The Application of Hollow Structured Anodes for Sodium‐Ion Batteries: From Simple to Complex Systems

Hollow structures exhibit fascinating and important properties for energy‐related applications, such as lithium‐ion batteries, supercapacitors, and electrocatalysts. Sodium‐ion batteries, as analogs of lithium‐ion batteries, are considered as promising devices for large‐scale electrical energy stora...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 38; pp. e1800492 - n/a
Main Authors Xie, Fangxi, Zhang, Lei, Ye, Chao, Jaroniec, Mietek, Qiao, Shi‐Zhang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2019
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201800492

Cover

Loading…
Abstract Hollow structures exhibit fascinating and important properties for energy‐related applications, such as lithium‐ion batteries, supercapacitors, and electrocatalysts. Sodium‐ion batteries, as analogs of lithium‐ion batteries, are considered as promising devices for large‐scale electrical energy storage. Inspired by applications of hollow structures as anodes for lithium‐ion batteries, the application of these structures in sodium‐ion batteries has attracted great attention in recent years. However, due to the difference in lithium and sodium‐ion batteries, there are several issues that need to be addressed toward rational design of hollow structured sodium anodes. Herein, this research news article presents the recent developments in the synthesis of hollow structured anodes for sodium‐ion batteries. The main strategies for rational design of materials for sodium‐ion batteries are presented to provide an overview and perspectives for the future developments of this research area. Hollow‐structured electrode materials exhibit fascinating properties as anodes for sodium‐ion batteries. Recent developments of hollow structured anodes for sodium‐ion batteries are summarized. Additionally, different rational design structures according to the features of sodium‐ion batteries are presented.
AbstractList Hollow structures exhibit fascinating and important properties for energy‐related applications, such as lithium‐ion batteries, supercapacitors, and electrocatalysts. Sodium‐ion batteries, as analogs of lithium‐ion batteries, are considered as promising devices for large‐scale electrical energy storage. Inspired by applications of hollow structures as anodes for lithium‐ion batteries, the application of these structures in sodium‐ion batteries has attracted great attention in recent years. However, due to the difference in lithium and sodium‐ion batteries, there are several issues that need to be addressed toward rational design of hollow structured sodium anodes. Herein, this research news article presents the recent developments in the synthesis of hollow structured anodes for sodium‐ion batteries. The main strategies for rational design of materials for sodium‐ion batteries are presented to provide an overview and perspectives for the future developments of this research area.
Hollow structures exhibit fascinating and important properties for energy-related applications, such as lithium-ion batteries, supercapacitors, and electrocatalysts. Sodium-ion batteries, as analogs of lithium-ion batteries, are considered as promising devices for large-scale electrical energy storage. Inspired by applications of hollow structures as anodes for lithium-ion batteries, the application of these structures in sodium-ion batteries has attracted great attention in recent years. However, due to the difference in lithium and sodium-ion batteries, there are several issues that need to be addressed toward rational design of hollow structured sodium anodes. Herein, this research news article presents the recent developments in the synthesis of hollow structured anodes for sodium-ion batteries. The main strategies for rational design of materials for sodium-ion batteries are presented to provide an overview and perspectives for the future developments of this research area.Hollow structures exhibit fascinating and important properties for energy-related applications, such as lithium-ion batteries, supercapacitors, and electrocatalysts. Sodium-ion batteries, as analogs of lithium-ion batteries, are considered as promising devices for large-scale electrical energy storage. Inspired by applications of hollow structures as anodes for lithium-ion batteries, the application of these structures in sodium-ion batteries has attracted great attention in recent years. However, due to the difference in lithium and sodium-ion batteries, there are several issues that need to be addressed toward rational design of hollow structured sodium anodes. Herein, this research news article presents the recent developments in the synthesis of hollow structured anodes for sodium-ion batteries. The main strategies for rational design of materials for sodium-ion batteries are presented to provide an overview and perspectives for the future developments of this research area.
Hollow structures exhibit fascinating and important properties for energy‐related applications, such as lithium‐ion batteries, supercapacitors, and electrocatalysts. Sodium‐ion batteries, as analogs of lithium‐ion batteries, are considered as promising devices for large‐scale electrical energy storage. Inspired by applications of hollow structures as anodes for lithium‐ion batteries, the application of these structures in sodium‐ion batteries has attracted great attention in recent years. However, due to the difference in lithium and sodium‐ion batteries, there are several issues that need to be addressed toward rational design of hollow structured sodium anodes. Herein, this research news article presents the recent developments in the synthesis of hollow structured anodes for sodium‐ion batteries. The main strategies for rational design of materials for sodium‐ion batteries are presented to provide an overview and perspectives for the future developments of this research area. Hollow‐structured electrode materials exhibit fascinating properties as anodes for sodium‐ion batteries. Recent developments of hollow structured anodes for sodium‐ion batteries are summarized. Additionally, different rational design structures according to the features of sodium‐ion batteries are presented.
Author Xie, Fangxi
Jaroniec, Mietek
Qiao, Shi‐Zhang
Ye, Chao
Zhang, Lei
Author_xml – sequence: 1
  givenname: Fangxi
  surname: Xie
  fullname: Xie, Fangxi
  organization: The University of Adelaide
– sequence: 2
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: The University of Adelaide
– sequence: 3
  givenname: Chao
  surname: Ye
  fullname: Ye, Chao
  organization: The University of Adelaide
– sequence: 4
  givenname: Mietek
  surname: Jaroniec
  fullname: Jaroniec, Mietek
  organization: Kent State University
– sequence: 5
  givenname: Shi‐Zhang
  orcidid: 0000-0002-4568-8422
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  email: s.qiao@adelaide.edu.au
  organization: The University of Adelaide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29971832$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKctW5bIEptuMvh_YnZhSmmlIhbTri0nuRGunDjYjsrs-gh9Rp6EDNOCVAmxundxzqer-x2hgyEMgNAbSpaUEPbetr1dMkJLQoRmL9CCSkYLQbQ8QAuiuSy0EuUhOkrplhCiFVGv0CHTekVLzhaou_4GuBpH7xqbXRhw6PBF8D7c4U2OU5OnCC2uhtBCwl2IeBNaN_U_7x8uZ_ijzRmig_QBn8fQ443rRw84B7wOu-0H3mxThj6doJed9QleP85jdHP-6Xp9UVx9_Xy5rq6Khq84K2qpamVLQbmoFaeUrloQpOzASmANBVnTjiipmQIOWgJRIGoqa8F1Qxvd8WN0us8dY_g-Qcqmd6kB7-0AYUqGESWYWAlezui7Z-htmOIwX2cY05TxUpZypt4-UlPdQ2vG6Hobt-bpgzMg9kATQ0oROtO4_PuVOVrnDSVmV5TZFWX-FDVry2faU_I_Bb0X7pyH7X9oU519qf66vwAd-qVW
CitedBy_id crossref_primary_10_1016_j_jelechem_2020_114310
crossref_primary_10_1002_anie_201915917
crossref_primary_10_1016_j_jallcom_2021_160485
crossref_primary_10_1039_D0QM00120A
crossref_primary_10_1016_j_xcrp_2022_100891
crossref_primary_10_1021_acsaem_3c01234
crossref_primary_10_1002_anie_201912924
crossref_primary_10_1126_sciadv_abi7403
crossref_primary_10_1039_D4NR02418D
crossref_primary_10_1002_smll_202310426
crossref_primary_10_1016_j_xcrp_2022_101109
crossref_primary_10_1021_acsami_0c12677
crossref_primary_10_1007_s11664_022_10129_4
crossref_primary_10_1039_C8NR09391A
crossref_primary_10_1002_aenm_202201692
crossref_primary_10_1002_EXP_20210237
crossref_primary_10_1016_j_nanoen_2021_106897
crossref_primary_10_1021_acsami_9b05325
crossref_primary_10_1002_cnma_202000272
crossref_primary_10_1002_ange_202104401
crossref_primary_10_1002_smll_202006824
crossref_primary_10_1016_j_mtener_2021_100692
crossref_primary_10_1007_s10008_023_05667_8
crossref_primary_10_1039_D1CC04292K
crossref_primary_10_1039_D3QI01397A
crossref_primary_10_1016_j_matlet_2021_129817
crossref_primary_10_1016_j_diamond_2022_109593
crossref_primary_10_1016_j_electacta_2020_137356
crossref_primary_10_1039_C9TA12097A
crossref_primary_10_1007_s40843_020_1477_0
crossref_primary_10_1021_acs_langmuir_1c00307
crossref_primary_10_1002_cjoc_202100936
crossref_primary_10_1002_ange_202004193
crossref_primary_10_1021_acsami_9b14287
crossref_primary_10_1021_acs_cgd_2c00681
crossref_primary_10_1002_advs_202002722
crossref_primary_10_1016_j_matchemphys_2021_124456
crossref_primary_10_1039_C9TA00925F
crossref_primary_10_1039_D2QM00688J
crossref_primary_10_1002_ange_202316116
crossref_primary_10_1021_acsnano_1c05590
crossref_primary_10_1088_1361_6528_abce2f
crossref_primary_10_1016_j_cej_2024_153561
crossref_primary_10_1002_adfm_202006761
crossref_primary_10_1002_tcr_202300206
crossref_primary_10_1002_smll_202005745
crossref_primary_10_1021_acsaem_3c00427
crossref_primary_10_1002_adfm_202108681
crossref_primary_10_1016_j_cej_2022_140788
crossref_primary_10_1021_acsami_1c24989
crossref_primary_10_1021_acs_inorgchem_9b02333
crossref_primary_10_1002_adfm_202201584
crossref_primary_10_1021_acsami_1c04231
crossref_primary_10_1039_D4TA08047E
crossref_primary_10_1007_s40242_021_0433_y
crossref_primary_10_1016_j_cej_2024_148915
crossref_primary_10_1016_j_electacta_2020_136804
crossref_primary_10_1002_advs_202407538
crossref_primary_10_1016_j_jpowsour_2021_229721
crossref_primary_10_1016_j_jallcom_2022_165353
crossref_primary_10_1360_TB_2023_0887
crossref_primary_10_1002_celc_201902034
crossref_primary_10_1002_adma_202100808
crossref_primary_10_1002_adfm_201806144
crossref_primary_10_1039_D4GC05697C
crossref_primary_10_1002_anie_202316116
crossref_primary_10_1039_D1NR01227D
crossref_primary_10_1021_acsnano_2c11699
crossref_primary_10_1002_adfm_202007266
crossref_primary_10_1016_j_ccr_2022_214429
crossref_primary_10_1021_acssuschemeng_3c05572
crossref_primary_10_1002_ange_201912924
crossref_primary_10_1016_j_jpowsour_2020_227790
crossref_primary_10_1016_j_electacta_2023_143032
crossref_primary_10_1016_j_jallcom_2022_164714
crossref_primary_10_1007_s10853_021_05978_z
crossref_primary_10_1016_j_esci_2023_100158
crossref_primary_10_1016_j_nanoen_2019_04_008
crossref_primary_10_1039_C9NA00753A
crossref_primary_10_1039_D0CC04112B
crossref_primary_10_1002_adma_202002976
crossref_primary_10_1002_anie_202104401
crossref_primary_10_1039_C9TA00705A
crossref_primary_10_1021_acsami_2c11046
crossref_primary_10_1039_D3DT00101F
crossref_primary_10_1002_adma_202101698
crossref_primary_10_1016_j_ccr_2023_215348
crossref_primary_10_1021_acsnano_1c00131
crossref_primary_10_1007_s40242_024_4070_0
crossref_primary_10_1016_j_jcis_2020_08_050
crossref_primary_10_1002_adfm_202306184
crossref_primary_10_1039_D1TA05644A
crossref_primary_10_1016_j_cej_2022_137960
crossref_primary_10_1016_j_apsusc_2024_160973
crossref_primary_10_1021_acsami_1c16641
crossref_primary_10_1016_j_electacta_2022_140695
crossref_primary_10_1016_j_ensm_2021_04_009
crossref_primary_10_1016_j_est_2023_110293
crossref_primary_10_1002_sstr_202000041
crossref_primary_10_1002_er_7277
crossref_primary_10_1007_s12209_021_00304_9
crossref_primary_10_1002_smll_202001976
crossref_primary_10_1016_j_est_2023_108932
crossref_primary_10_1007_s40820_020_00587_y
crossref_primary_10_1016_j_jcis_2021_07_097
crossref_primary_10_1021_acssuschemeng_4c02890
crossref_primary_10_1007_s10853_025_10662_7
crossref_primary_10_1016_j_jelechem_2022_116769
crossref_primary_10_1016_j_trechm_2022_08_004
crossref_primary_10_1007_s43979_024_00081_z
crossref_primary_10_1016_j_jpowsour_2021_229678
crossref_primary_10_1002_ange_201915917
crossref_primary_10_1016_j_est_2025_116337
crossref_primary_10_1002_adfm_202306055
crossref_primary_10_1016_j_cej_2024_153484
crossref_primary_10_20517_energymater_2023_63
crossref_primary_10_1021_acs_accounts_0c00613
crossref_primary_10_1039_C9EE00283A
crossref_primary_10_1016_j_pnsc_2024_03_003
crossref_primary_10_1016_j_est_2023_108366
crossref_primary_10_1016_j_jpowsour_2020_229268
crossref_primary_10_1021_acssuschemeng_9b02969
crossref_primary_10_1002_adfm_202403351
crossref_primary_10_1002_smll_202303642
crossref_primary_10_1016_j_cej_2020_127776
crossref_primary_10_1007_s12209_022_00353_8
crossref_primary_10_1016_j_xcrp_2021_100551
crossref_primary_10_1002_aenm_201901584
crossref_primary_10_1007_s12274_020_2848_z
crossref_primary_10_1016_j_jcis_2024_03_056
crossref_primary_10_1039_D0TA10666F
crossref_primary_10_1039_D1TA03621A
crossref_primary_10_1002_ange_202116930
crossref_primary_10_1016_j_compositesb_2022_110045
crossref_primary_10_1016_j_cej_2024_153353
crossref_primary_10_1002_adfm_202203117
crossref_primary_10_1016_j_carbon_2022_07_033
crossref_primary_10_1016_j_jpowsour_2023_233144
crossref_primary_10_1038_s41467_024_50723_0
crossref_primary_10_1002_adfm_201909702
crossref_primary_10_1021_acsaem_1c01103
crossref_primary_10_1002_smll_202107869
crossref_primary_10_1002_smll_202004022
crossref_primary_10_1016_j_jechem_2020_11_027
crossref_primary_10_1016_j_jpowsour_2021_230117
crossref_primary_10_1016_j_apsusc_2020_147261
crossref_primary_10_1002_anie_202116930
crossref_primary_10_1016_j_jcis_2024_10_081
crossref_primary_10_1039_C9QM00674E
crossref_primary_10_1016_j_ensm_2022_03_044
crossref_primary_10_1007_s10008_020_04567_5
crossref_primary_10_1039_D1BM01747K
crossref_primary_10_1038_s41598_022_25707_z
crossref_primary_10_1002_celc_202200519
crossref_primary_10_1039_D1TA05114H
crossref_primary_10_1039_C8CC06650G
crossref_primary_10_1680_jsuin_20_00083
crossref_primary_10_1002_sstr_202100009
crossref_primary_10_1002_anie_202004193
Cites_doi 10.1002/adma.201602914
10.1038/nenergy.2016.50
10.1039/C5RA02834E
10.1039/C5TA00621J
10.1039/C4CC10203G
10.1021/acs.accounts.6b00480
10.1038/ncomms8872
10.1021/nl303305c
10.1039/b820555h
10.1002/aenm.201200026
10.1039/C7EE01100H
10.1002/anie.200702505
10.1021/nl500970a
10.1038/srep25556
10.1021/acs.accounts.5b00482
10.1002/aenm.201100691
10.1039/C6TA07354A
10.1021/acscentsci.5b00400
10.1007/978-1-4614-4605-7
10.1002/adma.201604563
10.1039/C6QM00273K
10.1039/c0ee00831a
10.1021/acs.nanolett.6b01805
10.1002/aenm.201502568
10.1149/1.3607983
10.1021/cr100290v
10.1002/adfm.201402943
10.1002/adma.201700989
10.1002/adma.201700214
10.1002/anie.201703772
10.1016/j.nanoen.2015.07.020
10.1149/2.037211jes
10.1021/acsami.5b07093
10.1002/adma.201702410
10.1039/c4ta01751j
10.1038/nnano.2014.6
10.1002/adfm.201702524
10.1039/c2ee02781j
10.1021/acsami.6b12001
10.1126/science.1212741
10.1002/aenm.201600659
10.1038/ncomms2327
10.1002/aenm.201300958
10.1002/anie.201706652
10.1038/nenergy.2016.71
10.1021/am504310k
10.1038/ncomms9689
10.1002/aenm.201700180
10.1002/aenm.201601177
10.1038/ncomms3798
10.1149/1.1379565
10.1039/C5CS00344J
10.1002/adma.201301795
10.1016/j.jpowsour.2017.05.064
10.1021/cr500207g
10.1038/451652a
10.1002/anie.201303971
10.1039/C6TA08364A
10.1016/j.joule.2018.01.004
10.1002/adma.201700622
10.1039/C4CC09366F
10.1039/c1ee01782a
10.1021/acs.nanolett.7b00083
10.1016/j.cej.2017.01.020
10.1039/C4TA04428B
10.1002/adma.201503816
10.1002/aenm.201300139
10.1021/cr020731c
10.1002/adma.200901079
10.1021/nl3016957
10.1039/C5EE02074C
10.1038/nenergy.2015.29
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201800492
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29971832
10_1002_adma_201800492
ADMA201800492
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP160104866; DP170104464; LP160100927; DE150101234; FL170100154
– fundername: Australian Research Council
  grantid: FL170100154
– fundername: Australian Research Council
  grantid: DP160104866
– fundername: Australian Research Council
  grantid: DP170104464
– fundername: Australian Research Council
  grantid: DE150101234
– fundername: Australian Research Council
  grantid: LP160100927
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3732-b56b6a84134b631117de408fea5e2c1e5b1f065926e3e95e06e4b15b439c1c9f3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:47:53 EDT 2025
Fri Jul 25 08:25:02 EDT 2025
Wed Feb 19 02:31:22 EST 2025
Thu Apr 24 22:51:41 EDT 2025
Tue Jul 01 00:44:43 EDT 2025
Wed Jan 22 16:39:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords hierarchically structured materials
anode materials
sodium-ion batteries
hollow structures
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-b56b6a84134b631117de408fea5e2c1e5b1f065926e3e95e06e4b15b439c1c9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4568-8422
PMID 29971832
PQID 2291238585
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2064247438
proquest_journals_2291238585
pubmed_primary_29971832
crossref_citationtrail_10_1002_adma_201800492
crossref_primary_10_1002_adma_201800492
wiley_primary_10_1002_adma_201800492_ADMA201800492
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 158
2017; 7
2017; 1
2013; 3
2013; 25
2013; 4
2012; 12
2001; 148
2017; 9
2011; 111
2017; 315
2017; 359
2014; 4
2018; 2
2014; 2
2015; 44
2014; 14
2014; 9
2016; 49
2014; 6
2014; 53
2011; 334
2015; 6
2004; 104
2015; 16
2015; 5
2009; 21
2015; 3
2015; 51
2017; 27
2017; 29
2011; 4
2016; 16
2015; 8
2015; 7
2014; 114
2016; 4
2017; 50
2016; 6
2015; 25
2012; 2
2016; 1
2015; 27
2016; 2
2017; 17
2017; 10
2017; 56
2008; 47
2013
2012; 159
2008; 451
2012; 5
2009; 38
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 4966
  year: 2013
  publication-title: Adv. Mater.
– volume: 4
  start-page: 3680
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 187
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 38
  start-page: 2565
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 162
  year: 2016
  publication-title: ACS Cent. Sci.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 17
  start-page: 2034
  year: 2017
  publication-title: Nano Lett.
– volume: 3
  start-page: 22
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 725
  year: 2018
  publication-title: Joule
– volume: 9
  start-page: 345
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 359
  start-page: 340
  year: 2017
  publication-title: J. Power Sources
– volume: 3
  start-page: 1186
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 8689
  year: 2015
  publication-title: Nat. Commun.
– volume: 57
  start-page: 102
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 104
  start-page: 4271
  year: 2004
  publication-title: Chem. Rev.
– volume: 49
  start-page: 231
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 21
  start-page: 2664
  year: 2009
  publication-title: Adv. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 3
  start-page: 6787
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 47
  start-page: 2930
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 5884
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 3783
  year: 2012
  publication-title: Nano Lett.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 3445
  year: 2014
  publication-title: Nano Lett.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 7861
  year: 2015
  publication-title: Adv. Mater.
– volume: 2
  start-page: 873
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 44
  start-page: 6749
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 2518
  year: 2015
  publication-title: Chem. Commun.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1331
  year: 2013
  publication-title: Nat. Commun.
– volume: 16
  start-page: 389
  year: 2015
  publication-title: Nano Energy
– volume: 8
  start-page: 3531
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 51
  start-page: 3545
  year: 2015
  publication-title: Chem. Commun.
– volume: 53
  start-page: 1488
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 159
  start-page: A1801
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 1986
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 4544
  year: 2016
  publication-title: Nano Lett.
– volume: 148
  start-page: A803
  year: 2001
  publication-title: J. Electrochem. Soc.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 710
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 50
  start-page: 293
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 1576
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 2798
  year: 2013
  publication-title: Nat. Commun.
– volume: 315
  start-page: 101
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 5897
  year: 2012
  publication-title: Nano Lett.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 1
  start-page: 414
  year: 2017
  publication-title: Mater. Chem. Front.
– volume: 6
  start-page: 7872
  year: 2015
  publication-title: Nat. Commun.
– volume: 158
  start-page: A1011
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 111
  start-page: 3577
  year: 2011
  publication-title: Chem. Rev.
– year: 2013
– volume: 25
  start-page: 214
  year: 2015
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201602914
– ident: e_1_2_7_27_1
  doi: 10.1038/nenergy.2016.50
– ident: e_1_2_7_56_1
  doi: 10.1039/C5RA02834E
– ident: e_1_2_7_57_1
  doi: 10.1039/C5TA00621J
– ident: e_1_2_7_51_1
  doi: 10.1039/C4CC10203G
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.accounts.6b00480
– ident: e_1_2_7_71_1
  doi: 10.1038/ncomms8872
– ident: e_1_2_7_47_1
  doi: 10.1021/nl303305c
– ident: e_1_2_7_10_1
  doi: 10.1039/b820555h
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.201200026
– ident: e_1_2_7_53_1
  doi: 10.1039/C7EE01100H
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.200702505
– ident: e_1_2_7_35_1
  doi: 10.1021/nl500970a
– ident: e_1_2_7_59_1
  doi: 10.1038/srep25556
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.accounts.5b00482
– ident: e_1_2_7_31_1
  doi: 10.1002/aenm.201100691
– ident: e_1_2_7_67_1
  doi: 10.1039/C6TA07354A
– ident: e_1_2_7_34_1
  doi: 10.1021/acscentsci.5b00400
– ident: e_1_2_7_48_1
  doi: 10.1007/978-1-4614-4605-7
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201604563
– ident: e_1_2_7_26_1
  doi: 10.1039/C6QM00273K
– ident: e_1_2_7_7_1
  doi: 10.1039/c0ee00831a
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.nanolett.6b01805
– ident: e_1_2_7_36_1
  doi: 10.1002/aenm.201502568
– ident: e_1_2_7_45_1
  doi: 10.1149/1.3607983
– ident: e_1_2_7_1_1
  doi: 10.1021/cr100290v
– ident: e_1_2_7_50_1
  doi: 10.1002/adfm.201402943
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201700989
– ident: e_1_2_7_60_1
  doi: 10.1002/adma.201700214
– ident: e_1_2_7_65_1
  doi: 10.1002/anie.201703772
– ident: e_1_2_7_38_1
  doi: 10.1016/j.nanoen.2015.07.020
– ident: e_1_2_7_46_1
  doi: 10.1149/2.037211jes
– ident: e_1_2_7_70_1
  doi: 10.1021/acsami.5b07093
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201702410
– ident: e_1_2_7_49_1
  doi: 10.1039/c4ta01751j
– ident: e_1_2_7_28_1
  doi: 10.1038/nnano.2014.6
– ident: e_1_2_7_21_1
  doi: 10.1002/adfm.201702524
– ident: e_1_2_7_5_1
  doi: 10.1039/c2ee02781j
– ident: e_1_2_7_66_1
  doi: 10.1021/acsami.6b12001
– ident: e_1_2_7_2_1
  doi: 10.1126/science.1212741
– ident: e_1_2_7_33_1
  doi: 10.1002/aenm.201600659
– ident: e_1_2_7_72_1
  doi: 10.1038/ncomms2327
– ident: e_1_2_7_52_1
  doi: 10.1002/aenm.201300958
– ident: e_1_2_7_61_1
  doi: 10.1002/anie.201706652
– ident: e_1_2_7_16_1
  doi: 10.1038/nenergy.2016.71
– ident: e_1_2_7_41_1
  doi: 10.1021/am504310k
– ident: e_1_2_7_68_1
  doi: 10.1038/ncomms9689
– ident: e_1_2_7_58_1
  doi: 10.1002/aenm.201700180
– ident: e_1_2_7_54_1
  doi: 10.1002/aenm.201601177
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms3798
– ident: e_1_2_7_30_1
  doi: 10.1149/1.1379565
– ident: e_1_2_7_25_1
  doi: 10.1039/C5CS00344J
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201301795
– ident: e_1_2_7_44_1
  doi: 10.1016/j.jpowsour.2017.05.064
– ident: e_1_2_7_14_1
  doi: 10.1021/cr500207g
– ident: e_1_2_7_3_1
  doi: 10.1038/451652a
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.201303971
– ident: e_1_2_7_43_1
  doi: 10.1039/C6TA08364A
– ident: e_1_2_7_62_1
  doi: 10.1016/j.joule.2018.01.004
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201700622
– ident: e_1_2_7_22_1
  doi: 10.1039/C4CC09366F
– ident: e_1_2_7_64_1
  doi: 10.1039/c1ee01782a
– ident: e_1_2_7_55_1
  doi: 10.1021/acs.nanolett.7b00083
– ident: e_1_2_7_42_1
  doi: 10.1016/j.cej.2017.01.020
– ident: e_1_2_7_6_1
  doi: 10.1039/C4TA04428B
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201503816
– ident: e_1_2_7_63_1
  doi: 10.1002/aenm.201300139
– ident: e_1_2_7_11_1
  doi: 10.1021/cr020731c
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.200901079
– ident: e_1_2_7_32_1
  doi: 10.1021/nl3016957
– ident: e_1_2_7_69_1
  doi: 10.1039/C5EE02074C
– ident: e_1_2_7_15_1
  doi: 10.1038/nenergy.2015.29
SSID ssj0009606
Score 2.6297905
SecondaryResourceType review_article
Snippet Hollow structures exhibit fascinating and important properties for energy‐related applications, such as lithium‐ion batteries, supercapacitors, and...
Hollow structures exhibit fascinating and important properties for energy-related applications, such as lithium-ion batteries, supercapacitors, and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800492
SubjectTerms anode materials
Anodes
Complex systems
Electrocatalysts
Energy storage
hierarchically structured materials
hollow structures
Lithium-ion batteries
Materials science
Rechargeable batteries
Sodium
Sodium-ion batteries
Storage batteries
Title The Application of Hollow Structured Anodes for Sodium‐Ion Batteries: From Simple to Complex Systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800492
https://www.ncbi.nlm.nih.gov/pubmed/29971832
https://www.proquest.com/docview/2291238585
https://www.proquest.com/docview/2064247438
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VPbUHoPwGCjISEqe0cRzH2d4i2tW2UjmwVOotsp2JVNEmqLsrECcegWfkSTqTZLPdVggJbokyVhyPZ-Ybj_MZ4J02htcabei1ikPKv2TopC9DE6u0VJHHyHKiePoxnZwlJ-f6_NZf_B0_xLDgxpbR-ms2cOtm-yvSUFu2vEEyY5DLTpg3bDEq-rTij2J43pLtKR2O0iRbsjZG8f568_WodA9qriPXNvSMH4JddrrbcfJlbzF3e_7HHT7H__mqR_Cgx6Ui7ybSDmxg_Ri2b7EVPoGKppTIVwVv0VRiQtOo-SamLQvt4hpLkddNiTNBWFhMm_JicfX7569jEu6IPCkvPxDj6-ZKTC-Yl1jMG8Eu6RK_i548_SmcjY8-f5iE_TENoVeGFOx06lKbUTRMXKrId5oSkyir0GqMvUTtZNVWb1NUONIYpZg4qR1BIS_9qFLPYLNuanwBQmaV9SaT6CNFyA4dD4IzHl3lbWYwgHCppsL3HOZ8lMZl0bEvxwWPXzGMXwDvB_mvHXvHHyV3l1oveiueFXE8osDOldMA3g6Pyf64qGJrbBYkwxlcQjgsC-B5N1uGV1GoN-wyA4hbnf-lD0V-eJoPdy__pdEr2KLrfhPcLmyS9vE1oaa5e9Naxg1K6g2H
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOvCmBAkZC4pQ2juM4yy0CVlvo9sC2ErcodiZSRZugdlcgTvwEfiO_hBnnsSwIIcExyVhxPK9vbOczwDNtDM81lqHTKg6p_pKhla4KTazSSkUOo5ILxflhOjtO3rzXw25C_hem44cYJ9zYM3y8ZgfnCem9NWtoWXniIJkxyqUofJmP9fZV1bs1gxQDdE-3p3Q4SZNs4G2M4r3N9pt56TewuYldffKZ3gA7dLvbc_Jhd7W0u-7LL4yO__VdN-F6D01F3tnSLbiEzW249hNh4R2oyapEvl7zFm0tZmRJ7Sex8ES0q3OsRN60FV4IgsNi0VYnq7PvX7_tk3DH5Uml-QsxPW_PxOKEqYnFshUclU7xs-j50-_C8fT10ctZ2J_UEDplSMdWpzYtM0qIiU0VhU9TYRJlNZYaYydRW1n7BdwUFU40RikmVmpLaMhJN6nVPdhq2gbvg5BZXTqTSXSRInCHlgfBGoe2dmVmMIBw0FPhehpzPk3jtOgImOOCx68Yxy-A56P8x47A44-SO4Pai96RL4o4nlBu58XTAJ6Oj8kFeV2lbLBdkQwXcQlBsSyA7c5cxldRtjccNQOIvdL_0ocifzXPx6sH_9LoCVyZHc0PioP9w7cP4Srd7_fE7cAWWQI-IhC1tI-9m_wAIH8Rog
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIiE48H6kFDASEqe0cRw_llvEstoCrRBLpd4i25lIFW1Stbsq4sRP4DfySxgn2WwXhJDgmGSsOJ7XZ4_zGeCF1DqsNdrYS5HGNP_iseO-jHUqVCkSj4kNE8W9fTU9yN4eysNLf_F3_BDDglvwjDZeBwc_LaudFWmoLVveIG4CyKUgfDVTiQl2Pf64IpAK-Lxl2xMyHqnMLGkbk3Rnvf16WvoNa65D1zb3TG6BXfa623LyeXsxd9v-6y-Ejv_zWbfhZg9MWd5Z0h24gvVduHGJrvAeVGRTLF9VvFlTsSnZUXPBZi0N7eIMS5bXTYnnjMAwmzXl0eLkx7fvuyTcMXnSxPwVm5w1J2x2FIiJ2bxhISYd4xfWs6ffh4PJm0-vp3F_TkPshSYNO6mcsobSYeaUoOCpS8wSU6GVmHqO0vGqLd8qFDiSmCjMHJeOsJDnflSJB7BRNzU-AsZNZb02HH0iCNqhC4PgtEdXeWs0RhAv1VT4nsQ8nKVxXHT0y2kRxq8Yxi-Cl4P8aUff8UfJraXWi96Nz4s0HVFmD6XTCJ4Pj8kBQ1XF1tgsSCZM4TICYiaCh521DK-iXK9DzIwgbXX-lz4U-XgvH642_6XRM7j2YTwp3u_uv3sM1-l2vyFuCzbIEPAJIai5e9o6yU_zEhBa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Application+of+Hollow+Structured+Anodes+for+Sodium-Ion+Batteries%3A+From+Simple+to+Complex+Systems&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xie%2C+Fangxi&rft.au=Zhang%2C+Lei&rft.au=Ye%2C+Chao&rft.au=Jaroniec%2C+Mietek&rft.date=2019-09-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=38&rft.spage=e1800492&rft_id=info:doi/10.1002%2Fadma.201800492&rft_id=info%3Apmid%2F29971832&rft.externalDocID=29971832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon