Photo‐Induced C−H Methylation Reactions
Direct C−H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo‐induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy ef...
Saved in:
Published in | Chemistry : a European journal Vol. 29; no. 72; pp. e202302542 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
22.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct C−H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo‐induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3)−H, C(sp2)−H, and C(sp)−H bonds in various organic molecules. The discussed methodologies encompass transition‐metal‐based photocatalysis, organophotocatalysis, as well as other metal‐free approaches, including electron donor‐acceptor (EDA)‐enabled transformations. Importantly, a wide range of easily accessible agents such as tert‐butyl peroxide, methanol, DMSO, methyl tert‐butyl ether, TsOMe, N‐(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C−H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds.
In this review, we present a concise overview of recent breakthroughs in photochemical C−H methylation. These advancements encompass a variety of methodologies, including transition metal‐based photocatalysis, organophotocatalysis, and various metal‐free approaches, such as electron donor‐acceptor ‐enabled processes. |
---|---|
AbstractList | Direct C−H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo‐induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3)−H, C(sp2)−H, and C(sp)−H bonds in various organic molecules. The discussed methodologies encompass transition‐metal‐based photocatalysis, organophotocatalysis, as well as other metal‐free approaches, including electron donor‐acceptor (EDA)‐enabled transformations. Importantly, a wide range of easily accessible agents such as tert‐butyl peroxide, methanol, DMSO, methyl tert‐butyl ether, TsOMe, N‐(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C−H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds. Direct C-H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo-induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3 )-H, C(sp2 )-H, and C(sp)-H bonds in various organic molecules. The discussed methodologies encompass transition-metal-based photocatalysis, organophotocatalysis, as well as other metal-free approaches, including electron donor-acceptor (EDA)-enabled transformations. Importantly, a wide range of easily accessible agents such as tert-butyl peroxide, methanol, DMSO, methyl tert-butyl ether, TsOMe, N-(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C-H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds.Direct C-H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo-induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3 )-H, C(sp2 )-H, and C(sp)-H bonds in various organic molecules. The discussed methodologies encompass transition-metal-based photocatalysis, organophotocatalysis, as well as other metal-free approaches, including electron donor-acceptor (EDA)-enabled transformations. Importantly, a wide range of easily accessible agents such as tert-butyl peroxide, methanol, DMSO, methyl tert-butyl ether, TsOMe, N-(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C-H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds. Direct C−H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo‐induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp 3 )−H, C(sp 2 )−H, and C(sp)−H bonds in various organic molecules. The discussed methodologies encompass transition‐metal‐based photocatalysis, organophotocatalysis, as well as other metal‐free approaches, including electron donor‐acceptor (EDA)‐enabled transformations. Importantly, a wide range of easily accessible agents such as tert ‐butyl peroxide, methanol, DMSO, methyl tert ‐butyl ether, TsOMe, N ‐(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C−H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds. Direct C−H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo‐induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3)−H, C(sp2)−H, and C(sp)−H bonds in various organic molecules. The discussed methodologies encompass transition‐metal‐based photocatalysis, organophotocatalysis, as well as other metal‐free approaches, including electron donor‐acceptor (EDA)‐enabled transformations. Importantly, a wide range of easily accessible agents such as tert‐butyl peroxide, methanol, DMSO, methyl tert‐butyl ether, TsOMe, N‐(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C−H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds. In this review, we present a concise overview of recent breakthroughs in photochemical C−H methylation. These advancements encompass a variety of methodologies, including transition metal‐based photocatalysis, organophotocatalysis, and various metal‐free approaches, such as electron donor‐acceptor ‐enabled processes. Direct C-H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo-induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp )-H, C(sp )-H, and C(sp)-H bonds in various organic molecules. The discussed methodologies encompass transition-metal-based photocatalysis, organophotocatalysis, as well as other metal-free approaches, including electron donor-acceptor (EDA)-enabled transformations. Importantly, a wide range of easily accessible agents such as tert-butyl peroxide, methanol, DMSO, methyl tert-butyl ether, TsOMe, N-(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C-H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds. |
Author | Lin, Yu‐Mei Li, Qian‐Yu Gong, Lei He, Yuhang |
Author_xml | – sequence: 1 givenname: Qian‐Yu surname: Li fullname: Li, Qian‐Yu organization: Xiamen University – sequence: 2 givenname: Yuhang surname: He fullname: He, Yuhang organization: Xiamen University – sequence: 3 givenname: Yu‐Mei surname: Lin fullname: Lin, Yu‐Mei email: linyum@xmu.edu.cn organization: Xiamen University – sequence: 4 givenname: Lei orcidid: 0000-0002-4478-6880 surname: Gong fullname: Gong, Lei email: gongl@xmu.edu.cn organization: Technologies of Energy Materials of Fujian Province (IKKEM) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37800464$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1Lw0AQhhdR7IdePUrBiyCpsx9Jdo8Sqi20KKLnZbPZ0JQ0W7MJ0ptHj-JP7C8xta1CQTzNHJ7nZebtoMPCFgahMwx9DECu9dTM-wQIBeIzcoDa2CfYo2HgH6I2CBZ6gU9FC3WcmwGACCg9Ri0acgAWsDa6epjayq7ePkZFUmuT9KLV--ewNzHVdJmrKrNF79EovV7cCTpKVe7M6XZ20fPt4CkaeuP7u1F0M_Y0DSnxRKgTYERwxTDjyscxKKKxYoJzzqjwscE0TmJfpCSJlWaxChinlKdx84JQtIsuN7mL0r7UxlVynjlt8lwVxtZOEh4yEgSUQINe7KEzW5dFc50kAhjHFITfUOdbqo7nJpGLMpurcil3NTQA2wC6tM6VJpU6q76_r0qV5RKDXLct123Ln7Ybrb-n7ZL_FMRGeM1ys_yHltFwMPl1vwAL2ZBX |
CitedBy_id | crossref_primary_10_1002_ange_202412418 crossref_primary_10_1021_acs_joc_4c01719 crossref_primary_10_1039_D4OB01571A crossref_primary_10_1055_a_2298_2106 crossref_primary_10_1038_s41467_024_52245_1 crossref_primary_10_1039_D4GC00314D crossref_primary_10_1002_anie_202412418 crossref_primary_10_1021_acs_joc_4c01650 crossref_primary_10_1021_acs_joc_4c02223 |
Cites_doi | 10.1063/1.5143800 10.1021/acscatal.2c01087 10.1039/c3sc51747k 10.1021/jacs.1c09412 10.2174/0929867053363540 10.1038/nature14255 10.1038/s41586-020-2131-1 10.1039/C9SC02564B 10.1039/C9NJ03106E 10.1016/j.bmcl.2018.09.016 10.1038/s41570-019-0099-x 10.1021/cr900184e 10.1021/cr200060g 10.1039/C8CS00201K 10.1021/acs.chemrev.6b00057 10.1021/jacs.1c05607 10.1016/j.chempr.2020.07.007 10.1021/jacs.2c13396 10.1126/science.aat9750 10.1074/jbc.271.1.136 10.1126/science.aad9289 10.1002/ejoc.201601591 10.1021/ar010076f 10.1038/s41586-020-2137-8 10.1002/anie.202002900 10.1002/chem.201605640 10.1038/s41467-018-06246-6 10.1055/s-0031-1290869 10.1021/acs.orglett.9b04331 10.1002/adsc.201400984 10.1039/D0CS00973C 10.1021/ar5004626 10.1038/nature22813 10.1097/00007691-199202000-00003 10.1021/ja061803a 10.1021/ja0646747 10.1039/D3GC00187C 10.1039/C5CS00628G 10.1038/s41467-021-22690-3 10.1039/D2QO01491B 10.1039/C5QO00004A 10.1021/jacs.5b04818 10.1039/a704951j 10.1021/acs.joc.8b00205 10.1021/acscatal.2c05698 10.1039/D3CC01908J 10.1021/cr300503r 10.1021/ja406484v 10.1016/j.mcat.2022.112145 10.1038/s41586-018-0808-5 10.1039/C6SC04274K 10.1038/nature03955 10.1126/science.abh2623 10.1038/ncomms7526 10.1021/cr0509760 10.1021/ja0570943 10.1021/ol403040g 10.1039/C2CS35250H 10.1038/417507a 10.1111/j.1751-1097.1990.tb01808.x 10.1002/anie.201301451 10.1039/C7SC03768F 10.1021/acs.orglett.8b01085 10.1002/ange.201205674 10.1039/C9OB01169B 10.1021/ol2011264 10.1055/s-0037-1611812 10.1039/C8QO00438B 10.1002/ejoc.202201379 10.1021/acs.joc.6b02891 10.1351/pac200779060981 10.1002/ajoc.202300015 10.1021/ja0775063 10.1021/acs.orglett.8b01250 10.1021/acs.joc.3c00266 10.1021/acssuschemeng.9b02822 10.1039/D2GC01225A 10.1021/acs.jpcc.2c04586 10.1021/acs.joc.6b00811 10.1021/acscatal.0c00881 10.1021/acs.chemrev.8b00077 10.1021/ja312277g 10.1002/anie.201303207 10.1039/D2SC02953G 10.1002/ajoc.202100640 10.1002/anie.201604406 10.1021/acs.joc.2c02823 10.1039/C8SC03019G 10.1038/s44160-023-00291-w 10.1021/jm3003697 10.1016/j.chempr.2017.03.009 10.1039/D1CC02249K 10.1021/acs.orglett.0c01277 10.1039/C9OB01490J 10.1002/anie.201402023 10.1021/acs.orglett.9b00327 10.1021/jacs.9b08801 10.1002/chem.201802352 10.1021/ol400888r 10.1002/anie.201205674 10.1021/acs.joc.6b01449 10.1021/acs.orglett.2c02545 10.1039/D2CC05569D 10.1021/acs.orglett.9b01439 10.1021/ar200202c 10.1021/acs.joc.1c01325 10.1038/nature14885 10.1021/acs.accounts.6b00621 10.1002/cjoc.202200435 10.1002/ange.201303207 10.1039/C6SC02653B |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202302542 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 37800464 10_1002_chem_202302542 CHEM202302542 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Huxiang Youth Talent Support Program – fundername: Natural Science Foundation of Fujian Province funderid: 2017J06006 – fundername: National Natural Science Foundation of China funderid: 22071209; 22071206; 22371237 – fundername: National Natural Science Foundation of China grantid: 22071209 – fundername: National Natural Science Foundation of China grantid: 22071206 – fundername: Natural Science Foundation of Fujian Province grantid: 2017J06006 – fundername: National Natural Science Foundation of China grantid: 22371237 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3732-97cd04298a4148a51b0a2c1a4988843951e13bdb59f2dbac4ba648338fb5429a3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Thu Jul 10 18:33:19 EDT 2025 Tue Aug 19 06:10:54 EDT 2025 Thu Apr 03 07:09:21 EDT 2025 Wed Aug 06 19:04:47 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 Wed Jan 22 16:15:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 72 |
Keywords | metal-free catalysis C−H methylation transition metal-catalysis photocatalysis |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-97cd04298a4148a51b0a2c1a4988843951e13bdb59f2dbac4ba648338fb5429a3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4478-6880 |
PMID | 37800464 |
PQID | 2904813095 |
PQPubID | 986340 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2874266320 proquest_journals_2904813095 pubmed_primary_37800464 crossref_citationtrail_10_1002_chem_202302542 crossref_primary_10_1002_chem_202302542 wiley_primary_10_1002_chem_202302542_CHEM202302542 |
PublicationCentury | 2000 |
PublicationDate | December 22, 2023 2023-12-22 2023-Dec-22 20231222 |
PublicationDateYYYYMMDD | 2023-12-22 |
PublicationDate_xml | – month: 12 year: 2023 text: December 22, 2023 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 1990; 52 2017; 8 2007; 107 2013; 4 2017; 2 2017; 82 2019; 51 2019; 10 2023; 145 2019; 17 2022; 24 2013; 125 2020; 59 2019; 565 2011; 13 1992; 14 2018; 83 2020; 10 2012; 55 2007; 79 2011; 111 2018; 47 2020; 6 2018; 9 2015; 48 2013; 15 2023; 25 2018; 5 1997; 93 2015; 137 2023; 29 2023; 26 2022; 40 2019; 21 2013; 52 2010; 110 2013; 113 2016; 116 2016; 81 2006; 128 2022; 126 2016; 351 2016; 45 2014; 10 2014; 53 2015; 2 2019; 7 2018; 28 2023; 13 2015; 6 2019; 3 2021; 86 2023 2022; 2 9 2023; 12 2020; 580 2023; 59 2002; 35 2013; 42 2017; 23 2005; 436 2013 2013; 125 52 2022; 519 2015; 525 2002; 417 2021; 143 2021; 50 2019; 141 2018; 20 2016; 55 2018; 24 2022; 144 2021; 57 2017; 50 2016; 7 2021; 12 2023; 88 2015; 357 2018; 118 2019; 43 2022; 12 1996; 271 2015; 519 2020; 116 2022; 13 2013; 135 2021; 372 2020; 22 2022; 11 2012; 45 2012; 44 2008; 130 2005; 12 2017; 547 e_1_2_9_52_2 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_71_2 e_1_2_9_79_1 e_1_2_9_33_2 e_1_2_9_56_2 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_2 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_2 e_1_2_9_41_2 e_1_2_9_87_2 e_1_2_9_60_2 e_1_2_9_83_1 e_1_2_9_45_2 e_1_2_9_22_2 e_1_2_9_64_2 e_1_2_9_6_2 e_1_2_9_119_1 e_1_2_9_2_2 e_1_2_9_111_1 e_1_2_9_115_2 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_26_2 e_1_2_9_68_2 e_1_2_9_30_2 e_1_2_9_99_1 e_1_2_9_72_2 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_95_1 e_1_2_9_53_2 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_125_2 e_1_2_9_102_1 e_1_2_9_129_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_57_2 e_1_2_9_121_1 e_1_2_9_19_2 e_1_2_9_61_2 e_1_2_9_88_2 e_1_2_9_46_1 e_1_2_9_65_3 e_1_2_9_23_2 e_1_2_9_42_2 e_1_2_9_65_2 e_1_2_9_84_2 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_110_2 e_1_2_9_118_1 e_1_2_9_9_1 e_1_2_9_114_2 e_1_2_9_69_2 e_1_2_9_27_1 e_1_2_9_31_1 e_1_2_9_73_2 e_1_2_9_50_2 e_1_2_9_12_2 e_1_2_9_54_2 e_1_2_9_96_1 e_1_2_9_109_2 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_35_2 e_1_2_9_58_2 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_62_2 e_1_2_9_89_1 e_1_2_9_20_2 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_2 e_1_2_9_4_3 e_1_2_9_81_1 e_1_2_9_4_2 e_1_2_9_113_1 e_1_2_9_117_2 e_1_2_9_8_2 e_1_2_9_24_2 e_1_2_9_47_2 e_1_2_9_132_1 e_1_2_9_28_2 e_1_2_9_51_2 e_1_2_9_74_2 Song S. (e_1_2_9_77_1) 2023; 29 e_1_2_9_78_1 e_1_2_9_55_1 e_1_2_9_32_2 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_2 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_13_2 e_1_2_9_59_2 e_1_2_9_36_2 e_1_2_9_17_2 e_1_2_9_63_2 e_1_2_9_40_1 e_1_2_9_44_2 e_1_2_9_67_2 e_1_2_9_21_1 e_1_2_9_86_1 e_1_2_9_7_2 e_1_2_9_82_1 e_1_2_9_3_2 e_1_2_9_112_1 e_1_2_9_116_2 e_1_2_9_25_2 e_1_2_9_48_2 e_1_2_9_131_1 e_1_2_9_29_2 |
References_xml | – volume: 135 start-page: 12135 year: 2013 end-page: 12141 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 2064 year: 2019 end-page: 2068 publication-title: Org. Lett. – volume: 79 start-page: 981 year: 2007 end-page: 991 publication-title: Pure Appl. Chem. – volume: 6 start-page: 6526 year: 2015 publication-title: Nat. Commun. – volume: 14 start-page: 14 year: 1992 end-page: 19 publication-title: Ther. Drug Monit. – volume: 6 start-page: 1877 year: 2020 end-page: 1887 publication-title: Chem – volume: 93 start-page: 3931 year: 1997 end-page: 3937 publication-title: J. Chem. Soc. Faraday Trans. – volume: 47 start-page: 6603 year: 2018 end-page: 6743 publication-title: Chem. Soc. Rev. – volume: 107 start-page: 174 year: 2007 end-page: 238 publication-title: Chem. Rev. – volume: 55 start-page: 9743 year: 2016 end-page: 9747 publication-title: Angew. Chem. Int. Ed. – volume: 116 start-page: 10075 year: 2016 end-page: 10166 publication-title: Chem. Rev. – volume: 130 start-page: 2900 year: 2008 end-page: 2901 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 7660 year: 2015 end-page: 7663 publication-title: J. Am. Chem. Soc. – volume: 372 start-page: 398 year: 2021 end-page: 403 publication-title: Science – volume: 43 start-page: 12533 year: 2019 end-page: 12537 publication-title: New J. Chem. – volume: 525 start-page: 87 year: 2015 end-page: 90 publication-title: Nature – volume: 8 start-page: 7412 year: 2017 end-page: 7418 publication-title: Chem. Sci. – volume: 88 start-page: 6218 year: 2023 end-page: 6226 publication-title: J. Org. Chem. – volume: 55 start-page: 4489 year: 2012 end-page: 4500 publication-title: J. Med. Chem. – volume: 417 start-page: 507 year: 2002 end-page: 514 publication-title: Nature – volume: 28 start-page: 3283 year: 2018 end-page: 3289 publication-title: Bioorg. Med. Chem. Lett. – volume: 271 start-page: 136 year: 1996 end-page: 147 publication-title: Biol. Chem. – volume: 13 start-page: 3232 year: 2011 end-page: 3234 publication-title: Org. Lett. – volume: 17 start-page: 6654 year: 2019 end-page: 6661 publication-title: Org. Biomol. Chem. – volume: 580 start-page: 621 year: 2020 end-page: 627 publication-title: Nature – volume: 22 start-page: 4228 year: 2020 end-page: 4234 publication-title: Org. Lett. – volume: 128 start-page: 78 year: 2006 end-page: 79 publication-title: J. Am. Chem. Soc. – volume: 88 start-page: 2631 year: 2023 end-page: 2641 publication-title: J. Org. Chem. – volume: 57 start-page: 6066 year: 2021 end-page: 6069 publication-title: Chem. Commun. – volume: 5 start-page: 2214 year: 2018 end-page: 2218 publication-title: Org. Chem. Front. – volume: 126 start-page: 21338 year: 2022 end-page: 21347 publication-title: J. Phys. Chem. C – volume: 547 start-page: 79 year: 2017 end-page: 83 publication-title: Nature – volume: 86 start-page: 11905 year: 2021 end-page: 11914 publication-title: J. Org. Chem. – volume: 116 year: 2020 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 3187 year: 2023 end-page: 3197 publication-title: Green Chem. – volume: 145 start-page: 2787 year: 2023 end-page: 2793 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 4894 year: 2023 end-page: 4902 publication-title: ACS Catal. – volume: 12 start-page: 4473 year: 2022 end-page: 4480 publication-title: ACS Catal. – volume: 59 start-page: 10626 year: 2020 end-page: 10632 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 4802 year: 2014 end-page: 4806 publication-title: Angew. Chem. Int. Ed. – volume: 12 year: 2023 publication-title: Asian J. Org. Chem. – volume: 12 start-page: 2377 year: 2021 publication-title: Nat. Commun. – volume: 23 start-page: 2537 year: 2017 end-page: 2541 publication-title: Chem. Eur. J. – volume: 51 start-page: 3021 year: 2019 end-page: 3054 publication-title: Synthesis – volume: 10 start-page: 6248 year: 2020 end-page: 6253 publication-title: ACS Catal. – volume: 125 52 start-page: 268 254 year: 2013 2013 end-page: 283 269 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 22 start-page: 305 year: 2020 end-page: 309 publication-title: Org. Lett. – volume: 29 year: 2023 publication-title: Chem. Eur. J. – volume: 118 start-page: 7532 year: 2018 end-page: 7585 publication-title: Chem. Rev. – volume: 141 start-page: 17305 year: 2019 end-page: 17313 publication-title: J. Am. Chem. Soc. – volume: 83 start-page: 3000 year: 2018 end-page: 3012 publication-title: J. Org. Chem. – volume: 17 start-page: 7416 year: 2019 end-page: 7424 publication-title: Org. Biomol. Chem. – volume: 580 start-page: 76 year: 2020 end-page: 80 publication-title: Nature – volume: 2 9 start-page: 766 6853 year: 2023 2022 end-page: 777 publication-title: Nat. Synth. Org. Chem. Front. – volume: 24 start-page: 6219 year: 2022 end-page: 6223 publication-title: Org. Lett. – volume: 111 start-page: 5215 year: 2011 end-page: 5246 publication-title: Chem. Rev. – volume: 24 start-page: 10064 year: 2018 end-page: 10068 publication-title: Chem. Eur. J. – volume: 44 start-page: 1427 year: 2012 end-page: 1452 publication-title: Synthesis – volume: 42 start-page: 97 year: 2013 end-page: 113 publication-title: Chem. Soc. Rev. – volume: 125 start-page: 12480 year: 2013 end-page: 12492 publication-title: Angew. Chem. – volume: 3 start-page: 347 year: 2019 end-page: 360 publication-title: Nat. Chem. Rev. – volume: 50 start-page: 5517 year: 2021 end-page: 5563 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 6915 year: 2019 end-page: 6919 publication-title: Chem. Sci. – volume: 81 start-page: 6898 year: 2016 end-page: 6926 publication-title: J. Org. Chem. – volume: 4 start-page: 3906 year: 2013 end-page: 3911 publication-title: Chem. Sci. – volume: 357 start-page: 1333 year: 2015 end-page: 1350 publication-title: Adv. Synth. Catal. – volume: 135 start-page: 2124 year: 2013 end-page: 2127 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 1147 year: 2010 end-page: 1169 publication-title: Chem. Rev. – volume: 2 start-page: 688 year: 2017 end-page: 702 publication-title: Chem – volume: 45 start-page: 546 year: 2016 end-page: 576 publication-title: Chem. Soc. Rev. – volume: 35 start-page: 706 year: 2002 end-page: 716 publication-title: Acc. Chem. Res. – volume: 8 start-page: 2081 year: 2017 end-page: 2085 publication-title: Chem. Sci. – volume: 361 start-page: 668 year: 2018 end-page: 672 publication-title: Science – volume: 519 start-page: 74 year: 2015 end-page: 77 publication-title: Nature – volume: 519 year: 2022 publication-title: J. Mol. Catal. – volume: 144 start-page: 1187 year: 2022 end-page: 1197 publication-title: J. Am. Chem. Soc. – volume: 26 year: 2023 publication-title: Eur. J. Org. Chem. – volume: 59 start-page: 8556 year: 2023 end-page: 8559 publication-title: Chem. Commun. – volume: 24 start-page: 4606 year: 2022 end-page: 4613 publication-title: Green Chem. – volume: 11 year: 2022 publication-title: Asian J. Org. Chem. – volume: 21 start-page: 4259 year: 2019 end-page: 4265 publication-title: Org. Lett. – volume: 13 start-page: 12158 year: 2022 end-page: 12163 publication-title: Chem. Sci. – volume: 52 start-page: 617 year: 1990 end-page: 627 publication-title: Photochem. Photobiol. – volume: 82 start-page: 2059 year: 2017 end-page: 2066 publication-title: J. Org. Chem. – volume: 20 start-page: 3229 year: 2018 end-page: 3232 publication-title: Org. Lett. – volume: 565 start-page: 67 year: 2019 end-page: 72 publication-title: Nature – volume: 113 start-page: 5322 year: 2013 end-page: 5363 publication-title: Chem. Rev. – volume: 40 start-page: 2825 year: 2022 end-page: 2837 publication-title: Chin. J. Chem. – volume: 20 start-page: 3487 year: 2018 end-page: 3490 publication-title: Org. Lett. – volume: 52 start-page: 12256 year: 2013 end-page: 12267 publication-title: Angew. Chem. Int. Ed. – volume: 351 start-page: 1421 year: 2016 end-page: 1424 publication-title: Science – volume: 7 start-page: 14153 year: 2019 end-page: 14160 publication-title: ACS Sustainable Chem. Eng. – volume: 12 start-page: 23 year: 2005 end-page: 49 publication-title: Curr. Med. Chem. – volume: 50 start-page: 620 year: 2017 end-page: 626 publication-title: Acc. Chem. Res. – volume: 128 start-page: 12634 year: 2006 end-page: 12635 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 1053 year: 2015 end-page: 1064 publication-title: Acc. Chem. Res. – volume: 45 start-page: 555 year: 2012 end-page: 564 publication-title: Acc. Chem. Res. – volume: 10 start-page: 179 year: 2019 end-page: 184 publication-title: Chem. Sci. – volume: 59 start-page: 118 year: 2023 end-page: 121 publication-title: Chem. Commun. – volume: 436 start-page: 1139 year: 2005 end-page: 1140 publication-title: Nature – volume: 7 start-page: 6407 year: 2016 end-page: 6412 publication-title: Chem. Sci. – volume: 2 start-page: 1107 year: 2015 end-page: 1295 publication-title: Org. Chem. Front. – volume: 15 start-page: 2302 year: 2013 end-page: 2305 publication-title: Org. Lett. – volume: 81 start-page: 6980 year: 2016 end-page: 6987 publication-title: J. Org. Chem. – volume: 9 start-page: 3725 year: 2018 publication-title: Nat. Commun. – volume: 10 start-page: 66 year: 2014 end-page: 69 publication-title: Org. Lett. – volume: 52 start-page: 11726 year: 2013 end-page: 11743 publication-title: Angew. Chem. Int. Ed. – volume: 128 start-page: 8350 year: 2006 end-page: 8357 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 12304 year: 2021 end-page: 12314 publication-title: J. Am. Chem. Soc. – ident: e_1_2_9_110_2 doi: 10.1063/1.5143800 – ident: e_1_2_9_129_1 doi: 10.1021/acscatal.2c01087 – ident: e_1_2_9_72_2 doi: 10.1039/c3sc51747k – ident: e_1_2_9_76_1 doi: 10.1021/jacs.1c09412 – ident: e_1_2_9_10_1 doi: 10.2174/0929867053363540 – ident: e_1_2_9_61_2 doi: 10.1038/nature14255 – ident: e_1_2_9_117_2 doi: 10.1038/s41586-020-2131-1 – ident: e_1_2_9_59_2 doi: 10.1039/C9SC02564B – ident: e_1_2_9_112_1 doi: 10.1039/C9NJ03106E – ident: e_1_2_9_16_1 – ident: e_1_2_9_124_1 – ident: e_1_2_9_108_1 – ident: e_1_2_9_8_2 doi: 10.1016/j.bmcl.2018.09.016 – ident: e_1_2_9_68_2 doi: 10.1038/s41570-019-0099-x – ident: e_1_2_9_84_2 doi: 10.1021/cr900184e – ident: e_1_2_9_66_1 – ident: e_1_2_9_2_2 doi: 10.1021/cr200060g – ident: e_1_2_9_88_2 doi: 10.1039/C8CS00201K – ident: e_1_2_9_46_1 – ident: e_1_2_9_51_2 doi: 10.1021/acs.chemrev.6b00057 – ident: e_1_2_9_127_1 doi: 10.1021/jacs.1c05607 – ident: e_1_2_9_18_2 doi: 10.1016/j.chempr.2020.07.007 – ident: e_1_2_9_49_1 – volume: 29 year: 2023 ident: e_1_2_9_77_1 publication-title: Chem. Eur. J. – ident: e_1_2_9_82_1 doi: 10.1021/jacs.2c13396 – ident: e_1_2_9_104_1 doi: 10.1126/science.aat9750 – ident: e_1_2_9_12_2 doi: 10.1074/jbc.271.1.136 – ident: e_1_2_9_44_2 doi: 10.1126/science.aad9289 – ident: e_1_2_9_109_2 doi: 10.1002/ejoc.201601591 – ident: e_1_2_9_26_2 doi: 10.1021/ar010076f – ident: e_1_2_9_75_1 doi: 10.1038/s41586-020-2137-8 – ident: e_1_2_9_105_1 doi: 10.1002/anie.202002900 – ident: e_1_2_9_93_1 doi: 10.1002/chem.201605640 – ident: e_1_2_9_19_2 doi: 10.1038/s41467-018-06246-6 – ident: e_1_2_9_36_2 doi: 10.1055/s-0031-1290869 – ident: e_1_2_9_42_2 doi: 10.1021/acs.orglett.9b04331 – ident: e_1_2_9_31_1 – ident: e_1_2_9_35_2 doi: 10.1002/adsc.201400984 – ident: e_1_2_9_67_2 doi: 10.1039/D0CS00973C – ident: e_1_2_9_32_2 doi: 10.1021/ar5004626 – ident: e_1_2_9_78_1 doi: 10.1038/nature22813 – ident: e_1_2_9_13_2 doi: 10.1097/00007691-199202000-00003 – ident: e_1_2_9_57_2 doi: 10.1021/ja061803a – ident: e_1_2_9_1_1 – ident: e_1_2_9_71_2 doi: 10.1021/ja0646747 – ident: e_1_2_9_29_2 doi: 10.1002/adsc.201400984 – ident: e_1_2_9_40_1 – ident: e_1_2_9_113_1 – ident: e_1_2_9_111_1 doi: 10.1039/D3GC00187C – ident: e_1_2_9_17_2 doi: 10.1039/C5CS00628G – ident: e_1_2_9_64_2 doi: 10.1038/s41467-021-22690-3 – ident: e_1_2_9_65_3 doi: 10.1039/D2QO01491B – ident: e_1_2_9_21_1 – ident: e_1_2_9_87_2 doi: 10.1039/C5QO00004A – ident: e_1_2_9_37_1 doi: 10.1021/jacs.5b04818 – ident: e_1_2_9_90_1 doi: 10.1039/a704951j – ident: e_1_2_9_121_1 doi: 10.1021/acs.joc.8b00205 – ident: e_1_2_9_81_1 doi: 10.1021/acscatal.2c05698 – ident: e_1_2_9_103_1 doi: 10.1039/D3CC01908J – ident: e_1_2_9_52_2 doi: 10.1021/cr300503r – ident: e_1_2_9_69_2 doi: 10.1021/ja406484v – ident: e_1_2_9_106_1 doi: 10.1016/j.mcat.2022.112145 – ident: e_1_2_9_28_2 doi: 10.1038/s41586-018-0808-5 – ident: e_1_2_9_73_2 doi: 10.1039/C6SC04274K – ident: e_1_2_9_114_2 doi: 10.1038/nature03955 – ident: e_1_2_9_34_1 – ident: e_1_2_9_79_1 doi: 10.1126/science.abh2623 – ident: e_1_2_9_132_1 doi: 10.1038/ncomms7526 – ident: e_1_2_9_85_2 doi: 10.1021/cr0509760 – ident: e_1_2_9_22_2 doi: 10.1021/ja0570943 – ident: e_1_2_9_74_2 doi: 10.1021/ol403040g – ident: e_1_2_9_53_2 doi: 10.1039/C2CS35250H – ident: e_1_2_9_56_2 doi: 10.1038/417507a – ident: e_1_2_9_115_2 doi: 10.1111/j.1751-1097.1990.tb01808.x – ident: e_1_2_9_33_2 doi: 10.1002/anie.201301451 – ident: e_1_2_9_119_1 doi: 10.1039/C7SC03768F – ident: e_1_2_9_122_1 doi: 10.1021/acs.orglett.8b01085 – ident: e_1_2_9_43_1 – ident: e_1_2_9_4_2 doi: 10.1002/ange.201205674 – ident: e_1_2_9_100_1 doi: 10.1039/C9OB01169B – ident: e_1_2_9_24_2 doi: 10.1021/ol2011264 – ident: e_1_2_9_126_2 doi: 10.1055/s-0037-1611812 – ident: e_1_2_9_38_1 doi: 10.1039/C8QO00438B – ident: e_1_2_9_47_2 doi: 10.1002/ejoc.202201379 – ident: e_1_2_9_98_1 doi: 10.1021/acs.joc.6b02891 – ident: e_1_2_9_116_2 doi: 10.1351/pac200779060981 – ident: e_1_2_9_48_2 doi: 10.1002/ajoc.202300015 – ident: e_1_2_9_5_1 – ident: e_1_2_9_27_1 – ident: e_1_2_9_55_1 – ident: e_1_2_9_23_2 doi: 10.1021/ja0775063 – ident: e_1_2_9_99_1 doi: 10.1021/acs.orglett.8b01250 – ident: e_1_2_9_102_1 doi: 10.1021/acs.joc.3c00266 – ident: e_1_2_9_101_1 doi: 10.1021/acssuschemeng.9b02822 – ident: e_1_2_9_120_1 doi: 10.1039/D2GC01225A – ident: e_1_2_9_14_1 doi: 10.1021/acs.jpcc.2c04586 – ident: e_1_2_9_92_1 doi: 10.1021/acs.joc.6b00811 – ident: e_1_2_9_11_1 – ident: e_1_2_9_20_2 doi: 10.1021/acscatal.0c00881 – ident: e_1_2_9_50_2 doi: 10.1021/acs.chemrev.8b00077 – ident: e_1_2_9_41_2 doi: 10.1021/ja312277g – ident: e_1_2_9_7_2 doi: 10.1002/anie.201303207 – ident: e_1_2_9_130_1 doi: 10.1039/D2SC02953G – ident: e_1_2_9_128_1 doi: 10.1002/ajoc.202100640 – ident: e_1_2_9_39_1 doi: 10.1002/anie.201604406 – ident: e_1_2_9_131_1 doi: 10.1021/acs.joc.2c02823 – ident: e_1_2_9_15_1 doi: 10.1039/C8SC03019G – ident: e_1_2_9_65_2 doi: 10.1038/s44160-023-00291-w – ident: e_1_2_9_9_1 doi: 10.1021/jm3003697 – ident: e_1_2_9_118_1 doi: 10.1016/j.chempr.2017.03.009 – ident: e_1_2_9_58_2 doi: 10.1039/D1CC02249K – ident: e_1_2_9_45_2 doi: 10.1021/acs.orglett.0c01277 – ident: e_1_2_9_123_1 doi: 10.1039/C9OB01490J – ident: e_1_2_9_89_1 doi: 10.1002/anie.201402023 – ident: e_1_2_9_94_1 doi: 10.1021/acs.orglett.9b00327 – ident: e_1_2_9_70_2 doi: 10.1021/jacs.9b08801 – ident: e_1_2_9_95_1 doi: 10.1002/chem.201802352 – ident: e_1_2_9_25_2 doi: 10.1021/ol400888r – ident: e_1_2_9_4_3 doi: 10.1002/anie.201205674 – ident: e_1_2_9_125_2 doi: 10.1021/acs.joc.6b01449 – ident: e_1_2_9_80_1 doi: 10.1021/acs.orglett.2c02545 – ident: e_1_2_9_63_2 doi: 10.1039/D2CC05569D – ident: e_1_2_9_107_1 doi: 10.1021/acs.orglett.9b01439 – ident: e_1_2_9_3_2 doi: 10.1021/ar200202c – ident: e_1_2_9_86_1 – ident: e_1_2_9_96_1 doi: 10.1021/acs.joc.1c01325 – ident: e_1_2_9_91_1 doi: 10.1038/nature14885 – ident: e_1_2_9_60_2 doi: 10.1021/acs.accounts.6b00621 – ident: e_1_2_9_62_2 doi: 10.1002/cjoc.202200435 – ident: e_1_2_9_54_2 doi: 10.1126/science.aat9750 – ident: e_1_2_9_83_1 – ident: e_1_2_9_6_2 doi: 10.1002/ange.201303207 – ident: e_1_2_9_30_2 doi: 10.1055/s-0031-1290869 – ident: e_1_2_9_97_1 doi: 10.1039/C6SC02653B |
SSID | ssj0009633 |
Score | 2.4764795 |
SecondaryResourceType | review_article |
Snippet | Direct C−H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the... Direct C-H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202302542 |
SubjectTerms | Acetic acid Atmospheric chemistry Chemistry C−H methylation Energy efficiency Functional groups Halides metal-free catalysis Methylation Organic chemistry Pharmaceuticals Photocatalysis Photochemicals Phthalimide Phthalimides Reagents transition metal-catalysis |
Title | Photo‐Induced C−H Methylation Reactions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202302542 https://www.ncbi.nlm.nih.gov/pubmed/37800464 https://www.proquest.com/docview/2904813095 https://www.proquest.com/docview/2874266320 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-IF734_VGdUkHwINnWtF2TowzHECYyHOxWkiZFUDZx3cWTR4_in7i_xLym7Zwigl5KSxOavJeP32ve-z2A04gL2jKGBVHmSgKqOOF-mJKAeyyStClTgfHOvetWdxBcDcPhpyh-yw9R_XDDmZGv1zjBhZw05qShpk8YSW4gtLFxcBFGhy1ERf05f5QZXTaXfBAR5GAtWRubtLFYfXFX-gY1F5FrvvV01kGUjbYeJ_f1aSbryfMXPsf_9GoD1gpc6l7YgbQJS3q0BSvtMh3cNpzf3I2z8ezlDZN9JFq57dnre9ftaaNp60_n9rWNkpjswKBzedvukiLTAkn8yKeER4nCnYmJwJhHIvRkU9DEEwE3BrKBLKGnPV8qGfKUKimSQIpWwIx1m0rMdyX8XVgejUd6H1zNddrSBrN7SiKXoJAsUjrVKZOKyZA5QEpJx0lBQ47ZMB5iS6BMYxRBXInAgbOq_KMl4PixZK1UXFxMxElMORLi-AZIOnBSvTaiw3MRMdLjqSnDIsQpPm06sGcVXn3Kj1h--usAzdX2SxtiJLKong7-UukQVvEeXWYorcFy9jTVRwb4ZPI4H9wfZH74OQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5ED3rx_aiuWkHwINFt2m6ToyzKqrsiouCtJE2KoOyK7l48efQo_kR_iTPNtrKKCHoptE1oMpM03yQz3wBsJ1LxBhoWzOCVRdxIJsM4Z5EMRKJ5XeeK4p07Z43WVXRyHZfehBQL4_ghqg03mhnF_5omOG1I73-yhmKnKJQcMTQaOfgXnqC03oVVdfHJIIXjy2WTjxJGLKwlb2Od74_WH12XvoHNUexaLD5HM6DLZjufk9u9QV_vZU9fGB3_1a9ZmB5CU__AjaU5GLPdeZhslhnhFmD3_KbX770_v1K-j8wav_n-8tbyOxaV7Vzq_AvrAiUeF-Hq6PCy2WLDZAssC5OQM5lkhhYnoSK0kFQc6LriWaAiiTYyopY4sEGojY5lzo1WWaRVIxJo4OaaUl6pcAnGu72uXQHfSps3LML2wGiiE1RaJMbmNhfaCB0LD1gp6jQbMpFTQoy71HEo85REkFYi8GCnKn_vODh-LFkrNZcO5-JjyiVx4oSIJT3Yql6j6OhoRHVtb4BlREJQJeR1D5adxqtPhYkoDoA94IXefmlDSlwW1d3qXyptwmTrstNO28dnp2swRc_Jg4bzGoz3HwZ2HXFQX28UI_0D8wH8VA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB0hkGgvQFsooUtJpUo9ILOJ4yT2sVpYLbQghIrELbJjR5VAu6jsXnrqsUfEJ-6XMBNvQreoQqKXSElsxZ4Z229izxuAj7nSPEPHglm8MsGtYipJKyZULHPDI1Npinc-PskG5-LoIr34I4rf80O0P9xoZNTzNQ3wa1t1H0hDsU8USY4QGn0cnISXRBZJsuv9swcCKTQvn0xe5IxIWBvaxoh35-vPL0uPsOY8dK3Xnv4q6KbV_sjJ5d5kbPbKn38ROv5Pt9ZgZQZMw8_ekl7Bghu-hhe9Jh_cG9g9_T4aj6a_binbR-ls2Jv-vhuExw5V7Q_UhWfOh0ncrMN5_-Bbb8BmqRZYmeQJZyovLS1NUgv0j3Qam0jzMtZCoYeMmCWNXZwYa1JVcWt0KYzOhET3tjKU8EonG7A4HA3dJoROuSpzCNpja4hMUBuZW1e5ShorTSoDYI2ki3LGQ07pMK4Kz6DMCxJB0YoggE9t-WvPwPHPkp1GccVsJN4UXBEjToJIMoAP7WsUHW2M6KEbTbCMzAmoJDwK4K1XePupJJf19m8AvFbbE20oiMmivdt6TqUdWD7d7xdfD0--vIOX9JiOz3DegcXxj4nbRhA0Nu9rO78HEvL7DA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photo-Induced+C-H+Methylation+Reactions&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Li%2C+Qian-Yu&rft.au=He%2C+Yuhang&rft.au=Lin%2C+Yu-Mei&rft.au=Gong%2C+Lei&rft.date=2023-12-22&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=29&rft.issue=72&rft.spage=e202302542&rft_id=info:doi/10.1002%2Fchem.202302542&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |