Practical High‐Voltage Lithium Metal Batteries Enabled by Tuning the Solvation Structure in Weakly Solvating Electrolyte

Li metal batteries (LMBs) are ideal candidates for future high‐energy‐density battery systems. To date, high‐voltage LMBs suffer severe limitations because of electrolytes unstable against Li anodes and high‐voltage cathodes. Although ether‐based electrolytes exhibit good stability with Li metal, co...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 14; pp. e2107492 - n/a
Main Authors Pham, Thuy Duong, Bin Faheem, Abdullah, Kim, Junam, Oh, Hye Min, Lee, Kyung‐Koo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Li metal batteries (LMBs) are ideal candidates for future high‐energy‐density battery systems. To date, high‐voltage LMBs suffer severe limitations because of electrolytes unstable against Li anodes and high‐voltage cathodes. Although ether‐based electrolytes exhibit good stability with Li metal, compared to carbonate‐based electrolytes, they have been used only in ≤4.0 V LMBs because of their limited oxidation stability. Here, a high concentration electrolyte (HCE) comprising lithium bis(fluorosulfonyl)imide (LiFSI) and a weakly solvating solvent (1,2‐diethoxyethane, DEE) is designed, which can regulate unique solvation structures with only associated complexes at relatively lower concentration compared to the reported HCEs. This effectively suppresses dendrites on the anode side, and preserves the structural integrity of the cathode side under high voltages by the formation of stable interfacial layers on a Li metal anode and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode. Consequently, a 3.5 m LiFSI–DEE plays an important role in enhancing the stability of the Li||NMC811 cell with a capacity retention of ≈94% after 200 cycles under a high current density of 2.5 mA cm−2. In addition, the 3.5 m LiFSI–DEE electrolyte exhibits good performance with anode‐free batteries. This study offers a promising approach to enable ether‐based electrolytes for high‐voltage LMBs applications. By combining a weakly solvating solvent (1,2‐diethoxyethane) and high salt concentration (lithium bis(fluorosulfonyl)imide), the solvation structures can be tuned to consist of mainly associated species at a relatively lower concentration in comparison to superconcentrated electrolytes. This effectively can suppress dendrites on the Li metal anode and preserve the structural integrity of the LiNi0.8Mn0.1Co0.1O2 cathode side under high voltages (4.4 V).
AbstractList Li metal batteries (LMBs) are ideal candidates for future high-energy-density battery systems. To date, high-voltage LMBs suffer severe limitations because of electrolytes unstable against Li anodes and high-voltage cathodes. Although ether-based electrolytes exhibit good stability with Li metal, compared to carbonate-based electrolytes, they have been used only in ≤4.0 V LMBs because of their limited oxidation stability. Here, a high concentration electrolyte (HCE) comprising lithium bis(fluorosulfonyl)imide (LiFSI) and a weakly solvating solvent (1,2-diethoxyethane, DEE) is designed, which can regulate unique solvation structures with only associated complexes at relatively lower concentration compared to the reported HCEs. This effectively suppresses dendrites on the anode side, and preserves the structural integrity of the cathode side under high voltages by the formation of stable interfacial layers on a Li metal anode and LiNi Mn Co O (NMC811) cathode. Consequently, a 3.5 m LiFSI-DEE plays an important role in enhancing the stability of the Li||NMC811 cell with a capacity retention of ≈94% after 200 cycles under a high current density of 2.5 mA cm . In addition, the 3.5 m LiFSI-DEE electrolyte exhibits good performance with anode-free batteries. This study offers a promising approach to enable ether-based electrolytes for high-voltage LMBs applications.
Li metal batteries (LMBs) are ideal candidates for future high‐energy‐density battery systems. To date, high‐voltage LMBs suffer severe limitations because of electrolytes unstable against Li anodes and high‐voltage cathodes. Although ether‐based electrolytes exhibit good stability with Li metal, compared to carbonate‐based electrolytes, they have been used only in ≤4.0 V LMBs because of their limited oxidation stability. Here, a high concentration electrolyte (HCE) comprising lithium bis(fluorosulfonyl)imide (LiFSI) and a weakly solvating solvent (1,2‐diethoxyethane, DEE) is designed, which can regulate unique solvation structures with only associated complexes at relatively lower concentration compared to the reported HCEs. This effectively suppresses dendrites on the anode side, and preserves the structural integrity of the cathode side under high voltages by the formation of stable interfacial layers on a Li metal anode and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode. Consequently, a 3.5 m LiFSI–DEE plays an important role in enhancing the stability of the Li||NMC811 cell with a capacity retention of ≈94% after 200 cycles under a high current density of 2.5 mA cm−2. In addition, the 3.5 m LiFSI–DEE electrolyte exhibits good performance with anode‐free batteries. This study offers a promising approach to enable ether‐based electrolytes for high‐voltage LMBs applications. By combining a weakly solvating solvent (1,2‐diethoxyethane) and high salt concentration (lithium bis(fluorosulfonyl)imide), the solvation structures can be tuned to consist of mainly associated species at a relatively lower concentration in comparison to superconcentrated electrolytes. This effectively can suppress dendrites on the Li metal anode and preserve the structural integrity of the LiNi0.8Mn0.1Co0.1O2 cathode side under high voltages (4.4 V).
Li metal batteries (LMBs) are ideal candidates for future high‐energy‐density battery systems. To date, high‐voltage LMBs suffer severe limitations because of electrolytes unstable against Li anodes and high‐voltage cathodes. Although ether‐based electrolytes exhibit good stability with Li metal, compared to carbonate‐based electrolytes, they have been used only in ≤4.0 V LMBs because of their limited oxidation stability. Here, a high concentration electrolyte (HCE) comprising lithium bis(fluorosulfonyl)imide (LiFSI) and a weakly solvating solvent (1,2‐diethoxyethane, DEE) is designed, which can regulate unique solvation structures with only associated complexes at relatively lower concentration compared to the reported HCEs. This effectively suppresses dendrites on the anode side, and preserves the structural integrity of the cathode side under high voltages by the formation of stable interfacial layers on a Li metal anode and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode. Consequently, a 3.5 m LiFSI–DEE plays an important role in enhancing the stability of the Li||NMC811 cell with a capacity retention of ≈94% after 200 cycles under a high current density of 2.5 mA cm−2. In addition, the 3.5 m LiFSI–DEE electrolyte exhibits good performance with anode‐free batteries. This study offers a promising approach to enable ether‐based electrolytes for high‐voltage LMBs applications.
Abstract Li metal batteries (LMBs) are ideal candidates for future high‐energy‐density battery systems. To date, high‐voltage LMBs suffer severe limitations because of electrolytes unstable against Li anodes and high‐voltage cathodes. Although ether‐based electrolytes exhibit good stability with Li metal, compared to carbonate‐based electrolytes, they have been used only in ≤4.0 V LMBs because of their limited oxidation stability. Here, a high concentration electrolyte (HCE) comprising lithium bis(fluorosulfonyl)imide (LiFSI) and a weakly solvating solvent (1,2‐diethoxyethane, DEE) is designed, which can regulate unique solvation structures with only associated complexes at relatively lower concentration compared to the reported HCEs. This effectively suppresses dendrites on the anode side, and preserves the structural integrity of the cathode side under high voltages by the formation of stable interfacial layers on a Li metal anode and LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811) cathode. Consequently, a 3.5 m LiFSI–DEE plays an important role in enhancing the stability of the Li||NMC811 cell with a capacity retention of ≈94% after 200 cycles under a high current density of 2.5 mA cm −2 . In addition, the 3.5 m LiFSI–DEE electrolyte exhibits good performance with anode‐free batteries. This study offers a promising approach to enable ether‐based electrolytes for high‐voltage LMBs applications.
Author Kim, Junam
Oh, Hye Min
Pham, Thuy Duong
Bin Faheem, Abdullah
Lee, Kyung‐Koo
Author_xml – sequence: 1
  givenname: Thuy Duong
  surname: Pham
  fullname: Pham, Thuy Duong
  organization: Kunsan National University
– sequence: 2
  givenname: Abdullah
  surname: Bin Faheem
  fullname: Bin Faheem, Abdullah
  organization: Kunsan National University
– sequence: 3
  givenname: Junam
  surname: Kim
  fullname: Kim, Junam
  organization: Kunsan National University
– sequence: 4
  givenname: Hye Min
  surname: Oh
  fullname: Oh, Hye Min
  email: ohmin@kunsan.ac.kr
  organization: Kunsan National University
– sequence: 5
  givenname: Kyung‐Koo
  orcidid: 0000-0001-8176-6232
  surname: Lee
  fullname: Lee, Kyung‐Koo
  email: kklee@kunsan.ac.kr
  organization: Kunsan National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35212457$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URNuBLUtkiQ2bGfwTx5klVAOtlKpIU2AZ2c7NjIsTF9sBhRWPwDPyJPVo2qnEhtX9pHvupyudU3Q0-AEQeknJghLC3sbeuQUjjBJZLNkTdEJLyudlxZZHh0zJMTqN8YYQTlkhn6FjLlhOQp6gX5-CMska5fC53Wz__v7zxbukNoBrm7Z27PElpLx8r1KCYCHi1aC0gxbrCV-Pgx02OG0Br737oZL1A16nMJo0BsB2wF9BfXPTwzazKwcmBe-mBM_R0065CC_u5wx9_rC6Pjuf11cfL87e1XPDJWfzZQXGaCGgq7RhXBMtCDO0FYzLUmptCiakkaLoWmJa1VWsKHXFQUvS8pz5DL3Z994G_32EmJreRgPOqQH8GBtWcl6VQpId-vof9MaPYcjfZaqQgssqwzO02FMm-BgDdM1tsL0KU0NJs7PS7Kw0Byv54NV97ah7aA_4g4YMLPfAT-tg-k9ds76s68fyO6PZnSQ
CitedBy_id crossref_primary_10_1149_1945_7111_ac9a07
crossref_primary_10_1002_anie_202203693
crossref_primary_10_1016_j_ensm_2022_12_043
crossref_primary_10_1360_nso_20230039
crossref_primary_10_1039_D2YA00252C
crossref_primary_10_1063_5_0178871
crossref_primary_10_1007_s11426_023_1730_x
crossref_primary_10_1002_adfm_202212499
crossref_primary_10_1016_j_jechem_2024_06_053
crossref_primary_10_1002_anie_202317302
crossref_primary_10_1016_j_cej_2023_142907
crossref_primary_10_1002_aenm_202300918
crossref_primary_10_1002_anie_202403585
crossref_primary_10_1021_acsenergylett_3c00052
crossref_primary_10_3390_batteries10060216
crossref_primary_10_1002_adfm_202315527
crossref_primary_10_1016_j_nanoen_2024_109406
crossref_primary_10_3390_batteries9090477
crossref_primary_10_1002_anie_202216169
crossref_primary_10_1002_cssc_202300590
crossref_primary_10_1002_ange_202300771
crossref_primary_10_1002_batt_202200453
crossref_primary_10_1016_j_cej_2024_149143
crossref_primary_10_1002_adfm_202212349
crossref_primary_10_1002_anie_202311413
crossref_primary_10_1016_j_jcis_2024_02_164
crossref_primary_10_1021_acsami_4c06491
crossref_primary_10_1002_adfm_202305284
crossref_primary_10_1039_D3MH01908J
crossref_primary_10_1002_ange_202403585
crossref_primary_10_1016_j_jechem_2023_05_027
crossref_primary_10_1002_aenm_202301396
crossref_primary_10_1002_anie_202300771
crossref_primary_10_1002_aenm_202301477
crossref_primary_10_1002_ange_202208291
crossref_primary_10_1016_j_mtener_2023_101413
crossref_primary_10_1016_j_mtener_2024_101512
crossref_primary_10_1002_ange_202311413
crossref_primary_10_1021_acsenergylett_2c02003
crossref_primary_10_1021_jacs_3c11798
crossref_primary_10_1016_j_ensm_2022_11_012
crossref_primary_10_1002_smll_202311812
crossref_primary_10_1149_1945_7111_ac9f7d
crossref_primary_10_1016_j_jcis_2023_12_012
crossref_primary_10_1016_j_cclet_2024_109556
crossref_primary_10_1016_j_electacta_2023_142496
crossref_primary_10_1016_j_ensm_2023_102816
crossref_primary_10_1016_j_cej_2022_138599
crossref_primary_10_1021_jacsau_3c00035
crossref_primary_10_1007_s11705_022_2286_4
crossref_primary_10_1002_aenm_202300259
crossref_primary_10_1002_anie_202303950
crossref_primary_10_1016_j_nanoen_2024_109545
crossref_primary_10_1002_anie_202208291
crossref_primary_10_1016_j_nanoen_2023_108335
crossref_primary_10_26599_EMD_2023_9370003
crossref_primary_10_1002_eem2_12470
crossref_primary_10_1021_jacs_4c02345
crossref_primary_10_1002_ange_202203693
crossref_primary_10_1016_j_ensm_2023_02_028
crossref_primary_10_1021_acsami_3c06812
crossref_primary_10_1002_batt_202300344
crossref_primary_10_1016_j_jcis_2023_03_046
crossref_primary_10_1002_ange_202317302
crossref_primary_10_12677_JOCR_2023_114024
crossref_primary_10_1002_adfm_202212000
crossref_primary_10_1039_D3EE02803H
crossref_primary_10_1002_aenm_202202529
crossref_primary_10_1016_j_cclet_2023_109146
crossref_primary_10_1016_j_chempr_2024_01_001
crossref_primary_10_1002_adfm_202401868
crossref_primary_10_1016_j_ensm_2023_103043
crossref_primary_10_1002_ange_202216169
crossref_primary_10_1016_j_jpowsour_2023_233237
crossref_primary_10_1039_D2SC06620C
crossref_primary_10_1002_chem_202302826
crossref_primary_10_1039_D2TA07696A
crossref_primary_10_1021_acsami_4c04178
crossref_primary_10_1002_smtd_202400183
crossref_primary_10_1002_ange_202303950
crossref_primary_10_1016_j_jechem_2022_11_017
crossref_primary_10_1088_2752_5724_acac68
crossref_primary_10_1007_s43979_023_00074_4
Cites_doi 10.1021/acsami.0c08094
10.1002/smll.202100133
10.1021/acsenergylett.6b00594
10.1149/2.100310jes
10.1039/c3ta13043f
10.1021/acsami.8b05185
10.1002/smll.201900687
10.1007/978-3-319-44054-5
10.1002/adma.201706102
10.1126/science.aab1595
10.1038/s41560-019-0338-x
10.1002/aenm.201803372
10.1016/j.joule.2019.05.006
10.1021/acsenergylett.8b02376
10.1073/pnas.2010852117
10.1038/nmat4041
10.1016/j.jpowsour.2015.06.117
10.1038/s41524-018-0064-0
10.1149/2.0731908jes
10.1149/2.1441707jes
10.1016/j.chempr.2018.05.002
10.1002/aenm.202003520
10.1038/ncomms7362
10.1016/j.joule.2017.10.007
10.1021/acsenergylett.8b00935
10.1002/advs.201700032
10.1002/aenm.202001972
10.1038/s41560-020-0634-5
10.1016/j.joule.2018.05.002
10.1002/aenm.201501010
10.1002/aenm.202003092
10.1038/nenergy.2017.12
10.1016/j.chempr.2017.10.017
10.1021/acsaem.9b00607
10.1149/2.1011507jes
10.1016/j.jpowsour.2013.01.063
10.1149/1.2048658
10.1002/anie.202011482
10.1021/cr500003w
10.1038/s41560-018-0199-8
10.1021/acs.chemrev.9b00531
10.1016/j.ensm.2019.12.027
10.1002/aenm.202002891
10.1021/acsenergylett.9b00381
10.1002/aenm.202001440
10.3389/fchem.2019.00494
10.1038/nnano.2017.16
10.1002/admi.201800807
10.1002/adfm.201503697
10.1002/aenm.201400993
10.1002/adfm.202001285
10.1016/j.joule.2018.03.008
10.1038/srep21771
10.1002/smll.202103375
10.1016/j.nanoen.2019.104309
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202107492
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202107492
35212457
SMLL202107492
Genre article
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: NRF‐2020R1I1A3066503
– fundername: National Research Foundation of Korea
  grantid: NRF-2020R1I1A3066503
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
NPM
31~
AASGY
AAYOK
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3732-98eccb55ef8bc23b0b502c1d523767bbc4257c754fd0cdaf8246b83eb70d32463
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Aug 16 10:50:42 EDT 2024
Thu Oct 10 18:25:45 EDT 2024
Fri Aug 23 03:48:45 EDT 2024
Sat Sep 28 08:22:06 EDT 2024
Sat Aug 24 00:56:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords weakly solvating electrolytes
high current density
high voltage
high concentration electrolytes
lithium metal batteries
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-98eccb55ef8bc23b0b502c1d523767bbc4257c754fd0cdaf8246b83eb70d32463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8176-6232
PMID 35212457
PQID 2647537863
PQPubID 1046358
PageCount 15
ParticipantIDs proquest_miscellaneous_2633865706
proquest_journals_2647537863
crossref_primary_10_1002_smll_202107492
pubmed_primary_35212457
wiley_primary_10_1002_smll_202107492_SMLL202107492
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 162
2019; 7
2019; 4
2015; 6
2019; 3
2017; 2
2015; 5
2017; 4
2020; 120
2019; 2
2020; 60
2019; 15
2006
2020; 12
2020; 10
2013; 160
2014; 114
2019; 166
2015; 350
2015; 295
2016; 6
2020; 5
2018; 3
2018; 2
2018; 5
2021; 11
2018; 4
2014; 2
2020
2021; 17
2017; 12
2013; 233
2019
2018
2020; 117
2017
2014; 13
2016
2020; 67
2017; 164
1995; 142
2018; 10
2016; 26
2020; 29
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Ma H. (e_1_2_8_55_1) 2020; 12
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– start-page: 15
  year: 2006
  end-page: 16
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 4
  start-page: 174
  year: 2018
  publication-title: Chem
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 160
  year: 2013
  publication-title: J. Electrochem. Soc.
– year: 2019
  publication-title: Adv. Energy Mater.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 3
  start-page: 1662
  year: 2019
  publication-title: Joule
– volume: 295
  start-page: 47
  year: 2015
  publication-title: J. Power Sources
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 2
  start-page: 196
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 3
  start-page: 2059
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 377
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1877
  year: 2018
  publication-title: Chem
– volume: 7
  start-page: 494
  year: 2019
  publication-title: Front. Chem.
– volume: 162
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 411
  year: 2019
  publication-title: ACS Energy Lett.
– year: 2018
  publication-title: Adv. Mater.
– volume: 233
  start-page: 121
  year: 2013
  publication-title: J. Power Sources
– volume: 60
  start-page: 4090
  year: 2020
  publication-title: Angew. Chem., Int. Ed. Ed.
– volume: 26
  start-page: 605
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1548
  year: 2018
  publication-title: Joule
– year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 5
  start-page: 526
  year: 2020
  publication-title: Nat. Energy
– year: 2016
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 15
  year: 2019
  publication-title: Small
– volume: 120
  start-page: 6783
  year: 2020
  publication-title: Chem. Rev.
– volume: 4
  start-page: 15
  year: 2018
  publication-title: npj Comput. Mater.
– volume: 4
  start-page: 896
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 2346
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 961
  year: 2014
  publication-title: Nat. Mater.
– volume: 2
  start-page: 833
  year: 2018
  publication-title: Joule
– volume: 3
  start-page: 739
  year: 2018
  publication-title: Nat. Energy
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 2
  start-page: 4925
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 142
  start-page: 2873
  year: 1995
  publication-title: J. Electrochem. Soc.
– year: 2017
– volume: 4
  start-page: 180
  year: 2019
  publication-title: Nat. Energy
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 350
  start-page: 938
  year: 2015
  publication-title: Science
– volume: 2
  start-page: 110
  year: 2018
  publication-title: Joule
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_8_26_1
  doi: 10.1021/acsami.0c08094
– ident: e_1_2_8_27_1
  doi: 10.1002/smll.202100133
– ident: e_1_2_8_7_1
  doi: 10.1021/acsenergylett.6b00594
– ident: e_1_2_8_30_1
  doi: 10.1149/2.100310jes
– ident: e_1_2_8_47_1
  doi: 10.1039/c3ta13043f
– ident: e_1_2_8_22_1
  doi: 10.1021/acsami.8b05185
– ident: e_1_2_8_49_1
  doi: 10.1002/smll.201900687
– ident: e_1_2_8_40_1
– ident: e_1_2_8_9_1
  doi: 10.1007/978-3-319-44054-5
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.201706102
– ident: e_1_2_8_36_1
  doi: 10.1126/science.aab1595
– ident: e_1_2_8_4_1
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_8_25_1
  doi: 10.1002/aenm.201803372
– ident: e_1_2_8_6_1
  doi: 10.1016/j.joule.2019.05.006
– ident: e_1_2_8_54_1
  doi: 10.1021/acsenergylett.8b02376
– ident: e_1_2_8_37_1
  doi: 10.1073/pnas.2010852117
– ident: e_1_2_8_45_1
  doi: 10.1038/nmat4041
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jpowsour.2015.06.117
– ident: e_1_2_8_52_1
  doi: 10.1038/s41524-018-0064-0
– ident: e_1_2_8_51_1
  doi: 10.1149/2.0731908jes
– ident: e_1_2_8_53_1
  doi: 10.1149/2.1441707jes
– ident: e_1_2_8_17_1
  doi: 10.1016/j.chempr.2018.05.002
– ident: e_1_2_8_13_1
  doi: 10.1002/aenm.202003520
– ident: e_1_2_8_15_1
  doi: 10.1038/ncomms7362
– ident: e_1_2_8_48_1
  doi: 10.1016/j.joule.2017.10.007
– ident: e_1_2_8_16_1
  doi: 10.1021/acsenergylett.8b00935
– ident: e_1_2_8_38_1
  doi: 10.1002/advs.201700032
– ident: e_1_2_8_57_1
  doi: 10.1002/aenm.202001972
– ident: e_1_2_8_28_1
  doi: 10.1038/s41560-020-0634-5
– ident: e_1_2_8_58_1
  doi: 10.1016/j.joule.2018.05.002
– ident: e_1_2_8_8_1
  doi: 10.1002/aenm.201501010
– ident: e_1_2_8_10_1
  doi: 10.1002/aenm.202003092
– ident: e_1_2_8_21_1
  doi: 10.1038/nenergy.2017.12
– ident: e_1_2_8_35_1
  doi: 10.1016/j.chempr.2017.10.017
– ident: e_1_2_8_20_1
  doi: 10.1021/acsaem.9b00607
– ident: e_1_2_8_12_1
  doi: 10.1149/2.1011507jes
– ident: e_1_2_8_43_1
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jpowsour.2013.01.063
– ident: e_1_2_8_31_1
  doi: 10.1149/1.2048658
– ident: e_1_2_8_41_1
  doi: 10.1002/anie.202011482
– ident: e_1_2_8_11_1
  doi: 10.1021/cr500003w
– ident: e_1_2_8_24_1
  doi: 10.1038/s41560-018-0199-8
– ident: e_1_2_8_1_1
  doi: 10.1021/acs.chemrev.9b00531
– ident: e_1_2_8_19_1
  doi: 10.1016/j.ensm.2019.12.027
– ident: e_1_2_8_2_1
  doi: 10.1002/aenm.202002891
– ident: e_1_2_8_34_1
  doi: 10.1021/acsenergylett.9b00381
– volume: 12
  year: 2020
  ident: e_1_2_8_55_1
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Ma H.
– ident: e_1_2_8_39_1
  doi: 10.1002/aenm.202001440
– ident: e_1_2_8_14_1
  doi: 10.3389/fchem.2019.00494
– ident: e_1_2_8_33_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_8_44_1
  doi: 10.1002/admi.201800807
– ident: e_1_2_8_42_1
  doi: 10.1002/adfm.201503697
– ident: e_1_2_8_50_1
  doi: 10.1002/aenm.201400993
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.202001285
– ident: e_1_2_8_3_1
  doi: 10.1016/j.joule.2018.03.008
– ident: e_1_2_8_29_1
  doi: 10.1038/srep21771
– ident: e_1_2_8_32_1
  doi: 10.1002/smll.202103375
– ident: e_1_2_8_56_1
  doi: 10.1016/j.nanoen.2019.104309
SSID ssj0031247
Score 2.6454635
Snippet Li metal batteries (LMBs) are ideal candidates for future high‐energy‐density battery systems. To date, high‐voltage LMBs suffer severe limitations because of...
Li metal batteries (LMBs) are ideal candidates for future high-energy-density battery systems. To date, high-voltage LMBs suffer severe limitations because of...
Abstract Li metal batteries (LMBs) are ideal candidates for future high‐energy‐density battery systems. To date, high‐voltage LMBs suffer severe limitations...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2107492
SubjectTerms Cathodes
Electrolytes
high concentration electrolytes
high current density
high voltage
Lithium batteries
lithium metal batteries
Nanotechnology
Oxidation
Solvation
Stability
Structural integrity
weakly solvating electrolytes
Title Practical High‐Voltage Lithium Metal Batteries Enabled by Tuning the Solvation Structure in Weakly Solvating Electrolyte
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202107492
https://www.ncbi.nlm.nih.gov/pubmed/35212457
https://www.proquest.com/docview/2647537863
https://search.proquest.com/docview/2633865706
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hnuAA5T-0ICMhcUob7DjJHhHaqkJbDmwLvUUZ2xGrptmKTQ7bE4_AM_IkzNib0IUDEhwjx4rj-ftsz3wGeGW1s1ZqrujRJk7rIonROhNrVHVVS6uU8dkWH7Ljs_T9uT6_UcUf-CHGDTe2DO-v2cArXB3-Ig1dXTZ8dCA5o3DCTpjZ9BgVfRz5oxQFL3-7CsWsmIm3BtbGRB5ud9-OSn9AzW3k6kPP0T2ohkGHjJOLg77DA3P9G5_j__zVLtzd4FLxNijSfbjl2gdw5wZb4UO4DtxGJFTB2SE_vn3_tGw68kditui-LPpLceIIyotA2UkrcDH1hVlW4Fqc9rwBIwhuivmyCfvAYu7Ja_uvTixa8dlVF816aKV3p-GGnmbduUdwdjQ9fXccb65uiI3KlYwnBakGau3qAo1UmKBOpHljNSfh5IiGXYXJdVrbxNiqLmSaYaEc5okliJepx7DTLlv3FERVKJxoZ2qdYeqURVoC6cIliISu0KYRvB5EV14Fho4ycDHLkmezHGczgv1BsuXGUlclAUJaseVFpiJ4OTaTjfHBSdW6Zc_vKL4aNU-yCJ4EjRg_pbj4OdV5BNLL9S9jKOcns9n49OxfOu3Bbck1GD59aB92SFTuOSGjDl947f8JRkYI3g
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQewAOLf8EChgJiVPaYMdJ9ohgqwWyPbBb4BZlbEesmmYrmhy2pz5Cn5EnYcbeBBYOSHCMHCuOxzPzeTzzmbEXRlljhKKKHqXDuMqiEIzVoQJZlZUwUmqXbXGUTI7j919Un01ItTCeH2IIuJFmOHtNCk4B6YOfrKHnpzWdHQhKKRyhFd5GnVekm28_DgxSEt2Xu18FvVZI1Fs9b2MkDjb7b_qlP8DmJnZ1zudwl0E_bJ9zcrLftbCvL35jdPyv_7rFdtbQlL_2a-k2u2abO-zmL4SFd9mFpzdCuXJKEPl-efVpWbdokni-aL8uulM-tYjmuWftxE04H7vaLMNhxecdxWA4Ik4-W9Y-FMxnjr-2-2b5ouGfbXlSr_pWfHfsL-mpV629x44Px_M3k3B9e0OoZSpFOMpwdYBStspACwkRqEjoV0ZRHk4KoMla6FTFlYm0KatMxAlk0kIaGUR5ibzPtpplYx8yXmYSRsrqSiUQW2kAd0EqsxEAAiwwccBe9rIrzjxJR-HpmEVBs1kMsxmwvV60xVpZzwvEhLhpS7NEBuz50IxqRmcnZWOXHb0j6XbUNEoC9sAvieFTkuqfY5UGTDjB_mUMxWya58PTo3_p9Ixdn8yneZG_O_rwmN0QVJLhson22BaKzT5BoNTCU6cKPwDW7wz-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VRargAKX8BQq4EhKntKkdJ9kjandV6Laq2BZ6izK2I1ZNsxVNDtsTj8Az8iSM7U3owgEJjpFjxfF4Zr6xZz4DvNHSaM2lreiRKozLLApRGxVKFGVRci2EctkWx8nBWfzhXJ7fquL3_BD9hpvVDGevrYJf6XLnF2no9WVljw64zSgckBG-EyeC2_Br_2NPICXIe7nrVchphZZ5q6NtjPjOcv9lt_QH1lyGrs73jB5A0Y3ap5xcbLcNbqub3wgd_-e31uH-Apiyd34lPYQVU2_AvVt0hY_gxpMbkVSZTQ_58e37p1nVkEFi42nzZdpesiNDWJ55zk4KwdnQVWZphnN22todGEZ4k01mld8IZhPHXtt-NWxas8-muKjmXSu9O_RX9FTzxjyGs9HwdO8gXNzdECqRCh4OMlobKKUpM1RcYIQy4mpXS5uFkyIqaytUKuNSR0oXZcbjBDNhMI00YbxEPIHVelabZ8CKTOBAGlXKBGMjNFIMJDMTIRK8Qh0H8LYTXX7lKTpyT8bMczubeT-bAWx2ks0XqnqdEyKkkC3NEhHAVt9MSmZPTorazFr7jrB3o6ZREsBTvyL6Twlb_RzLNADu5PqXMeSTo_G4f3r-L51ew9rJ_igfvz8-fAF3ua3HcKlEm7BKUjMvCSU1-Mopwk-pYAut
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+High%E2%80%90Voltage+Lithium+Metal+Batteries+Enabled+by+Tuning+the+Solvation+Structure+in+Weakly+Solvating+Electrolyte&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Pham%2C+Thuy+Duong&rft.au=Bin+Faheem%2C+Abdullah&rft.au=Kim%2C+Junam&rft.au=Oh%2C+Hye+Min&rft.date=2022-04-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=14&rft_id=info:doi/10.1002%2Fsmll.202107492&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202107492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon