Unlocking Efficient Alkaline Hydrogen Evolution Through Ru–Sn Dual Metal Sites and a Novel Hydroxyl Spillover Effect

Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first ach...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 46; pp. e2411942 - n/a
Main Authors Yan, Zhen‐Tong, Tao, Shi, Wang, Juan, Lu, Xiu‐Li, Lu, Tong‐Bu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru–Sn/SnO2 NS, in which the Ru–Sn dual metal sites and SnO2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru–Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru–Sn/SnO2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm−2) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm−2 with 90 h stability) and Ru–Sn NS (16 mV at 10 mA cm−2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst. A Ru–Sn/SnO2 NS electrocatalyst, with optimized Ru–Sn sites for water dissociation and hydrogen adsorption and SnO2‐induced unique hydroxyl spillover, enhances the alkaline hydrogen evolution by accelerating hydroxyl transfer and protecting active sites.
AbstractList Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru-Sn/SnO NS, in which the Ru-Sn dual metal sites and SnO heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru-Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru-Sn/SnO NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm ) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm with 90 h stability) and Ru-Sn NS (16 mV at 10 mA cm with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst.
Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru–Sn/SnO2 NS, in which the Ru–Sn dual metal sites and SnO2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru–Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru–Sn/SnO2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm−2) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm−2 with 90 h stability) and Ru–Sn NS (16 mV at 10 mA cm−2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst.
Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru-Sn/SnO2 NS, in which the Ru-Sn dual metal sites and SnO2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru-Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru-Sn/SnO2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm-2) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm-2 with 90 h stability) and Ru-Sn NS (16 mV at 10 mA cm-2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst.Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru-Sn/SnO2 NS, in which the Ru-Sn dual metal sites and SnO2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru-Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru-Sn/SnO2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm-2) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm-2 with 90 h stability) and Ru-Sn NS (16 mV at 10 mA cm-2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst.
Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru–Sn/SnO 2 NS, in which the Ru–Sn dual metal sites and SnO 2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru–Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO 2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru–Sn/SnO 2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm −2 ) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm −2 with 90 h stability) and Ru–Sn NS (16 mV at 10 mA cm −2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst.
Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru–Sn/SnO2 NS, in which the Ru–Sn dual metal sites and SnO2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru–Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru–Sn/SnO2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm−2) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm−2 with 90 h stability) and Ru–Sn NS (16 mV at 10 mA cm−2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst. A Ru–Sn/SnO2 NS electrocatalyst, with optimized Ru–Sn sites for water dissociation and hydrogen adsorption and SnO2‐induced unique hydroxyl spillover, enhances the alkaline hydrogen evolution by accelerating hydroxyl transfer and protecting active sites.
Author Lu, Xiu‐Li
Tao, Shi
Lu, Tong‐Bu
Yan, Zhen‐Tong
Wang, Juan
Author_xml – sequence: 1
  givenname: Zhen‐Tong
  surname: Yan
  fullname: Yan, Zhen‐Tong
  organization: Tianjin University of Technology
– sequence: 2
  givenname: Shi
  surname: Tao
  fullname: Tao, Shi
  organization: Changshu Institute of Technology
– sequence: 3
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
  organization: Tianjin University of Technology
– sequence: 4
  givenname: Xiu‐Li
  orcidid: 0000-0001-7639-9570
  surname: Lu
  fullname: Lu, Xiu‐Li
  email: luxiuli@email.tjut.edu.cn
  organization: Tianjin University of Technology
– sequence: 5
  givenname: Tong‐Bu
  surname: Lu
  fullname: Lu, Tong‐Bu
  email: lutongbu@tjut.edu.cn
  organization: Tianjin University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39340286$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URNPCliWyxIbNBN_m4mXUprRSCxJt16MzM2dSt44d7JnQ7HgH3pAnqUNKkSohNrZkf5_P8X8OyJ7zDgl5y9mUMyY-QreEqWBCca6VeEEmPBc8U0zne2TCtMwzXahqnxzEeMsY0wUrXpF9qaVioiomZH3trG_vjFvQed-b1qAb6MzegTUO6emmC36Bjs7X3o6D8Y5e3QQ_Lm7o1_HXj5-Xjh6PYOkFDmm9NANGCq6jQD_7Ndqdf79JVytjbToK2yrYDq_Jyx5sxDeP-yG5PplfHZ1m518-nR3NzrNWllJkXdWXXQGql2WuQZUVMilzgem_DYKWKAudYoAGQLZNwZuyUcBK2XaNlDxX8pB82L27Cv7biHGolya2aC049GOsJedMp-jKIqHvn6G3fgwudZcoUamcVb-pd4_U2Cyxq1fBLCFs6j-JJmC6A9rgYwzYPyGc1duR1duR1U8jS4J6JrRmgG3WQwBj_63pnfbdWNz8p0g9O76Y_XUfAFLlqyY
CitedBy_id crossref_primary_10_1002_smll_202410436
crossref_primary_10_1021_acsaem_4c02951
crossref_primary_10_1002_adfm_202419802
crossref_primary_10_1039_D4CE01108B
crossref_primary_10_1002_smll_202412123
crossref_primary_10_1002_smll_202503294
crossref_primary_10_1002_slct_202406034
Cites_doi 10.1002/anie.202311722
10.1002/anie.202109116
10.1002/adfm.202314899
10.1002/adma.202304646
10.1002/anie.202104856
10.1021/jacs.3c13676
10.1038/s41467-023-41030-1
10.1038/s41467-023-41863-w
10.1038/s41467-022-28947-9
10.1002/anie.202209486
10.1016/j.apcatb.2023.123644
10.1039/D3EE02382F
10.1002/adfm.202306786
10.1002/adma.202301369
10.1002/aenm.202302668
10.1002/anie.202015738
10.1002/advs.202307061
10.1016/j.snb.2022.132495
10.1039/c3ee00045a
10.1038/s41563-023-01495-3
10.1039/C4TC02210F
10.1021/acscatal.2c06382
10.1016/j.esci.2022.04.002
10.1016/j.joule.2021.03.018
10.1002/aenm.202400777
10.1038/s41467-024-46553-9
10.3390/nano8020112
10.1002/anie.202207512
10.1007/s40820-021-00679-3
10.1002/anie.202202518
10.1002/adma.202300980
10.1021/jacs.3c06726
10.1002/adma.202110103
10.1002/adma.202110604
10.1016/j.apcatb.2022.121654
10.1038/s41467-024-44721-5
10.1038/s41467-024-45654-9
10.1007/s40843-021-1949-9
10.1007/s12274-018-2240-4
10.1021/acscatal.5b02617
10.1002/anie.202317220
10.1016/j.cej.2023.146443
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202411942
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 39340286
10_1002_adma_202411942
ADMA202411942
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21931007; 21805207
– fundername: National Key Research and Development Program of China
  funderid: 2022YFA1502902
– fundername: Natural Science Research of Jiangsu Higher Education Institutions of China
  funderid: 23KJA430001
– fundername: National Natural Science Foundation of China
  grantid: 21931007
– fundername: Natural Science Research of Jiangsu Higher Education Institutions of China
  grantid: 23KJA430001
– fundername: National Key Research and Development Program of China
  grantid: 2022YFA1502902
– fundername: National Natural Science Foundation of China
  grantid: 21805207
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3732-d8f7d6a4f3759a478e03352e024bea93e369100abaa3cb61b7b4a073cdb331543
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 01:25:04 EDT 2025
Sat Jul 26 00:07:34 EDT 2025
Wed Feb 19 02:02:47 EST 2025
Tue Jul 01 00:54:56 EDT 2025
Thu Apr 24 22:59:16 EDT 2025
Wed Jan 22 17:14:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords dual metal sites
Ru‐based catalysts
alkaline hydrogen evolution reaction
hydroxyl spillover effect
heterojunction
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-d8f7d6a4f3759a478e03352e024bea93e369100abaa3cb61b7b4a073cdb331543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7639-9570
PMID 39340286
PQID 3128450876
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_3110911976
proquest_journals_3128450876
pubmed_primary_39340286
crossref_primary_10_1002_adma_202411942
crossref_citationtrail_10_1002_adma_202411942
wiley_primary_10_1002_adma_202411942_ADMA202411942
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 5
2023; 13
2023; 35
2022; 371
2023; 14
2023; 33
2015; 3
2023 2022; 475 2
2023; 16
2023; 145
2019; 12
2024; 11
2024; 146
2024; 344
2024; 34
2024; 14
2024; 15
2013; 6
2021; 13
2023; 62
2016; 6
2018; 8
2023; 22
2022; 61
2022; 34
2022; 13
2024; 63
2021; 60
2022 2021; 316 60
2022 2022; 61 65
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 6
  start-page: 2265
  year: 2016
  publication-title: ACS Catal.
– volume: 15
  start-page: 2218
  year: 2024
  publication-title: Nat. Commun.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 344
  year: 2024
  publication-title: Appl. Catal., B: Environ. Energy
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 457
  year: 2019
  publication-title: Nano Res.
– volume: 371
  year: 2022
  publication-title: Sens. Actuators, B.
– volume: 61 65
  start-page: 1825
  year: 2022 2022
  publication-title: Angew. Chem., Int. Ed. Sci. China Mater.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 15
  start-page: 1447
  year: 2024
  publication-title: Nat. Commun.
– volume: 5
  start-page: 760
  year: 2021
  publication-title: Joule
– volume: 13
  start-page: 4752
  year: 2023
  publication-title: ACS Catal.
– volume: 316 60
  year: 2022 2021
  publication-title: Appl. Catal., B. Angew. Chem., Int. Ed.
– volume: 15
  start-page: 448
  year: 2024
  publication-title: Nat. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 1270
  year: 2022
  publication-title: Nat. Commun.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 475 2
  start-page: 304
  year: 2023 2022
  publication-title: Chem. Eng. J. eScience
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1509
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1261
  year: 2015
  publication-title: J. Mater. Chem. C.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 1022
  year: 2023
  publication-title: Nat. Mater.
– volume: 14
  start-page: 6164
  year: 2023
  publication-title: Nat. Commun.
– volume: 11
  year: 2024
  publication-title: Adv. Sci.
– volume: 146
  start-page: 4883
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 14
  year: 2024
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 160
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 16
  start-page: 6120
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 5289
  year: 2023
  publication-title: Nat. Commun.
– volume: 8
  start-page: 112
  year: 2018
  publication-title: Nanomaterials
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.202311722
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.202109116
– ident: e_1_2_7_21_1
  doi: 10.1002/adfm.202314899
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.202304646
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.202104856
– ident: e_1_2_7_7_1
  doi: 10.1021/jacs.3c13676
– ident: e_1_2_7_8_1
  doi: 10.1038/s41467-023-41030-1
– ident: e_1_2_7_25_1
  doi: 10.1038/s41467-023-41863-w
– ident: e_1_2_7_3_1
  doi: 10.1038/s41467-022-28947-9
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.202209486
– ident: e_1_2_7_15_1
  doi: 10.1016/j.apcatb.2023.123644
– ident: e_1_2_7_13_1
  doi: 10.1039/D3EE02382F
– ident: e_1_2_7_37_1
  doi: 10.1002/adfm.202306786
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.202301369
– ident: e_1_2_7_17_1
  doi: 10.1002/aenm.202302668
– ident: e_1_2_7_1_1
  doi: 10.1002/anie.202015738
– ident: e_1_2_7_36_1
  doi: 10.1002/advs.202307061
– ident: e_1_2_7_39_1
  doi: 10.1016/j.snb.2022.132495
– ident: e_1_2_7_19_1
  doi: 10.1039/c3ee00045a
– ident: e_1_2_7_6_1
  doi: 10.1038/s41563-023-01495-3
– ident: e_1_2_7_35_1
  doi: 10.1039/C4TC02210F
– ident: e_1_2_7_4_1
  doi: 10.1021/acscatal.2c06382
– ident: e_1_2_7_9_2
  doi: 10.1016/j.esci.2022.04.002
– ident: e_1_2_7_2_1
  doi: 10.1016/j.joule.2021.03.018
– ident: e_1_2_7_14_1
  doi: 10.1002/aenm.202400777
– ident: e_1_2_7_28_1
  doi: 10.1038/s41467-024-46553-9
– ident: e_1_2_7_38_1
  doi: 10.3390/nano8020112
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.202207512
– ident: e_1_2_7_16_1
  doi: 10.1007/s40820-021-00679-3
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.202202518
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.202300980
– ident: e_1_2_7_5_1
  doi: 10.1021/jacs.3c06726
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.202110103
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.202110604
– ident: e_1_2_7_10_1
  doi: 10.1016/j.apcatb.2022.121654
– ident: e_1_2_7_23_1
  doi: 10.1038/s41467-024-44721-5
– ident: e_1_2_7_34_1
  doi: 10.1038/s41467-024-45654-9
– ident: e_1_2_7_12_2
  doi: 10.1007/s40843-021-1949-9
– ident: e_1_2_7_30_1
  doi: 10.1007/s12274-018-2240-4
– ident: e_1_2_7_31_1
  doi: 10.1021/acscatal.5b02617
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.202317220
– ident: e_1_2_7_9_1
  doi: 10.1016/j.cej.2023.146443
SSID ssj0009606
Score 2.585048
Snippet Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2411942
SubjectTerms Adsorption
alkaline hydrogen evolution reaction
Density functional theory
dual metal sites
Electrocatalysts
heterojunction
Heterojunctions
Hydrogen
Hydrogen evolution reactions
Hydrogen production
hydroxyl spillover effect
Infrared spectra
Ru‐based catalysts
Stability
Tin dioxide
Title Unlocking Efficient Alkaline Hydrogen Evolution Through Ru–Sn Dual Metal Sites and a Novel Hydroxyl Spillover Effect
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202411942
https://www.ncbi.nlm.nih.gov/pubmed/39340286
https://www.proquest.com/docview/3128450876
https://www.proquest.com/docview/3110911976
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1BT9swFMctxGkcGIPByhgyEtJOgSZ24vhYjaIKCQ5AJW7Rc-xKE1WKaFPBTvsO-4b7JHvPTgNlQpPGLZFt2XHe8_s7sX9m7DBPS6VjcFGpcKYjlXCR7lqIQBsJLrPKjDzt8yIbDOXZTXrzbBd_4EO0H9zIM_x4TQ4OZnr8BA0F67lBGIFwHk6DMC3YIlV0-cSPInnuYXsijXQm8wW1sZscLxdfjkp_Sc1l5epDz-l7BotGhxUnt0f1zByVP17wHN_yVBtsvdGlvBcM6QNbcdUmW3tGK9xi82GFkY8-rfO-B09gvOK98S1QrXzwaO8naI28P2-smV-HM4D4Zf3756-rip_UWMO5Q7nPr1DpTjlUlgO_mMzdOJR_eMSku-9jv7CUB7LyRzY87V9_G0TNsQ1RKZRIIpuPlM1AjoRKNUiVuy5t7HL4UMaBFk5kqFG6YABEabLYKDQLHGlKa4RARSe22Wo1qdwnxo0wI-LHJDbVEpTRMi3j2IHUUrjcxR0WLV5bUTZMczpaY1wEGnNSUH8WbX922Nc2_12gebyac29hBUXj1dNCUDBPCeLXYQdtMvoj_WSByk1qykOo1VhTnp1gPW1VQgucrueYkngb-Ecbit7Jea-92_2fQp_ZO7oOmyf32OrsvnZfUEXNzL73lD-IoxOp
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMcttB2AA4zfhQFGQuKUrYmdOD5WW6cCaw9bK3GLnmNXQqvSaWsqxmn_A_8hfwnv2UlGQQgJjoltOU7e8_vasT9m7G2elkrH4KJS4UhHKuEi3bcQgTYSXGaVmXva5yQbzeSHT2m7mpD2wgQ-RDfhRp7h-2tycJqQ3r-hhoL14CAMQTgQx154m4719qOqkxuCFAl0j9sTaaQzmbfcxn6yv1l-My79JjY3tasPPkf3mWkfO6w5OdurV2av_PoL0fG_2rXD7jXSlA-CLT1gt1z1kN39CVj4iK1nFQY_ml3nQ8-ewJDFB4szoGr56MpeLNEg-XDdGDSfhmOA-En9_frbacUPa6xh7FDx81MUu5ccKsuBT5Zrtwjlv1xh0vnnhV9bygNc-TGbHQ2nB6OoObkhKoUSSWTzubIZyLlQqQapctenvV0OG2UcaOFEhjKlDwZAlCaLjULLwM6mtEYIFHXiCduqlpV7xrgRZk4ImcSmWoIyWqZlHDuQWgqXu7jHova7FWWDNafTNRZFADInBb3PonufPfauy38egB5_zLnbmkHROPZlISiep8Tx67E3XTK6JP1ngcota8pDtNVYU56nwXy6qoQWOGLPMSXxRvCXZygGh-NBd_X8Xwq9ZrdH0_Fxcfx-8vEFu0P3w17KXba1uqjdSxRVK_PKu80Pvo4XxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3datswFMdF6aBsF1u7z6wf02CwK7e2JVvWZWgS0m4No22gd-bIkmE0OKGNw7qrvcPecE_SI8lxm44x2C5tSUi2z9H5S5Z-IuRDlhRCRmCCQuBIhwtmAhlqCEAqDibVQpWO9jlKh2N-fJFc3NvF7_kQ7YSb9QzXX1sHn-ny4A4aCtpxgzAC4TgcO-FHPA0za9e90zuAlNXnjrbHkkCmPFtiG8P4YLX8alj6TWuuSlcXewbPCCxb7ZecXO7Xc7VffH8AdPyfx9okTxthSrvekrbImqmekyf3cIUvyGJcYeizc-u078gTGLBod3IJtlY6vNFXUzRH2l805kzP_SFA9LT-9ePnWUV7NdZwYlDv0zOUutcUKk2BjqYLM_Hlv91g0uzrxK0spR6t_JKMB_3zw2HQnNsQFEywONBZKXQKvGQikcBFZkK7s8vgQykDkhmWokgJQQGwQqWREmgX2NUUWjGGko69IuvVtDJvCFVMlRYgE-tEchBK8qSIIgNccmYyE3VIsPxsedFAze3ZGpPc45jj3L7PvH2fHfKxzT_zOI8_5txZWkHeuPV1zmw0TyzFr0Pet8nokPYvC1RmWts8lrUaSZvntbeetiomGY7XM0yJnQ38pQ15t3fSba_e_kuhd2TjS2-Qfz4afdomj-1tv5Fyh6zPr2qzi4pqrvac09wCeicWfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unlocking+Efficient+Alkaline+Hydrogen+Evolution+Through+Ru%E2%80%93Sn+Dual+Metal+Sites+and+a+Novel+Hydroxyl+Spillover+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yan%2C+Zhen%E2%80%90Tong&rft.au=Tao%2C+Shi&rft.au=Wang%2C+Juan&rft.au=Lu%2C+Xiu%E2%80%90Li&rft.date=2024-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=46&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202411942&rft.externalDBID=10.1002%252Fadma.202411942&rft.externalDocID=ADMA202411942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon