Hybrid Cellular Nanovesicles Block PD‐L1 Signal and Repolarize M2 Macrophages for Cancer Immunotherapy

The PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor‐associated macrophages (TAMs) offers a potential method to ameliorate immunosuppressi...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 31; pp. e2311702 - n/a
Main Authors Zhao, Chenchen, Pan, Yuanwei, Liu, Lujie, Zhang, Jing, Wu, Xianjia, Liu, Yu, Zhao, Xing‐Zhong, Rao, Lang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor‐associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) to improve cancer immunotherapy. The M1‐NVs promote the transformation of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, which boosts cancer immunotherapy when combined with M1‐NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD‐L1 blockade for cancer immunotherapy. Hybrid cellular nanovesicles (hNVs) are prepared by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) for enhanced cancer immunotherapy. The M1‐NVs promote the repolarization of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive tumor microenvironment. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, synergizing with M1‐NVs to boost cancer immunotherapy.
AbstractList The PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor‐associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) to improve cancer immunotherapy. The M1‐NVs promote the transformation of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, which boosts cancer immunotherapy when combined with M1‐NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD‐L1 blockade for cancer immunotherapy. Hybrid cellular nanovesicles (hNVs) are prepared by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) for enhanced cancer immunotherapy. The M1‐NVs promote the repolarization of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive tumor microenvironment. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, synergizing with M1‐NVs to boost cancer immunotherapy.
The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor-associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage-derived nanovesicles (M1-NVs) and PD1-overexpressed tumor cell-derived nanovesicles (PD1-NVs) to improve cancer immunotherapy. The M1-NVs promote the transformation of M2-like TAMs to M1-like phenotype and further increase the release of pro-inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1-NVs block PD1/PD-L1 pathway, which boosts cancer immunotherapy when combined with M1-NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8 T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD-L1 blockade for cancer immunotherapy.
The PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor‐associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) to improve cancer immunotherapy. The M1‐NVs promote the transformation of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, which boosts cancer immunotherapy when combined with M1‐NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD‐L1 blockade for cancer immunotherapy.
The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor-associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage-derived nanovesicles (M1-NVs) and PD1-overexpressed tumor cell-derived nanovesicles (PD1-NVs) to improve cancer immunotherapy. The M1-NVs promote the transformation of M2-like TAMs to M1-like phenotype and further increase the release of pro-inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1-NVs block PD1/PD-L1 pathway, which boosts cancer immunotherapy when combined with M1-NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD-L1 blockade for cancer immunotherapy.The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor-associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage-derived nanovesicles (M1-NVs) and PD1-overexpressed tumor cell-derived nanovesicles (PD1-NVs) to improve cancer immunotherapy. The M1-NVs promote the transformation of M2-like TAMs to M1-like phenotype and further increase the release of pro-inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1-NVs block PD1/PD-L1 pathway, which boosts cancer immunotherapy when combined with M1-NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD-L1 blockade for cancer immunotherapy.
The PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor‐associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage‐derived nanovesicles (M1‐NVs) and PD1‐overexpressed tumor cell‐derived nanovesicles (PD1‐NVs) to improve cancer immunotherapy. The M1‐NVs promote the transformation of M2‐like TAMs to M1‐like phenotype and further increase the release of pro‐inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1‐NVs block PD1/PD‐L1 pathway, which boosts cancer immunotherapy when combined with M1‐NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8 + T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD‐L1 blockade for cancer immunotherapy.
Author Zhang, Jing
Liu, Yu
Zhao, Xing‐Zhong
Zhao, Chenchen
Liu, Lujie
Pan, Yuanwei
Wu, Xianjia
Rao, Lang
Author_xml – sequence: 1
  givenname: Chenchen
  surname: Zhao
  fullname: Zhao, Chenchen
  organization: Shenzhen Bay Laboratory
– sequence: 2
  givenname: Yuanwei
  surname: Pan
  fullname: Pan, Yuanwei
  organization: Shenzhen Bay Laboratory
– sequence: 3
  givenname: Lujie
  surname: Liu
  fullname: Liu, Lujie
  organization: Shenzhen Bay Laboratory
– sequence: 4
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Shenzhen Bay Laboratory
– sequence: 5
  givenname: Xianjia
  surname: Wu
  fullname: Wu, Xianjia
  organization: Shenzhen Bay Laboratory
– sequence: 6
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  organization: Sun Yat‐sen University
– sequence: 7
  givenname: Xing‐Zhong
  surname: Zhao
  fullname: Zhao, Xing‐Zhong
  email: xzzhao@whu.edu.cn
  organization: Wuhan University
– sequence: 8
  givenname: Lang
  orcidid: 0000-0001-5010-0729
  surname: Rao
  fullname: Rao, Lang
  email: lrao@szbl.ac.cn
  organization: Shenzhen Bay Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38456371$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAYhS3Uil5gyxJZYsNmBt8mdpYwXFop0yIKa8u3dFycONgJaFjxCH3GPgkeTVukSqgre_F9v3TOOQJ7fewdAC8wmmOEyJvchTAniFCMOSJPwCGuMJ1VgtR793-MDsBRzlcIUUwYfwoOqGCLinJ8CNYnG528hUsXwhRUgmeqjz9d9ia4DN-FaL7Dz-9v_lw3GF74y14FqHoLv7ghFtr_dnBF4EqZFIe1uixKGxNcqt64BE-7burjuHZJDZtnYL9VIbvnt-8x-Pbxw9flyaw5_3S6fNvMDOWUzIRqmVKCWy5sbbWh1miBMNWCtWSBmDFKVy1DrTOV0cQKzoW21OkSx3Bi6DF4vbs7pPhjcnmUnc-mpFO9i1OWpF4wzitWiYK-eoBexSmViFlSJEpvYlFvqZe31KQ7Z-WQfKfSRt51WAC2A0oJOSfXSuNHNfrYj0n5IDGS26nkdip5P1XR5g-0u8v_Feqd8MsHt3mElherpvnn_gXaTKea
CitedBy_id crossref_primary_10_3389_fgene_2025_1519677
crossref_primary_10_1002_adhm_202401451
crossref_primary_10_1002_adhm_202402103
crossref_primary_10_1016_j_intimp_2024_113058
crossref_primary_10_1021_accountsmr_4c00362
crossref_primary_10_3389_fphar_2024_1487940
Cites_doi 10.1038/s41392-021-00484-9
10.1016/j.cell.2017.01.017
10.1038/nature15373
10.1186/s12964-020-0530-4
10.1002/hep.30593
10.3389/fimmu.2017.00693
10.1038/s41467-020-18626-y
10.7150/thno.84665
10.1002/adma.201703969
10.1038/nrd3978
10.1038/nature13490
10.1038/s41392-021-00506-6
10.1016/j.cytogfr.2022.07.004
10.1186/s12943-021-01489-2
10.1126/sciadv.adg3277
10.1007/s12325-019-01051-z
10.1038/s41568-023-00560-y
10.1002/adma.201706759
10.1016/j.ymthe.2022.04.015
10.1021/acsmaterialslett.2c01136
10.1021/acsnano.2c11691
10.1038/s41392-020-00449-4
10.1016/j.nantod.2022.101606
10.1038/s41467-019-11157-1
10.1007/s00432-019-02879-2
10.1016/j.tibs.2018.09.004
10.1126/science.1114397
10.1186/s12943-023-01725-x
10.1126/sciadv.abd2712
10.1038/s41565-022-01098-0
10.1038/nri2448
10.1016/j.immuni.2014.06.010
10.1016/j.ccr.2012.02.022
10.1002/adma.201808294
10.1021/acsnano.8b02446
10.1038/s41590-020-0769-3
10.1186/s13045-021-01096-0
10.1002/adma.202004853
10.1002/advs.202100460
10.1002/adma.202207875
10.1002/adma.201707112
10.1002/ange.202108342
10.1021/acsami.0c13169
10.1016/j.xcrp.2022.101061
10.1038/nprot.2008.73
10.1038/s41565-021-00972-7
10.1016/j.xpro.2020.100246
10.1038/s41392-023-01471-y
10.3390/cancers6031670
10.1016/j.cmet.2019.06.001
10.1186/s12943-023-01797-9
10.1186/s12943-020-1144-6
10.1016/j.ccell.2016.02.004
10.1038/s41467-020-20723-x
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202311702
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38456371
10_1002_smll_202311702
SMLL202311702
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 82222035; 82372106
– fundername: Shenzhen Science and Technology Innovation Program
  funderid: RCBS20221008093123060
– fundername: Shenzhen Bay Laboratory Startup Fund
  funderid: 21310071
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2021A1515111036
– fundername: Shenzhen Medical Research Fund
  funderid: B2302041
– fundername: National Natural Science Foundation of China
  grantid: 82222035
– fundername: National Natural Science Foundation of China
  grantid: 82372106
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021A1515111036
– fundername: Shenzhen Science and Technology Innovation Program
  grantid: RCBS20221008093123060
– fundername: Shenzhen Bay Laboratory Startup Fund
  grantid: 21310071
– fundername: Shenzhen Medical Research Fund
  grantid: B2302041
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3732-8af4aa87d78d9dbc3dcb8013b84f2504ccab6f40fec6cb2d8778bd3eb637c72c3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 15:50:04 EDT 2025
Wed Aug 13 07:26:47 EDT 2025
Mon Jul 21 05:26:59 EDT 2025
Tue Jul 01 02:55:00 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Wed Jan 22 17:17:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords biomimetic nanoparticles
macrophage polarization
cell membrane vesicles
cancer immunotherapy
immune checkpoint blockade
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-8af4aa87d78d9dbc3dcb8013b84f2504ccab6f40fec6cb2d8778bd3eb637c72c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5010-0729
PMID 38456371
PQID 3086818598
PQPubID 1046358
PageCount 13
ParticipantIDs proquest_miscellaneous_2954776468
proquest_journals_3086818598
pubmed_primary_38456371
crossref_citationtrail_10_1002_smll_202311702
crossref_primary_10_1002_smll_202311702
wiley_primary_10_1002_smll_202311702_SMLL202311702
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 1, 2024
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019 2017; 36 168
2017; 8
2016 2022; 29 17
2021; 2
2023; 5
2013 2018 2023 2023; 12 30 9 13
2018 2022; 30 46
2020 2021; 18 6
2018 2020; 12 11
2014 2014; 513 41
2023 2019; 35 31
2022; 67
2015; 526
2023 2021; 8 16
2020; 12
2008; 3
2020; 32
2019; 145
2006; 311
2023 2019; 22 30
2020 2020; 21 19
2021; 12
2023; 23
2022; 3
2014 2012 2021; 6 21 6
2021 2023; 14 22
2008 2019 2021; 8 70 6
2022; 30
2020 2022 2018; 6 21 43
2021; 133
2019 2017; 10 29
2021 2023; 8 17
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_23_2
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_8_3
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_12_4
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
References_xml – volume: 3
  start-page: 1101
  year: 2008
  publication-title: Nat. Protoc.
– volume: 12
  start-page: 440
  year: 2021
  publication-title: Nat. Commun.
– volume: 36 168
  start-page: 2638 707
  year: 2019 2017
  publication-title: Adv. Therapy Cell
– volume: 6 21 43
  start-page: 28 1014
  year: 2020 2022 2018
  publication-title: Sci. Adv. Mol. Cancer Trends Biochem. Sci.
– volume: 8
  start-page: 693
  year: 2017
  publication-title: Front. Immunol.
– volume: 30
  start-page: 2817
  year: 2022
  publication-title: Mol. Ther.
– volume: 21 19
  start-page: 1346 19
  year: 2020 2020
  publication-title: Nat. Immunol. Mol. Cancer
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12 30 9 13
  start-page: 347 2811
  year: 2013 2018 2023 2023
  publication-title: Nat. Rev. Drug Discovery Adv. Mater. Sci. Adv. Theranostics
– volume: 14 22
  start-page: 85 94
  year: 2021 2023
  publication-title: J. Hematol. Oncol. Mol. Cancer
– volume: 311
  start-page: 622
  year: 2006
  publication-title: Science
– volume: 12 11
  start-page: 8977 4909
  year: 2018 2020
  publication-title: ACS Nano Nat. Commun.
– volume: 133
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 6 21 6
  start-page: 1670 309 127
  year: 2014 2012 2021
  publication-title: Cancers Cancer Cell Signal Transduct. Target. Ther.
– volume: 35 31
  year: 2023 2019
  publication-title: Adv. Mater. Adv. Mater.
– volume: 8 16
  start-page: 235 1271
  year: 2023 2021
  publication-title: Signal Transduct. Target. Ther. Nat. Nanotechnol.
– volume: 5
  start-page: 1738
  year: 2023
  publication-title: ACS Mater. Lett.
– volume: 2
  year: 2021
  publication-title: STAR Protoc.
– volume: 23
  start-page: 295
  year: 2023
  publication-title: Nat. Rev. Cancer
– volume: 145
  start-page: 1377
  year: 2019
  publication-title: J. Cancer Res. Clin. Oncol.
– volume: 8 70 6
  start-page: 958 198 75
  year: 2008 2019 2021
  publication-title: Nat. Rev. Immunol. Hepatology Signal Transduct. Target. Ther.
– volume: 526
  start-page: 118
  year: 2015
  publication-title: Nature
– volume: 8 17
  start-page: 3225
  year: 2021 2023
  publication-title: Adv. Sci. ACS Nano
– volume: 18 6
  start-page: 59 72
  year: 2020 2021
  publication-title: Cell Commun. Signal. Signal Transduct. Target. Ther.
– volume: 30 46
  year: 2018 2022
  publication-title: Adv. Mater. Nano Today
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 67
  start-page: 49
  year: 2022
  publication-title: Cytokine Growth Factor Rev.
– volume: 513 41
  start-page: 559 49
  year: 2014 2014
  publication-title: Nature Immunity
– volume: 10 29
  start-page: 3199
  year: 2019 2017
  publication-title: Nat. Commun. Adv. Mater.
– volume: 3
  year: 2022
  publication-title: Cell Rep. Phys. Sci.
– volume: 22 30
  start-page: 58 36
  year: 2023 2019
  publication-title: Mol. Cancer Cell Metab.
– volume: 29 17
  start-page: 285 531
  year: 2016 2022
  publication-title: Cancer Cell Nat. Nanotechnol.
– ident: e_1_2_8_7_3
  doi: 10.1038/s41392-021-00484-9
– ident: e_1_2_8_2_2
  doi: 10.1016/j.cell.2017.01.017
– ident: e_1_2_8_21_1
  doi: 10.1038/nature15373
– ident: e_1_2_8_3_1
  doi: 10.1186/s12964-020-0530-4
– ident: e_1_2_8_7_2
  doi: 10.1002/hep.30593
– ident: e_1_2_8_26_1
  doi: 10.3389/fimmu.2017.00693
– ident: e_1_2_8_14_2
  doi: 10.1038/s41467-020-18626-y
– ident: e_1_2_8_12_4
  doi: 10.7150/thno.84665
– ident: e_1_2_8_22_2
  doi: 10.1002/adma.201703969
– ident: e_1_2_8_12_1
  doi: 10.1038/nrd3978
– ident: e_1_2_8_6_1
  doi: 10.1038/nature13490
– ident: e_1_2_8_8_3
  doi: 10.1038/s41392-021-00506-6
– ident: e_1_2_8_9_1
  doi: 10.1016/j.cytogfr.2022.07.004
– ident: e_1_2_8_1_2
  doi: 10.1186/s12943-021-01489-2
– ident: e_1_2_8_12_3
  doi: 10.1126/sciadv.adg3277
– ident: e_1_2_8_2_1
  doi: 10.1007/s12325-019-01051-z
– ident: e_1_2_8_25_1
  doi: 10.1038/s41568-023-00560-y
– ident: e_1_2_8_12_2
  doi: 10.1002/adma.201706759
– ident: e_1_2_8_29_1
  doi: 10.1016/j.ymthe.2022.04.015
– ident: e_1_2_8_4_1
  doi: 10.1021/acsmaterialslett.2c01136
– ident: e_1_2_8_11_2
  doi: 10.1021/acsnano.2c11691
– ident: e_1_2_8_3_2
  doi: 10.1038/s41392-020-00449-4
– ident: e_1_2_8_15_2
  doi: 10.1016/j.nantod.2022.101606
– ident: e_1_2_8_22_1
  doi: 10.1038/s41467-019-11157-1
– ident: e_1_2_8_27_1
  doi: 10.1007/s00432-019-02879-2
– ident: e_1_2_8_1_3
  doi: 10.1016/j.tibs.2018.09.004
– ident: e_1_2_8_20_1
  doi: 10.1126/science.1114397
– ident: e_1_2_8_5_1
  doi: 10.1186/s12943-023-01725-x
– ident: e_1_2_8_1_1
  doi: 10.1126/sciadv.abd2712
– ident: e_1_2_8_23_2
  doi: 10.1038/s41565-022-01098-0
– ident: e_1_2_8_7_1
  doi: 10.1038/nri2448
– ident: e_1_2_8_6_2
  doi: 10.1016/j.immuni.2014.06.010
– ident: e_1_2_8_8_2
  doi: 10.1016/j.ccr.2012.02.022
– ident: e_1_2_8_13_2
  doi: 10.1002/adma.201808294
– ident: e_1_2_8_14_1
  doi: 10.1021/acsnano.8b02446
– ident: e_1_2_8_18_1
  doi: 10.1038/s41590-020-0769-3
– ident: e_1_2_8_19_1
  doi: 10.1186/s13045-021-01096-0
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.202004853
– ident: e_1_2_8_11_1
  doi: 10.1002/advs.202100460
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202207875
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.201707112
– ident: e_1_2_8_16_1
  doi: 10.1002/ange.202108342
– ident: e_1_2_8_32_1
  doi: 10.1021/acsami.0c13169
– ident: e_1_2_8_17_1
  doi: 10.1016/j.xcrp.2022.101061
– ident: e_1_2_8_31_1
  doi: 10.1038/nprot.2008.73
– ident: e_1_2_8_24_2
  doi: 10.1038/s41565-021-00972-7
– ident: e_1_2_8_30_1
  doi: 10.1016/j.xpro.2020.100246
– ident: e_1_2_8_24_1
  doi: 10.1038/s41392-023-01471-y
– ident: e_1_2_8_8_1
  doi: 10.3390/cancers6031670
– ident: e_1_2_8_5_2
  doi: 10.1016/j.cmet.2019.06.001
– ident: e_1_2_8_19_2
  doi: 10.1186/s12943-023-01797-9
– ident: e_1_2_8_18_2
  doi: 10.1186/s12943-020-1144-6
– ident: e_1_2_8_23_1
  doi: 10.1016/j.ccell.2016.02.004
– ident: e_1_2_8_10_1
  doi: 10.1038/s41467-020-20723-x
SSID ssj0031247
Score 2.4896934
Snippet The PD1/PD‐L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic...
The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2311702
SubjectTerms Animals
B7-H1 Antigen - metabolism
biomimetic nanoparticles
Blocking
Cancer
cancer immunotherapy
Cell Line, Tumor
cell membrane vesicles
Cell membranes
Effectiveness
Female
Humans
immune checkpoint blockade
Immunosuppression
Immunotherapy
Immunotherapy - methods
Lymphocytes
macrophage polarization
Macrophages
Macrophages - metabolism
Mice
Nanoparticles - chemistry
Neoplasms - immunology
Neoplasms - pathology
Neoplasms - therapy
Programmed Cell Death 1 Receptor - metabolism
Signal Transduction
Tumor Microenvironment
Title Hybrid Cellular Nanovesicles Block PD‐L1 Signal and Repolarize M2 Macrophages for Cancer Immunotherapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202311702
https://www.ncbi.nlm.nih.gov/pubmed/38456371
https://www.proquest.com/docview/3086818598
https://www.proquest.com/docview/2954776468
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5VnNoDrxZIgWorIfVkcHY33vURQlFACap4SNysfRkQqYNwgpSc-hP4jfwSZmzHkCJUid5sedde7-zMfPbOfEPIljDWx6HlgRWaBcLFLohlGoIxVCnXTZGytGD7PI465-LoonXxIou_5Ieof7ihZhT2GhVcm3znmTQ0_93HrQPAJ01ZsEliwBaiopOaP4qD8yqqq4DPCpB4a8raGLKd2e6zXukV1JxFroXrOVggejroMuLkZns0NNt28hef4_-81SKZr3Ap3S0X0hL54LNl8ukFW-FnctUZY3oXbft-H4NXKVjmwb3Pi8A6ugde8Yb-2n_889Bt0tPrS7ydzhxFiA-tryee9hjtaawZdgVWLKeAl2kbV90dPcQ0lSoZbPyFnB_8PGt3gqpQQ2C55GBRdSq0VtJJBcI2ljtrwPNxo0DWrVDAKjFRKsLU28ga5pSUyjjuTcSllczyFTKXDTK_RmissA4as85pLVRLG28cUy1wqZFTwssGCaaCSmzFYo7FNPpJyb_MEpzBpJ7BBvlRt78t-TvebLkxlXtS6XGecPjiQ0gTqwb5Xl8GDcRtFZ35wShPcKdUykhE0Ga1XC_1o7gCgMpls0FYIfV_jCE57XW79dnX93RaJx_hWJQxihtkbng38puAm4bmW6EbT4aNEJI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQCHQnl1oRQjIXFKm7W9sXMsS6stZCtEW4mb5Vdo1SWLml2k9sRP6G_sL-lMXu1SISQ4JrETx-OZ-WyPvyHkrbAupLHjkROGRcKnPkplHoMxVDk3fZGzvGL73EtGh-Lj10EbTYhnYWp-iG7BDTWjsteo4LggvXnNGlp-n-DeAQCUvkQ6ybuY1ruaVX3pGKQ4uK8qvwp4rQipt1rexphtLtZf9Eu3wOYidq2cz85DYttm1zEnJxvzmd1w578xOv7Xfz0iyw00pVv1WFohd0LxmDy4QVj4hByNzvCEFx2GyQTjVykY5-nPUFaxdfQ9OMYT-vnD5a-LrE_3j7_h60zhKaJ8KH18HuiY0bHBtGFHYMhKCpCZDnHgndJdPKnSnAc7e0oOd7YPhqOoydUQOS45GFWTC2OU9FKBvK3j3llwftwqEPcgFjBQbJKLOA8ucZZ5JaWyngebcOkkc_wZWSqmRVglNFWYCo05740RamBssJ6pAXjVxCsRZI9EraS0a4jMMZ_GRNcUzExjD-quB3vkXVf-R03h8ceSa63gdaPKpeYw6UNUk6oeedM9BiXEnRVThOm81LhZKmUiEijzvB4w3ae4AozKZb9HWCX2v7RB74-zrLt68S-VXpN7o4NxprPdvU8vyX24L-qQxTWyNDudh1cAo2Z2vVKUK4YQFK0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYQk9D2sA3YpRtjnjRpT4HUdmPnkbWrymgRGkPizfItA9GliLST4ImfwG_kl-ycJM0o0zRpe0xiJ47P7Uvs8x1C3gvrQho7HjlhWCR86qNUZjE4Q5Vx0xYZy0q2z_1kcCQ-H3eO72TxV_wQzQ83tIzSX6OBn_ts-xdpaPF9jEsHgE_aEtkkH4gkVqjXvS8NgRSH6FWWV4GgFSHz1py2MWbbi_0Xw9JvWHMRupaxp_-EmPmoqy0nZ1uzqd1yV_cIHf_ntZ6SxzUwpTuVJq2SpZCvkUd36ArXycngEvO7aDeMx7h7lYJrnvwIRbmzjn6EsHhGD3q31zfDNj08_Ya3M7mniPGh9elVoCNGRwaLhp2AGysoAGbaRbW7oLuYp1Jng10-I0f9T1-7g6iu1BA5Ljm4VJMJY5T0UoG0rePeWQh93CoQdicWoCY2yUScBZc4y7ySUlnPg024dJI5_pws55M8vCQ0VVgIjTnvjRGqY2ywnqkOxNTEKxFki0RzQWlX05hjNY2xrgiYmcYZ1M0MtsiHpv15ReDxx5Ybc7nr2pALzeGTDzFNqlrkXXMZTBDXVUweJrNC41KplIlIoM2LSl-aR3EFCJXLdouwUup_GYM-HA2HzdGrf-n0lqwc9Pp6uLu_95o8hNOi2q-4QZanF7PwBjDU1G6WZvITUfQTZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Cellular+Nanovesicles+Block+PD%E2%80%90L1+Signal+and+Repolarize+M2+Macrophages+for+Cancer+Immunotherapy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhao%2C+Chenchen&rft.au=Pan%2C+Yuanwei&rft.au=Liu%2C+Lujie&rft.au=Zhang%2C+Jing&rft.date=2024-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=31&rft_id=info:doi/10.1002%2Fsmll.202311702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202311702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon