Hybrid Cellular Nanovesicles Block PD‐L1 Signal and Repolarize M2 Macrophages for Cancer Immunotherapy
The PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor‐associated macrophages (TAMs) offers a potential method to ameliorate immunosuppressi...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 31; pp. e2311702 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor‐associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) to improve cancer immunotherapy. The M1‐NVs promote the transformation of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, which boosts cancer immunotherapy when combined with M1‐NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD‐L1 blockade for cancer immunotherapy.
Hybrid cellular nanovesicles (hNVs) are prepared by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) for enhanced cancer immunotherapy. The M1‐NVs promote the repolarization of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive tumor microenvironment. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, synergizing with M1‐NVs to boost cancer immunotherapy. |
---|---|
AbstractList | The PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor‐associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) to improve cancer immunotherapy. The M1‐NVs promote the transformation of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, which boosts cancer immunotherapy when combined with M1‐NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD‐L1 blockade for cancer immunotherapy.
Hybrid cellular nanovesicles (hNVs) are prepared by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) for enhanced cancer immunotherapy. The M1‐NVs promote the repolarization of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive tumor microenvironment. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, synergizing with M1‐NVs to boost cancer immunotherapy. The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor-associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage-derived nanovesicles (M1-NVs) and PD1-overexpressed tumor cell-derived nanovesicles (PD1-NVs) to improve cancer immunotherapy. The M1-NVs promote the transformation of M2-like TAMs to M1-like phenotype and further increase the release of pro-inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1-NVs block PD1/PD-L1 pathway, which boosts cancer immunotherapy when combined with M1-NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8 T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD-L1 blockade for cancer immunotherapy. The PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor‐associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) to improve cancer immunotherapy. The M1‐NVs promote the transformation of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, which boosts cancer immunotherapy when combined with M1‐NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD‐L1 blockade for cancer immunotherapy. The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor-associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage-derived nanovesicles (M1-NVs) and PD1-overexpressed tumor cell-derived nanovesicles (PD1-NVs) to improve cancer immunotherapy. The M1-NVs promote the transformation of M2-like TAMs to M1-like phenotype and further increase the release of pro-inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1-NVs block PD1/PD-L1 pathway, which boosts cancer immunotherapy when combined with M1-NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD-L1 blockade for cancer immunotherapy.The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor-associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage-derived nanovesicles (M1-NVs) and PD1-overexpressed tumor cell-derived nanovesicles (PD1-NVs) to improve cancer immunotherapy. The M1-NVs promote the transformation of M2-like TAMs to M1-like phenotype and further increase the release of pro-inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1-NVs block PD1/PD-L1 pathway, which boosts cancer immunotherapy when combined with M1-NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD-L1 blockade for cancer immunotherapy. The PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor‐associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) to improve cancer immunotherapy. The M1‐NVs promote the transformation of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, which boosts cancer immunotherapy when combined with M1‐NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8 + T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD‐L1 blockade for cancer immunotherapy. |
Author | Zhang, Jing Liu, Yu Zhao, Xing‐Zhong Zhao, Chenchen Liu, Lujie Pan, Yuanwei Wu, Xianjia Rao, Lang |
Author_xml | – sequence: 1 givenname: Chenchen surname: Zhao fullname: Zhao, Chenchen organization: Shenzhen Bay Laboratory – sequence: 2 givenname: Yuanwei surname: Pan fullname: Pan, Yuanwei organization: Shenzhen Bay Laboratory – sequence: 3 givenname: Lujie surname: Liu fullname: Liu, Lujie organization: Shenzhen Bay Laboratory – sequence: 4 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: Shenzhen Bay Laboratory – sequence: 5 givenname: Xianjia surname: Wu fullname: Wu, Xianjia organization: Shenzhen Bay Laboratory – sequence: 6 givenname: Yu surname: Liu fullname: Liu, Yu organization: Sun Yat‐sen University – sequence: 7 givenname: Xing‐Zhong surname: Zhao fullname: Zhao, Xing‐Zhong email: xzzhao@whu.edu.cn organization: Wuhan University – sequence: 8 givenname: Lang orcidid: 0000-0001-5010-0729 surname: Rao fullname: Rao, Lang email: lrao@szbl.ac.cn organization: Shenzhen Bay Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38456371$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAYhS3Uil5gyxJZYsNmBt8mdpYwXFop0yIKa8u3dFycONgJaFjxCH3GPgkeTVukSqgre_F9v3TOOQJ7fewdAC8wmmOEyJvchTAniFCMOSJPwCGuMJ1VgtR793-MDsBRzlcIUUwYfwoOqGCLinJ8CNYnG528hUsXwhRUgmeqjz9d9ia4DN-FaL7Dz-9v_lw3GF74y14FqHoLv7ghFtr_dnBF4EqZFIe1uixKGxNcqt64BE-7burjuHZJDZtnYL9VIbvnt-8x-Pbxw9flyaw5_3S6fNvMDOWUzIRqmVKCWy5sbbWh1miBMNWCtWSBmDFKVy1DrTOV0cQKzoW21OkSx3Bi6DF4vbs7pPhjcnmUnc-mpFO9i1OWpF4wzitWiYK-eoBexSmViFlSJEpvYlFvqZe31KQ7Z-WQfKfSRt51WAC2A0oJOSfXSuNHNfrYj0n5IDGS26nkdip5P1XR5g-0u8v_Feqd8MsHt3mElherpvnn_gXaTKea |
CitedBy_id | crossref_primary_10_3389_fgene_2025_1519677 crossref_primary_10_1002_adhm_202401451 crossref_primary_10_1002_adhm_202402103 crossref_primary_10_1016_j_intimp_2024_113058 crossref_primary_10_1021_accountsmr_4c00362 crossref_primary_10_3389_fphar_2024_1487940 |
Cites_doi | 10.1038/s41392-021-00484-9 10.1016/j.cell.2017.01.017 10.1038/nature15373 10.1186/s12964-020-0530-4 10.1002/hep.30593 10.3389/fimmu.2017.00693 10.1038/s41467-020-18626-y 10.7150/thno.84665 10.1002/adma.201703969 10.1038/nrd3978 10.1038/nature13490 10.1038/s41392-021-00506-6 10.1016/j.cytogfr.2022.07.004 10.1186/s12943-021-01489-2 10.1126/sciadv.adg3277 10.1007/s12325-019-01051-z 10.1038/s41568-023-00560-y 10.1002/adma.201706759 10.1016/j.ymthe.2022.04.015 10.1021/acsmaterialslett.2c01136 10.1021/acsnano.2c11691 10.1038/s41392-020-00449-4 10.1016/j.nantod.2022.101606 10.1038/s41467-019-11157-1 10.1007/s00432-019-02879-2 10.1016/j.tibs.2018.09.004 10.1126/science.1114397 10.1186/s12943-023-01725-x 10.1126/sciadv.abd2712 10.1038/s41565-022-01098-0 10.1038/nri2448 10.1016/j.immuni.2014.06.010 10.1016/j.ccr.2012.02.022 10.1002/adma.201808294 10.1021/acsnano.8b02446 10.1038/s41590-020-0769-3 10.1186/s13045-021-01096-0 10.1002/adma.202004853 10.1002/advs.202100460 10.1002/adma.202207875 10.1002/adma.201707112 10.1002/ange.202108342 10.1021/acsami.0c13169 10.1016/j.xcrp.2022.101061 10.1038/nprot.2008.73 10.1038/s41565-021-00972-7 10.1016/j.xpro.2020.100246 10.1038/s41392-023-01471-y 10.3390/cancers6031670 10.1016/j.cmet.2019.06.001 10.1186/s12943-023-01797-9 10.1186/s12943-020-1144-6 10.1016/j.ccell.2016.02.004 10.1038/s41467-020-20723-x |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202311702 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38456371 10_1002_smll_202311702 SMLL202311702 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 82222035; 82372106 – fundername: Shenzhen Science and Technology Innovation Program funderid: RCBS20221008093123060 – fundername: Shenzhen Bay Laboratory Startup Fund funderid: 21310071 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2021A1515111036 – fundername: Shenzhen Medical Research Fund funderid: B2302041 – fundername: National Natural Science Foundation of China grantid: 82222035 – fundername: National Natural Science Foundation of China grantid: 82372106 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2021A1515111036 – fundername: Shenzhen Science and Technology Innovation Program grantid: RCBS20221008093123060 – fundername: Shenzhen Bay Laboratory Startup Fund grantid: 21310071 – fundername: Shenzhen Medical Research Fund grantid: B2302041 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3732-8af4aa87d78d9dbc3dcb8013b84f2504ccab6f40fec6cb2d8778bd3eb637c72c3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 15:50:04 EDT 2025 Wed Aug 13 07:26:47 EDT 2025 Mon Jul 21 05:26:59 EDT 2025 Tue Jul 01 02:55:00 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Wed Jan 22 17:17:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | biomimetic nanoparticles macrophage polarization cell membrane vesicles cancer immunotherapy immune checkpoint blockade |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-8af4aa87d78d9dbc3dcb8013b84f2504ccab6f40fec6cb2d8778bd3eb637c72c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5010-0729 |
PMID | 38456371 |
PQID | 3086818598 |
PQPubID | 1046358 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2954776468 proquest_journals_3086818598 pubmed_primary_38456371 crossref_citationtrail_10_1002_smll_202311702 crossref_primary_10_1002_smll_202311702 wiley_primary_10_1002_smll_202311702_SMLL202311702 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 1, 2024 2024-08-00 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 1, 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019 2017; 36 168 2017; 8 2016 2022; 29 17 2021; 2 2023; 5 2013 2018 2023 2023; 12 30 9 13 2018 2022; 30 46 2020 2021; 18 6 2018 2020; 12 11 2014 2014; 513 41 2023 2019; 35 31 2022; 67 2015; 526 2023 2021; 8 16 2020; 12 2008; 3 2020; 32 2019; 145 2006; 311 2023 2019; 22 30 2020 2020; 21 19 2021; 12 2023; 23 2022; 3 2014 2012 2021; 6 21 6 2021 2023; 14 22 2008 2019 2021; 8 70 6 2022; 30 2020 2022 2018; 6 21 43 2021; 133 2019 2017; 10 29 2021 2023; 8 17 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_15_2 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_23_2 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_8_3 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_12_4 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 |
References_xml | – volume: 3 start-page: 1101 year: 2008 publication-title: Nat. Protoc. – volume: 12 start-page: 440 year: 2021 publication-title: Nat. Commun. – volume: 36 168 start-page: 2638 707 year: 2019 2017 publication-title: Adv. Therapy Cell – volume: 6 21 43 start-page: 28 1014 year: 2020 2022 2018 publication-title: Sci. Adv. Mol. Cancer Trends Biochem. Sci. – volume: 8 start-page: 693 year: 2017 publication-title: Front. Immunol. – volume: 30 start-page: 2817 year: 2022 publication-title: Mol. Ther. – volume: 21 19 start-page: 1346 19 year: 2020 2020 publication-title: Nat. Immunol. Mol. Cancer – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 12 30 9 13 start-page: 347 2811 year: 2013 2018 2023 2023 publication-title: Nat. Rev. Drug Discovery Adv. Mater. Sci. Adv. Theranostics – volume: 14 22 start-page: 85 94 year: 2021 2023 publication-title: J. Hematol. Oncol. Mol. Cancer – volume: 311 start-page: 622 year: 2006 publication-title: Science – volume: 12 11 start-page: 8977 4909 year: 2018 2020 publication-title: ACS Nano Nat. Commun. – volume: 133 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 6 21 6 start-page: 1670 309 127 year: 2014 2012 2021 publication-title: Cancers Cancer Cell Signal Transduct. Target. Ther. – volume: 35 31 year: 2023 2019 publication-title: Adv. Mater. Adv. Mater. – volume: 8 16 start-page: 235 1271 year: 2023 2021 publication-title: Signal Transduct. Target. Ther. Nat. Nanotechnol. – volume: 5 start-page: 1738 year: 2023 publication-title: ACS Mater. Lett. – volume: 2 year: 2021 publication-title: STAR Protoc. – volume: 23 start-page: 295 year: 2023 publication-title: Nat. Rev. Cancer – volume: 145 start-page: 1377 year: 2019 publication-title: J. Cancer Res. Clin. Oncol. – volume: 8 70 6 start-page: 958 198 75 year: 2008 2019 2021 publication-title: Nat. Rev. Immunol. Hepatology Signal Transduct. Target. Ther. – volume: 526 start-page: 118 year: 2015 publication-title: Nature – volume: 8 17 start-page: 3225 year: 2021 2023 publication-title: Adv. Sci. ACS Nano – volume: 18 6 start-page: 59 72 year: 2020 2021 publication-title: Cell Commun. Signal. Signal Transduct. Target. Ther. – volume: 30 46 year: 2018 2022 publication-title: Adv. Mater. Nano Today – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 67 start-page: 49 year: 2022 publication-title: Cytokine Growth Factor Rev. – volume: 513 41 start-page: 559 49 year: 2014 2014 publication-title: Nature Immunity – volume: 10 29 start-page: 3199 year: 2019 2017 publication-title: Nat. Commun. Adv. Mater. – volume: 3 year: 2022 publication-title: Cell Rep. Phys. Sci. – volume: 22 30 start-page: 58 36 year: 2023 2019 publication-title: Mol. Cancer Cell Metab. – volume: 29 17 start-page: 285 531 year: 2016 2022 publication-title: Cancer Cell Nat. Nanotechnol. – ident: e_1_2_8_7_3 doi: 10.1038/s41392-021-00484-9 – ident: e_1_2_8_2_2 doi: 10.1016/j.cell.2017.01.017 – ident: e_1_2_8_21_1 doi: 10.1038/nature15373 – ident: e_1_2_8_3_1 doi: 10.1186/s12964-020-0530-4 – ident: e_1_2_8_7_2 doi: 10.1002/hep.30593 – ident: e_1_2_8_26_1 doi: 10.3389/fimmu.2017.00693 – ident: e_1_2_8_14_2 doi: 10.1038/s41467-020-18626-y – ident: e_1_2_8_12_4 doi: 10.7150/thno.84665 – ident: e_1_2_8_22_2 doi: 10.1002/adma.201703969 – ident: e_1_2_8_12_1 doi: 10.1038/nrd3978 – ident: e_1_2_8_6_1 doi: 10.1038/nature13490 – ident: e_1_2_8_8_3 doi: 10.1038/s41392-021-00506-6 – ident: e_1_2_8_9_1 doi: 10.1016/j.cytogfr.2022.07.004 – ident: e_1_2_8_1_2 doi: 10.1186/s12943-021-01489-2 – ident: e_1_2_8_12_3 doi: 10.1126/sciadv.adg3277 – ident: e_1_2_8_2_1 doi: 10.1007/s12325-019-01051-z – ident: e_1_2_8_25_1 doi: 10.1038/s41568-023-00560-y – ident: e_1_2_8_12_2 doi: 10.1002/adma.201706759 – ident: e_1_2_8_29_1 doi: 10.1016/j.ymthe.2022.04.015 – ident: e_1_2_8_4_1 doi: 10.1021/acsmaterialslett.2c01136 – ident: e_1_2_8_11_2 doi: 10.1021/acsnano.2c11691 – ident: e_1_2_8_3_2 doi: 10.1038/s41392-020-00449-4 – ident: e_1_2_8_15_2 doi: 10.1016/j.nantod.2022.101606 – ident: e_1_2_8_22_1 doi: 10.1038/s41467-019-11157-1 – ident: e_1_2_8_27_1 doi: 10.1007/s00432-019-02879-2 – ident: e_1_2_8_1_3 doi: 10.1016/j.tibs.2018.09.004 – ident: e_1_2_8_20_1 doi: 10.1126/science.1114397 – ident: e_1_2_8_5_1 doi: 10.1186/s12943-023-01725-x – ident: e_1_2_8_1_1 doi: 10.1126/sciadv.abd2712 – ident: e_1_2_8_23_2 doi: 10.1038/s41565-022-01098-0 – ident: e_1_2_8_7_1 doi: 10.1038/nri2448 – ident: e_1_2_8_6_2 doi: 10.1016/j.immuni.2014.06.010 – ident: e_1_2_8_8_2 doi: 10.1016/j.ccr.2012.02.022 – ident: e_1_2_8_13_2 doi: 10.1002/adma.201808294 – ident: e_1_2_8_14_1 doi: 10.1021/acsnano.8b02446 – ident: e_1_2_8_18_1 doi: 10.1038/s41590-020-0769-3 – ident: e_1_2_8_19_1 doi: 10.1186/s13045-021-01096-0 – ident: e_1_2_8_28_1 doi: 10.1002/adma.202004853 – ident: e_1_2_8_11_1 doi: 10.1002/advs.202100460 – ident: e_1_2_8_13_1 doi: 10.1002/adma.202207875 – ident: e_1_2_8_15_1 doi: 10.1002/adma.201707112 – ident: e_1_2_8_16_1 doi: 10.1002/ange.202108342 – ident: e_1_2_8_32_1 doi: 10.1021/acsami.0c13169 – ident: e_1_2_8_17_1 doi: 10.1016/j.xcrp.2022.101061 – ident: e_1_2_8_31_1 doi: 10.1038/nprot.2008.73 – ident: e_1_2_8_24_2 doi: 10.1038/s41565-021-00972-7 – ident: e_1_2_8_30_1 doi: 10.1016/j.xpro.2020.100246 – ident: e_1_2_8_24_1 doi: 10.1038/s41392-023-01471-y – ident: e_1_2_8_8_1 doi: 10.3390/cancers6031670 – ident: e_1_2_8_5_2 doi: 10.1016/j.cmet.2019.06.001 – ident: e_1_2_8_19_2 doi: 10.1186/s12943-023-01797-9 – ident: e_1_2_8_18_2 doi: 10.1186/s12943-020-1144-6 – ident: e_1_2_8_23_1 doi: 10.1016/j.ccell.2016.02.004 – ident: e_1_2_8_10_1 doi: 10.1038/s41467-020-20723-x |
SSID | ssj0031247 |
Score | 2.4896934 |
Snippet | The PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic... The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2311702 |
SubjectTerms | Animals B7-H1 Antigen - metabolism biomimetic nanoparticles Blocking Cancer cancer immunotherapy Cell Line, Tumor cell membrane vesicles Cell membranes Effectiveness Female Humans immune checkpoint blockade Immunosuppression Immunotherapy Immunotherapy - methods Lymphocytes macrophage polarization Macrophages Macrophages - metabolism Mice Nanoparticles - chemistry Neoplasms - immunology Neoplasms - pathology Neoplasms - therapy Programmed Cell Death 1 Receptor - metabolism Signal Transduction Tumor Microenvironment |
Title | Hybrid Cellular Nanovesicles Block PD‐L1 Signal and Repolarize M2 Macrophages for Cancer Immunotherapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202311702 https://www.ncbi.nlm.nih.gov/pubmed/38456371 https://www.proquest.com/docview/3086818598 https://www.proquest.com/docview/2954776468 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VnNoDrxZIgWorIfVkcHY33vURQlFACap4SNysfRkQqYNwgpSc-hP4jfwSZmzHkCJUid5sedde7-zMfPbOfEPIljDWx6HlgRWaBcLFLohlGoIxVCnXTZGytGD7PI465-LoonXxIou_5Ieof7ihZhT2GhVcm3znmTQ0_93HrQPAJ01ZsEliwBaiopOaP4qD8yqqq4DPCpB4a8raGLKd2e6zXukV1JxFroXrOVggejroMuLkZns0NNt28hef4_-81SKZr3Ap3S0X0hL54LNl8ukFW-FnctUZY3oXbft-H4NXKVjmwb3Pi8A6ugde8Yb-2n_889Bt0tPrS7ydzhxFiA-tryee9hjtaawZdgVWLKeAl2kbV90dPcQ0lSoZbPyFnB_8PGt3gqpQQ2C55GBRdSq0VtJJBcI2ljtrwPNxo0DWrVDAKjFRKsLU28ga5pSUyjjuTcSllczyFTKXDTK_RmissA4as85pLVRLG28cUy1wqZFTwssGCaaCSmzFYo7FNPpJyb_MEpzBpJ7BBvlRt78t-TvebLkxlXtS6XGecPjiQ0gTqwb5Xl8GDcRtFZ35wShPcKdUykhE0Ga1XC_1o7gCgMpls0FYIfV_jCE57XW79dnX93RaJx_hWJQxihtkbng38puAm4bmW6EbT4aNEJI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQCHQnl1oRQjIXFKm7W9sXMsS6stZCtEW4mb5Vdo1SWLml2k9sRP6G_sL-lMXu1SISQ4JrETx-OZ-WyPvyHkrbAupLHjkROGRcKnPkplHoMxVDk3fZGzvGL73EtGh-Lj10EbTYhnYWp-iG7BDTWjsteo4LggvXnNGlp-n-DeAQCUvkQ6ybuY1ruaVX3pGKQ4uK8qvwp4rQipt1rexphtLtZf9Eu3wOYidq2cz85DYttm1zEnJxvzmd1w578xOv7Xfz0iyw00pVv1WFohd0LxmDy4QVj4hByNzvCEFx2GyQTjVykY5-nPUFaxdfQ9OMYT-vnD5a-LrE_3j7_h60zhKaJ8KH18HuiY0bHBtGFHYMhKCpCZDnHgndJdPKnSnAc7e0oOd7YPhqOoydUQOS45GFWTC2OU9FKBvK3j3llwftwqEPcgFjBQbJKLOA8ucZZ5JaWyngebcOkkc_wZWSqmRVglNFWYCo05740RamBssJ6pAXjVxCsRZI9EraS0a4jMMZ_GRNcUzExjD-quB3vkXVf-R03h8ceSa63gdaPKpeYw6UNUk6oeedM9BiXEnRVThOm81LhZKmUiEijzvB4w3ae4AozKZb9HWCX2v7RB74-zrLt68S-VXpN7o4NxprPdvU8vyX24L-qQxTWyNDudh1cAo2Z2vVKUK4YQFK0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYQk9D2sA3YpRtjnjRpT4HUdmPnkbWrymgRGkPizfItA9GliLST4ImfwG_kl-ycJM0o0zRpe0xiJ47P7Uvs8x1C3gvrQho7HjlhWCR86qNUZjE4Q5Vx0xYZy0q2z_1kcCQ-H3eO72TxV_wQzQ83tIzSX6OBn_ts-xdpaPF9jEsHgE_aEtkkH4gkVqjXvS8NgRSH6FWWV4GgFSHz1py2MWbbi_0Xw9JvWHMRupaxp_-EmPmoqy0nZ1uzqd1yV_cIHf_ntZ6SxzUwpTuVJq2SpZCvkUd36ArXycngEvO7aDeMx7h7lYJrnvwIRbmzjn6EsHhGD3q31zfDNj08_Ya3M7mniPGh9elVoCNGRwaLhp2AGysoAGbaRbW7oLuYp1Jng10-I0f9T1-7g6iu1BA5Ljm4VJMJY5T0UoG0rePeWQh93CoQdicWoCY2yUScBZc4y7ySUlnPg024dJI5_pws55M8vCQ0VVgIjTnvjRGqY2ywnqkOxNTEKxFki0RzQWlX05hjNY2xrgiYmcYZ1M0MtsiHpv15ReDxx5Ybc7nr2pALzeGTDzFNqlrkXXMZTBDXVUweJrNC41KplIlIoM2LSl-aR3EFCJXLdouwUup_GYM-HA2HzdGrf-n0lqwc9Pp6uLu_95o8hNOi2q-4QZanF7PwBjDU1G6WZvITUfQTZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Cellular+Nanovesicles+Block+PD%E2%80%90L1+Signal+and+Repolarize+M2+Macrophages+for+Cancer+Immunotherapy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhao%2C+Chenchen&rft.au=Pan%2C+Yuanwei&rft.au=Liu%2C+Lujie&rft.au=Zhang%2C+Jing&rft.date=2024-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=31&rft_id=info:doi/10.1002%2Fsmll.202311702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202311702 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |