An ortho‐Quinone Methide Mediates Disulfide Migration in the Biosynthesis of Epidithiodiketopiperazines

The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β′‐disulfide formation in ETPs is not well‐determined owing to the failure to identify the hypotheti...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 28; pp. e202304252 - n/a
Main Authors Fan, Jie, Ran, Huomiao, Wei, Peng‐Lin, Li, Yuanyuan, Liu, Huan, Li, Shu‐Ming, Yin, Wen‐Bing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.07.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β′‐disulfide formation in ETPs is not well‐determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho‐quinone methide (o‐QM) intermediate and prove its involvement in the carbon‐sulfur migration from an α,α′‐ to an α,β′‐disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD‐dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,β′‐disulfide was initiated by Gln140 triggering proton ion for generation of the essential o‐QM intermediate, accompanied by β′‐acetoxy elimination. Subsequent attack on the α,α′‐disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs. The formation of the α,β′‐disulfide in pretrichodermamide A involves the formation of an α,α′‐disulfide by the oxygenase TdaR containing the canonical CXXC motif, followed by disulfide migration by the oxygenase TdaE containing a specialized CXXQ motif, via an ortho‐quinone methide intermediate. The enzymatic cascade reactions can be considered as a general catalytic mechanism for α,β′‐disulfide formation in epidithiodiketopiperazines (ETPs).
AbstractList The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β′‐disulfide formation in ETPs is not well‐determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho‐quinone methide (o‐QM) intermediate and prove its involvement in the carbon‐sulfur migration from an α,α′‐ to an α,β′‐disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD‐dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,β′‐disulfide was initiated by Gln140 triggering proton abstraction for generation of the essential o‐QM intermediate, accompanied by β′‐acetoxy elimination. Subsequent attack on the α,α′‐disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs.
The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β'-disulfide formation in ETPs is not well-determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho-quinone methide (o-QM) intermediate and prove its involvement in the carbon-sulfur migration from an α,α'- to an α,β'-disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD-dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,β'-disulfide was initiated by Gln140 triggering proton abstraction for generation of the essential o-QM intermediate, accompanied by β'-acetoxy elimination. Subsequent attack on the α,α'-disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs.The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β'-disulfide formation in ETPs is not well-determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho-quinone methide (o-QM) intermediate and prove its involvement in the carbon-sulfur migration from an α,α'- to an α,β'-disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD-dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,β'-disulfide was initiated by Gln140 triggering proton abstraction for generation of the essential o-QM intermediate, accompanied by β'-acetoxy elimination. Subsequent attack on the α,α'-disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs.
The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β′‐disulfide formation in ETPs is not well‐determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho ‐quinone methide ( o ‐QM) intermediate and prove its involvement in the carbon‐sulfur migration from an α,α′‐ to an α,β′‐disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD‐dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,β′‐disulfide was initiated by Gln140 triggering proton abstraction for generation of the essential o ‐QM intermediate, accompanied by β′‐acetoxy elimination. Subsequent attack on the α,α′‐disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs.
The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although mechanisms were proposed in previous studies, α,β′‐disulfide formation in ETPs is not well‐determined owing to the failure to identify the hypothetical intermediate. Herein, we characterize the key ortho‐quinone methide (o‐QM) intermediate and prove its involvement in the carbon‐sulfur migration from an α,α′‐ to an α,β′‐disulfide by elucidating pretrichodermamide A biosynthesis, which is catalyzed by a FAD‐dependent thioredoxin oxygenase TdaE harboring a noncanonical CXXQ motif. Biochemical investigations of recombinant TdaE and mutants demonstrated that the construction of the α,β′‐disulfide was initiated by Gln140 triggering proton ion for generation of the essential o‐QM intermediate, accompanied by β′‐acetoxy elimination. Subsequent attack on the α,α′‐disulfide by Cys137 led to disulfide migration and spirofuran formation. This study expands the biocatalytic toolbox for transannular disulfide formation and sets the stage for the targeted discovery of bioactive ETPs. The formation of the α,β′‐disulfide in pretrichodermamide A involves the formation of an α,α′‐disulfide by the oxygenase TdaR containing the canonical CXXC motif, followed by disulfide migration by the oxygenase TdaE containing a specialized CXXQ motif, via an ortho‐quinone methide intermediate. The enzymatic cascade reactions can be considered as a general catalytic mechanism for α,β′‐disulfide formation in epidithiodiketopiperazines (ETPs).
Author Fan, Jie
Ran, Huomiao
Li, Yuanyuan
Liu, Huan
Li, Shu‐Ming
Yin, Wen‐Bing
Wei, Peng‐Lin
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0003-4720-8581
  surname: Fan
  fullname: Fan, Jie
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Huomiao
  surname: Ran
  fullname: Ran, Huomiao
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Peng‐Lin
  surname: Wei
  fullname: Wei, Peng‐Lin
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Yuanyuan
  surname: Li
  fullname: Li, Yuanyuan
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Huan
  surname: Liu
  fullname: Liu, Huan
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Shu‐Ming
  surname: Li
  fullname: Li, Shu‐Ming
  organization: Philipps-Universität Marburg
– sequence: 7
  givenname: Wen‐Bing
  orcidid: 0000-0002-9184-3198
  surname: Yin
  fullname: Yin, Wen‐Bing
  email: yinwb@im.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37157140$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkisWGTqa-xsxzKQCuVIiRYW3biMKdk7GA7QsOKR-AZeRI8nZZKlRCrc2R93y_r_MfowAfvEHpO8IJgTE-NB7egmDLMqaCP0BERlNRMSnZQds5YLZUgh-g4pevCK4WbJ-iQSSIk4fgIwdJXIeZ1-P3z18cZdunVe5fX0O9mDya7VL2BNI_DzRN8iSZD8BX4Kq9d9RpC2vqyJUhVGKrVBD0UPfTw1eUwweSi-QHepafo8WDG5J7dzhP0-e3q09l5ffnh3cXZ8rLumGS0dgTznjDRCG5kL0zj-GAtpk1LCcWCKWuUstI0xKjGOm77tlUGE2Mxt7gz7AS92udOMXybXcp6A6lz42i8C3PSVBEiGqkoL-jLB-h1mKMvvysUow2lspWFenFLzXbjej1F2Ji41XdHLADfA10MKUU36A7yzZVyNDBqgvWuK73rSv_tqmiLB9pd8j-Fdi98h9Ft_0Pr5dXF6t79A503p9I
CitedBy_id crossref_primary_10_1002_advs_202407195
crossref_primary_10_1002_adsc_202400671
crossref_primary_10_1016_j_biortech_2024_131703
crossref_primary_10_1039_D4OB01936A
crossref_primary_10_1002_cbic_202300770
crossref_primary_10_1021_acs_orglett_4c04494
crossref_primary_10_3390_jof11040241
crossref_primary_10_1021_acs_jafc_4c11808
crossref_primary_10_1039_D3NP90037A
crossref_primary_10_1021_acs_orglett_4c01274
Cites_doi 10.1039/C4NP00060A
10.1021/ja3123653
10.1021/ja103262m
10.1385/1-59259-266-X:149
10.1002/anie.201309302
10.1021/ol061046l
10.1038/nchem.2308
10.1038/s41586-021-03819-2
10.1021/jacs.9b00110
10.1039/D0OB01202E
10.1002/anie.202217212
10.1099/mic.0.000649
10.1146/annurev-chembioeng-060713-040008
10.1002/cbic.202000403
10.1021/acs.chemrev.6b00621
10.1038/nchembio.1366
10.1021/cr200398y
10.1021/acs.jnatprod.0c00046
10.1002/chem.201200619
10.1002/anie.201806740
10.1007/s00253-011-3689-1
10.1038/s41467-022-34150-7
10.1039/j39700000432
10.1016/j.phytochem.2014.01.003
10.1038/srep37369
10.1039/D0SC06647H
10.1016/j.phytochem.2018.11.007
10.1021/acs.orglett.5b02311
10.1039/p19780001336
10.1007/s00253-018-8908-6
10.1021/acs.chemrev.6b00697
10.1111/j.1365-2958.2004.04215.x
10.1021/acscatal.1c04609
10.1002/anie.201909052
10.1128/microbiolspec.FUNK-0009-2016
10.1021/acs.jnatprod.9b01283
10.1002/cbic.202200341
10.1021/acs.joc.9b02971
10.1016/0006-2952(78)90497-5
10.1021/jacs.0c08879
10.1021/acs.chemrev.8b00375
10.1099/mic.0.27847-0
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202304252
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 37157140
10_1002_anie_202304252
ANIE202304252
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: YJ20200201; 2020M680720; 2022T150689; YJ20200309; 2021M693362
– fundername: Key Research Program of Frontier Sciences, Chinese Academy of Sciences
  funderid: ZDBS-LY-SM016
– fundername: Biological Resources Program, Chinese Academy of Sciences
  funderid: KFJ-BRP-009-005
– fundername: National Key Research and Development Program of China
  funderid: 2022YFC2303003
– fundername: National Natural Science Foundation of China
  funderid: 32200046; 21778075; 31861133004
– fundername: Deutsche Forschungsgemeinschaft
  funderid: Li844/11-1
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3732-e104d135654a7d5a6e4fbb02692120538ba88b7a61a86be4bd998a01ab04b0ca3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 15:48:01 EDT 2025
Sun Jul 13 05:00:51 EDT 2025
Mon Jul 21 06:00:53 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
Tue Jul 01 01:47:11 EDT 2025
Wed Jan 22 16:19:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords Fungi
Alkaloids
Biosynthesis
FAD-Dependent Thioredoxin Oxygenase
Disulfides
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-e104d135654a7d5a6e4fbb02692120538ba88b7a61a86be4bd998a01ab04b0ca3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4720-8581
0000-0002-9184-3198
PMID 37157140
PQID 2832622797
PQPubID 946352
PageCount 10
ParticipantIDs proquest_miscellaneous_2811567824
proquest_journals_2832622797
pubmed_primary_37157140
crossref_citationtrail_10_1002_anie_202304252
crossref_primary_10_1002_anie_202304252
wiley_primary_10_1002_anie_202304252_ANIE202304252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 10, 2023
PublicationDateYYYYMMDD 2023-07-10
PublicationDate_xml – month: 07
  year: 2023
  text: July 10, 2023
  day: 10
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 164
2015; 17
2005; 151
2021; 22
2020; 85
2020; 83
2018; 102
2019; 58
2022; 23
2006; 8
2012; 18
1970
2021; 143
2019; 141
2015; 7
2017; 117
1978
2013; 9
2020; 18
1999
2016; 4
2012; 93
2016; 6
2023; 62
2004; 53
2014; 5
2012; 112
2021; 12
2021; 596
2018; 118
2022; 12
2010; 132
2022; 13
2013; 135
2019; 158
1978; 27
2014; 100
2014; 31
2014; 53
2018; 57
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_1
Lederer F. (e_1_2_7_49_1) 1999
e_1_2_7_26_1
e_1_2_7_47_2
e_1_2_7_28_2
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_31_1
e_1_2_7_54_2
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_35_2
e_1_2_7_37_1
e_1_2_7_39_2
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_40_1
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_2
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_2
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_36_2
e_1_2_7_38_2
References_xml – volume: 22
  start-page: 416
  year: 2021
  end-page: 422
  publication-title: ChemBioChem
– start-page: 149
  year: 1999
  end-page: 155
– volume: 17
  start-page: 5156
  year: 2015
  end-page: 5159
  publication-title: Org. Lett.
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  publication-title: Nature
– volume: 5
  start-page: 347
  year: 2014
  end-page: 366
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 53
  start-page: 2221
  year: 2014
  end-page: 2224
  publication-title: Angew. Chem. Int. Ed.
– volume: 100
  start-page: 103
  year: 2014
  end-page: 109
  publication-title: Phytochemistry
– volume: 93
  start-page: 467
  year: 2012
  end-page: 472
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 102
  start-page: 4435
  year: 2018
  end-page: 4444
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 151
  start-page: 1021
  year: 2005
  end-page: 1032
  publication-title: Microbiology
– volume: 57
  start-page: 14051
  year: 2018
  end-page: 14054
  publication-title: Angew. Chem. Int. Ed.
– volume: 31
  start-page: 1425
  year: 2014
  end-page: 1448
  publication-title: Nat. Prod. Rep.
– volume: 12
  start-page: 4132
  year: 2021
  end-page: 4138
  publication-title: Chem. Sci.
– volume: 164
  start-page: 769
  year: 2018
  end-page: 778
  publication-title: Microbiology
– volume: 8
  start-page: 3073
  year: 2006
  end-page: 3075
  publication-title: Org. Lett.
– volume: 9
  start-page: 818
  year: 2013
  end-page: 825
  publication-title: Nat. Chem. Biol.
– volume: 6
  start-page: 37369
  year: 2016
  publication-title: Sci. Rep.
– volume: 112
  start-page: 3641
  year: 2012
  end-page: 3716
  publication-title: Chem. Rev.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 158
  start-page: 142
  year: 2019
  end-page: 148
  publication-title: Phytochemistry
– volume: 132
  start-page: 10136
  year: 2010
  end-page: 10141
  publication-title: J. Am. Chem. Soc.
– start-page: 432
  year: 1970
  end-page: 435
  publication-title: J. Chem. Soc. C
– volume: 85
  start-page: 1298
  year: 2020
  end-page: 1307
  publication-title: J. Org. Chem.
– volume: 135
  start-page: 7205
  year: 2013
  end-page: 7213
  publication-title: J. Am. Chem. Soc.
– volume: 83
  start-page: 2045
  year: 2020
  end-page: 2053
  publication-title: J. Nat. Prod.
– volume: 83
  start-page: 1592
  year: 2020
  end-page: 1597
  publication-title: J. Nat. Prod.
– volume: 118
  start-page: 11324
  year: 2018
  end-page: 11352
  publication-title: Chem. Rev.
– volume: 58
  start-page: 14589
  year: 2019
  end-page: 14593
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 635
  year: 1978
  end-page: 639
  publication-title: Biochem. Pharmacol.
– volume: 18
  start-page: 5344
  year: 2020
  end-page: 5348
  publication-title: Org. Biomol. Chem.
– volume: 117
  start-page: 5521
  year: 2017
  end-page: 5577
  publication-title: Chem. Rev.
– volume: 7
  start-page: 737
  year: 2015
  end-page: 743
  publication-title: Nat. Chem.
– volume: 13
  start-page: 6361
  year: 2022
  publication-title: Nat. Commun.
– volume: 143
  start-page: 206
  year: 2021
  end-page: 213
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 648
  year: 2022
  end-page: 654
  publication-title: ACS Catal.
– volume: 53
  start-page: 1307
  year: 2004
  end-page: 1318
  publication-title: Mol. Microbiol.
– volume: 117
  start-page: 5784
  year: 2017
  end-page: 5863
  publication-title: Chem. Rev.
– volume: 18
  start-page: 9160
  year: 2012
  end-page: 9173
  publication-title: Chem. Eur. J.
– volume: 23
  year: 2022
  publication-title: ChemBioChem
– volume: 141
  start-page: 4225
  year: 2019
  end-page: 4229
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 6
  year: 2016
  publication-title: Microbiol. Spectrum
– start-page: 1336
  year: 1978
  end-page: 1338
  publication-title: J. Chem. Soc. Perkin Trans. 1
– ident: e_1_2_7_3_2
  doi: 10.1039/C4NP00060A
– ident: e_1_2_7_46_2
  doi: 10.1021/ja3123653
– ident: e_1_2_7_29_2
  doi: 10.1021/ja103262m
– start-page: 149
  volume-title: Flavoprotein protocols
  year: 1999
  ident: e_1_2_7_49_1
  doi: 10.1385/1-59259-266-X:149
– ident: e_1_2_7_28_2
  doi: 10.1002/anie.201309302
– ident: e_1_2_7_40_1
  doi: 10.1021/ol061046l
– ident: e_1_2_7_36_2
  doi: 10.1038/nchem.2308
– ident: e_1_2_7_48_1
  doi: 10.1038/s41586-021-03819-2
– ident: e_1_2_7_33_2
  doi: 10.1021/jacs.9b00110
– ident: e_1_2_7_38_2
  doi: 10.1039/D0OB01202E
– ident: e_1_2_7_10_1
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.202217212
– ident: e_1_2_7_41_1
– ident: e_1_2_7_39_2
  doi: 10.1099/mic.0.000649
– ident: e_1_2_7_7_2
  doi: 10.1146/annurev-chembioeng-060713-040008
– ident: e_1_2_7_43_2
  doi: 10.1002/cbic.202000403
– ident: e_1_2_7_4_2
  doi: 10.1021/acs.chemrev.6b00621
– ident: e_1_2_7_35_2
  doi: 10.1038/nchembio.1366
– ident: e_1_2_7_27_1
– ident: e_1_2_7_9_1
  doi: 10.1021/cr200398y
– ident: e_1_2_7_53_2
  doi: 10.1021/acs.jnatprod.0c00046
– ident: e_1_2_7_32_2
  doi: 10.1002/chem.201200619
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.201806740
– ident: e_1_2_7_19_2
  doi: 10.1007/s00253-011-3689-1
– ident: e_1_2_7_8_2
  doi: 10.1038/s41467-022-34150-7
– ident: e_1_2_7_37_1
– ident: e_1_2_7_42_2
  doi: 10.1039/j39700000432
– ident: e_1_2_7_51_2
  doi: 10.1016/j.phytochem.2014.01.003
– ident: e_1_2_7_25_2
  doi: 10.1038/srep37369
– ident: e_1_2_7_24_2
  doi: 10.1039/D0SC06647H
– ident: e_1_2_7_45_1
– ident: e_1_2_7_14_1
– ident: e_1_2_7_54_2
  doi: 10.1016/j.phytochem.2018.11.007
– ident: e_1_2_7_52_2
  doi: 10.1021/acs.orglett.5b02311
– ident: e_1_2_7_21_2
  doi: 10.1039/p19780001336
– ident: e_1_2_7_12_2
  doi: 10.1007/s00253-018-8908-6
– ident: e_1_2_7_17_2
  doi: 10.1021/acs.chemrev.6b00697
– ident: e_1_2_7_47_2
  doi: 10.1111/j.1365-2958.2004.04215.x
– ident: e_1_2_7_11_2
  doi: 10.1021/acscatal.1c04609
– ident: e_1_2_7_13_2
  doi: 10.1002/anie.201909052
– ident: e_1_2_7_1_1
– ident: e_1_2_7_2_2
  doi: 10.1128/microbiolspec.FUNK-0009-2016
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.jnatprod.9b01283
– ident: e_1_2_7_16_2
  doi: 10.1002/cbic.202200341
– ident: e_1_2_7_34_2
  doi: 10.1021/acs.joc.9b02971
– ident: e_1_2_7_18_1
– ident: e_1_2_7_6_1
– ident: e_1_2_7_50_1
– ident: e_1_2_7_20_2
  doi: 10.1016/0006-2952(78)90497-5
– ident: e_1_2_7_30_1
  doi: 10.1021/jacs.0c08879
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.chemrev.8b00375
– ident: e_1_2_7_15_2
  doi: 10.1099/mic.0.27847-0
– ident: e_1_2_7_23_1
– ident: e_1_2_7_31_1
SSID ssj0028806
Score 2.4773583
Snippet The transannular disulfide functions as a key structural element imparting diverse biological activities to epidithiodiketopiperazines (ETPs). Although...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202304252
SubjectTerms Alkaloids
Biosynthesis
Disulfides
FAD-Dependent Thioredoxin Oxygenase
Fungi
Indolequinones - chemistry
Oxygenase
Quinones
Structural members
Sulfur
Thioredoxin
Title An ortho‐Quinone Methide Mediates Disulfide Migration in the Biosynthesis of Epidithiodiketopiperazines
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202304252
https://www.ncbi.nlm.nih.gov/pubmed/37157140
https://www.proquest.com/docview/2832622797
https://www.proquest.com/docview/2811567824
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL-UClN-0BRkJiZO3ie21k-NStipIrQSiUm-R7UzAapWsmuRAT32EPiNPgifZBBaEkOAUJ7EVx57xfP6Zbwh5JbgpIdHAlE4kk2VsWAaxYxoU7vo4BT2V0smpOj6T78_n5z958Q_8ENOCG2pGP16jghvbHPwgDUUP7BkG_0axw0EYD2whKvo48UfxIJyDe5EQDKPQj6yNMT_YLL5plX6DmpvItTc9R_eJGSs9nDi5mHWtnbnrX_gc_-evHpB7a1xKF4Mg7ZA7UD0k24djOLhHxC8qins89beb2w-dr-oK6Am0X3yBV4z3AQ1965vusuwf-c-DbFFf0QAy6RtfN1-rkGp8Q-uSLlce_UF8XfgLaOuVX8FVT3XdPCZnR8tPh8dsHaeBOaEFZxCmdEUiAjSURhdzo0CW1obJXRbsYlDy1Jo0tdqoxKTKgrRFmOOZODE2ljZ2RjwhW1jrZ-hBDq7InMhEDLLgqVGclylk4LiGAO4iwsZ-yt2axBxjaVzmA_0yz7EB86kBI_J6yr8a6Dv-mHN_7PZ8rcZNjnGcFHIs6oi8nF6HhsddFVNB3WGeAKqDyecyIk8HcZk-JXQyR0bEiPC-0_9Sh3xx-m453e3-S6E9chfTuPqcxPtkq73q4HmATa190avGd6rAD4Y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_imBAkYCcco2sbP5OXBYulvt0u5KoFbqLdjJBKxWyapJhMqJR-BVeBUegSfBk2yCFoSQkHrglMRxEseesWdsz_cBPBNcZugGaPuB69le5kg7QiexA_Rp1SfxsYFSmi_86bH3-mR4sgFfu1iYFh-in3AjzWj6a1JwmpDe_YkaSiHYA2L_Jrnjq32VB3jx0Xht5cvZ2DTxc873J0d7U3tFLGAnIhDcRuODpK4wtowng3QoffQypYw3EpmO3EhlqGQYqkD6rgx9hZ5KjVMiHVcqx1NOIoV57xW4SjTiBNc_ftsjVnGjDm1AkxA28d53OJEO310v7_o4-Jtxu24rN4Pd_g341lVTu8fldFBXapB8-gVB8r-qx5twfWV6s1GrK7dgA_PbsLXXMd7dAT3KGS1jFd8_f3lT67zIkc2x-qBTOhKlCZZsrMv6LGuS9PtWfZjOmbGj2StdlBe5OSt1yYqMTZaaQl50kepTrIqlXuJ5g-Zd3oXjS_nTe7BJpb5PQfKYpFEiIuGgl_JQ-pxnIUaY8ACN_WqB3QlGnKxw2oku5CxuEaZ5TA0W9w1mwYs-_7JFKPljzp1OzuJVT1XGRFXlE4xkYMHT_rapeFo4kjkWNeUxfoOxarhnwXYrn_2nROAOCfTRAt5I2V_KEI8Ws0l_9eBfHnoCW9Oj-WF8OFscPIRrlE6T7a6zA5vVeY2PjJVYqceNXjJ4d9kC_APHm2xd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkYAL_z-BAkYCcco2sb1OcuCwdHfVpXQFiEq9BTuZgNUqiZqNUDnxCDwKr8Ir8CR48ocWhJCQeuCUxHESx56xZ2zP9xHymDOVgR-AKwNfuCLzlBuBl7gBSFz1SSQ0UEr7S7l7IF4cjg83yNc-FqbFhxgm3FAzmv4aFbxMs-2foKEYgT1C8m8UO9Ztq9yD04_WaaueLaa2hZ8wNp-93dl1O14BN-EBZy5YFyT1uTVlhArSsZIgMq2tMxLZftwKZahVGOpASV-FUoPQqfVJlOcr7QntJYrb954j54X0IiSLmL4ZAKuY1YY2nolzF2nve5hIj22vl3d9GPzNtl03lZuxbn6FfOtrqd3icjSqV3qUfPoFQPJ_qsar5HJneNNJqynXyAbk18nFnZ7v7gYxk5ziIlbx_fOX17XJixzoPqw-mBSPSGgCFZ2aqj7OmiTzvlUeanJqrWj63BTVaW7PKlPRIqOz0mDAiylScwSrojQlnDRY3tVNcnAmf3qLbGKp72CIPCRplPCIeyBSFirJWBZCBAkLwFqvDnF7uYiTDqUdyUKO4xZfmsXYYPHQYA55OuQvW3ySP-bc6sUs7vqpKkaiKokgkoFDHg23bcXjspHKoagxj_UarE3DhENut-I5fIoH_hghHx3CGiH7SxniyXIxG67u_stDD8mFV9N5_HKx3LtHLmEyzrT73hbZXJ3UcN-aiCv9oNFKSt6dtfz-APbqaww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ortho-Quinone+Methide+Mediates+Disulfide+Migration+in+the+Biosynthesis+of+Epidithiodiketopiperazines&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fan%2C+Jie&rft.au=Ran%2C+Huomiao&rft.au=Wei%2C+Peng-Lin&rft.au=Li%2C+Yuanyuan&rft.date=2023-07-10&rft.eissn=1521-3773&rft.volume=62&rft.issue=28&rft.spage=e202304252&rft_id=info:doi/10.1002%2Fanie.202304252&rft_id=info%3Apmid%2F37157140&rft.externalDocID=37157140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon