Photo‐Induced C−H Methylation Reactions

Direct C−H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo‐induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy ef...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 29; no. 72; pp. e202302542 - n/a
Main Authors Li, Qian‐Yu, He, Yuhang, Lin, Yu‐Mei, Gong, Lei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 22.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct C−H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo‐induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3)−H, C(sp2)−H, and C(sp)−H bonds in various organic molecules. The discussed methodologies encompass transition‐metal‐based photocatalysis, organophotocatalysis, as well as other metal‐free approaches, including electron donor‐acceptor (EDA)‐enabled transformations. Importantly, a wide range of easily accessible agents such as tert‐butyl peroxide, methanol, DMSO, methyl tert‐butyl ether, TsOMe, N‐(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C−H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds. In this review, we present a concise overview of recent breakthroughs in photochemical C−H methylation. These advancements encompass a variety of methodologies, including transition metal‐based photocatalysis, organophotocatalysis, and various metal‐free approaches, such as electron donor‐acceptor ‐enabled processes.
AbstractList Direct C−H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo‐induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3)−H, C(sp2)−H, and C(sp)−H bonds in various organic molecules. The discussed methodologies encompass transition‐metal‐based photocatalysis, organophotocatalysis, as well as other metal‐free approaches, including electron donor‐acceptor (EDA)‐enabled transformations. Importantly, a wide range of easily accessible agents such as tert‐butyl peroxide, methanol, DMSO, methyl tert‐butyl ether, TsOMe, N‐(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C−H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds.
Direct C-H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo-induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3 )-H, C(sp2 )-H, and C(sp)-H bonds in various organic molecules. The discussed methodologies encompass transition-metal-based photocatalysis, organophotocatalysis, as well as other metal-free approaches, including electron donor-acceptor (EDA)-enabled transformations. Importantly, a wide range of easily accessible agents such as tert-butyl peroxide, methanol, DMSO, methyl tert-butyl ether, TsOMe, N-(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C-H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds.Direct C-H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo-induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3 )-H, C(sp2 )-H, and C(sp)-H bonds in various organic molecules. The discussed methodologies encompass transition-metal-based photocatalysis, organophotocatalysis, as well as other metal-free approaches, including electron donor-acceptor (EDA)-enabled transformations. Importantly, a wide range of easily accessible agents such as tert-butyl peroxide, methanol, DMSO, methyl tert-butyl ether, TsOMe, N-(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C-H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds.
Direct C−H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo‐induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp 3 )−H, C(sp 2 )−H, and C(sp)−H bonds in various organic molecules. The discussed methodologies encompass transition‐metal‐based photocatalysis, organophotocatalysis, as well as other metal‐free approaches, including electron donor‐acceptor (EDA)‐enabled transformations. Importantly, a wide range of easily accessible agents such as tert ‐butyl peroxide, methanol, DMSO, methyl tert ‐butyl ether, TsOMe, N ‐(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C−H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds.
Direct C−H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo‐induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3)−H, C(sp2)−H, and C(sp)−H bonds in various organic molecules. The discussed methodologies encompass transition‐metal‐based photocatalysis, organophotocatalysis, as well as other metal‐free approaches, including electron donor‐acceptor (EDA)‐enabled transformations. Importantly, a wide range of easily accessible agents such as tert‐butyl peroxide, methanol, DMSO, methyl tert‐butyl ether, TsOMe, N‐(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C−H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds. In this review, we present a concise overview of recent breakthroughs in photochemical C−H methylation. These advancements encompass a variety of methodologies, including transition metal‐based photocatalysis, organophotocatalysis, and various metal‐free approaches, such as electron donor‐acceptor ‐enabled processes.
Direct C-H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo-induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp )-H, C(sp )-H, and C(sp)-H bonds in various organic molecules. The discussed methodologies encompass transition-metal-based photocatalysis, organophotocatalysis, as well as other metal-free approaches, including electron donor-acceptor (EDA)-enabled transformations. Importantly, a wide range of easily accessible agents such as tert-butyl peroxide, methanol, DMSO, methyl tert-butyl ether, TsOMe, N-(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C-H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds.
Author Lin, Yu‐Mei
Li, Qian‐Yu
Gong, Lei
He, Yuhang
Author_xml – sequence: 1
  givenname: Qian‐Yu
  surname: Li
  fullname: Li, Qian‐Yu
  organization: Xiamen University
– sequence: 2
  givenname: Yuhang
  surname: He
  fullname: He, Yuhang
  organization: Xiamen University
– sequence: 3
  givenname: Yu‐Mei
  surname: Lin
  fullname: Lin, Yu‐Mei
  email: linyum@xmu.edu.cn
  organization: Xiamen University
– sequence: 4
  givenname: Lei
  orcidid: 0000-0002-4478-6880
  surname: Gong
  fullname: Gong, Lei
  email: gongl@xmu.edu.cn
  organization: Technologies of Energy Materials of Fujian Province (IKKEM)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37800464$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1Lw0AQhhdR7IdePUrBiyCpsx9Jdo8Sqi20KKLnZbPZ0JQ0W7MJ0ptHj-JP7C8xta1CQTzNHJ7nZebtoMPCFgahMwx9DECu9dTM-wQIBeIzcoDa2CfYo2HgH6I2CBZ6gU9FC3WcmwGACCg9Ri0acgAWsDa6epjayq7ePkZFUmuT9KLV--ewNzHVdJmrKrNF79EovV7cCTpKVe7M6XZ20fPt4CkaeuP7u1F0M_Y0DSnxRKgTYERwxTDjyscxKKKxYoJzzqjwscE0TmJfpCSJlWaxChinlKdx84JQtIsuN7mL0r7UxlVynjlt8lwVxtZOEh4yEgSUQINe7KEzW5dFc50kAhjHFITfUOdbqo7nJpGLMpurcil3NTQA2wC6tM6VJpU6q76_r0qV5RKDXLct123Ln7Ybrb-n7ZL_FMRGeM1ys_yHltFwMPl1vwAL2ZBX
CitedBy_id crossref_primary_10_1002_ange_202412418
crossref_primary_10_1021_acs_joc_4c01719
crossref_primary_10_1039_D4OB01571A
crossref_primary_10_1055_a_2298_2106
crossref_primary_10_1038_s41467_024_52245_1
crossref_primary_10_1039_D4GC00314D
crossref_primary_10_1002_anie_202412418
crossref_primary_10_1021_acs_joc_4c01650
crossref_primary_10_1021_acs_joc_4c02223
Cites_doi 10.1063/1.5143800
10.1021/acscatal.2c01087
10.1039/c3sc51747k
10.1021/jacs.1c09412
10.2174/0929867053363540
10.1038/nature14255
10.1038/s41586-020-2131-1
10.1039/C9SC02564B
10.1039/C9NJ03106E
10.1016/j.bmcl.2018.09.016
10.1038/s41570-019-0099-x
10.1021/cr900184e
10.1021/cr200060g
10.1039/C8CS00201K
10.1021/acs.chemrev.6b00057
10.1021/jacs.1c05607
10.1016/j.chempr.2020.07.007
10.1021/jacs.2c13396
10.1126/science.aat9750
10.1074/jbc.271.1.136
10.1126/science.aad9289
10.1002/ejoc.201601591
10.1021/ar010076f
10.1038/s41586-020-2137-8
10.1002/anie.202002900
10.1002/chem.201605640
10.1038/s41467-018-06246-6
10.1055/s-0031-1290869
10.1021/acs.orglett.9b04331
10.1002/adsc.201400984
10.1039/D0CS00973C
10.1021/ar5004626
10.1038/nature22813
10.1097/00007691-199202000-00003
10.1021/ja061803a
10.1021/ja0646747
10.1039/D3GC00187C
10.1039/C5CS00628G
10.1038/s41467-021-22690-3
10.1039/D2QO01491B
10.1039/C5QO00004A
10.1021/jacs.5b04818
10.1039/a704951j
10.1021/acs.joc.8b00205
10.1021/acscatal.2c05698
10.1039/D3CC01908J
10.1021/cr300503r
10.1021/ja406484v
10.1016/j.mcat.2022.112145
10.1038/s41586-018-0808-5
10.1039/C6SC04274K
10.1038/nature03955
10.1126/science.abh2623
10.1038/ncomms7526
10.1021/cr0509760
10.1021/ja0570943
10.1021/ol403040g
10.1039/C2CS35250H
10.1038/417507a
10.1111/j.1751-1097.1990.tb01808.x
10.1002/anie.201301451
10.1039/C7SC03768F
10.1021/acs.orglett.8b01085
10.1002/ange.201205674
10.1039/C9OB01169B
10.1021/ol2011264
10.1055/s-0037-1611812
10.1039/C8QO00438B
10.1002/ejoc.202201379
10.1021/acs.joc.6b02891
10.1351/pac200779060981
10.1002/ajoc.202300015
10.1021/ja0775063
10.1021/acs.orglett.8b01250
10.1021/acs.joc.3c00266
10.1021/acssuschemeng.9b02822
10.1039/D2GC01225A
10.1021/acs.jpcc.2c04586
10.1021/acs.joc.6b00811
10.1021/acscatal.0c00881
10.1021/acs.chemrev.8b00077
10.1021/ja312277g
10.1002/anie.201303207
10.1039/D2SC02953G
10.1002/ajoc.202100640
10.1002/anie.201604406
10.1021/acs.joc.2c02823
10.1039/C8SC03019G
10.1038/s44160-023-00291-w
10.1021/jm3003697
10.1016/j.chempr.2017.03.009
10.1039/D1CC02249K
10.1021/acs.orglett.0c01277
10.1039/C9OB01490J
10.1002/anie.201402023
10.1021/acs.orglett.9b00327
10.1021/jacs.9b08801
10.1002/chem.201802352
10.1021/ol400888r
10.1002/anie.201205674
10.1021/acs.joc.6b01449
10.1021/acs.orglett.2c02545
10.1039/D2CC05569D
10.1021/acs.orglett.9b01439
10.1021/ar200202c
10.1021/acs.joc.1c01325
10.1038/nature14885
10.1021/acs.accounts.6b00621
10.1002/cjoc.202200435
10.1002/ange.201303207
10.1039/C6SC02653B
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202302542
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 37800464
10_1002_chem_202302542
CHEM202302542
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Huxiang Youth Talent Support Program
– fundername: Natural Science Foundation of Fujian Province
  funderid: 2017J06006
– fundername: National Natural Science Foundation of China
  funderid: 22071209; 22071206; 22371237
– fundername: National Natural Science Foundation of China
  grantid: 22071209
– fundername: National Natural Science Foundation of China
  grantid: 22071206
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2017J06006
– fundername: National Natural Science Foundation of China
  grantid: 22371237
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3732-97cd04298a4148a51b0a2c1a4988843951e13bdb59f2dbac4ba648338fb5429a3
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 18:33:19 EDT 2025
Tue Aug 19 06:10:54 EDT 2025
Thu Apr 03 07:09:21 EDT 2025
Wed Aug 06 19:04:47 EDT 2025
Thu Apr 24 23:09:11 EDT 2025
Wed Jan 22 16:15:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 72
Keywords metal-free catalysis
C−H methylation
transition metal-catalysis
photocatalysis
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-97cd04298a4148a51b0a2c1a4988843951e13bdb59f2dbac4ba648338fb5429a3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4478-6880
PMID 37800464
PQID 2904813095
PQPubID 986340
PageCount 20
ParticipantIDs proquest_miscellaneous_2874266320
proquest_journals_2904813095
pubmed_primary_37800464
crossref_citationtrail_10_1002_chem_202302542
crossref_primary_10_1002_chem_202302542
wiley_primary_10_1002_chem_202302542_CHEM202302542
PublicationCentury 2000
PublicationDate December 22, 2023
2023-12-22
2023-Dec-22
20231222
PublicationDateYYYYMMDD 2023-12-22
PublicationDate_xml – month: 12
  year: 2023
  text: December 22, 2023
  day: 22
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
1990; 52
2017; 8
2007; 107
2013; 4
2017; 2
2017; 82
2019; 51
2019; 10
2023; 145
2019; 17
2022; 24
2013; 125
2020; 59
2019; 565
2011; 13
1992; 14
2018; 83
2020; 10
2012; 55
2007; 79
2011; 111
2018; 47
2020; 6
2018; 9
2015; 48
2013; 15
2023; 25
2018; 5
1997; 93
2015; 137
2023; 29
2023; 26
2022; 40
2019; 21
2013; 52
2010; 110
2013; 113
2016; 116
2016; 81
2006; 128
2022; 126
2016; 351
2016; 45
2014; 10
2014; 53
2015; 2
2019; 7
2018; 28
2023; 13
2015; 6
2019; 3
2021; 86
2023 2022; 2 9
2023; 12
2020; 580
2023; 59
2002; 35
2013; 42
2017; 23
2005; 436
2013 2013; 125 52
2022; 519
2015; 525
2002; 417
2021; 143
2021; 50
2019; 141
2018; 20
2016; 55
2018; 24
2022; 144
2021; 57
2017; 50
2016; 7
2021; 12
2023; 88
2015; 357
2018; 118
2019; 43
2022; 12
1996; 271
2015; 519
2020; 116
2022; 13
2013; 135
2021; 372
2020; 22
2022; 11
2012; 45
2012; 44
2008; 130
2005; 12
2017; 547
e_1_2_9_52_2
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_71_2
e_1_2_9_79_1
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_2
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_2
e_1_2_9_41_2
e_1_2_9_87_2
e_1_2_9_60_2
e_1_2_9_83_1
e_1_2_9_45_2
e_1_2_9_22_2
e_1_2_9_64_2
e_1_2_9_6_2
e_1_2_9_119_1
e_1_2_9_2_2
e_1_2_9_111_1
e_1_2_9_115_2
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_26_2
e_1_2_9_68_2
e_1_2_9_30_2
e_1_2_9_99_1
e_1_2_9_72_2
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_95_1
e_1_2_9_53_2
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_125_2
e_1_2_9_102_1
e_1_2_9_129_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_57_2
e_1_2_9_121_1
e_1_2_9_19_2
e_1_2_9_61_2
e_1_2_9_88_2
e_1_2_9_46_1
e_1_2_9_65_3
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_65_2
e_1_2_9_84_2
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_110_2
e_1_2_9_118_1
e_1_2_9_9_1
e_1_2_9_114_2
e_1_2_9_69_2
e_1_2_9_27_1
e_1_2_9_31_1
e_1_2_9_73_2
e_1_2_9_50_2
e_1_2_9_12_2
e_1_2_9_54_2
e_1_2_9_96_1
e_1_2_9_109_2
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_62_2
e_1_2_9_89_1
e_1_2_9_20_2
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_2
e_1_2_9_4_3
e_1_2_9_81_1
e_1_2_9_4_2
e_1_2_9_113_1
e_1_2_9_117_2
e_1_2_9_8_2
e_1_2_9_24_2
e_1_2_9_47_2
e_1_2_9_132_1
e_1_2_9_28_2
e_1_2_9_51_2
e_1_2_9_74_2
Song S. (e_1_2_9_77_1) 2023; 29
e_1_2_9_78_1
e_1_2_9_55_1
e_1_2_9_32_2
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_2
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_13_2
e_1_2_9_59_2
e_1_2_9_36_2
e_1_2_9_17_2
e_1_2_9_63_2
e_1_2_9_40_1
e_1_2_9_44_2
e_1_2_9_67_2
e_1_2_9_21_1
e_1_2_9_86_1
e_1_2_9_7_2
e_1_2_9_82_1
e_1_2_9_3_2
e_1_2_9_112_1
e_1_2_9_116_2
e_1_2_9_25_2
e_1_2_9_48_2
e_1_2_9_131_1
e_1_2_9_29_2
References_xml – volume: 135
  start-page: 12135
  year: 2013
  end-page: 12141
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 2064
  year: 2019
  end-page: 2068
  publication-title: Org. Lett.
– volume: 79
  start-page: 981
  year: 2007
  end-page: 991
  publication-title: Pure Appl. Chem.
– volume: 6
  start-page: 6526
  year: 2015
  publication-title: Nat. Commun.
– volume: 14
  start-page: 14
  year: 1992
  end-page: 19
  publication-title: Ther. Drug Monit.
– volume: 6
  start-page: 1877
  year: 2020
  end-page: 1887
  publication-title: Chem
– volume: 93
  start-page: 3931
  year: 1997
  end-page: 3937
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 47
  start-page: 6603
  year: 2018
  end-page: 6743
  publication-title: Chem. Soc. Rev.
– volume: 107
  start-page: 174
  year: 2007
  end-page: 238
  publication-title: Chem. Rev.
– volume: 55
  start-page: 9743
  year: 2016
  end-page: 9747
  publication-title: Angew. Chem. Int. Ed.
– volume: 116
  start-page: 10075
  year: 2016
  end-page: 10166
  publication-title: Chem. Rev.
– volume: 130
  start-page: 2900
  year: 2008
  end-page: 2901
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 7660
  year: 2015
  end-page: 7663
  publication-title: J. Am. Chem. Soc.
– volume: 372
  start-page: 398
  year: 2021
  end-page: 403
  publication-title: Science
– volume: 43
  start-page: 12533
  year: 2019
  end-page: 12537
  publication-title: New J. Chem.
– volume: 525
  start-page: 87
  year: 2015
  end-page: 90
  publication-title: Nature
– volume: 8
  start-page: 7412
  year: 2017
  end-page: 7418
  publication-title: Chem. Sci.
– volume: 88
  start-page: 6218
  year: 2023
  end-page: 6226
  publication-title: J. Org. Chem.
– volume: 55
  start-page: 4489
  year: 2012
  end-page: 4500
  publication-title: J. Med. Chem.
– volume: 417
  start-page: 507
  year: 2002
  end-page: 514
  publication-title: Nature
– volume: 28
  start-page: 3283
  year: 2018
  end-page: 3289
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 271
  start-page: 136
  year: 1996
  end-page: 147
  publication-title: Biol. Chem.
– volume: 13
  start-page: 3232
  year: 2011
  end-page: 3234
  publication-title: Org. Lett.
– volume: 17
  start-page: 6654
  year: 2019
  end-page: 6661
  publication-title: Org. Biomol. Chem.
– volume: 580
  start-page: 621
  year: 2020
  end-page: 627
  publication-title: Nature
– volume: 22
  start-page: 4228
  year: 2020
  end-page: 4234
  publication-title: Org. Lett.
– volume: 128
  start-page: 78
  year: 2006
  end-page: 79
  publication-title: J. Am. Chem. Soc.
– volume: 88
  start-page: 2631
  year: 2023
  end-page: 2641
  publication-title: J. Org. Chem.
– volume: 57
  start-page: 6066
  year: 2021
  end-page: 6069
  publication-title: Chem. Commun.
– volume: 5
  start-page: 2214
  year: 2018
  end-page: 2218
  publication-title: Org. Chem. Front.
– volume: 126
  start-page: 21338
  year: 2022
  end-page: 21347
  publication-title: J. Phys. Chem. C
– volume: 547
  start-page: 79
  year: 2017
  end-page: 83
  publication-title: Nature
– volume: 86
  start-page: 11905
  year: 2021
  end-page: 11914
  publication-title: J. Org. Chem.
– volume: 116
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 3187
  year: 2023
  end-page: 3197
  publication-title: Green Chem.
– volume: 145
  start-page: 2787
  year: 2023
  end-page: 2793
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 4894
  year: 2023
  end-page: 4902
  publication-title: ACS Catal.
– volume: 12
  start-page: 4473
  year: 2022
  end-page: 4480
  publication-title: ACS Catal.
– volume: 59
  start-page: 10626
  year: 2020
  end-page: 10632
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 4802
  year: 2014
  end-page: 4806
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  year: 2023
  publication-title: Asian J. Org. Chem.
– volume: 12
  start-page: 2377
  year: 2021
  publication-title: Nat. Commun.
– volume: 23
  start-page: 2537
  year: 2017
  end-page: 2541
  publication-title: Chem. Eur. J.
– volume: 51
  start-page: 3021
  year: 2019
  end-page: 3054
  publication-title: Synthesis
– volume: 10
  start-page: 6248
  year: 2020
  end-page: 6253
  publication-title: ACS Catal.
– volume: 125 52
  start-page: 268 254
  year: 2013 2013
  end-page: 283 269
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 22
  start-page: 305
  year: 2020
  end-page: 309
  publication-title: Org. Lett.
– volume: 29
  year: 2023
  publication-title: Chem. Eur. J.
– volume: 118
  start-page: 7532
  year: 2018
  end-page: 7585
  publication-title: Chem. Rev.
– volume: 141
  start-page: 17305
  year: 2019
  end-page: 17313
  publication-title: J. Am. Chem. Soc.
– volume: 83
  start-page: 3000
  year: 2018
  end-page: 3012
  publication-title: J. Org. Chem.
– volume: 17
  start-page: 7416
  year: 2019
  end-page: 7424
  publication-title: Org. Biomol. Chem.
– volume: 580
  start-page: 76
  year: 2020
  end-page: 80
  publication-title: Nature
– volume: 2 9
  start-page: 766 6853
  year: 2023 2022
  end-page: 777
  publication-title: Nat. Synth. Org. Chem. Front.
– volume: 24
  start-page: 6219
  year: 2022
  end-page: 6223
  publication-title: Org. Lett.
– volume: 111
  start-page: 5215
  year: 2011
  end-page: 5246
  publication-title: Chem. Rev.
– volume: 24
  start-page: 10064
  year: 2018
  end-page: 10068
  publication-title: Chem. Eur. J.
– volume: 44
  start-page: 1427
  year: 2012
  end-page: 1452
  publication-title: Synthesis
– volume: 42
  start-page: 97
  year: 2013
  end-page: 113
  publication-title: Chem. Soc. Rev.
– volume: 125
  start-page: 12480
  year: 2013
  end-page: 12492
  publication-title: Angew. Chem.
– volume: 3
  start-page: 347
  year: 2019
  end-page: 360
  publication-title: Nat. Chem. Rev.
– volume: 50
  start-page: 5517
  year: 2021
  end-page: 5563
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 6915
  year: 2019
  end-page: 6919
  publication-title: Chem. Sci.
– volume: 81
  start-page: 6898
  year: 2016
  end-page: 6926
  publication-title: J. Org. Chem.
– volume: 4
  start-page: 3906
  year: 2013
  end-page: 3911
  publication-title: Chem. Sci.
– volume: 357
  start-page: 1333
  year: 2015
  end-page: 1350
  publication-title: Adv. Synth. Catal.
– volume: 135
  start-page: 2124
  year: 2013
  end-page: 2127
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 1147
  year: 2010
  end-page: 1169
  publication-title: Chem. Rev.
– volume: 2
  start-page: 688
  year: 2017
  end-page: 702
  publication-title: Chem
– volume: 45
  start-page: 546
  year: 2016
  end-page: 576
  publication-title: Chem. Soc. Rev.
– volume: 35
  start-page: 706
  year: 2002
  end-page: 716
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 2081
  year: 2017
  end-page: 2085
  publication-title: Chem. Sci.
– volume: 361
  start-page: 668
  year: 2018
  end-page: 672
  publication-title: Science
– volume: 519
  start-page: 74
  year: 2015
  end-page: 77
  publication-title: Nature
– volume: 519
  year: 2022
  publication-title: J. Mol. Catal.
– volume: 144
  start-page: 1187
  year: 2022
  end-page: 1197
  publication-title: J. Am. Chem. Soc.
– volume: 26
  year: 2023
  publication-title: Eur. J. Org. Chem.
– volume: 59
  start-page: 8556
  year: 2023
  end-page: 8559
  publication-title: Chem. Commun.
– volume: 24
  start-page: 4606
  year: 2022
  end-page: 4613
  publication-title: Green Chem.
– volume: 11
  year: 2022
  publication-title: Asian J. Org. Chem.
– volume: 21
  start-page: 4259
  year: 2019
  end-page: 4265
  publication-title: Org. Lett.
– volume: 13
  start-page: 12158
  year: 2022
  end-page: 12163
  publication-title: Chem. Sci.
– volume: 52
  start-page: 617
  year: 1990
  end-page: 627
  publication-title: Photochem. Photobiol.
– volume: 82
  start-page: 2059
  year: 2017
  end-page: 2066
  publication-title: J. Org. Chem.
– volume: 20
  start-page: 3229
  year: 2018
  end-page: 3232
  publication-title: Org. Lett.
– volume: 565
  start-page: 67
  year: 2019
  end-page: 72
  publication-title: Nature
– volume: 113
  start-page: 5322
  year: 2013
  end-page: 5363
  publication-title: Chem. Rev.
– volume: 40
  start-page: 2825
  year: 2022
  end-page: 2837
  publication-title: Chin. J. Chem.
– volume: 20
  start-page: 3487
  year: 2018
  end-page: 3490
  publication-title: Org. Lett.
– volume: 52
  start-page: 12256
  year: 2013
  end-page: 12267
  publication-title: Angew. Chem. Int. Ed.
– volume: 351
  start-page: 1421
  year: 2016
  end-page: 1424
  publication-title: Science
– volume: 7
  start-page: 14153
  year: 2019
  end-page: 14160
  publication-title: ACS Sustainable Chem. Eng.
– volume: 12
  start-page: 23
  year: 2005
  end-page: 49
  publication-title: Curr. Med. Chem.
– volume: 50
  start-page: 620
  year: 2017
  end-page: 626
  publication-title: Acc. Chem. Res.
– volume: 128
  start-page: 12634
  year: 2006
  end-page: 12635
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 1053
  year: 2015
  end-page: 1064
  publication-title: Acc. Chem. Res.
– volume: 45
  start-page: 555
  year: 2012
  end-page: 564
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 179
  year: 2019
  end-page: 184
  publication-title: Chem. Sci.
– volume: 59
  start-page: 118
  year: 2023
  end-page: 121
  publication-title: Chem. Commun.
– volume: 436
  start-page: 1139
  year: 2005
  end-page: 1140
  publication-title: Nature
– volume: 7
  start-page: 6407
  year: 2016
  end-page: 6412
  publication-title: Chem. Sci.
– volume: 2
  start-page: 1107
  year: 2015
  end-page: 1295
  publication-title: Org. Chem. Front.
– volume: 15
  start-page: 2302
  year: 2013
  end-page: 2305
  publication-title: Org. Lett.
– volume: 81
  start-page: 6980
  year: 2016
  end-page: 6987
  publication-title: J. Org. Chem.
– volume: 9
  start-page: 3725
  year: 2018
  publication-title: Nat. Commun.
– volume: 10
  start-page: 66
  year: 2014
  end-page: 69
  publication-title: Org. Lett.
– volume: 52
  start-page: 11726
  year: 2013
  end-page: 11743
  publication-title: Angew. Chem. Int. Ed.
– volume: 128
  start-page: 8350
  year: 2006
  end-page: 8357
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 12304
  year: 2021
  end-page: 12314
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_9_110_2
  doi: 10.1063/1.5143800
– ident: e_1_2_9_129_1
  doi: 10.1021/acscatal.2c01087
– ident: e_1_2_9_72_2
  doi: 10.1039/c3sc51747k
– ident: e_1_2_9_76_1
  doi: 10.1021/jacs.1c09412
– ident: e_1_2_9_10_1
  doi: 10.2174/0929867053363540
– ident: e_1_2_9_61_2
  doi: 10.1038/nature14255
– ident: e_1_2_9_117_2
  doi: 10.1038/s41586-020-2131-1
– ident: e_1_2_9_59_2
  doi: 10.1039/C9SC02564B
– ident: e_1_2_9_112_1
  doi: 10.1039/C9NJ03106E
– ident: e_1_2_9_16_1
– ident: e_1_2_9_124_1
– ident: e_1_2_9_108_1
– ident: e_1_2_9_8_2
  doi: 10.1016/j.bmcl.2018.09.016
– ident: e_1_2_9_68_2
  doi: 10.1038/s41570-019-0099-x
– ident: e_1_2_9_84_2
  doi: 10.1021/cr900184e
– ident: e_1_2_9_66_1
– ident: e_1_2_9_2_2
  doi: 10.1021/cr200060g
– ident: e_1_2_9_88_2
  doi: 10.1039/C8CS00201K
– ident: e_1_2_9_46_1
– ident: e_1_2_9_51_2
  doi: 10.1021/acs.chemrev.6b00057
– ident: e_1_2_9_127_1
  doi: 10.1021/jacs.1c05607
– ident: e_1_2_9_18_2
  doi: 10.1016/j.chempr.2020.07.007
– ident: e_1_2_9_49_1
– volume: 29
  year: 2023
  ident: e_1_2_9_77_1
  publication-title: Chem. Eur. J.
– ident: e_1_2_9_82_1
  doi: 10.1021/jacs.2c13396
– ident: e_1_2_9_104_1
  doi: 10.1126/science.aat9750
– ident: e_1_2_9_12_2
  doi: 10.1074/jbc.271.1.136
– ident: e_1_2_9_44_2
  doi: 10.1126/science.aad9289
– ident: e_1_2_9_109_2
  doi: 10.1002/ejoc.201601591
– ident: e_1_2_9_26_2
  doi: 10.1021/ar010076f
– ident: e_1_2_9_75_1
  doi: 10.1038/s41586-020-2137-8
– ident: e_1_2_9_105_1
  doi: 10.1002/anie.202002900
– ident: e_1_2_9_93_1
  doi: 10.1002/chem.201605640
– ident: e_1_2_9_19_2
  doi: 10.1038/s41467-018-06246-6
– ident: e_1_2_9_36_2
  doi: 10.1055/s-0031-1290869
– ident: e_1_2_9_42_2
  doi: 10.1021/acs.orglett.9b04331
– ident: e_1_2_9_31_1
– ident: e_1_2_9_35_2
  doi: 10.1002/adsc.201400984
– ident: e_1_2_9_67_2
  doi: 10.1039/D0CS00973C
– ident: e_1_2_9_32_2
  doi: 10.1021/ar5004626
– ident: e_1_2_9_78_1
  doi: 10.1038/nature22813
– ident: e_1_2_9_13_2
  doi: 10.1097/00007691-199202000-00003
– ident: e_1_2_9_57_2
  doi: 10.1021/ja061803a
– ident: e_1_2_9_1_1
– ident: e_1_2_9_71_2
  doi: 10.1021/ja0646747
– ident: e_1_2_9_29_2
  doi: 10.1002/adsc.201400984
– ident: e_1_2_9_40_1
– ident: e_1_2_9_113_1
– ident: e_1_2_9_111_1
  doi: 10.1039/D3GC00187C
– ident: e_1_2_9_17_2
  doi: 10.1039/C5CS00628G
– ident: e_1_2_9_64_2
  doi: 10.1038/s41467-021-22690-3
– ident: e_1_2_9_65_3
  doi: 10.1039/D2QO01491B
– ident: e_1_2_9_21_1
– ident: e_1_2_9_87_2
  doi: 10.1039/C5QO00004A
– ident: e_1_2_9_37_1
  doi: 10.1021/jacs.5b04818
– ident: e_1_2_9_90_1
  doi: 10.1039/a704951j
– ident: e_1_2_9_121_1
  doi: 10.1021/acs.joc.8b00205
– ident: e_1_2_9_81_1
  doi: 10.1021/acscatal.2c05698
– ident: e_1_2_9_103_1
  doi: 10.1039/D3CC01908J
– ident: e_1_2_9_52_2
  doi: 10.1021/cr300503r
– ident: e_1_2_9_69_2
  doi: 10.1021/ja406484v
– ident: e_1_2_9_106_1
  doi: 10.1016/j.mcat.2022.112145
– ident: e_1_2_9_28_2
  doi: 10.1038/s41586-018-0808-5
– ident: e_1_2_9_73_2
  doi: 10.1039/C6SC04274K
– ident: e_1_2_9_114_2
  doi: 10.1038/nature03955
– ident: e_1_2_9_34_1
– ident: e_1_2_9_79_1
  doi: 10.1126/science.abh2623
– ident: e_1_2_9_132_1
  doi: 10.1038/ncomms7526
– ident: e_1_2_9_85_2
  doi: 10.1021/cr0509760
– ident: e_1_2_9_22_2
  doi: 10.1021/ja0570943
– ident: e_1_2_9_74_2
  doi: 10.1021/ol403040g
– ident: e_1_2_9_53_2
  doi: 10.1039/C2CS35250H
– ident: e_1_2_9_56_2
  doi: 10.1038/417507a
– ident: e_1_2_9_115_2
  doi: 10.1111/j.1751-1097.1990.tb01808.x
– ident: e_1_2_9_33_2
  doi: 10.1002/anie.201301451
– ident: e_1_2_9_119_1
  doi: 10.1039/C7SC03768F
– ident: e_1_2_9_122_1
  doi: 10.1021/acs.orglett.8b01085
– ident: e_1_2_9_43_1
– ident: e_1_2_9_4_2
  doi: 10.1002/ange.201205674
– ident: e_1_2_9_100_1
  doi: 10.1039/C9OB01169B
– ident: e_1_2_9_24_2
  doi: 10.1021/ol2011264
– ident: e_1_2_9_126_2
  doi: 10.1055/s-0037-1611812
– ident: e_1_2_9_38_1
  doi: 10.1039/C8QO00438B
– ident: e_1_2_9_47_2
  doi: 10.1002/ejoc.202201379
– ident: e_1_2_9_98_1
  doi: 10.1021/acs.joc.6b02891
– ident: e_1_2_9_116_2
  doi: 10.1351/pac200779060981
– ident: e_1_2_9_48_2
  doi: 10.1002/ajoc.202300015
– ident: e_1_2_9_5_1
– ident: e_1_2_9_27_1
– ident: e_1_2_9_55_1
– ident: e_1_2_9_23_2
  doi: 10.1021/ja0775063
– ident: e_1_2_9_99_1
  doi: 10.1021/acs.orglett.8b01250
– ident: e_1_2_9_102_1
  doi: 10.1021/acs.joc.3c00266
– ident: e_1_2_9_101_1
  doi: 10.1021/acssuschemeng.9b02822
– ident: e_1_2_9_120_1
  doi: 10.1039/D2GC01225A
– ident: e_1_2_9_14_1
  doi: 10.1021/acs.jpcc.2c04586
– ident: e_1_2_9_92_1
  doi: 10.1021/acs.joc.6b00811
– ident: e_1_2_9_11_1
– ident: e_1_2_9_20_2
  doi: 10.1021/acscatal.0c00881
– ident: e_1_2_9_50_2
  doi: 10.1021/acs.chemrev.8b00077
– ident: e_1_2_9_41_2
  doi: 10.1021/ja312277g
– ident: e_1_2_9_7_2
  doi: 10.1002/anie.201303207
– ident: e_1_2_9_130_1
  doi: 10.1039/D2SC02953G
– ident: e_1_2_9_128_1
  doi: 10.1002/ajoc.202100640
– ident: e_1_2_9_39_1
  doi: 10.1002/anie.201604406
– ident: e_1_2_9_131_1
  doi: 10.1021/acs.joc.2c02823
– ident: e_1_2_9_15_1
  doi: 10.1039/C8SC03019G
– ident: e_1_2_9_65_2
  doi: 10.1038/s44160-023-00291-w
– ident: e_1_2_9_9_1
  doi: 10.1021/jm3003697
– ident: e_1_2_9_118_1
  doi: 10.1016/j.chempr.2017.03.009
– ident: e_1_2_9_58_2
  doi: 10.1039/D1CC02249K
– ident: e_1_2_9_45_2
  doi: 10.1021/acs.orglett.0c01277
– ident: e_1_2_9_123_1
  doi: 10.1039/C9OB01490J
– ident: e_1_2_9_89_1
  doi: 10.1002/anie.201402023
– ident: e_1_2_9_94_1
  doi: 10.1021/acs.orglett.9b00327
– ident: e_1_2_9_70_2
  doi: 10.1021/jacs.9b08801
– ident: e_1_2_9_95_1
  doi: 10.1002/chem.201802352
– ident: e_1_2_9_25_2
  doi: 10.1021/ol400888r
– ident: e_1_2_9_4_3
  doi: 10.1002/anie.201205674
– ident: e_1_2_9_125_2
  doi: 10.1021/acs.joc.6b01449
– ident: e_1_2_9_80_1
  doi: 10.1021/acs.orglett.2c02545
– ident: e_1_2_9_63_2
  doi: 10.1039/D2CC05569D
– ident: e_1_2_9_107_1
  doi: 10.1021/acs.orglett.9b01439
– ident: e_1_2_9_3_2
  doi: 10.1021/ar200202c
– ident: e_1_2_9_86_1
– ident: e_1_2_9_96_1
  doi: 10.1021/acs.joc.1c01325
– ident: e_1_2_9_91_1
  doi: 10.1038/nature14885
– ident: e_1_2_9_60_2
  doi: 10.1021/acs.accounts.6b00621
– ident: e_1_2_9_62_2
  doi: 10.1002/cjoc.202200435
– ident: e_1_2_9_54_2
  doi: 10.1126/science.aat9750
– ident: e_1_2_9_83_1
– ident: e_1_2_9_6_2
  doi: 10.1002/ange.201303207
– ident: e_1_2_9_30_2
  doi: 10.1055/s-0031-1290869
– ident: e_1_2_9_97_1
  doi: 10.1039/C6SC02653B
SSID ssj0009633
Score 2.4764795
SecondaryResourceType review_article
Snippet Direct C−H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the...
Direct C-H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202302542
SubjectTerms Acetic acid
Atmospheric chemistry
Chemistry
C−H methylation
Energy efficiency
Functional groups
Halides
metal-free catalysis
Methylation
Organic chemistry
Pharmaceuticals
Photocatalysis
Photochemicals
Phthalimide
Phthalimides
Reagents
transition metal-catalysis
Title Photo‐Induced C−H Methylation Reactions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202302542
https://www.ncbi.nlm.nih.gov/pubmed/37800464
https://www.proquest.com/docview/2904813095
https://www.proquest.com/docview/2874266320
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-IF734_VGdUkHwINnWtF2TowzHECYyHOxWkiZFUDZx3cWTR4_in7i_xLym7Zwigl5KSxOavJeP32ve-z2A04gL2jKGBVHmSgKqOOF-mJKAeyyStClTgfHOvetWdxBcDcPhpyh-yw9R_XDDmZGv1zjBhZw05qShpk8YSW4gtLFxcBFGhy1ERf05f5QZXTaXfBAR5GAtWRubtLFYfXFX-gY1F5FrvvV01kGUjbYeJ_f1aSbryfMXPsf_9GoD1gpc6l7YgbQJS3q0BSvtMh3cNpzf3I2z8ezlDZN9JFq57dnre9ftaaNp60_n9rWNkpjswKBzedvukiLTAkn8yKeER4nCnYmJwJhHIvRkU9DEEwE3BrKBLKGnPV8qGfKUKimSQIpWwIx1m0rMdyX8XVgejUd6H1zNddrSBrN7SiKXoJAsUjrVKZOKyZA5QEpJx0lBQ47ZMB5iS6BMYxRBXInAgbOq_KMl4PixZK1UXFxMxElMORLi-AZIOnBSvTaiw3MRMdLjqSnDIsQpPm06sGcVXn3Kj1h--usAzdX2SxtiJLKong7-UukQVvEeXWYorcFy9jTVRwb4ZPI4H9wfZH74OQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5ED3rx_aiuWkHwINFt2m6ToyzKqrsiouCtJE2KoOyK7l48efQo_kR_iTPNtrKKCHoptE1oMpM03yQz3wBsJ1LxBhoWzOCVRdxIJsM4Z5EMRKJ5XeeK4p07Z43WVXRyHZfehBQL4_ghqg03mhnF_5omOG1I73-yhmKnKJQcMTQaOfgXnqC03oVVdfHJIIXjy2WTjxJGLKwlb2Od74_WH12XvoHNUexaLD5HM6DLZjufk9u9QV_vZU9fGB3_1a9ZmB5CU__AjaU5GLPdeZhslhnhFmD3_KbX770_v1K-j8wav_n-8tbyOxaV7Vzq_AvrAiUeF-Hq6PCy2WLDZAssC5OQM5lkhhYnoSK0kFQc6LriWaAiiTYyopY4sEGojY5lzo1WWaRVIxJo4OaaUl6pcAnGu72uXQHfSps3LML2wGiiE1RaJMbmNhfaCB0LD1gp6jQbMpFTQoy71HEo85REkFYi8GCnKn_vODh-LFkrNZcO5-JjyiVx4oSIJT3Yql6j6OhoRHVtb4BlREJQJeR1D5adxqtPhYkoDoA94IXefmlDSlwW1d3qXyptwmTrstNO28dnp2swRc_Jg4bzGoz3HwZ2HXFQX28UI_0D8wH8VA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB0hkGgvQFsooUtJpUo9ILOJ4yT2sVpYLbQghIrELbJjR5VAu6jsXnrqsUfEJ-6XMBNvQreoQqKXSElsxZ4Z229izxuAj7nSPEPHglm8MsGtYipJKyZULHPDI1Npinc-PskG5-LoIr34I4rf80O0P9xoZNTzNQ3wa1t1H0hDsU8USY4QGn0cnISXRBZJsuv9swcCKTQvn0xe5IxIWBvaxoh35-vPL0uPsOY8dK3Xnv4q6KbV_sjJ5d5kbPbKn38ROv5Pt9ZgZQZMw8_ekl7Bghu-hhe9Jh_cG9g9_T4aj6a_binbR-ls2Jv-vhuExw5V7Q_UhWfOh0ncrMN5_-Bbb8BmqRZYmeQJZyovLS1NUgv0j3Qam0jzMtZCoYeMmCWNXZwYa1JVcWt0KYzOhET3tjKU8EonG7A4HA3dJoROuSpzCNpja4hMUBuZW1e5ShorTSoDYI2ki3LGQ07pMK4Kz6DMCxJB0YoggE9t-WvPwPHPkp1GccVsJN4UXBEjToJIMoAP7WsUHW2M6KEbTbCMzAmoJDwK4K1XePupJJf19m8AvFbbE20oiMmivdt6TqUdWD7d7xdfD0--vIOX9JiOz3DegcXxj4nbRhA0Nu9rO78HEvL7DA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photo-Induced+C-H+Methylation+Reactions&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Li%2C+Qian-Yu&rft.au=He%2C+Yuhang&rft.au=Lin%2C+Yu-Mei&rft.au=Gong%2C+Lei&rft.date=2023-12-22&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=29&rft.issue=72&rft.spage=e202302542&rft_id=info:doi/10.1002%2Fchem.202302542&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon