Unlocking Efficient Alkaline Hydrogen Evolution Through Ru–Sn Dual Metal Sites and a Novel Hydroxyl Spillover Effect
Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first ach...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 46; pp. e2411942 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru–Sn/SnO2 NS, in which the Ru–Sn dual metal sites and SnO2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru–Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru–Sn/SnO2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm−2) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm−2 with 90 h stability) and Ru–Sn NS (16 mV at 10 mA cm−2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst.
A Ru–Sn/SnO2 NS electrocatalyst, with optimized Ru–Sn sites for water dissociation and hydrogen adsorption and SnO2‐induced unique hydroxyl spillover, enhances the alkaline hydrogen evolution by accelerating hydroxyl transfer and protecting active sites. |
---|---|
AbstractList | Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru-Sn/SnO
NS, in which the Ru-Sn dual metal sites and SnO
heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru-Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO
can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru-Sn/SnO
NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm
) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm
with 90 h stability) and Ru-Sn NS (16 mV at 10 mA cm
with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst. Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru–Sn/SnO2 NS, in which the Ru–Sn dual metal sites and SnO2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru–Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru–Sn/SnO2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm−2) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm−2 with 90 h stability) and Ru–Sn NS (16 mV at 10 mA cm−2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst. Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru-Sn/SnO2 NS, in which the Ru-Sn dual metal sites and SnO2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru-Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru-Sn/SnO2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm-2) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm-2 with 90 h stability) and Ru-Sn NS (16 mV at 10 mA cm-2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst.Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru-Sn/SnO2 NS, in which the Ru-Sn dual metal sites and SnO2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru-Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru-Sn/SnO2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm-2) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm-2 with 90 h stability) and Ru-Sn NS (16 mV at 10 mA cm-2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst. Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru–Sn/SnO 2 NS, in which the Ru–Sn dual metal sites and SnO 2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru–Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO 2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru–Sn/SnO 2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm −2 ) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm −2 with 90 h stability) and Ru–Sn NS (16 mV at 10 mA cm −2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst. Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru–Sn/SnO2 NS, in which the Ru–Sn dual metal sites and SnO2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru–Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru–Sn/SnO2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm−2) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm−2 with 90 h stability) and Ru–Sn NS (16 mV at 10 mA cm−2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst. A Ru–Sn/SnO2 NS electrocatalyst, with optimized Ru–Sn sites for water dissociation and hydrogen adsorption and SnO2‐induced unique hydroxyl spillover, enhances the alkaline hydrogen evolution by accelerating hydroxyl transfer and protecting active sites. |
Author | Lu, Xiu‐Li Tao, Shi Lu, Tong‐Bu Yan, Zhen‐Tong Wang, Juan |
Author_xml | – sequence: 1 givenname: Zhen‐Tong surname: Yan fullname: Yan, Zhen‐Tong organization: Tianjin University of Technology – sequence: 2 givenname: Shi surname: Tao fullname: Tao, Shi organization: Changshu Institute of Technology – sequence: 3 givenname: Juan surname: Wang fullname: Wang, Juan organization: Tianjin University of Technology – sequence: 4 givenname: Xiu‐Li orcidid: 0000-0001-7639-9570 surname: Lu fullname: Lu, Xiu‐Li email: luxiuli@email.tjut.edu.cn organization: Tianjin University of Technology – sequence: 5 givenname: Tong‐Bu surname: Lu fullname: Lu, Tong‐Bu email: lutongbu@tjut.edu.cn organization: Tianjin University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39340286$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URNPCliWyxIbNBN_m4mXUprRSCxJt16MzM2dSt44d7JnQ7HgH3pAnqUNKkSohNrZkf5_P8X8OyJ7zDgl5y9mUMyY-QreEqWBCca6VeEEmPBc8U0zne2TCtMwzXahqnxzEeMsY0wUrXpF9qaVioiomZH3trG_vjFvQed-b1qAb6MzegTUO6emmC36Bjs7X3o6D8Y5e3QQ_Lm7o1_HXj5-Xjh6PYOkFDmm9NANGCq6jQD_7Ndqdf79JVytjbToK2yrYDq_Jyx5sxDeP-yG5PplfHZ1m518-nR3NzrNWllJkXdWXXQGql2WuQZUVMilzgem_DYKWKAudYoAGQLZNwZuyUcBK2XaNlDxX8pB82L27Cv7biHGolya2aC049GOsJedMp-jKIqHvn6G3fgwudZcoUamcVb-pd4_U2Cyxq1fBLCFs6j-JJmC6A9rgYwzYPyGc1duR1duR1U8jS4J6JrRmgG3WQwBj_63pnfbdWNz8p0g9O76Y_XUfAFLlqyY |
CitedBy_id | crossref_primary_10_1002_smll_202410436 crossref_primary_10_1021_acsaem_4c02951 crossref_primary_10_1002_adfm_202419802 crossref_primary_10_1039_D4CE01108B crossref_primary_10_1002_smll_202412123 crossref_primary_10_1002_smll_202503294 crossref_primary_10_1002_slct_202406034 |
Cites_doi | 10.1002/anie.202311722 10.1002/anie.202109116 10.1002/adfm.202314899 10.1002/adma.202304646 10.1002/anie.202104856 10.1021/jacs.3c13676 10.1038/s41467-023-41030-1 10.1038/s41467-023-41863-w 10.1038/s41467-022-28947-9 10.1002/anie.202209486 10.1016/j.apcatb.2023.123644 10.1039/D3EE02382F 10.1002/adfm.202306786 10.1002/adma.202301369 10.1002/aenm.202302668 10.1002/anie.202015738 10.1002/advs.202307061 10.1016/j.snb.2022.132495 10.1039/c3ee00045a 10.1038/s41563-023-01495-3 10.1039/C4TC02210F 10.1021/acscatal.2c06382 10.1016/j.esci.2022.04.002 10.1016/j.joule.2021.03.018 10.1002/aenm.202400777 10.1038/s41467-024-46553-9 10.3390/nano8020112 10.1002/anie.202207512 10.1007/s40820-021-00679-3 10.1002/anie.202202518 10.1002/adma.202300980 10.1021/jacs.3c06726 10.1002/adma.202110103 10.1002/adma.202110604 10.1016/j.apcatb.2022.121654 10.1038/s41467-024-44721-5 10.1038/s41467-024-45654-9 10.1007/s40843-021-1949-9 10.1007/s12274-018-2240-4 10.1021/acscatal.5b02617 10.1002/anie.202317220 10.1016/j.cej.2023.146443 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202411942 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 39340286 10_1002_adma_202411942 ADMA202411942 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21931007; 21805207 – fundername: National Key Research and Development Program of China funderid: 2022YFA1502902 – fundername: Natural Science Research of Jiangsu Higher Education Institutions of China funderid: 23KJA430001 – fundername: National Natural Science Foundation of China grantid: 21931007 – fundername: Natural Science Research of Jiangsu Higher Education Institutions of China grantid: 23KJA430001 – fundername: National Key Research and Development Program of China grantid: 2022YFA1502902 – fundername: National Natural Science Foundation of China grantid: 21805207 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3732-d8f7d6a4f3759a478e03352e024bea93e369100abaa3cb61b7b4a073cdb331543 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 01:25:04 EDT 2025 Sat Jul 26 00:07:34 EDT 2025 Wed Feb 19 02:02:47 EST 2025 Tue Jul 01 00:54:56 EDT 2025 Thu Apr 24 22:59:16 EDT 2025 Wed Jan 22 17:14:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | dual metal sites Ru‐based catalysts alkaline hydrogen evolution reaction hydroxyl spillover effect heterojunction |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-d8f7d6a4f3759a478e03352e024bea93e369100abaa3cb61b7b4a073cdb331543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7639-9570 |
PMID | 39340286 |
PQID | 3128450876 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3110911976 proquest_journals_3128450876 pubmed_primary_39340286 crossref_primary_10_1002_adma_202411942 crossref_citationtrail_10_1002_adma_202411942 wiley_primary_10_1002_adma_202411942_ADMA202411942 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 5 2023; 13 2023; 35 2022; 371 2023; 14 2023; 33 2015; 3 2023 2022; 475 2 2023; 16 2023; 145 2019; 12 2024; 11 2024; 146 2024; 344 2024; 34 2024; 14 2024; 15 2013; 6 2021; 13 2023; 62 2016; 6 2018; 8 2023; 22 2022; 61 2022; 34 2022; 13 2024; 63 2021; 60 2022 2021; 316 60 2022 2022; 61 65 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 6 start-page: 2265 year: 2016 publication-title: ACS Catal. – volume: 15 start-page: 2218 year: 2024 publication-title: Nat. Commun. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 344 year: 2024 publication-title: Appl. Catal., B: Environ. Energy – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 457 year: 2019 publication-title: Nano Res. – volume: 371 year: 2022 publication-title: Sens. Actuators, B. – volume: 61 65 start-page: 1825 year: 2022 2022 publication-title: Angew. Chem., Int. Ed. Sci. China Mater. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 15 start-page: 1447 year: 2024 publication-title: Nat. Commun. – volume: 5 start-page: 760 year: 2021 publication-title: Joule – volume: 13 start-page: 4752 year: 2023 publication-title: ACS Catal. – volume: 316 60 year: 2022 2021 publication-title: Appl. Catal., B. Angew. Chem., Int. Ed. – volume: 15 start-page: 448 year: 2024 publication-title: Nat. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 1270 year: 2022 publication-title: Nat. Commun. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 475 2 start-page: 304 year: 2023 2022 publication-title: Chem. Eng. J. eScience – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1509 year: 2013 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1261 year: 2015 publication-title: J. Mater. Chem. C. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 1022 year: 2023 publication-title: Nat. Mater. – volume: 14 start-page: 6164 year: 2023 publication-title: Nat. Commun. – volume: 11 year: 2024 publication-title: Adv. Sci. – volume: 146 start-page: 4883 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 14 year: 2024 publication-title: Adv. Energy Mater. – volume: 13 start-page: 160 year: 2021 publication-title: Nano‐Micro Lett. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 16 start-page: 6120 year: 2023 publication-title: Energy Environ. Sci. – volume: 14 start-page: 5289 year: 2023 publication-title: Nat. Commun. – volume: 8 start-page: 112 year: 2018 publication-title: Nanomaterials – ident: e_1_2_7_26_1 doi: 10.1002/anie.202311722 – ident: e_1_2_7_10_2 doi: 10.1002/anie.202109116 – ident: e_1_2_7_21_1 doi: 10.1002/adfm.202314899 – ident: e_1_2_7_24_1 doi: 10.1002/adma.202304646 – ident: e_1_2_7_27_1 doi: 10.1002/anie.202104856 – ident: e_1_2_7_7_1 doi: 10.1021/jacs.3c13676 – ident: e_1_2_7_8_1 doi: 10.1038/s41467-023-41030-1 – ident: e_1_2_7_25_1 doi: 10.1038/s41467-023-41863-w – ident: e_1_2_7_3_1 doi: 10.1038/s41467-022-28947-9 – ident: e_1_2_7_18_1 doi: 10.1002/anie.202209486 – ident: e_1_2_7_15_1 doi: 10.1016/j.apcatb.2023.123644 – ident: e_1_2_7_13_1 doi: 10.1039/D3EE02382F – ident: e_1_2_7_37_1 doi: 10.1002/adfm.202306786 – ident: e_1_2_7_33_1 doi: 10.1002/adma.202301369 – ident: e_1_2_7_17_1 doi: 10.1002/aenm.202302668 – ident: e_1_2_7_1_1 doi: 10.1002/anie.202015738 – ident: e_1_2_7_36_1 doi: 10.1002/advs.202307061 – ident: e_1_2_7_39_1 doi: 10.1016/j.snb.2022.132495 – ident: e_1_2_7_19_1 doi: 10.1039/c3ee00045a – ident: e_1_2_7_6_1 doi: 10.1038/s41563-023-01495-3 – ident: e_1_2_7_35_1 doi: 10.1039/C4TC02210F – ident: e_1_2_7_4_1 doi: 10.1021/acscatal.2c06382 – ident: e_1_2_7_9_2 doi: 10.1016/j.esci.2022.04.002 – ident: e_1_2_7_2_1 doi: 10.1016/j.joule.2021.03.018 – ident: e_1_2_7_14_1 doi: 10.1002/aenm.202400777 – ident: e_1_2_7_28_1 doi: 10.1038/s41467-024-46553-9 – ident: e_1_2_7_38_1 doi: 10.3390/nano8020112 – ident: e_1_2_7_12_1 doi: 10.1002/anie.202207512 – ident: e_1_2_7_16_1 doi: 10.1007/s40820-021-00679-3 – ident: e_1_2_7_11_1 doi: 10.1002/anie.202202518 – ident: e_1_2_7_22_1 doi: 10.1002/adma.202300980 – ident: e_1_2_7_5_1 doi: 10.1021/jacs.3c06726 – ident: e_1_2_7_32_1 doi: 10.1002/adma.202110103 – ident: e_1_2_7_20_1 doi: 10.1002/adma.202110604 – ident: e_1_2_7_10_1 doi: 10.1016/j.apcatb.2022.121654 – ident: e_1_2_7_23_1 doi: 10.1038/s41467-024-44721-5 – ident: e_1_2_7_34_1 doi: 10.1038/s41467-024-45654-9 – ident: e_1_2_7_12_2 doi: 10.1007/s40843-021-1949-9 – ident: e_1_2_7_30_1 doi: 10.1007/s12274-018-2240-4 – ident: e_1_2_7_31_1 doi: 10.1021/acscatal.5b02617 – ident: e_1_2_7_29_1 doi: 10.1002/anie.202317220 – ident: e_1_2_7_9_1 doi: 10.1016/j.cej.2023.146443 |
SSID | ssj0009606 |
Score | 2.585048 |
Snippet | Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2411942 |
SubjectTerms | Adsorption alkaline hydrogen evolution reaction Density functional theory dual metal sites Electrocatalysts heterojunction Heterojunctions Hydrogen Hydrogen evolution reactions Hydrogen production hydroxyl spillover effect Infrared spectra Ru‐based catalysts Stability Tin dioxide |
Title | Unlocking Efficient Alkaline Hydrogen Evolution Through Ru–Sn Dual Metal Sites and a Novel Hydroxyl Spillover Effect |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202411942 https://www.ncbi.nlm.nih.gov/pubmed/39340286 https://www.proquest.com/docview/3128450876 https://www.proquest.com/docview/3110911976 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1BT9swFMctxGkcGIPByhgyEtJOgSZ24vhYjaIKCQ5AJW7Rc-xKE1WKaFPBTvsO-4b7JHvPTgNlQpPGLZFt2XHe8_s7sX9m7DBPS6VjcFGpcKYjlXCR7lqIQBsJLrPKjDzt8yIbDOXZTXrzbBd_4EO0H9zIM_x4TQ4OZnr8BA0F67lBGIFwHk6DMC3YIlV0-cSPInnuYXsijXQm8wW1sZscLxdfjkp_Sc1l5epDz-l7BotGhxUnt0f1zByVP17wHN_yVBtsvdGlvBcM6QNbcdUmW3tGK9xi82GFkY8-rfO-B09gvOK98S1QrXzwaO8naI28P2-smV-HM4D4Zf3756-rip_UWMO5Q7nPr1DpTjlUlgO_mMzdOJR_eMSku-9jv7CUB7LyRzY87V9_G0TNsQ1RKZRIIpuPlM1AjoRKNUiVuy5t7HL4UMaBFk5kqFG6YABEabLYKDQLHGlKa4RARSe22Wo1qdwnxo0wI-LHJDbVEpTRMi3j2IHUUrjcxR0WLV5bUTZMczpaY1wEGnNSUH8WbX922Nc2_12gebyac29hBUXj1dNCUDBPCeLXYQdtMvoj_WSByk1qykOo1VhTnp1gPW1VQgucrueYkngb-Ecbit7Jea-92_2fQp_ZO7oOmyf32OrsvnZfUEXNzL73lD-IoxOp |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMcttB2AA4zfhQFGQuKUrYmdOD5WW6cCaw9bK3GLnmNXQqvSaWsqxmn_A_8hfwnv2UlGQQgJjoltOU7e8_vasT9m7G2elkrH4KJS4UhHKuEi3bcQgTYSXGaVmXva5yQbzeSHT2m7mpD2wgQ-RDfhRp7h-2tycJqQ3r-hhoL14CAMQTgQx154m4719qOqkxuCFAl0j9sTaaQzmbfcxn6yv1l-My79JjY3tasPPkf3mWkfO6w5OdurV2av_PoL0fG_2rXD7jXSlA-CLT1gt1z1kN39CVj4iK1nFQY_ml3nQ8-ewJDFB4szoGr56MpeLNEg-XDdGDSfhmOA-En9_frbacUPa6xh7FDx81MUu5ccKsuBT5Zrtwjlv1xh0vnnhV9bygNc-TGbHQ2nB6OoObkhKoUSSWTzubIZyLlQqQapctenvV0OG2UcaOFEhjKlDwZAlCaLjULLwM6mtEYIFHXiCduqlpV7xrgRZk4ImcSmWoIyWqZlHDuQWgqXu7jHova7FWWDNafTNRZFADInBb3PonufPfauy38egB5_zLnbmkHROPZlISiep8Tx67E3XTK6JP1ngcota8pDtNVYU56nwXy6qoQWOGLPMSXxRvCXZygGh-NBd_X8Xwq9ZrdH0_Fxcfx-8vEFu0P3w17KXba1uqjdSxRVK_PKu80Pvo4XxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3datswFMdF6aBsF1u7z6wf02CwK7e2JVvWZWgS0m4No22gd-bIkmE0OKGNw7qrvcPecE_SI8lxm44x2C5tSUi2z9H5S5Z-IuRDlhRCRmCCQuBIhwtmAhlqCEAqDibVQpWO9jlKh2N-fJFc3NvF7_kQ7YSb9QzXX1sHn-ny4A4aCtpxgzAC4TgcO-FHPA0za9e90zuAlNXnjrbHkkCmPFtiG8P4YLX8alj6TWuuSlcXewbPCCxb7ZecXO7Xc7VffH8AdPyfx9okTxthSrvekrbImqmekyf3cIUvyGJcYeizc-u078gTGLBod3IJtlY6vNFXUzRH2l805kzP_SFA9LT-9ePnWUV7NdZwYlDv0zOUutcUKk2BjqYLM_Hlv91g0uzrxK0spR6t_JKMB_3zw2HQnNsQFEywONBZKXQKvGQikcBFZkK7s8vgQykDkhmWokgJQQGwQqWREmgX2NUUWjGGko69IuvVtDJvCFVMlRYgE-tEchBK8qSIIgNccmYyE3VIsPxsedFAze3ZGpPc45jj3L7PvH2fHfKxzT_zOI8_5txZWkHeuPV1zmw0TyzFr0Pet8nokPYvC1RmWts8lrUaSZvntbeetiomGY7XM0yJnQ38pQ15t3fSba_e_kuhd2TjS2-Qfz4afdomj-1tv5Fyh6zPr2qzi4pqrvac09wCeicWfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unlocking+Efficient+Alkaline+Hydrogen+Evolution+Through+Ru%E2%80%93Sn+Dual+Metal+Sites+and+a+Novel+Hydroxyl+Spillover+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yan%2C+Zhen%E2%80%90Tong&rft.au=Tao%2C+Shi&rft.au=Wang%2C+Juan&rft.au=Lu%2C+Xiu%E2%80%90Li&rft.date=2024-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=46&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202411942&rft.externalDBID=10.1002%252Fadma.202411942&rft.externalDocID=ADMA202411942 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |