Macrocycle‐Based Crystalline Supramolecular Assemblies Built with Intermolecular Charge‐Transfer Interactions
Synthetic macrocycles have served as principal tools for supramolecular chemistry, have greatly extended the scope of organic charge transfer (CT) complexes, and have proved to be of great practical value in the solid state during the past few years. In this Minireview, we summarize the research pro...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 14; pp. e202218142 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
27.03.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synthetic macrocycles have served as principal tools for supramolecular chemistry, have greatly extended the scope of organic charge transfer (CT) complexes, and have proved to be of great practical value in the solid state during the past few years. In this Minireview, we summarize the research progress on the macrocycle‐based crystalline supramolecular assemblies primarily driven by intermolecular CT interactions (a.k.a. macrocycle‐based crystalline CT assemblies, MCCAs for short), which are classified by their donor–acceptor (D‐A) constituent elements, including simplex macrocyclic hosts, heterogeneous macrocyclic hosts, and host–guest D‐A pairs. Particular attention will be focused on their diverse functions and applications, as well as the underlying CT mechanisms from the perspective of crystal engineering. Finally, the remaining challenges and prospects are outlined.
This Minireview highlights the advancements in the field of macrocycle‐based crystalline charge‐transfer assemblies, including their preparation, structures, and diverse supramolecular functions and applications, such as vapochromic behavior and supramolecular tessellations, arising from the CT state. Future perspectives and challenges of this emerging research field are also presented. |
---|---|
AbstractList | Synthetic macrocycles have served as principal tools for supramolecular chemistry, have greatly extended the scope of organic charge transfer (CT) complexes, and have proved to be of great practical value in the solid state during the past few years. In this Minireview, we summarize the research progress on the macrocycle-based crystalline supramolecular assemblies primarily driven by intermolecular CT interactions (a.k.a. macrocycle-based crystalline CT assemblies, MCCAs for short), which are classified by their donor-acceptor (D-A) constituent elements, including simplex macrocyclic hosts, heterogeneous macrocyclic hosts, and host-guest D-A pairs. Particular attention will be focused on their diverse functions and applications, as well as the underlying CT mechanisms from the perspective of crystal engineering. Finally, the remaining challenges and prospects are outlined. Synthetic macrocycles have served as principal tools for supramolecular chemistry, have greatly extended the scope of organic charge transfer (CT) complexes, and have proved to be of great practical value in the solid state during the past few years. In this Minireview, we summarize the research progress on the macrocycle‐based crystalline supramolecular assemblies primarily driven by intermolecular CT interactions (a.k.a. macrocycle‐based crystalline CT assemblies, MCCAs for short), which are classified by their donor–acceptor (D‐A) constituent elements, including simplex macrocyclic hosts, heterogeneous macrocyclic hosts, and host–guest D‐A pairs. Particular attention will be focused on their diverse functions and applications, as well as the underlying CT mechanisms from the perspective of crystal engineering. Finally, the remaining challenges and prospects are outlined. This Minireview highlights the advancements in the field of macrocycle‐based crystalline charge‐transfer assemblies, including their preparation, structures, and diverse supramolecular functions and applications, such as vapochromic behavior and supramolecular tessellations, arising from the CT state. Future perspectives and challenges of this emerging research field are also presented. Synthetic macrocycles have served as principal tools for supramolecular chemistry, have greatly extended the scope of organic charge transfer (CT) complexes, and have proved to be of great practical value in the solid state during the past few years. In this Minireview, we summarize the research progress on the macrocycle-based crystalline supramolecular assemblies primarily driven by intermolecular CT interactions (a.k.a. macrocycle-based crystalline CT assemblies, MCCAs for short), which are classified by their donor-acceptor (D-A) constituent elements, including simplex macrocyclic hosts, heterogeneous macrocyclic hosts, and host-guest D-A pairs. Particular attention will be focused on their diverse functions and applications, as well as the underlying CT mechanisms from the perspective of crystal engineering. Finally, the remaining challenges and prospects are outlined.Synthetic macrocycles have served as principal tools for supramolecular chemistry, have greatly extended the scope of organic charge transfer (CT) complexes, and have proved to be of great practical value in the solid state during the past few years. In this Minireview, we summarize the research progress on the macrocycle-based crystalline supramolecular assemblies primarily driven by intermolecular CT interactions (a.k.a. macrocycle-based crystalline CT assemblies, MCCAs for short), which are classified by their donor-acceptor (D-A) constituent elements, including simplex macrocyclic hosts, heterogeneous macrocyclic hosts, and host-guest D-A pairs. Particular attention will be focused on their diverse functions and applications, as well as the underlying CT mechanisms from the perspective of crystal engineering. Finally, the remaining challenges and prospects are outlined. |
Author | Wu, Gengxin Wu, Jia‐Rui Yang, Ying‐Wei Li, Dongxia |
Author_xml | – sequence: 1 givenname: Jia‐Rui surname: Wu fullname: Wu, Jia‐Rui organization: Jilin University – sequence: 2 givenname: Gengxin surname: Wu fullname: Wu, Gengxin organization: Jilin University – sequence: 3 givenname: Dongxia surname: Li fullname: Li, Dongxia organization: Jilin University – sequence: 4 givenname: Ying‐Wei orcidid: 0000-0001-8839-8161 surname: Yang fullname: Yang, Ying‐Wei email: ywyang@jlu.edu.cn organization: Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36651562$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtuFDEUhi0URC7QUqKRaGhmsX3Glyk3qwArBSgItXXG6yGOPJ6NPaNoOx6BZ-RJ8GoTIkVCuLGL7_vlc_5TchTH6Ah5zeiCUcrfY_RuwSnnTLOGPyMnTHBWg1JwVN4NQK20YMfkNOebwmtN5QtyDFIKJiQ_Ibef0abR7mxwv3_-OsfsNtUq7fKEIfjoqm_zNuEwBmfngKla5uyGLniXq_PZh6m689N1tY6TS4_Q6hrTj33cVcKYe5cOANrJjzG_JM97DNm9ur_PyPcPF1erT_Xl14_r1fKytqCA19pCzzuhu060DahmIyXTWshed7gBLTiAklxJKAedBqQKsbWdghaYZQrOyLtD7jaNt7PLkxl8ti4EjG6csymuVJw2jSjo2yfozTinWH5XKK2haRXQQr25p-ZucBuzTX7AtDMPyyxAcwDKRnNOrjfWT7gfekrog2HU7Dsz-87M386KtniiPST_U2gPwp0Pbvcf2iy_rC8e3T9KIKtY |
CitedBy_id | crossref_primary_10_1002_ange_202313358 crossref_primary_10_1039_D3CS00939D crossref_primary_10_1002_chem_202300990 crossref_primary_10_1021_acs_chemmater_3c03322 crossref_primary_10_1002_adom_202400619 crossref_primary_10_1002_adfm_202404123 crossref_primary_10_1002_ange_202421108 crossref_primary_10_1039_D4NJ02859G crossref_primary_10_1007_s11426_024_2474_6 crossref_primary_10_1021_acs_inorgchem_4c01399 crossref_primary_10_1002_ange_202409120 crossref_primary_10_1039_D4SC00195H crossref_primary_10_1021_acs_cgd_4c01547 crossref_primary_10_1038_s41467_024_45717_x crossref_primary_10_1039_D3QM01176C crossref_primary_10_1039_D4CS00654B crossref_primary_10_1039_D4CC02374A crossref_primary_10_1021_acs_joc_3c01197 crossref_primary_10_1002_ange_202404409 crossref_primary_10_1002_anie_202412790 crossref_primary_10_1002_advs_202403249 crossref_primary_10_1002_anie_202409120 crossref_primary_10_1039_D3NJ05714C crossref_primary_10_1002_anie_202421108 crossref_primary_10_1002_ange_202416181 crossref_primary_10_1038_s41467_024_45592_6 crossref_primary_10_1002_anie_202313358 crossref_primary_10_1016_j_ccr_2024_215894 crossref_primary_10_1038_s41467_024_46788_6 crossref_primary_10_1002_anie_202416181 crossref_primary_10_1039_D3CC03406B crossref_primary_10_1039_D4CE00733F crossref_primary_10_1021_jacsau_3c00720 crossref_primary_10_1007_s11426_024_2073_3 crossref_primary_10_1002_anie_202404409 crossref_primary_10_3390_molecules29030719 crossref_primary_10_1038_s41467_023_41713_9 crossref_primary_10_1039_D3QI01417G crossref_primary_10_1002_chem_202402345 crossref_primary_10_1002_ange_202412790 crossref_primary_10_1016_j_tet_2024_134088 crossref_primary_10_1039_D3SC04358D |
Cites_doi | 10.1002/1521-3757(20010417)113:8<1574::AID-ANGE1574>3.0.CO;2-H 10.1039/C6SC02640K 10.1002/ange.202203817 10.1039/C9CS00098D 10.31635/ccschem.021.202100870 10.1021/ja0533996 10.1002/anie.202117872 10.1002/ange.202210579 10.1021/cr5005315 10.1002/adma.201605444 10.1002/anie.202104145 10.1002/ange.201307756 10.1002/anie.200460179 10.1021/acs.chemrev.9b00839 10.1021/ja031567t 10.1021/jacs.1c01493 10.1002/ange.202010802 10.1021/jacs.1c10139 10.1002/1521-3773(20010417)40:8<1526::AID-ANIE1526>3.0.CO;2-T 10.1039/C8CS00955D 10.1002/ange.201503542 10.1021/jacs.9b03559 10.1002/(SICI)1521-3757(19980904)110:17<2478::AID-ANGE2478>3.0.CO;2-W 10.1039/C8CC09374A 10.1021/jacs.7b02279 10.1021/acs.accounts.6b00209 10.1002/anie.200461806 10.1021/jacs.9b07877 10.1002/anie.202013701 10.1002/chem.200903403 10.1038/s41467-021-26729-3 10.1038/nmat1298 10.1039/B400783B 10.1021/acs.accounts.2c00555 10.1021/ja509442t 10.1002/anie.202202381 10.1021/acs.accounts.9b00415 10.1039/b208280b 10.1002/anie.202210579 10.1038/nature11395 10.1021/ar400264e 10.1002/anie.201307756 10.1021/jacs.7b00873 10.1021/acs.accounts.2c00043 10.1002/anie.202010802 10.1002/ange.202202381 10.1021/jacs.8b11156 10.1002/ange.202103965 10.1063/1.5014041 10.1039/B603088M 10.1021/jacs.9b08758 10.1038/nchem.2924 10.1039/B615103E 10.1002/ange.202006999 10.1021/acs.cgd.0c00982 10.1038/nature11687 10.1021/acsami.1c22583 10.1021/jacs.5b04178 10.1021/acs.chemrev.6b00172 10.1002/(SICI)1521-3773(19980918)37:17<2344::AID-ANIE2344>3.0.CO;2-B 10.1039/C7CS00185A 10.1021/accountsmr.2c00063 10.1002/anie.202001145 10.1002/ange.200460179 10.1002/ange.202104145 10.1039/D0CC01112F 10.1039/D1QO00819F 10.1002/adma.201402532 10.1002/anie.201503542 10.1021/cr030652g 10.1002/ange.202001145 10.1021/jacs.0c11833 10.1002/anie.202103965 10.1021/acsami.8b06396 10.1021/jacs.0c11037 10.1103/PhysRevB.75.195122 10.1021/jacs.7b00631 10.1016/j.ccr.2022.214503 10.1002/anie.202203817 10.1002/ange.200461806 10.1002/ange.202117872 10.1021/acs.accounts.7b00124 10.1021/acs.accounts.8b00255 10.1002/anie.202006999 10.1021/jacs.1c08824 10.1002/ange.202013701 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202218142 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36651562 10_1002_anie_202218142 ANIE202218142 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22201096; 52173200; 21871108 – fundername: Postdoctoral Research Foundation of China funderid: BX2021112 – fundername: Postdoctoral Research Foundation of China grantid: BX2021112 – fundername: National Natural Science Foundation of China grantid: 52173200 – fundername: National Natural Science Foundation of China grantid: 22201096 – fundername: National Natural Science Foundation of China grantid: 21871108 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3732-8c3f2b58bb594374d6618856f8bad385233762763333ae83a07aa9cb73931c173 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 06:52:52 EDT 2025 Fri Jul 25 11:48:11 EDT 2025 Mon Jul 21 06:07:50 EDT 2025 Tue Jul 01 01:47:03 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Wed Jan 22 16:22:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Charge Transfer Molecular Crystals Macrocycles Supramolecular Chemistry Host-Guest Systems |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-8c3f2b58bb594374d6618856f8bad385233762763333ae83a07aa9cb73931c173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8839-8161 |
PMID | 36651562 |
PQID | 2788349730 |
PQPubID | 946352 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2766720445 proquest_journals_2788349730 pubmed_primary_36651562 crossref_citationtrail_10_1002_anie_202218142 crossref_primary_10_1002_anie_202218142 wiley_primary_10_1002_anie_202218142_ANIE202218142 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 27, 2023 |
PublicationDateYYYYMMDD | 2023-03-27 |
PublicationDate_xml | – month: 03 year: 2023 text: March 27, 2023 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 8 2010; 16 2004; 126 2020; 20 2019; 55 2020; 120 2017; 46 2020 2020; 59 132 2014; 26 2020; 56 2012; 488 2007; 75 2014; 136 2007; 36 1998 1998; 37 110 2012; 492 2022 2022; 61 134 2015; 137 2020; 53 2020; 49 2015 2015; 54 127 2005 2005; 44 117 2016; 116 2016; 49 2021; 8 2004 2004; 43 116 2004; 104 2018; 140 2020; 142 2014; 47 2007 2017; 29 2004 2021; 143 2002 2019; 141 2017; 139 2017; 50 2022; 462 2021; 12 2015; 115 2022; 3 2022; 4 2018; 112 2005; 127 2019; 48 2005; 4 2021 2021; 60 133 2022; 14 2018; 51 2022; 55 2001 2001; 40 113 2018; 10 e_1_2_8_22_3 e_1_2_8_45_2 e_1_2_8_49_1 e_1_2_8_26_2 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_5_3 e_1_2_8_5_2 e_1_2_8_64_1 e_1_2_8_22_2 e_1_2_8_83_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_2 e_1_2_8_38_3 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_34_2 e_1_2_8_57_1 e_1_2_8_15_2 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_53_1 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_72_1 e_1_2_8_29_2 e_1_2_8_25_2 e_1_2_8_67_2 e_1_2_8_25_3 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_6_1 e_1_2_8_86_3 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_21_3 e_1_2_8_40_2 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_56_2 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_75_2 e_1_2_8_52_1 e_1_2_8_71_2 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_66_3 e_1_2_8_47_2 e_1_2_8_81_1 e_1_2_8_3_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_20_3 e_1_2_8_43_3 e_1_2_8_43_2 e_1_2_8_85_2 e_1_2_8_62_2 e_1_2_8_17_2 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_36_2 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_74_3 e_1_2_8_74_2 e_1_2_8_51_1 e_1_2_8_70_2 e_1_2_8_27_2 e_1_2_8_46_2 e_1_2_8_27_1 e_1_2_8_46_3 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_23_1 e_1_2_8_61_2 e_1_2_8_84_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_1 e_1_2_8_31_2 e_1_2_8_77_2 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – volume: 36 start-page: 267 year: 2007 end-page: 279 publication-title: Chem. Soc. Rev. – volume: 141 start-page: 17783 year: 2019 end-page: 17795 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 296 year: 2018 end-page: 304 publication-title: Nat. Chem. – volume: 49 start-page: 1691 year: 2016 end-page: 1700 publication-title: Acc. Chem. Res. – volume: 43 116 start-page: 5496 5612 year: 2004 2004 end-page: 5499 5615 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 117 start-page: 87 89 year: 2005 2005 end-page: 91 93 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 658 year: 2022 end-page: 668 publication-title: Acc. Mater. Res. – volume: 112 year: 2018 publication-title: Appl. Phys. Lett. – volume: 141 start-page: 18727 year: 2019 end-page: 18739 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 163 year: 2005 end-page: 166 publication-title: Nat. Mater. – volume: 50 start-page: 1654 year: 2017 end-page: 1662 publication-title: Acc. Chem. Res. – volume: 46 start-page: 2459 year: 2017 end-page: 2478 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 1517 year: 2020 end-page: 1544 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 2064 year: 2018 end-page: 2072 publication-title: Acc. Chem. Res. – volume: 141 start-page: 12280 year: 2019 end-page: 12287 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 1553 year: 2021 end-page: 1561 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 15651 year: 2018 end-page: 15654 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 198 year: 2020 end-page: 208 publication-title: Acc. Chem. Res. – volume: 12 start-page: 6378 year: 2021 publication-title: Nat. Commun. – volume: 60 133 start-page: 1690 1714 year: 2021 2021 end-page: 1701 1725 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 126 start-page: 1932 year: 2004 end-page: 1933 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 916 year: 2022 end-page: 929 publication-title: Acc. Chem. Res. – volume: 16 start-page: 4793 year: 2010 end-page: 4802 publication-title: Chem. Eur. J. – volume: 59 132 start-page: 11267 11363 year: 2020 2020 end-page: 11272 11368 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 462 year: 2022 publication-title: Coord. Chem. Rev. – volume: 53 126 start-page: 2038 2068 year: 2014 2014 end-page: 2054 2084 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 start-page: 3191 year: 2022 end-page: 3204 publication-title: Acc. Chem. Res. – start-page: 2692 year: 2002 end-page: 2693 publication-title: Chem. Commun. – volume: 20 start-page: 7087 year: 2020 end-page: 7092 publication-title: Cryst. Growth Des. – volume: 139 start-page: 5664 year: 2017 end-page: 5667 publication-title: J. Am. Chem. Soc. – volume: 37 110 start-page: 2344 2478 year: 1998 1998 end-page: 2347 2481 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 4894 year: 2017 end-page: 4900 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 20249 year: 2021 end-page: 20255 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 6070 year: 2020 end-page: 6123 publication-title: Chem. Rev. – volume: 10 start-page: 23147 year: 2018 end-page: 23153 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 318 year: 2022 end-page: 330 publication-title: CCS Chem. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 104 start-page: 5565 year: 2004 end-page: 5592 publication-title: Chem. Rev. – volume: 59 132 start-page: 22012 22196 year: 2020 2020 end-page: 22016 22200 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 26 start-page: 7931 year: 2014 end-page: 7958 publication-title: Adv. Mater. – volume: 75 year: 2007 publication-title: Phys. Rev. B – volume: 127 start-page: 16866 year: 2005 end-page: 16881 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 60 133 start-page: 16585 16721 year: 2021 2021 end-page: 16593 16729 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 20395 year: 2021 end-page: 20402 publication-title: J. Am. Chem. Soc. – volume: 488 start-page: 485 year: 2012 end-page: 489 publication-title: Nature – volume: 60 133 start-page: 8115 8196 year: 2021 2021 end-page: 8120 8201 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 6810 year: 2022 end-page: 6817 publication-title: ACS Appl. Mater. Interfaces – volume: 115 start-page: 7240 year: 2015 end-page: 7303 publication-title: Chem. Rev. – volume: 56 start-page: 4344 year: 2020 end-page: 4347 publication-title: Chem. Commun. – volume: 116 start-page: 12823 year: 2016 end-page: 12864 publication-title: Chem. Rev. – volume: 136 start-page: 17224 year: 2014 end-page: 17235 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 18630 18778 year: 2021 2021 end-page: 18638 18786 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 9186 year: 2017 end-page: 9191 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 1533 year: 2019 end-page: 1543 publication-title: Chem. Commun. – volume: 142 start-page: 20892 year: 2020 end-page: 20901 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 10165 10303 year: 2015 2015 end-page: 10168 10306 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 5265 year: 2021 end-page: 5270 publication-title: Org. Chem. Front. – volume: 40 113 start-page: 1526 1574 year: 2001 2001 end-page: 1529 1577 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 start-page: 1186 year: 2014 end-page: 1198 publication-title: Acc. Chem. Res. – volume: 143 start-page: 8000 year: 2021 end-page: 8010 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 9519 year: 2015 end-page: 9522 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1040 year: 2017 end-page: 1045 publication-title: Chem. Sci. – start-page: 848 year: 2004 end-page: 849 publication-title: Chem. Commun. – start-page: 1305 year: 2007 end-page: 1315 publication-title: Chem. Commun. – volume: 48 start-page: 2682 year: 2019 end-page: 2697 publication-title: Chem. Soc. Rev. – volume: 492 start-page: 234 year: 2012 end-page: 238 publication-title: Nature – ident: e_1_2_8_40_2 doi: 10.1002/1521-3757(20010417)113:8<1574::AID-ANGE1574>3.0.CO;2-H – ident: e_1_2_8_26_2 doi: 10.1039/C6SC02640K – ident: e_1_2_8_37_1 – ident: e_1_2_8_5_3 doi: 10.1002/ange.202203817 – ident: e_1_2_8_15_2 doi: 10.1039/C9CS00098D – ident: e_1_2_8_57_1 doi: 10.31635/ccschem.021.202100870 – ident: e_1_2_8_8_2 doi: 10.1021/ja0533996 – ident: e_1_2_8_27_1 doi: 10.1002/anie.202117872 – ident: e_1_2_8_56_2 doi: 10.1002/ange.202210579 – ident: e_1_2_8_60_2 doi: 10.1021/cr5005315 – ident: e_1_2_8_12_2 doi: 10.1002/adma.201605444 – ident: e_1_2_8_21_2 doi: 10.1002/anie.202104145 – ident: e_1_2_8_25_3 doi: 10.1002/ange.201307756 – ident: e_1_2_8_43_2 doi: 10.1002/anie.200460179 – ident: e_1_2_8_63_2 doi: 10.1021/acs.chemrev.9b00839 – ident: e_1_2_8_69_1 – ident: e_1_2_8_10_1 – ident: e_1_2_8_44_2 doi: 10.1021/ja031567t – ident: e_1_2_8_13_2 doi: 10.1021/jacs.1c01493 – ident: e_1_2_8_52_2 doi: 10.1002/ange.202010802 – ident: e_1_2_8_67_2 doi: 10.1021/jacs.1c10139 – ident: e_1_2_8_40_1 doi: 10.1002/1521-3773(20010417)40:8<1526::AID-ANIE1526>3.0.CO;2-T – ident: e_1_2_8_18_1 – ident: e_1_2_8_62_2 doi: 10.1039/C8CS00955D – ident: e_1_2_8_38_3 doi: 10.1002/ange.201503542 – ident: e_1_2_8_65_2 doi: 10.1021/jacs.9b03559 – ident: e_1_2_8_74_3 doi: 10.1002/(SICI)1521-3757(19980904)110:17<2478::AID-ANGE2478>3.0.CO;2-W – ident: e_1_2_8_31_2 doi: 10.1039/C8CC09374A – ident: e_1_2_8_4_2 doi: 10.1021/jacs.7b02279 – ident: e_1_2_8_71_2 doi: 10.1021/acs.accounts.6b00209 – ident: e_1_2_8_73_1 – ident: e_1_2_8_46_2 doi: 10.1002/anie.200461806 – ident: e_1_2_8_6_1 – ident: e_1_2_8_79_1 doi: 10.1021/jacs.9b07877 – ident: e_1_2_8_82_1 – ident: e_1_2_8_53_1 doi: 10.1002/anie.202013701 – ident: e_1_2_8_1_1 – ident: e_1_2_8_16_2 doi: 10.1002/chem.200903403 – ident: e_1_2_8_81_1 doi: 10.1038/s41467-021-26729-3 – ident: e_1_2_8_2_2 doi: 10.1038/nmat1298 – ident: e_1_2_8_45_2 doi: 10.1039/B400783B – ident: e_1_2_8_36_2 doi: 10.1021/acs.accounts.2c00555 – ident: e_1_2_8_23_1 doi: 10.1021/ja509442t – ident: e_1_2_8_22_2 doi: 10.1002/anie.202202381 – ident: e_1_2_8_41_1 – ident: e_1_2_8_33_2 doi: 10.1021/acs.accounts.9b00415 – ident: e_1_2_8_42_2 doi: 10.1039/b208280b – ident: e_1_2_8_56_1 doi: 10.1002/anie.202210579 – ident: e_1_2_8_3_2 doi: 10.1038/nature11395 – ident: e_1_2_8_19_2 doi: 10.1021/ar400264e – ident: e_1_2_8_25_2 doi: 10.1002/anie.201307756 – ident: e_1_2_8_84_2 doi: 10.1021/jacs.7b00873 – ident: e_1_2_8_35_2 doi: 10.1021/acs.accounts.2c00043 – ident: e_1_2_8_52_1 doi: 10.1002/anie.202010802 – ident: e_1_2_8_22_3 doi: 10.1002/ange.202202381 – ident: e_1_2_8_55_1 doi: 10.1021/jacs.8b11156 – ident: e_1_2_8_14_1 – ident: e_1_2_8_86_3 doi: 10.1002/ange.202103965 – ident: e_1_2_8_75_2 doi: 10.1063/1.5014041 – ident: e_1_2_8_29_2 doi: 10.1039/B603088M – ident: e_1_2_8_59_1 – ident: e_1_2_8_78_1 doi: 10.1021/jacs.9b08758 – ident: e_1_2_8_77_2 doi: 10.1038/nchem.2924 – ident: e_1_2_8_47_2 doi: 10.1039/B615103E – ident: e_1_2_8_66_3 doi: 10.1002/ange.202006999 – ident: e_1_2_8_54_1 doi: 10.1021/acs.cgd.0c00982 – ident: e_1_2_8_28_1 – ident: e_1_2_8_32_1 – ident: e_1_2_8_83_2 doi: 10.1038/nature11687 – ident: e_1_2_8_34_2 – ident: e_1_2_8_58_1 doi: 10.1021/acsami.1c22583 – ident: e_1_2_8_17_2 doi: 10.1021/jacs.5b04178 – ident: e_1_2_8_70_2 doi: 10.1021/acs.chemrev.6b00172 – ident: e_1_2_8_74_2 doi: 10.1002/(SICI)1521-3773(19980918)37:17<2344::AID-ANIE2344>3.0.CO;2-B – ident: e_1_2_8_30_2 doi: 10.1039/C7CS00185A – ident: e_1_2_8_72_1 doi: 10.1021/accountsmr.2c00063 – ident: e_1_2_8_20_2 doi: 10.1002/anie.202001145 – ident: e_1_2_8_64_1 – ident: e_1_2_8_43_3 doi: 10.1002/ange.200460179 – ident: e_1_2_8_21_3 doi: 10.1002/ange.202104145 – ident: e_1_2_8_50_1 doi: 10.1039/D0CC01112F – ident: e_1_2_8_39_2 doi: 10.1039/D1QO00819F – ident: e_1_2_8_11_2 doi: 10.1002/adma.201402532 – ident: e_1_2_8_38_2 doi: 10.1002/anie.201503542 – ident: e_1_2_8_7_2 doi: 10.1021/cr030652g – ident: e_1_2_8_20_3 doi: 10.1002/ange.202001145 – ident: e_1_2_8_51_1 doi: 10.1021/jacs.0c11833 – ident: e_1_2_8_86_2 doi: 10.1002/anie.202103965 – ident: e_1_2_8_49_1 doi: 10.1021/acsami.8b06396 – ident: e_1_2_8_80_1 doi: 10.1021/jacs.0c11037 – ident: e_1_2_8_76_2 doi: 10.1103/PhysRevB.75.195122 – ident: e_1_2_8_48_1 doi: 10.1021/jacs.7b00631 – ident: e_1_2_8_68_2 doi: 10.1016/j.ccr.2022.214503 – ident: e_1_2_8_24_1 – ident: e_1_2_8_5_2 doi: 10.1002/anie.202203817 – ident: e_1_2_8_46_3 doi: 10.1002/ange.200461806 – ident: e_1_2_8_27_2 doi: 10.1002/ange.202117872 – ident: e_1_2_8_9_2 doi: 10.1021/acs.accounts.7b00124 – ident: e_1_2_8_61_2 doi: 10.1021/acs.accounts.8b00255 – ident: e_1_2_8_66_2 doi: 10.1002/anie.202006999 – ident: e_1_2_8_85_2 doi: 10.1021/jacs.1c08824 – ident: e_1_2_8_53_2 doi: 10.1002/ange.202013701 |
SSID | ssj0028806 |
Score | 2.6180918 |
SecondaryResourceType | review_article |
Snippet | Synthetic macrocycles have served as principal tools for supramolecular chemistry, have greatly extended the scope of organic charge transfer (CT) complexes,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202218142 |
SubjectTerms | Assemblies Charge Transfer Host-Guest Systems Macrocycles Molecular Crystals Supramolecular Chemistry |
Title | Macrocycle‐Based Crystalline Supramolecular Assemblies Built with Intermolecular Charge‐Transfer Interactions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202218142 https://www.ncbi.nlm.nih.gov/pubmed/36651562 https://www.proquest.com/docview/2788349730 https://www.proquest.com/docview/2766720445 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCoKnajdpk-xRF0UFPfgAbyWTpiLqqrvbg578Cf5Gf4kzzba6igjaU0umaZrMK4_5hrENqZwCTccqQJswhkyEEDVtqIwxLkIG8Qtuxyfy4CI-ukwuP0Xxe3yIesGNJKPU1yTgBnrbH6ChFIGN8ztONiomJUwHtsgrOq3xozgypw8vEiKkLPQVamPEt4dfH7ZK31zNYc-1ND37k8xUjfYnTm62ij5s2ecveI7_-aspNjHwS4Mdz0jTbMR1ZthYu0oHN8sejw223T5h6dvL6y4avyxod5_QuSRUbxecFQ9dc1cl2w1oM_kO0MHtBbvF9W0_oAXfoFx__CCivf4rqq60mLnregIfa9GbYxf7e-ftg3CQryG0QglUrFbkHBINkLRioeIMbb_Wicw1mExonPKiNuOo0PAyTgsTIUe0LBAoX9M2lZhno537jltkgbO5NCB1kjgVg8ixFikhAunypksyaLCwGq_UDsDMKafGbephmHlKHZnWHdlgmzX9g4fx-JFypRr-dCDOvZQrrUXcQm3YYOt1MQ4A7a6YjrsviEZKyvgTJw224Nmm_pSQlHFeYuW8HPxf2pDunBzu1U9Lf3lpmY3jvaDTclytsNF-t3Cr6D71Ya0UkXcIHxOh |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4heqCXttC_baGkUqWeAlk7sb1HWIEWyu6hBam3yOM4CAEL3d0c6IlH4Bl5EmbiTdC2qiq1uSWeOI49nhmPx98AfFLaazQcVoHGxikWMsak62JtrfUJMUhwuA1HanCSHn7PmmhCPgsT8CFahxvPjFpe8wRnh_T2I2ooH8GmBZ5gJZWSFH7Cab3rVdXXFkFKEHuGA0ZSxpyHvsFtTMT24vuLeuk3Y3PRdq2Vz_5zwKbZIebkfKua4Zb7-Qui43_91wt4NjdNo53AS6uw5MdrsNJvMsK9hB9DS413N1R6f3u3S_qviPqTG7IvGdjbR9-q64m9bPLtRryffIlk406j3ersYhaxzzeqXZCPRLzdf8rV1Uqz9JNAEI5bTF_Byf7ecX8Qz1M2xE5qSbLVyVJgZhCzXip1WpD6NyZTpUFbSEOrXhJogmQaXdYbaRNiip5DxuXruq6Wr2F5fDX2byHyrlQWlckyr1OUJdWiFCaofNn1WYEdiJsBy90cz5zTalzkAYlZ5NyReduRHfjc0l8HJI8_Uq4345_PZ_Q0F9oYmfZIIHbgY1tMA8AbLHbsryqmUYqT_qRZB94Evmk_JRUnnVdUuahH_y9tyHdGB3vt3bt_eWkTVgbHw6P86GD05T08peeSg-eEXofl2aTyG2RNzfBDPV8eADPKF7w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hIQEv4z8rDAgSEk_ZUtux3cetW7UBqxAwaW-Rz3EQYutK2zyMJz4Cn5FPwl3cZBSEkCBviS-O4zvfnc_27wCeaxMMWt5WgdalCkuZYtb3qXHOhYwEJAbcjsb64Fi9PMlPfjrFH_EhuoAbj4xGX_MAn5bV9iVoKJ_ApvmdYBulSAlfVTqzLNd7bzsAKUHSGc8XSZlyGvoWtjET26vvr5ql33zNVde1sT2jm-DaVsctJ5-26gVu-S-_ADr-z2_dgvWlY5rsREm6DVfC5A5cH7b54O7C5yNHbfcXVPr967ddsn5lMpxdkHfJsN4heVdPZ-6szbab8GryGZKHO09264-ni4QjvkkTgLwk4sX-D1xdYzKrMIsE8bDF_B4cj_bfDw_SZcKG1EsjSbN6WQnMLWI-UNKokoy_tbmuLLpSWprzkjoTpNHocsFKl5FIDDwyKl_f9428D2uT80nYgCT4SjvUNs-DUSgrqkVrzFCHqh_yEnuQtvwq_BLNnJNqnBYRh1kU3JFF15E9eNHRTyOOxx8pN1v2F8vxPC-EsVaqAanDHjzriokBvLziJuG8ZhqtOeWPynvwIIpN9ympOeW8pspFw_y_tKHYGR_ud3cP_-Wlp3Dtzd6oeH04fvUIbtBjyTvnhNmEtcWsDo_JlVrgk2a0_AD2oRZ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macrocycle-Based+Crystalline+Supramolecular+Assemblies+Built+with+Intermolecular+Charge-Transfer+Interactions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Jia-Rui&rft.au=Wu%2C+Gengxin&rft.au=Li%2C+Dongxia&rft.au=Yang%2C+Ying-Wei&rft.date=2023-03-27&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=62&rft.issue=14&rft.spage=e202218142&rft_id=info:doi/10.1002%2Fanie.202218142&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |