The Application of Hollow Structured Anodes for Sodium‐Ion Batteries: From Simple to Complex Systems
Hollow structures exhibit fascinating and important properties for energy‐related applications, such as lithium‐ion batteries, supercapacitors, and electrocatalysts. Sodium‐ion batteries, as analogs of lithium‐ion batteries, are considered as promising devices for large‐scale electrical energy stora...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 38; pp. e1800492 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201800492 |
Cover
Loading…
Abstract | Hollow structures exhibit fascinating and important properties for energy‐related applications, such as lithium‐ion batteries, supercapacitors, and electrocatalysts. Sodium‐ion batteries, as analogs of lithium‐ion batteries, are considered as promising devices for large‐scale electrical energy storage. Inspired by applications of hollow structures as anodes for lithium‐ion batteries, the application of these structures in sodium‐ion batteries has attracted great attention in recent years. However, due to the difference in lithium and sodium‐ion batteries, there are several issues that need to be addressed toward rational design of hollow structured sodium anodes. Herein, this research news article presents the recent developments in the synthesis of hollow structured anodes for sodium‐ion batteries. The main strategies for rational design of materials for sodium‐ion batteries are presented to provide an overview and perspectives for the future developments of this research area.
Hollow‐structured electrode materials exhibit fascinating properties as anodes for sodium‐ion batteries. Recent developments of hollow structured anodes for sodium‐ion batteries are summarized. Additionally, different rational design structures according to the features of sodium‐ion batteries are presented. |
---|---|
AbstractList | Hollow structures exhibit fascinating and important properties for energy‐related applications, such as lithium‐ion batteries, supercapacitors, and electrocatalysts. Sodium‐ion batteries, as analogs of lithium‐ion batteries, are considered as promising devices for large‐scale electrical energy storage. Inspired by applications of hollow structures as anodes for lithium‐ion batteries, the application of these structures in sodium‐ion batteries has attracted great attention in recent years. However, due to the difference in lithium and sodium‐ion batteries, there are several issues that need to be addressed toward rational design of hollow structured sodium anodes. Herein, this research news article presents the recent developments in the synthesis of hollow structured anodes for sodium‐ion batteries. The main strategies for rational design of materials for sodium‐ion batteries are presented to provide an overview and perspectives for the future developments of this research area. Hollow structures exhibit fascinating and important properties for energy-related applications, such as lithium-ion batteries, supercapacitors, and electrocatalysts. Sodium-ion batteries, as analogs of lithium-ion batteries, are considered as promising devices for large-scale electrical energy storage. Inspired by applications of hollow structures as anodes for lithium-ion batteries, the application of these structures in sodium-ion batteries has attracted great attention in recent years. However, due to the difference in lithium and sodium-ion batteries, there are several issues that need to be addressed toward rational design of hollow structured sodium anodes. Herein, this research news article presents the recent developments in the synthesis of hollow structured anodes for sodium-ion batteries. The main strategies for rational design of materials for sodium-ion batteries are presented to provide an overview and perspectives for the future developments of this research area.Hollow structures exhibit fascinating and important properties for energy-related applications, such as lithium-ion batteries, supercapacitors, and electrocatalysts. Sodium-ion batteries, as analogs of lithium-ion batteries, are considered as promising devices for large-scale electrical energy storage. Inspired by applications of hollow structures as anodes for lithium-ion batteries, the application of these structures in sodium-ion batteries has attracted great attention in recent years. However, due to the difference in lithium and sodium-ion batteries, there are several issues that need to be addressed toward rational design of hollow structured sodium anodes. Herein, this research news article presents the recent developments in the synthesis of hollow structured anodes for sodium-ion batteries. The main strategies for rational design of materials for sodium-ion batteries are presented to provide an overview and perspectives for the future developments of this research area. Hollow structures exhibit fascinating and important properties for energy‐related applications, such as lithium‐ion batteries, supercapacitors, and electrocatalysts. Sodium‐ion batteries, as analogs of lithium‐ion batteries, are considered as promising devices for large‐scale electrical energy storage. Inspired by applications of hollow structures as anodes for lithium‐ion batteries, the application of these structures in sodium‐ion batteries has attracted great attention in recent years. However, due to the difference in lithium and sodium‐ion batteries, there are several issues that need to be addressed toward rational design of hollow structured sodium anodes. Herein, this research news article presents the recent developments in the synthesis of hollow structured anodes for sodium‐ion batteries. The main strategies for rational design of materials for sodium‐ion batteries are presented to provide an overview and perspectives for the future developments of this research area. Hollow‐structured electrode materials exhibit fascinating properties as anodes for sodium‐ion batteries. Recent developments of hollow structured anodes for sodium‐ion batteries are summarized. Additionally, different rational design structures according to the features of sodium‐ion batteries are presented. |
Author | Xie, Fangxi Jaroniec, Mietek Qiao, Shi‐Zhang Ye, Chao Zhang, Lei |
Author_xml | – sequence: 1 givenname: Fangxi surname: Xie fullname: Xie, Fangxi organization: The University of Adelaide – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: The University of Adelaide – sequence: 3 givenname: Chao surname: Ye fullname: Ye, Chao organization: The University of Adelaide – sequence: 4 givenname: Mietek surname: Jaroniec fullname: Jaroniec, Mietek organization: Kent State University – sequence: 5 givenname: Shi‐Zhang orcidid: 0000-0002-4568-8422 surname: Qiao fullname: Qiao, Shi‐Zhang email: s.qiao@adelaide.edu.au organization: The University of Adelaide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29971832$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKctW5bIEptuMvh_YnZhSmmlIhbTri0nuRGunDjYjsrs-gh9Rp6EDNOCVAmxundxzqer-x2hgyEMgNAbSpaUEPbetr1dMkJLQoRmL9CCSkYLQbQ8QAuiuSy0EuUhOkrplhCiFVGv0CHTekVLzhaou_4GuBpH7xqbXRhw6PBF8D7c4U2OU5OnCC2uhtBCwl2IeBNaN_U_7x8uZ_ijzRmig_QBn8fQ443rRw84B7wOu-0H3mxThj6doJed9QleP85jdHP-6Xp9UVx9_Xy5rq6Khq84K2qpamVLQbmoFaeUrloQpOzASmANBVnTjiipmQIOWgJRIGoqa8F1Qxvd8WN0us8dY_g-Qcqmd6kB7-0AYUqGESWYWAlezui7Z-htmOIwX2cY05TxUpZypt4-UlPdQ2vG6Hobt-bpgzMg9kATQ0oROtO4_PuVOVrnDSVmV5TZFWX-FDVry2faU_I_Bb0X7pyH7X9oU519qf66vwAd-qVW |
CitedBy_id | crossref_primary_10_1016_j_jelechem_2020_114310 crossref_primary_10_1002_anie_201915917 crossref_primary_10_1016_j_jallcom_2021_160485 crossref_primary_10_1039_D0QM00120A crossref_primary_10_1016_j_xcrp_2022_100891 crossref_primary_10_1021_acsaem_3c01234 crossref_primary_10_1002_anie_201912924 crossref_primary_10_1126_sciadv_abi7403 crossref_primary_10_1039_D4NR02418D crossref_primary_10_1002_smll_202310426 crossref_primary_10_1016_j_xcrp_2022_101109 crossref_primary_10_1021_acsami_0c12677 crossref_primary_10_1007_s11664_022_10129_4 crossref_primary_10_1039_C8NR09391A crossref_primary_10_1002_aenm_202201692 crossref_primary_10_1002_EXP_20210237 crossref_primary_10_1016_j_nanoen_2021_106897 crossref_primary_10_1021_acsami_9b05325 crossref_primary_10_1002_cnma_202000272 crossref_primary_10_1002_ange_202104401 crossref_primary_10_1002_smll_202006824 crossref_primary_10_1016_j_mtener_2021_100692 crossref_primary_10_1007_s10008_023_05667_8 crossref_primary_10_1039_D1CC04292K crossref_primary_10_1039_D3QI01397A crossref_primary_10_1016_j_matlet_2021_129817 crossref_primary_10_1016_j_diamond_2022_109593 crossref_primary_10_1016_j_electacta_2020_137356 crossref_primary_10_1039_C9TA12097A crossref_primary_10_1007_s40843_020_1477_0 crossref_primary_10_1021_acs_langmuir_1c00307 crossref_primary_10_1002_cjoc_202100936 crossref_primary_10_1002_ange_202004193 crossref_primary_10_1021_acsami_9b14287 crossref_primary_10_1021_acs_cgd_2c00681 crossref_primary_10_1002_advs_202002722 crossref_primary_10_1016_j_matchemphys_2021_124456 crossref_primary_10_1039_C9TA00925F crossref_primary_10_1039_D2QM00688J crossref_primary_10_1002_ange_202316116 crossref_primary_10_1021_acsnano_1c05590 crossref_primary_10_1088_1361_6528_abce2f crossref_primary_10_1016_j_cej_2024_153561 crossref_primary_10_1002_adfm_202006761 crossref_primary_10_1002_tcr_202300206 crossref_primary_10_1002_smll_202005745 crossref_primary_10_1021_acsaem_3c00427 crossref_primary_10_1002_adfm_202108681 crossref_primary_10_1016_j_cej_2022_140788 crossref_primary_10_1021_acsami_1c24989 crossref_primary_10_1021_acs_inorgchem_9b02333 crossref_primary_10_1002_adfm_202201584 crossref_primary_10_1021_acsami_1c04231 crossref_primary_10_1039_D4TA08047E crossref_primary_10_1007_s40242_021_0433_y crossref_primary_10_1016_j_cej_2024_148915 crossref_primary_10_1016_j_electacta_2020_136804 crossref_primary_10_1002_advs_202407538 crossref_primary_10_1016_j_jpowsour_2021_229721 crossref_primary_10_1016_j_jallcom_2022_165353 crossref_primary_10_1360_TB_2023_0887 crossref_primary_10_1002_celc_201902034 crossref_primary_10_1002_adma_202100808 crossref_primary_10_1002_adfm_201806144 crossref_primary_10_1039_D4GC05697C crossref_primary_10_1002_anie_202316116 crossref_primary_10_1039_D1NR01227D crossref_primary_10_1021_acsnano_2c11699 crossref_primary_10_1002_adfm_202007266 crossref_primary_10_1016_j_ccr_2022_214429 crossref_primary_10_1021_acssuschemeng_3c05572 crossref_primary_10_1002_ange_201912924 crossref_primary_10_1016_j_jpowsour_2020_227790 crossref_primary_10_1016_j_electacta_2023_143032 crossref_primary_10_1016_j_jallcom_2022_164714 crossref_primary_10_1007_s10853_021_05978_z crossref_primary_10_1016_j_esci_2023_100158 crossref_primary_10_1016_j_nanoen_2019_04_008 crossref_primary_10_1039_C9NA00753A crossref_primary_10_1039_D0CC04112B crossref_primary_10_1002_adma_202002976 crossref_primary_10_1002_anie_202104401 crossref_primary_10_1039_C9TA00705A crossref_primary_10_1021_acsami_2c11046 crossref_primary_10_1039_D3DT00101F crossref_primary_10_1002_adma_202101698 crossref_primary_10_1016_j_ccr_2023_215348 crossref_primary_10_1021_acsnano_1c00131 crossref_primary_10_1007_s40242_024_4070_0 crossref_primary_10_1016_j_jcis_2020_08_050 crossref_primary_10_1002_adfm_202306184 crossref_primary_10_1039_D1TA05644A crossref_primary_10_1016_j_cej_2022_137960 crossref_primary_10_1016_j_apsusc_2024_160973 crossref_primary_10_1021_acsami_1c16641 crossref_primary_10_1016_j_electacta_2022_140695 crossref_primary_10_1016_j_ensm_2021_04_009 crossref_primary_10_1016_j_est_2023_110293 crossref_primary_10_1002_sstr_202000041 crossref_primary_10_1002_er_7277 crossref_primary_10_1007_s12209_021_00304_9 crossref_primary_10_1002_smll_202001976 crossref_primary_10_1016_j_est_2023_108932 crossref_primary_10_1007_s40820_020_00587_y crossref_primary_10_1016_j_jcis_2021_07_097 crossref_primary_10_1021_acssuschemeng_4c02890 crossref_primary_10_1007_s10853_025_10662_7 crossref_primary_10_1016_j_jelechem_2022_116769 crossref_primary_10_1016_j_trechm_2022_08_004 crossref_primary_10_1007_s43979_024_00081_z crossref_primary_10_1016_j_jpowsour_2021_229678 crossref_primary_10_1002_ange_201915917 crossref_primary_10_1016_j_est_2025_116337 crossref_primary_10_1002_adfm_202306055 crossref_primary_10_1016_j_cej_2024_153484 crossref_primary_10_20517_energymater_2023_63 crossref_primary_10_1021_acs_accounts_0c00613 crossref_primary_10_1039_C9EE00283A crossref_primary_10_1016_j_pnsc_2024_03_003 crossref_primary_10_1016_j_est_2023_108366 crossref_primary_10_1016_j_jpowsour_2020_229268 crossref_primary_10_1021_acssuschemeng_9b02969 crossref_primary_10_1002_adfm_202403351 crossref_primary_10_1002_smll_202303642 crossref_primary_10_1016_j_cej_2020_127776 crossref_primary_10_1007_s12209_022_00353_8 crossref_primary_10_1016_j_xcrp_2021_100551 crossref_primary_10_1002_aenm_201901584 crossref_primary_10_1007_s12274_020_2848_z crossref_primary_10_1016_j_jcis_2024_03_056 crossref_primary_10_1039_D0TA10666F crossref_primary_10_1039_D1TA03621A crossref_primary_10_1002_ange_202116930 crossref_primary_10_1016_j_compositesb_2022_110045 crossref_primary_10_1016_j_cej_2024_153353 crossref_primary_10_1002_adfm_202203117 crossref_primary_10_1016_j_carbon_2022_07_033 crossref_primary_10_1016_j_jpowsour_2023_233144 crossref_primary_10_1038_s41467_024_50723_0 crossref_primary_10_1002_adfm_201909702 crossref_primary_10_1021_acsaem_1c01103 crossref_primary_10_1002_smll_202107869 crossref_primary_10_1002_smll_202004022 crossref_primary_10_1016_j_jechem_2020_11_027 crossref_primary_10_1016_j_jpowsour_2021_230117 crossref_primary_10_1016_j_apsusc_2020_147261 crossref_primary_10_1002_anie_202116930 crossref_primary_10_1016_j_jcis_2024_10_081 crossref_primary_10_1039_C9QM00674E crossref_primary_10_1016_j_ensm_2022_03_044 crossref_primary_10_1007_s10008_020_04567_5 crossref_primary_10_1039_D1BM01747K crossref_primary_10_1038_s41598_022_25707_z crossref_primary_10_1002_celc_202200519 crossref_primary_10_1039_D1TA05114H crossref_primary_10_1039_C8CC06650G crossref_primary_10_1680_jsuin_20_00083 crossref_primary_10_1002_sstr_202100009 crossref_primary_10_1002_anie_202004193 |
Cites_doi | 10.1002/adma.201602914 10.1038/nenergy.2016.50 10.1039/C5RA02834E 10.1039/C5TA00621J 10.1039/C4CC10203G 10.1021/acs.accounts.6b00480 10.1038/ncomms8872 10.1021/nl303305c 10.1039/b820555h 10.1002/aenm.201200026 10.1039/C7EE01100H 10.1002/anie.200702505 10.1021/nl500970a 10.1038/srep25556 10.1021/acs.accounts.5b00482 10.1002/aenm.201100691 10.1039/C6TA07354A 10.1021/acscentsci.5b00400 10.1007/978-1-4614-4605-7 10.1002/adma.201604563 10.1039/C6QM00273K 10.1039/c0ee00831a 10.1021/acs.nanolett.6b01805 10.1002/aenm.201502568 10.1149/1.3607983 10.1021/cr100290v 10.1002/adfm.201402943 10.1002/adma.201700989 10.1002/adma.201700214 10.1002/anie.201703772 10.1016/j.nanoen.2015.07.020 10.1149/2.037211jes 10.1021/acsami.5b07093 10.1002/adma.201702410 10.1039/c4ta01751j 10.1038/nnano.2014.6 10.1002/adfm.201702524 10.1039/c2ee02781j 10.1021/acsami.6b12001 10.1126/science.1212741 10.1002/aenm.201600659 10.1038/ncomms2327 10.1002/aenm.201300958 10.1002/anie.201706652 10.1038/nenergy.2016.71 10.1021/am504310k 10.1038/ncomms9689 10.1002/aenm.201700180 10.1002/aenm.201601177 10.1038/ncomms3798 10.1149/1.1379565 10.1039/C5CS00344J 10.1002/adma.201301795 10.1016/j.jpowsour.2017.05.064 10.1021/cr500207g 10.1038/451652a 10.1002/anie.201303971 10.1039/C6TA08364A 10.1016/j.joule.2018.01.004 10.1002/adma.201700622 10.1039/C4CC09366F 10.1039/c1ee01782a 10.1021/acs.nanolett.7b00083 10.1016/j.cej.2017.01.020 10.1039/C4TA04428B 10.1002/adma.201503816 10.1002/aenm.201300139 10.1021/cr020731c 10.1002/adma.200901079 10.1021/nl3016957 10.1039/C5EE02074C 10.1038/nenergy.2015.29 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201800492 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29971832 10_1002_adma_201800492 ADMA201800492 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP160104866; DP170104464; LP160100927; DE150101234; FL170100154 – fundername: Australian Research Council grantid: FL170100154 – fundername: Australian Research Council grantid: DP160104866 – fundername: Australian Research Council grantid: DP170104464 – fundername: Australian Research Council grantid: DE150101234 – fundername: Australian Research Council grantid: LP160100927 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3732-b56b6a84134b631117de408fea5e2c1e5b1f065926e3e95e06e4b15b439c1c9f3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:47:53 EDT 2025 Fri Jul 25 08:25:02 EDT 2025 Wed Feb 19 02:31:22 EST 2025 Thu Apr 24 22:51:41 EDT 2025 Tue Jul 01 00:44:43 EDT 2025 Wed Jan 22 16:39:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | hierarchically structured materials anode materials sodium-ion batteries hollow structures |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-b56b6a84134b631117de408fea5e2c1e5b1f065926e3e95e06e4b15b439c1c9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4568-8422 |
PMID | 29971832 |
PQID | 2291238585 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2064247438 proquest_journals_2291238585 pubmed_primary_29971832 crossref_citationtrail_10_1002_adma_201800492 crossref_primary_10_1002_adma_201800492 wiley_primary_10_1002_adma_201800492_ADMA201800492 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 158 2017; 7 2017; 1 2013; 3 2013; 25 2013; 4 2012; 12 2001; 148 2017; 9 2011; 111 2017; 315 2017; 359 2014; 4 2018; 2 2014; 2 2015; 44 2014; 14 2014; 9 2016; 49 2014; 6 2014; 53 2011; 334 2015; 6 2004; 104 2015; 16 2015; 5 2009; 21 2015; 3 2015; 51 2017; 27 2017; 29 2011; 4 2016; 16 2015; 8 2015; 7 2014; 114 2016; 4 2017; 50 2016; 6 2015; 25 2012; 2 2016; 1 2015; 27 2016; 2 2017; 17 2017; 10 2017; 56 2008; 47 2013 2012; 159 2008; 451 2012; 5 2009; 38 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 4966 year: 2013 publication-title: Adv. Mater. – volume: 4 start-page: 3680 year: 2011 publication-title: Energy Environ. Sci. – volume: 9 start-page: 187 year: 2014 publication-title: Nat. Nanotechnol. – volume: 38 start-page: 2565 year: 2009 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 162 year: 2016 publication-title: ACS Cent. Sci. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 17 start-page: 2034 year: 2017 publication-title: Nano Lett. – volume: 3 start-page: 22 year: 2015 publication-title: J. Mater. Chem. A – volume: 2 start-page: 725 year: 2018 publication-title: Joule – volume: 9 start-page: 345 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 359 start-page: 340 year: 2017 publication-title: J. Power Sources – volume: 3 start-page: 1186 year: 2013 publication-title: Adv. Energy Mater. – volume: 6 start-page: 8689 year: 2015 publication-title: Nat. Commun. – volume: 57 start-page: 102 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 104 start-page: 4271 year: 2004 publication-title: Chem. Rev. – volume: 49 start-page: 231 year: 2016 publication-title: Acc. Chem. Res. – volume: 21 start-page: 2664 year: 2009 publication-title: Adv. Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 3 start-page: 6787 year: 2015 publication-title: J. Mater. Chem. A – volume: 47 start-page: 2930 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 5884 year: 2012 publication-title: Energy Environ. Sci. – volume: 12 start-page: 3783 year: 2012 publication-title: Nano Lett. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 14 start-page: 3445 year: 2014 publication-title: Nano Lett. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 27 start-page: 7861 year: 2015 publication-title: Adv. Mater. – volume: 2 start-page: 873 year: 2012 publication-title: Adv. Energy Mater. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 44 start-page: 6749 year: 2015 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 2518 year: 2015 publication-title: Chem. Commun. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1331 year: 2013 publication-title: Nat. Commun. – volume: 16 start-page: 389 year: 2015 publication-title: Nano Energy – volume: 8 start-page: 3531 year: 2015 publication-title: Energy Environ. Sci. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 51 start-page: 3545 year: 2015 publication-title: Chem. Commun. – volume: 53 start-page: 1488 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 159 start-page: A1801 year: 2012 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 1986 year: 2011 publication-title: Energy Environ. Sci. – volume: 16 start-page: 4544 year: 2016 publication-title: Nano Lett. – volume: 148 start-page: A803 year: 2001 publication-title: J. Electrochem. Soc. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 2 start-page: 710 year: 2012 publication-title: Adv. Energy Mater. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 50 start-page: 293 year: 2017 publication-title: Acc. Chem. Res. – volume: 10 start-page: 1576 year: 2017 publication-title: Energy Environ. Sci. – volume: 4 start-page: 2798 year: 2013 publication-title: Nat. Commun. – volume: 315 start-page: 101 year: 2017 publication-title: Chem. Eng. J. – volume: 12 start-page: 5897 year: 2012 publication-title: Nano Lett. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 1 start-page: 414 year: 2017 publication-title: Mater. Chem. Front. – volume: 6 start-page: 7872 year: 2015 publication-title: Nat. Commun. – volume: 158 start-page: A1011 year: 2011 publication-title: J. Electrochem. Soc. – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 111 start-page: 3577 year: 2011 publication-title: Chem. Rev. – year: 2013 – volume: 25 start-page: 214 year: 2015 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_19_1 doi: 10.1002/adma.201602914 – ident: e_1_2_7_27_1 doi: 10.1038/nenergy.2016.50 – ident: e_1_2_7_56_1 doi: 10.1039/C5RA02834E – ident: e_1_2_7_57_1 doi: 10.1039/C5TA00621J – ident: e_1_2_7_51_1 doi: 10.1039/C4CC10203G – ident: e_1_2_7_17_1 doi: 10.1021/acs.accounts.6b00480 – ident: e_1_2_7_71_1 doi: 10.1038/ncomms8872 – ident: e_1_2_7_47_1 doi: 10.1021/nl303305c – ident: e_1_2_7_10_1 doi: 10.1039/b820555h – ident: e_1_2_7_9_1 doi: 10.1002/aenm.201200026 – ident: e_1_2_7_53_1 doi: 10.1039/C7EE01100H – ident: e_1_2_7_4_1 doi: 10.1002/anie.200702505 – ident: e_1_2_7_35_1 doi: 10.1021/nl500970a – ident: e_1_2_7_59_1 doi: 10.1038/srep25556 – ident: e_1_2_7_8_1 doi: 10.1021/acs.accounts.5b00482 – ident: e_1_2_7_31_1 doi: 10.1002/aenm.201100691 – ident: e_1_2_7_67_1 doi: 10.1039/C6TA07354A – ident: e_1_2_7_34_1 doi: 10.1021/acscentsci.5b00400 – ident: e_1_2_7_48_1 doi: 10.1007/978-1-4614-4605-7 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201604563 – ident: e_1_2_7_26_1 doi: 10.1039/C6QM00273K – ident: e_1_2_7_7_1 doi: 10.1039/c0ee00831a – ident: e_1_2_7_37_1 doi: 10.1021/acs.nanolett.6b01805 – ident: e_1_2_7_36_1 doi: 10.1002/aenm.201502568 – ident: e_1_2_7_45_1 doi: 10.1149/1.3607983 – ident: e_1_2_7_1_1 doi: 10.1021/cr100290v – ident: e_1_2_7_50_1 doi: 10.1002/adfm.201402943 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201700989 – ident: e_1_2_7_60_1 doi: 10.1002/adma.201700214 – ident: e_1_2_7_65_1 doi: 10.1002/anie.201703772 – ident: e_1_2_7_38_1 doi: 10.1016/j.nanoen.2015.07.020 – ident: e_1_2_7_46_1 doi: 10.1149/2.037211jes – ident: e_1_2_7_70_1 doi: 10.1021/acsami.5b07093 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201702410 – ident: e_1_2_7_49_1 doi: 10.1039/c4ta01751j – ident: e_1_2_7_28_1 doi: 10.1038/nnano.2014.6 – ident: e_1_2_7_21_1 doi: 10.1002/adfm.201702524 – ident: e_1_2_7_5_1 doi: 10.1039/c2ee02781j – ident: e_1_2_7_66_1 doi: 10.1021/acsami.6b12001 – ident: e_1_2_7_2_1 doi: 10.1126/science.1212741 – ident: e_1_2_7_33_1 doi: 10.1002/aenm.201600659 – ident: e_1_2_7_72_1 doi: 10.1038/ncomms2327 – ident: e_1_2_7_52_1 doi: 10.1002/aenm.201300958 – ident: e_1_2_7_61_1 doi: 10.1002/anie.201706652 – ident: e_1_2_7_16_1 doi: 10.1038/nenergy.2016.71 – ident: e_1_2_7_41_1 doi: 10.1021/am504310k – ident: e_1_2_7_68_1 doi: 10.1038/ncomms9689 – ident: e_1_2_7_58_1 doi: 10.1002/aenm.201700180 – ident: e_1_2_7_54_1 doi: 10.1002/aenm.201601177 – ident: e_1_2_7_23_1 doi: 10.1038/ncomms3798 – ident: e_1_2_7_30_1 doi: 10.1149/1.1379565 – ident: e_1_2_7_25_1 doi: 10.1039/C5CS00344J – ident: e_1_2_7_13_1 doi: 10.1002/adma.201301795 – ident: e_1_2_7_44_1 doi: 10.1016/j.jpowsour.2017.05.064 – ident: e_1_2_7_14_1 doi: 10.1021/cr500207g – ident: e_1_2_7_3_1 doi: 10.1038/451652a – ident: e_1_2_7_20_1 doi: 10.1002/anie.201303971 – ident: e_1_2_7_43_1 doi: 10.1039/C6TA08364A – ident: e_1_2_7_62_1 doi: 10.1016/j.joule.2018.01.004 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201700622 – ident: e_1_2_7_22_1 doi: 10.1039/C4CC09366F – ident: e_1_2_7_64_1 doi: 10.1039/c1ee01782a – ident: e_1_2_7_55_1 doi: 10.1021/acs.nanolett.7b00083 – ident: e_1_2_7_42_1 doi: 10.1016/j.cej.2017.01.020 – ident: e_1_2_7_6_1 doi: 10.1039/C4TA04428B – ident: e_1_2_7_40_1 doi: 10.1002/adma.201503816 – ident: e_1_2_7_63_1 doi: 10.1002/aenm.201300139 – ident: e_1_2_7_11_1 doi: 10.1021/cr020731c – ident: e_1_2_7_29_1 doi: 10.1002/adma.200901079 – ident: e_1_2_7_32_1 doi: 10.1021/nl3016957 – ident: e_1_2_7_69_1 doi: 10.1039/C5EE02074C – ident: e_1_2_7_15_1 doi: 10.1038/nenergy.2015.29 |
SSID | ssj0009606 |
Score | 2.6297905 |
SecondaryResourceType | review_article |
Snippet | Hollow structures exhibit fascinating and important properties for energy‐related applications, such as lithium‐ion batteries, supercapacitors, and... Hollow structures exhibit fascinating and important properties for energy-related applications, such as lithium-ion batteries, supercapacitors, and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800492 |
SubjectTerms | anode materials Anodes Complex systems Electrocatalysts Energy storage hierarchically structured materials hollow structures Lithium-ion batteries Materials science Rechargeable batteries Sodium Sodium-ion batteries Storage batteries |
Title | The Application of Hollow Structured Anodes for Sodium‐Ion Batteries: From Simple to Complex Systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800492 https://www.ncbi.nlm.nih.gov/pubmed/29971832 https://www.proquest.com/docview/2291238585 https://www.proquest.com/docview/2064247438 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VPbUHoPwGCjISEqe0cRzH2d4i2tW2UjmwVOotsp2JVNEmqLsrECcegWfkSTqTZLPdVggJbokyVhyPZ-Ybj_MZ4J02htcabei1ikPKv2TopC9DE6u0VJHHyHKiePoxnZwlJ-f6_NZf_B0_xLDgxpbR-ms2cOtm-yvSUFu2vEEyY5DLTpg3bDEq-rTij2J43pLtKR2O0iRbsjZG8f568_WodA9qriPXNvSMH4JddrrbcfJlbzF3e_7HHT7H__mqR_Cgx6Ui7ybSDmxg_Ri2b7EVPoGKppTIVwVv0VRiQtOo-SamLQvt4hpLkddNiTNBWFhMm_JicfX7569jEu6IPCkvPxDj6-ZKTC-Yl1jMG8Eu6RK_i548_SmcjY8-f5iE_TENoVeGFOx06lKbUTRMXKrId5oSkyir0GqMvUTtZNVWb1NUONIYpZg4qR1BIS_9qFLPYLNuanwBQmaV9SaT6CNFyA4dD4IzHl3lbWYwgHCppsL3HOZ8lMZl0bEvxwWPXzGMXwDvB_mvHXvHHyV3l1oveiueFXE8osDOldMA3g6Pyf64qGJrbBYkwxlcQjgsC-B5N1uGV1GoN-wyA4hbnf-lD0V-eJoPdy__pdEr2KLrfhPcLmyS9vE1oaa5e9Naxg1K6g2H |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOvCmBAkZC4pQ2juM4yy0CVlvo9sC2ErcodiZSRZugdlcgTvwEfiO_hBnnsSwIIcExyVhxPK9vbOczwDNtDM81lqHTKg6p_pKhla4KTazSSkUOo5ILxflhOjtO3rzXw25C_hem44cYJ9zYM3y8ZgfnCem9NWtoWXniIJkxyqUofJmP9fZV1bs1gxQDdE-3p3Q4SZNs4G2M4r3N9pt56TewuYldffKZ3gA7dLvbc_Jhd7W0u-7LL4yO__VdN-F6D01F3tnSLbiEzW249hNh4R2oyapEvl7zFm0tZmRJ7Sex8ES0q3OsRN60FV4IgsNi0VYnq7PvX7_tk3DH5Uml-QsxPW_PxOKEqYnFshUclU7xs-j50-_C8fT10ctZ2J_UEDplSMdWpzYtM0qIiU0VhU9TYRJlNZYaYydRW1n7BdwUFU40RikmVmpLaMhJN6nVPdhq2gbvg5BZXTqTSXSRInCHlgfBGoe2dmVmMIBw0FPhehpzPk3jtOgImOOCx68Yxy-A56P8x47A44-SO4Pai96RL4o4nlBu58XTAJ6Oj8kFeV2lbLBdkQwXcQlBsSyA7c5cxldRtjccNQOIvdL_0ocifzXPx6sH_9LoCVyZHc0PioP9w7cP4Srd7_fE7cAWWQI-IhC1tI-9m_wAIH8Rog |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIiE48H6kFDASEqe0cRw_llvEstoCrRBLpd4i25lIFW1Stbsq4sRP4DfySxgn2WwXhJDgmGSsOJ7XZ4_zGeCF1DqsNdrYS5HGNP_iseO-jHUqVCkSj4kNE8W9fTU9yN4eysNLf_F3_BDDglvwjDZeBwc_LaudFWmoLVveIG4CyKUgfDVTiQl2Pf64IpAK-Lxl2xMyHqnMLGkbk3Rnvf16WvoNa65D1zb3TG6BXfa623LyeXsxd9v-6y-Ejv_zWbfhZg9MWd5Z0h24gvVduHGJrvAeVGRTLF9VvFlTsSnZUXPBZi0N7eIMS5bXTYnnjMAwmzXl0eLkx7fvuyTcMXnSxPwVm5w1J2x2FIiJ2bxhISYd4xfWs6ffh4PJm0-vp3F_TkPshSYNO6mcsobSYeaUoOCpS8wSU6GVmHqO0vGqLd8qFDiSmCjMHJeOsJDnflSJB7BRNzU-AsZNZb02HH0iCNqhC4PgtEdXeWs0RhAv1VT4nsQ8nKVxXHT0y2kRxq8Yxi-Cl4P8aUff8UfJraXWi96Nz4s0HVFmD6XTCJ4Pj8kBQ1XF1tgsSCZM4TICYiaCh521DK-iXK9DzIwgbXX-lz4U-XgvH642_6XRM7j2YTwp3u_uv3sM1-l2vyFuCzbIEPAJIai5e9o6yU_zEhBa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Application+of+Hollow+Structured+Anodes+for+Sodium-Ion+Batteries%3A+From+Simple+to+Complex+Systems&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xie%2C+Fangxi&rft.au=Zhang%2C+Lei&rft.au=Ye%2C+Chao&rft.au=Jaroniec%2C+Mietek&rft.date=2019-09-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=38&rft.spage=e1800492&rft_id=info:doi/10.1002%2Fadma.201800492&rft_id=info%3Apmid%2F29971832&rft.externalDocID=29971832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |