanoparticles - chemistry Proteins Safety management transformable fibrillar cluster Tumors |
Title | In Situ Transformable Fibrillar Clusters Disrupt Intracellular Copper Metabolic Homeostasis by Comprehensive Blockage of Cuprous Ions Efflux |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202406802 https://www.ncbi.nlm.nih.gov/pubmed/39491511 https://www.proquest.com/docview/3152458952 https://www.proquest.com/docview/3123805237 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_Vha0CAhcUqbxHFiH2Hpqou6HGgr9RbZjiNWDdlVEkuU38CPZibZDV0QQoJj4rHix4zni-35hrHXcVzGWaF0kPDQUkiODkzkskAp1BYrbJEUFCi8-JieXCQfLsXljSj-gR9i3HAjy-jXazJwbdqjn6Sh7ZeKjg7II8meTZIubBEq-jTyR3F0Xn12FfRZARFvbVkbw_hot_quV_oNau4i1971zO4xvW30cOPk6tB35tB--4XP8X96dZ_d3eBSeDso0gN2y9UP2Z0bbIWP2Pd5DWfLzsP5CHZN5WBGQQOoTA1MK0-0Cy28X7aNX3cwp51jOhrwffFqvXYNLFyHilctLVCK9hWi03bZgrkGWpoa93m4UQ_v0Mte4WIHqxKmHvvuW5ijicBxWVb-62N2MTs-n54Em2QOgeUZjwOntZSR1Tj5xPeirTaFirgwFt8bmWqtwxCVo1RJWJiwVOgRhE4zVyQS_-JS_oTt1avaPWPARSRVah2B1USKUooCQaQ1RahVivITFmwnM7cbpnNKuFHlA0dznNMo5-MoT9ibUX49cHz8UfJgqxv5xtbbnCMESoRUAotfjcVopTS-unY4PiiD0Ih24LMJezro1PgprhKFuCuasLjXjL-0IT9bnJ6OT8__pdI-ux1TGuN-J-mA7XWNdy8QW3XmZW8_PwAshR31 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbQeAAeYPwubGAkJJ6yJXGc2I-sW9VCuwfWSbxFtuNo1UJaJbEE_A380dwlTaAghASPiW0ltu98n8--7wh5HYZ5mGRSeRHzDYbkKE8HNvGkBGkx3GRRhoHCi_N4ehm9-8j724QYC9PxQwwON9SMdr1GBUeH9PEP1tD6U4FnB2iSBNJJ3sS03u2u6sPAIMXAfLX5VcBqeUi91fM2-uHxbvtdu_Qb2NzFrq3xmdwjuv_t7s7J9ZFr9JH5-guj43_1a5_c3UJT-raTpfvkhi0fkDs_ERY-JN9mJb1YNY4uB7yrC0snGDcA8lTRceGQeaGmp6u6cpuGztB5jKcDri1ebza2ogvbgOwVK0MxS_saAGq9qqn-QnF1quxVd6menoChvYb1jq5zOnbQeVfTGWgJPcvzwn1-RC4nZ8vx1Nvmc_AMS1joWaWECIyC-UfKF2WUzmTAuDbwXotYKeX7IB-5jPxM-7kEo8BVnNgsErCRi9ljsleuS_uUUMYDIWNjEa9GgueCZ4Ajjc58JWOoPyJeP5up2ZKdY86NIu1omsMURzkdRnlE3gz1Nx3Nxx9rHvTCkW7VvU4ZoKCIC8mh-NVQDIqK46tKC-MDdQAdoRM-GZEnnVANn2IykgC9ghEJW9H4yz-kF4v5fHh69i-NXpJb0-Vins5n5--fk9shZjVuHUsHZK-pnD0EqNXoF60yfQf3YCIQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQkBA8MK6jY4CRkHjKlsRxYj9Cu2qFdkJsk_YW-RZRLaRRLhLwG_jRnJO0YQUhJHhMbCu-fMfniy_fIeRVGGZhYqXyIuYbvJKjPB24xJMS0GK4sZHFi8KL0_jkInp3yS-v3eLv9SGGBTe0jG6-RgMvbXb0UzS0_pzj1gF6JIFqkjej2BeI68nHQUCKgffqwquA0_JQeWsj2-iHR9vlt93Sb1xzm7p2vme6S9Sm1v2Rk6vDttGH5tsvgo7_06x75O6amNI3PZLukxuueEDuXJMrfEi-zwp6tmxaej6wXZ07OsVbA4Cmio7zFnUXajpZ1lVbNnSGS8e4N9B2yauydBVduAaQly8NxRjtK6Cn9bKm-ivFualyn_oj9fQtuNkrmO3oKqPjFtre1nQGNkKPsyxvvzwiF9Pj8_GJt47m4BmWsNBzSgkRGAWjj4IvyihtZcC4NvBei1gp5fuAjkxGvtV-JsElcBUnzkYCfuNi9pjsFKvCPSGU8UDI2Dhkq5HgmeAWWKTR1lcyhvwj4m0GMzVrqXOMuJGnvUhzmGIvp0Mvj8jrIX_Zi3z8MefBBhvp2tjrlAEHiriQHJJfDslgpti_qnDQP5AHuBEuwScjstdjavgUk5EE4hWMSNgh4y91SM8W8_nwtP8vhV6QWx8m03Q-O33_lNwOMaRxt6p0QHaaqnXPgGc1-nlnSj8AlPsgyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Transformable+Fibrillar+Clusters+Disrupt+Intracellular+Copper+Metabolic+Homeostasis+by+Comprehensive+Blockage+of+Cuprous+Ions+Efflux&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chen%2C+Yichi&rft.au=Wang%2C+Yijun&rft.au=Zhang%2C+Ruotian&rft.au=Wang%2C+Fengyi&rft.date=2025-01-01&rft.eissn=1613-6829&rft.volume=21&rft.issue=1&rft.spage=e2406802&rft_id=info:doi/10.1002%2Fsmll.202406802&rft_id=info%3Apmid%2F39491511&rft.externalDocID=39491511 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |