An ortho‐Quinone Methide Mediates Disulfide Migration in the Biosynthesis of Epidithiodiketopiperazines
The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β′‐disulfide formation in ETPs is not well‐determined owing to the failure to identify the hypotheti...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 28; pp. e202304252 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
10.07.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β′‐disulfide formation in ETPs is not well‐determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho‐quinone methide (o‐QM) intermediate and prove its involvement in the carbon‐sulfur migration from an α,α′‐ to an α,β′‐disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD‐dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,β′‐disulfide was initiated by Gln140 triggering proton ion for generation of the essential o‐QM intermediate, accompanied by β′‐acetoxy elimination. Subsequent attack on the α,α′‐disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs.
The formation of the α,β′‐disulfide in pretrichodermamide A involves the formation of an α,α′‐disulfide by the oxygenase TdaR containing the canonical CXXC motif, followed by disulfide migration by the oxygenase TdaE containing a specialized CXXQ motif, via an ortho‐quinone methide intermediate. The enzymatic cascade reactions can be considered as a general catalytic mechanism for α,β′‐disulfide formation in epidithiodiketopiperazines (ETPs). |
---|---|
AbstractList | The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β′‐disulfide formation in ETPs is not well‐determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho‐quinone methide (o‐QM) intermediate and prove its involvement in the carbon‐sulfur migration from an α,α′‐ to an α,β′‐disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD‐dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,β′‐disulfide was initiated by Gln140 triggering proton abstraction for generation of the essential o‐QM intermediate, accompanied by β′‐acetoxy elimination. Subsequent attack on the α,α′‐disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs. The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β'-disulfide formation in ETPs is not well-determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho-quinone methide (o-QM) intermediate and prove its involvement in the carbon-sulfur migration from an α,α'- to an α,β'-disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD-dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,β'-disulfide was initiated by Gln140 triggering proton abstraction for generation of the essential o-QM intermediate, accompanied by β'-acetoxy elimination. Subsequent attack on the α,α'-disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs.The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β'-disulfide formation in ETPs is not well-determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho-quinone methide (o-QM) intermediate and prove its involvement in the carbon-sulfur migration from an α,α'- to an α,β'-disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD-dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,β'-disulfide was initiated by Gln140 triggering proton abstraction for generation of the essential o-QM intermediate, accompanied by β'-acetoxy elimination. Subsequent attack on the α,α'-disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs. The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β′‐disulfide formation in ETPs is not well‐determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho ‐quinone methide ( o ‐QM) intermediate and prove its involvement in the carbon‐sulfur migration from an α,α′‐ to an α,β′‐disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD‐dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,β′‐disulfide was initiated by Gln140 triggering proton abstraction for generation of the essential o ‐QM intermediate, accompanied by β′‐acetoxy elimination. Subsequent attack on the α,α′‐disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs. The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β′‐disulfide formation in ETPs is not well‐determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho‐quinone methide (o‐QM) intermediate and prove its involvement in the carbon‐sulfur migration from an α,α′‐ to an α,β′‐disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD‐dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,β′‐disulfide was initiated by Gln140 triggering proton ion for generation of the essential o‐QM intermediate, accompanied by β′‐acetoxy elimination. Subsequent attack on the α,α′‐disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs. The formation of the α,β′‐disulfide in pretrichodermamide A involves the formation of an α,α′‐disulfide by the oxygenase TdaR containing the canonical CXXC motif, followed by disulfide migration by the oxygenase TdaE containing a specialized CXXQ motif, via an ortho‐quinone methide intermediate. The enzymatic cascade reactions can be considered as a general catalytic mechanism for α,β′‐disulfide formation in epidithiodiketopiperazines (ETPs). |
Author | Fan, Jie Ran, Huomiao Li, Yuanyuan Liu, Huan Li, Shu‐Ming Yin, Wen‐Bing Wei, Peng‐Lin |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0003-4720-8581 surname: Fan fullname: Fan, Jie organization: Chinese Academy of Sciences – sequence: 2 givenname: Huomiao surname: Ran fullname: Ran, Huomiao organization: Chinese Academy of Sciences – sequence: 3 givenname: Peng‐Lin surname: Wei fullname: Wei, Peng‐Lin organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Yuanyuan surname: Li fullname: Li, Yuanyuan organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Huan surname: Liu fullname: Liu, Huan organization: Chinese Academy of Sciences – sequence: 6 givenname: Shu‐Ming surname: Li fullname: Li, Shu‐Ming organization: Philipps-Universität Marburg – sequence: 7 givenname: Wen‐Bing orcidid: 0000-0002-9184-3198 surname: Yin fullname: Yin, Wen‐Bing email: yinwb@im.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37157140$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC-wZYkisWGTqa-xsxzKQCuVIiRYW3biMKdk7GA7QsOKR-AZeRI8nZZKlRCrc2R93y_r_MfowAfvEHpO8IJgTE-NB7egmDLMqaCP0BERlNRMSnZQds5YLZUgh-g4pevCK4WbJ-iQSSIk4fgIwdJXIeZ1-P3z18cZdunVe5fX0O9mDya7VL2BNI_DzRN8iSZD8BX4Kq9d9RpC2vqyJUhVGKrVBD0UPfTw1eUwweSi-QHepafo8WDG5J7dzhP0-e3q09l5ffnh3cXZ8rLumGS0dgTznjDRCG5kL0zj-GAtpk1LCcWCKWuUstI0xKjGOm77tlUGE2Mxt7gz7AS92udOMXybXcp6A6lz42i8C3PSVBEiGqkoL-jLB-h1mKMvvysUow2lspWFenFLzXbjej1F2Ji41XdHLADfA10MKUU36A7yzZVyNDBqgvWuK73rSv_tqmiLB9pd8j-Fdi98h9Ft_0Pr5dXF6t79A503p9I |
CitedBy_id | crossref_primary_10_1002_advs_202407195 crossref_primary_10_1002_adsc_202400671 crossref_primary_10_1016_j_biortech_2024_131703 crossref_primary_10_1039_D4OB01936A crossref_primary_10_1002_cbic_202300770 crossref_primary_10_1021_acs_orglett_4c04494 crossref_primary_10_3390_jof11040241 crossref_primary_10_1021_acs_jafc_4c11808 crossref_primary_10_1039_D3NP90037A crossref_primary_10_1021_acs_orglett_4c01274 |
Cites_doi | 10.1039/C4NP00060A 10.1021/ja3123653 10.1021/ja103262m 10.1385/1-59259-266-X:149 10.1002/anie.201309302 10.1021/ol061046l 10.1038/nchem.2308 10.1038/s41586-021-03819-2 10.1021/jacs.9b00110 10.1039/D0OB01202E 10.1002/anie.202217212 10.1099/mic.0.000649 10.1146/annurev-chembioeng-060713-040008 10.1002/cbic.202000403 10.1021/acs.chemrev.6b00621 10.1038/nchembio.1366 10.1021/cr200398y 10.1021/acs.jnatprod.0c00046 10.1002/chem.201200619 10.1002/anie.201806740 10.1007/s00253-011-3689-1 10.1038/s41467-022-34150-7 10.1039/j39700000432 10.1016/j.phytochem.2014.01.003 10.1038/srep37369 10.1039/D0SC06647H 10.1016/j.phytochem.2018.11.007 10.1021/acs.orglett.5b02311 10.1039/p19780001336 10.1007/s00253-018-8908-6 10.1021/acs.chemrev.6b00697 10.1111/j.1365-2958.2004.04215.x 10.1021/acscatal.1c04609 10.1002/anie.201909052 10.1128/microbiolspec.FUNK-0009-2016 10.1021/acs.jnatprod.9b01283 10.1002/cbic.202200341 10.1021/acs.joc.9b02971 10.1016/0006-2952(78)90497-5 10.1021/jacs.0c08879 10.1021/acs.chemrev.8b00375 10.1099/mic.0.27847-0 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202304252 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 37157140 10_1002_anie_202304252 ANIE202304252 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: YJ20200201; 2020M680720; 2022T150689; YJ20200309; 2021M693362 – fundername: Key Research Program of Frontier Sciences, Chinese Academy of Sciences funderid: ZDBS-LY-SM016 – fundername: Biological Resources Program, Chinese Academy of Sciences funderid: KFJ-BRP-009-005 – fundername: National Key Research and Development Program of China funderid: 2022YFC2303003 – fundername: National Natural Science Foundation of China funderid: 32200046; 21778075; 31861133004 – fundername: Deutsche Forschungsgemeinschaft funderid: Li844/11-1 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3732-e104d135654a7d5a6e4fbb02692120538ba88b7a61a86be4bd998a01ab04b0ca3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 15:48:01 EDT 2025 Sun Jul 13 05:00:51 EDT 2025 Mon Jul 21 06:00:53 EDT 2025 Thu Apr 24 23:03:42 EDT 2025 Tue Jul 01 01:47:11 EDT 2025 Wed Jan 22 16:19:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | Fungi Alkaloids Biosynthesis FAD-Dependent Thioredoxin Oxygenase Disulfides |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-e104d135654a7d5a6e4fbb02692120538ba88b7a61a86be4bd998a01ab04b0ca3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4720-8581 0000-0002-9184-3198 |
PMID | 37157140 |
PQID | 2832622797 |
PQPubID | 946352 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2811567824 proquest_journals_2832622797 pubmed_primary_37157140 crossref_citationtrail_10_1002_anie_202304252 crossref_primary_10_1002_anie_202304252 wiley_primary_10_1002_anie_202304252_ANIE202304252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 10, 2023 |
PublicationDateYYYYMMDD | 2023-07-10 |
PublicationDate_xml | – month: 07 year: 2023 text: July 10, 2023 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 164 2015; 17 2005; 151 2021; 22 2020; 85 2020; 83 2018; 102 2019; 58 2022; 23 2006; 8 2012; 18 1970 2021; 143 2019; 141 2015; 7 2017; 117 1978 2013; 9 2020; 18 1999 2016; 4 2012; 93 2016; 6 2023; 62 2004; 53 2014; 5 2012; 112 2021; 12 2021; 596 2018; 118 2022; 12 2010; 132 2022; 13 2013; 135 2019; 158 1978; 27 2014; 100 2014; 31 2014; 53 2018; 57 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_1 Lederer F. (e_1_2_7_49_1) 1999 e_1_2_7_26_1 e_1_2_7_47_2 e_1_2_7_28_2 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_31_1 e_1_2_7_54_2 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_35_2 e_1_2_7_37_1 e_1_2_7_39_2 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_2 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_36_2 e_1_2_7_38_2 |
References_xml | – volume: 22 start-page: 416 year: 2021 end-page: 422 publication-title: ChemBioChem – start-page: 149 year: 1999 end-page: 155 – volume: 17 start-page: 5156 year: 2015 end-page: 5159 publication-title: Org. Lett. – volume: 596 start-page: 583 year: 2021 end-page: 589 publication-title: Nature – volume: 5 start-page: 347 year: 2014 end-page: 366 publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 53 start-page: 2221 year: 2014 end-page: 2224 publication-title: Angew. Chem. Int. Ed. – volume: 100 start-page: 103 year: 2014 end-page: 109 publication-title: Phytochemistry – volume: 93 start-page: 467 year: 2012 end-page: 472 publication-title: Appl. Microbiol. Biotechnol. – volume: 102 start-page: 4435 year: 2018 end-page: 4444 publication-title: Appl. Microbiol. Biotechnol. – volume: 151 start-page: 1021 year: 2005 end-page: 1032 publication-title: Microbiology – volume: 57 start-page: 14051 year: 2018 end-page: 14054 publication-title: Angew. Chem. Int. Ed. – volume: 31 start-page: 1425 year: 2014 end-page: 1448 publication-title: Nat. Prod. Rep. – volume: 12 start-page: 4132 year: 2021 end-page: 4138 publication-title: Chem. Sci. – volume: 164 start-page: 769 year: 2018 end-page: 778 publication-title: Microbiology – volume: 8 start-page: 3073 year: 2006 end-page: 3075 publication-title: Org. Lett. – volume: 9 start-page: 818 year: 2013 end-page: 825 publication-title: Nat. Chem. Biol. – volume: 6 start-page: 37369 year: 2016 publication-title: Sci. Rep. – volume: 112 start-page: 3641 year: 2012 end-page: 3716 publication-title: Chem. Rev. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 158 start-page: 142 year: 2019 end-page: 148 publication-title: Phytochemistry – volume: 132 start-page: 10136 year: 2010 end-page: 10141 publication-title: J. Am. Chem. Soc. – start-page: 432 year: 1970 end-page: 435 publication-title: J. Chem. Soc. C – volume: 85 start-page: 1298 year: 2020 end-page: 1307 publication-title: J. Org. Chem. – volume: 135 start-page: 7205 year: 2013 end-page: 7213 publication-title: J. Am. Chem. Soc. – volume: 83 start-page: 2045 year: 2020 end-page: 2053 publication-title: J. Nat. Prod. – volume: 83 start-page: 1592 year: 2020 end-page: 1597 publication-title: J. Nat. Prod. – volume: 118 start-page: 11324 year: 2018 end-page: 11352 publication-title: Chem. Rev. – volume: 58 start-page: 14589 year: 2019 end-page: 14593 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 635 year: 1978 end-page: 639 publication-title: Biochem. Pharmacol. – volume: 18 start-page: 5344 year: 2020 end-page: 5348 publication-title: Org. Biomol. Chem. – volume: 117 start-page: 5521 year: 2017 end-page: 5577 publication-title: Chem. Rev. – volume: 7 start-page: 737 year: 2015 end-page: 743 publication-title: Nat. Chem. – volume: 13 start-page: 6361 year: 2022 publication-title: Nat. Commun. – volume: 143 start-page: 206 year: 2021 end-page: 213 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 648 year: 2022 end-page: 654 publication-title: ACS Catal. – volume: 53 start-page: 1307 year: 2004 end-page: 1318 publication-title: Mol. Microbiol. – volume: 117 start-page: 5784 year: 2017 end-page: 5863 publication-title: Chem. Rev. – volume: 18 start-page: 9160 year: 2012 end-page: 9173 publication-title: Chem. Eur. J. – volume: 23 year: 2022 publication-title: ChemBioChem – volume: 141 start-page: 4225 year: 2019 end-page: 4229 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 6 year: 2016 publication-title: Microbiol. Spectrum – start-page: 1336 year: 1978 end-page: 1338 publication-title: J. Chem. Soc. Perkin Trans. 1 – ident: e_1_2_7_3_2 doi: 10.1039/C4NP00060A – ident: e_1_2_7_46_2 doi: 10.1021/ja3123653 – ident: e_1_2_7_29_2 doi: 10.1021/ja103262m – start-page: 149 volume-title: Flavoprotein protocols year: 1999 ident: e_1_2_7_49_1 doi: 10.1385/1-59259-266-X:149 – ident: e_1_2_7_28_2 doi: 10.1002/anie.201309302 – ident: e_1_2_7_40_1 doi: 10.1021/ol061046l – ident: e_1_2_7_36_2 doi: 10.1038/nchem.2308 – ident: e_1_2_7_48_1 doi: 10.1038/s41586-021-03819-2 – ident: e_1_2_7_33_2 doi: 10.1021/jacs.9b00110 – ident: e_1_2_7_38_2 doi: 10.1039/D0OB01202E – ident: e_1_2_7_10_1 – ident: e_1_2_7_26_1 doi: 10.1002/anie.202217212 – ident: e_1_2_7_41_1 – ident: e_1_2_7_39_2 doi: 10.1099/mic.0.000649 – ident: e_1_2_7_7_2 doi: 10.1146/annurev-chembioeng-060713-040008 – ident: e_1_2_7_43_2 doi: 10.1002/cbic.202000403 – ident: e_1_2_7_4_2 doi: 10.1021/acs.chemrev.6b00621 – ident: e_1_2_7_35_2 doi: 10.1038/nchembio.1366 – ident: e_1_2_7_27_1 – ident: e_1_2_7_9_1 doi: 10.1021/cr200398y – ident: e_1_2_7_53_2 doi: 10.1021/acs.jnatprod.0c00046 – ident: e_1_2_7_32_2 doi: 10.1002/chem.201200619 – ident: e_1_2_7_44_1 doi: 10.1002/anie.201806740 – ident: e_1_2_7_19_2 doi: 10.1007/s00253-011-3689-1 – ident: e_1_2_7_8_2 doi: 10.1038/s41467-022-34150-7 – ident: e_1_2_7_37_1 – ident: e_1_2_7_42_2 doi: 10.1039/j39700000432 – ident: e_1_2_7_51_2 doi: 10.1016/j.phytochem.2014.01.003 – ident: e_1_2_7_25_2 doi: 10.1038/srep37369 – ident: e_1_2_7_24_2 doi: 10.1039/D0SC06647H – ident: e_1_2_7_45_1 – ident: e_1_2_7_14_1 – ident: e_1_2_7_54_2 doi: 10.1016/j.phytochem.2018.11.007 – ident: e_1_2_7_52_2 doi: 10.1021/acs.orglett.5b02311 – ident: e_1_2_7_21_2 doi: 10.1039/p19780001336 – ident: e_1_2_7_12_2 doi: 10.1007/s00253-018-8908-6 – ident: e_1_2_7_17_2 doi: 10.1021/acs.chemrev.6b00697 – ident: e_1_2_7_47_2 doi: 10.1111/j.1365-2958.2004.04215.x – ident: e_1_2_7_11_2 doi: 10.1021/acscatal.1c04609 – ident: e_1_2_7_13_2 doi: 10.1002/anie.201909052 – ident: e_1_2_7_1_1 – ident: e_1_2_7_2_2 doi: 10.1128/microbiolspec.FUNK-0009-2016 – ident: e_1_2_7_22_1 doi: 10.1021/acs.jnatprod.9b01283 – ident: e_1_2_7_16_2 doi: 10.1002/cbic.202200341 – ident: e_1_2_7_34_2 doi: 10.1021/acs.joc.9b02971 – ident: e_1_2_7_18_1 – ident: e_1_2_7_6_1 – ident: e_1_2_7_50_1 – ident: e_1_2_7_20_2 doi: 10.1016/0006-2952(78)90497-5 – ident: e_1_2_7_30_1 doi: 10.1021/jacs.0c08879 – ident: e_1_2_7_5_1 doi: 10.1021/acs.chemrev.8b00375 – ident: e_1_2_7_15_2 doi: 10.1099/mic.0.27847-0 – ident: e_1_2_7_23_1 – ident: e_1_2_7_31_1 |
SSID | ssj0028806 |
Score | 2.4773583 |
Snippet | The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202304252 |
SubjectTerms | Alkaloids Biosynthesis Disulfides FAD-Dependent Thioredoxin Oxygenase Fungi Indolequinones - chemistry Oxygenase Quinones Structural members Sulfur Thioredoxin |
Title | An ortho‐Quinone Methide Mediates Disulfide Migration in the Biosynthesis of Epidithiodiketopiperazines |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202304252 https://www.ncbi.nlm.nih.gov/pubmed/37157140 https://www.proquest.com/docview/2832622797 https://www.proquest.com/docview/2811567824 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL-UClN-0BRkJiZO3ie21k-NStipIrQSiUm-R7UzAapWsmuRAT32EPiNPgifZBBaEkOAUJ7EVx57xfP6Zbwh5JbgpIdHAlE4kk2VsWAaxYxoU7vo4BT2V0smpOj6T78_n5z958Q_8ENOCG2pGP16jghvbHPwgDUUP7BkG_0axw0EYD2whKvo48UfxIJyDe5EQDKPQj6yNMT_YLL5plX6DmpvItTc9R_eJGSs9nDi5mHWtnbnrX_gc_-evHpB7a1xKF4Mg7ZA7UD0k24djOLhHxC8qins89beb2w-dr-oK6Am0X3yBV4z3AQ1965vusuwf-c-DbFFf0QAy6RtfN1-rkGp8Q-uSLlce_UF8XfgLaOuVX8FVT3XdPCZnR8tPh8dsHaeBOaEFZxCmdEUiAjSURhdzo0CW1obJXRbsYlDy1Jo0tdqoxKTKgrRFmOOZODE2ljZ2RjwhW1jrZ-hBDq7InMhEDLLgqVGclylk4LiGAO4iwsZ-yt2axBxjaVzmA_0yz7EB86kBI_J6yr8a6Dv-mHN_7PZ8rcZNjnGcFHIs6oi8nF6HhsddFVNB3WGeAKqDyecyIk8HcZk-JXQyR0bEiPC-0_9Sh3xx-m453e3-S6E9chfTuPqcxPtkq73q4HmATa190avGd6rAD4Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_imBAkYCcco2sbP5OXBYulvt0u5KoFbqLdjJBKxWyapJhMqJR-BVeBUegSfBk2yCFoSQkHrglMRxEseesWdsz_cBPBNcZugGaPuB69le5kg7QiexA_Rp1SfxsYFSmi_86bH3-mR4sgFfu1iYFh-in3AjzWj6a1JwmpDe_YkaSiHYA2L_Jrnjq32VB3jx0Xht5cvZ2DTxc873J0d7U3tFLGAnIhDcRuODpK4wtowng3QoffQypYw3EpmO3EhlqGQYqkD6rgx9hZ5KjVMiHVcqx1NOIoV57xW4SjTiBNc_ftsjVnGjDm1AkxA28d53OJEO310v7_o4-Jtxu24rN4Pd_g341lVTu8fldFBXapB8-gVB8r-qx5twfWV6s1GrK7dgA_PbsLXXMd7dAT3KGS1jFd8_f3lT67zIkc2x-qBTOhKlCZZsrMv6LGuS9PtWfZjOmbGj2StdlBe5OSt1yYqMTZaaQl50kepTrIqlXuJ5g-Zd3oXjS_nTe7BJpb5PQfKYpFEiIuGgl_JQ-pxnIUaY8ACN_WqB3QlGnKxw2oku5CxuEaZ5TA0W9w1mwYs-_7JFKPljzp1OzuJVT1XGRFXlE4xkYMHT_rapeFo4kjkWNeUxfoOxarhnwXYrn_2nROAOCfTRAt5I2V_KEI8Ws0l_9eBfHnoCW9Oj-WF8OFscPIRrlE6T7a6zA5vVeY2PjJVYqceNXjJ4d9kC_APHm2xd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkYAL_z-BAkYCcco2sb1OcuCwdHfVpXQFiEq9BTuZgNUqiZqNUDnxCDwKr8Ir8CR48ocWhJCQeuCUxHESx56xZ2zP9xHymDOVgR-AKwNfuCLzlBuBl7gBSFz1SSQ0UEr7S7l7IF4cjg83yNc-FqbFhxgm3FAzmv4aFbxMs-2foKEYgT1C8m8UO9Ztq9yD04_WaaueLaa2hZ8wNp-93dl1O14BN-EBZy5YFyT1uTVlhArSsZIgMq2tMxLZftwKZahVGOpASV-FUoPQqfVJlOcr7QntJYrb954j54X0IiSLmL4ZAKuY1YY2nolzF2nve5hIj22vl3d9GPzNtl03lZuxbn6FfOtrqd3icjSqV3qUfPoFQPJ_qsar5HJneNNJqynXyAbk18nFnZ7v7gYxk5ziIlbx_fOX17XJixzoPqw-mBSPSGgCFZ2aqj7OmiTzvlUeanJqrWj63BTVaW7PKlPRIqOz0mDAiylScwSrojQlnDRY3tVNcnAmf3qLbGKp72CIPCRplPCIeyBSFirJWBZCBAkLwFqvDnF7uYiTDqUdyUKO4xZfmsXYYPHQYA55OuQvW3ySP-bc6sUs7vqpKkaiKokgkoFDHg23bcXjspHKoagxj_UarE3DhENut-I5fIoH_hghHx3CGiH7SxniyXIxG67u_stDD8mFV9N5_HKx3LtHLmEyzrT73hbZXJ3UcN-aiCv9oNFKSt6dtfz-APbqaww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ortho-Quinone+Methide+Mediates+Disulfide+Migration+in+the+Biosynthesis+of+Epidithiodiketopiperazines&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fan%2C+Jie&rft.au=Ran%2C+Huomiao&rft.au=Wei%2C+Peng-Lin&rft.au=Li%2C+Yuanyuan&rft.date=2023-07-10&rft.eissn=1521-3773&rft.volume=62&rft.issue=28&rft.spage=e202304252&rft_id=info:doi/10.1002%2Fanie.202304252&rft_id=info%3Apmid%2F37157140&rft.externalDocID=37157140 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |