Enhanced Calvarial Bone Repair Using ASCs Engineered with RNA‐Guided Split dCas12a System that Co‐Activates Sox 5, Sox6, and Long Non‐Coding RNA H19
Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow‐derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 21; pp. e2306612 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow‐derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose‐derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co‐activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co‐activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co‐activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration.
A new Split dCas12a activator is designed for delivery into ASCs to co‐activate long non‐coding RNA H19, Sox5, and Sox6. The split dCas12a spontaneously dimerizes in ASCs and activates H19, Sox5, and Sox6, hence enhancing chondrogenesis, suppressing adipogenesis, and augmenting calvarial bone healing in rats. |
---|---|
AbstractList | Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA
H19
(lncRNA
H19
, referred to as
H19
thereafter) in bone marrow‐derived mesenchymal stem cells (BMSCs).
H19
activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose‐derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However,
H19
activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co‐activate other chondroinductive transcription factors (
Sox5
,
Sox6
, and
Sox9
) to synergistically potentiate differentiation. It is found that co‐activation of
H19
/
Sox5
/
Sox6
in ASCs elicited more potent chondrogenic differentiation than activation of
Sox5
/
Sox6/Sox9
or
H19
alone. Co‐activating
H19
/
Sox5/Sox6
in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration. Healing of large calvarial bone defects remains challenging. An RNA-guided Split dCas12a system is previously harnessed to activate long non-coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow-derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose-derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co-activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co-activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co-activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration.Healing of large calvarial bone defects remains challenging. An RNA-guided Split dCas12a system is previously harnessed to activate long non-coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow-derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose-derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co-activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co-activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co-activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration. Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow‐derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose‐derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co‐activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co‐activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co‐activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration. Healing of large calvarial bone defects remains challenging. An RNA-guided Split dCas12a system is previously harnessed to activate long non-coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow-derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose-derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co-activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co-activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co-activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration. Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow‐derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose‐derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co‐activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co‐activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co‐activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration. A new Split dCas12a activator is designed for delivery into ASCs to co‐activate long non‐coding RNA H19, Sox5, and Sox6. The split dCas12a spontaneously dimerizes in ASCs and activates H19, Sox5, and Sox6, hence enhancing chondrogenesis, suppressing adipogenesis, and augmenting calvarial bone healing in rats. |
Author | Dang, Quyen Thuc Lee, Shang‐Shung Chang, Chin‐Wei Truong, Vy Anh Chen, Pin‐Hsin Pham, Nam Ngoc Ngo, Dung Kim Thi Hu, Yu‐Chen Truong, Vu Anh Chang, Yi‐Hao Pham, Dang Huu Chang, Yu‐Han Nguyen, Nuong Thi Kieu |
Author_xml | – sequence: 1 givenname: Nuong Thi Kieu surname: Nguyen fullname: Nguyen, Nuong Thi Kieu organization: National Tsing Hua University – sequence: 2 givenname: Shang‐Shung surname: Lee fullname: Lee, Shang‐Shung organization: National Tsing Hua University – sequence: 3 givenname: Pin‐Hsin surname: Chen fullname: Chen, Pin‐Hsin organization: National Tsing Hua University – sequence: 4 givenname: Yi‐Hao surname: Chang fullname: Chang, Yi‐Hao organization: National Tsing Hua University – sequence: 5 givenname: Nam Ngoc surname: Pham fullname: Pham, Nam Ngoc organization: National Tsing Hua University – sequence: 6 givenname: Chin‐Wei surname: Chang fullname: Chang, Chin‐Wei organization: National Tsing Hua University – sequence: 7 givenname: Dang Huu surname: Pham fullname: Pham, Dang Huu organization: National Tsing Hua University – sequence: 8 givenname: Dung Kim Thi surname: Ngo fullname: Ngo, Dung Kim Thi organization: National Tsing Hua University – sequence: 9 givenname: Quyen Thuc surname: Dang fullname: Dang, Quyen Thuc organization: National Tsing Hua University – sequence: 10 givenname: Vy Anh surname: Truong fullname: Truong, Vy Anh organization: National Tsing Hua University – sequence: 11 givenname: Vu Anh surname: Truong fullname: Truong, Vu Anh organization: National Tsing Hua University – sequence: 12 givenname: Yu‐Han surname: Chang fullname: Chang, Yu‐Han email: Yhchang@cloud.cgmh.org.tw organization: Chang Gung Memorial Hospital – sequence: 13 givenname: Yu‐Chen orcidid: 0000-0002-9997-4467 surname: Hu fullname: Hu, Yu‐Chen email: yuchen@che.nthu.edu.tw organization: National Tsing Hua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38126683$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAYRSNURH9gyxJZYsOiM_gnceLlEA0tUihSQ9eWazsdV4492E7L7PoIXfN4PAkeTVukSojVZ1nn3M_yPSz2nHe6KN4iOEcQ4o9xtHaOISaQUoRfFAeIIjKjDWZ7T2cE94vDGK8hJAiX9atinzQIU9qQg-LX0q2Ek1qBVtgbEYyw4FNeAc71WpgALqJxV2DRtxEs3ZVxWofM3pq0Audni9939yeTUfmmX1uTgGpFRFiAfhOTHkFaiQRan6mFTOZGJB1B73-C6ng76DEQToHO5wVn3mWq9Wq7LQeDU8ReFy8HYaN-8zCPiovPy-_t6az7dvKlXXQzSWqCZ7WkUkNYI6WwRgyJulGMEjiUCFaDHCoqSz00kNayQs2AGiUqQhijTGut5CU5Kj7sctfB_5h0THw0UWprhdN-ihwzWFZ1NkhG3z9Dr_0UXH4dJ7BiCLKGlpl690BNl6NWfB3MKMKGP_56BsodIIOPMeiBS5NEMt6lIIzlCPJtuXxbLn8qN2vzZ9pj8j8FthNujdWb_9C8_9p1f90_pI-3Tw |
CitedBy_id | crossref_primary_10_1007_s00109_024_02507_8 |
Cites_doi | 10.1016/j.biomaterials.2010.01.030 10.1016/j.biomaterials.2017.01.033 10.1093/nar/gkv688 10.1016/j.cell.2015.09.038 10.1093/nar/gkt442 10.1016/j.biomaterials.2020.120094 10.1089/ten.2006.0118 10.1016/j.ymthe.2019.11.029 10.1016/j.biomaterials.2015.09.046 10.1016/j.cels.2019.10.003 10.1016/j.biomaterials.2010.01.085 10.1074/jbc.M110.111328 10.1038/nbt.3737 10.1016/j.joca.2005.05.005 10.1093/nar/gkab1227 10.1016/j.biomaterials.2023.122106 10.1038/nmeth.4483 10.1016/j.biomaterials.2021.120965 10.1016/j.semcancer.2020.04.008 10.1016/j.ymthe.2021.08.024 10.1093/nar/gkab529 10.1089/ten.teb.2012.0138 10.1530/JOE-12-0143 10.3171/2010.9.FOCUS10201 10.1038/s41587-018-0011-0 10.1016/j.biomaterials.2011.09.005 10.1002/2211-5463.13002 10.1016/j.biomaterials.2011.05.059 10.1016/j.biomaterials.2011.11.050 10.1038/nature17944 10.1038/srep28897 10.3390/pharmaceutics14010132 10.1016/j.biomaterials.2012.02.007 10.22203/eCM.v022a10 10.1093/nar/gkab1191 10.1038/s41589-019-0338-y 10.1016/j.ceb.2019.07.008 10.1016/j.omtm.2019.12.010 10.1002/stem.670 10.1038/nprot.2014.130 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH. 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202306612 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38126683 10_1002_smll_202306612 SMLL202306612 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Health Research Institutes funderid: NHRI‐EX110‐11014BI; NHRI‐EX111‐11014BI; NHRI‐EX112‐11014BI – fundername: National Science and Technology Council funderid: 112‐2223‐E‐007‐002; 112‐2314‐B‐007‐004‐MY3; 111‐2223‐E‐007‐003; 111‐2622‐E‐007‐003 – fundername: Chang Gung Memorial Hospital funderid: CMRPG3M0782; CMRPG3M0781 – fundername: Chang Gung Memorial Hospital grantid: CMRPG3M0782 – fundername: National Health Research Institutes grantid: NHRI-EX112-11014BI – fundername: National Science and Technology Council grantid: 111-2223-E-007-003 – fundername: National Science and Technology Council grantid: 112-2223-E-007-002 – fundername: National Health Research Institutes grantid: NHRI-EX111-11014BI – fundername: National Science and Technology Council grantid: 112-2314-B-007-004-MY3 – fundername: Chang Gung Memorial Hospital grantid: CMRPG3M0781 – fundername: National Health Research Institutes grantid: NHRI-EX110-11014BI – fundername: National Science and Technology Council grantid: 111-2622-E-007-003 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3732-7c6ce0071dd2e191a78d9630f4105fcf56c4ef8067c518f18da5339969eeedcb3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 11:38:54 EDT 2025 Fri Jul 25 12:01:16 EDT 2025 Sat Mar 29 01:29:22 EDT 2025 Tue Jul 01 02:54:52 EDT 2025 Thu Apr 24 22:53:54 EDT 2025 Wed Jan 22 17:18:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | H19 calvarial bone healing CRISPR activation Split dCas12a Sox6 Sox5 |
Language | English |
License | 2023 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-7c6ce0071dd2e191a78d9630f4105fcf56c4ef8067c518f18da5339969eeedcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9997-4467 |
PMID | 38126683 |
PQID | 3059109864 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2904573993 proquest_journals_3059109864 pubmed_primary_38126683 crossref_citationtrail_10_1002_smll_202306612 crossref_primary_10_1002_smll_202306612 wiley_primary_10_1002_smll_202306612_SMLL202306612 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 31 2022; 50 2016 2015; 532 163 2019; 15 2019; 37 2020; 17 2016; 74 2010; 285 2022 2021; 50 49 2020; 10 2012; 33 2013; 19 2016; 6 2019; 61 2014 2013; 9 41 2017; 14 2020; 252 2017; 35 2023; 297 2015; 43 2020; 28 2022; 14 2005 2007 2011; 13 13 32 2022; 30 2020; 67 2021; 275 2010 2011; 29 29 2012; 214 2011 2011 2012 2010 2017; 32 22 33 31 124 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_3_3 e_1_2_8_4_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_4_1 e_1_2_8_3_5 e_1_2_8_7_1 e_1_2_8_3_4 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_18_1 e_1_2_8_17_3 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_15_2 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – volume: 14 start-page: 132 year: 2022 publication-title: Pharmaceutics – volume: 252 year: 2020 publication-title: Biomaterials – volume: 31 start-page: 3572 year: 2010 publication-title: Biomaterials – volume: 35 start-page: 31 year: 2017 publication-title: Nat. Biotechnol. – volume: 32 22 33 31 124 start-page: 9707 124 3682 3222 1 year: 2011 2011 2012 2010 2017 publication-title: Biomaterials Eur. Cell Mater. Biomaterials Biomaterials Biomaterials – volume: 50 49 start-page: 549 7775 year: 2022 2021 publication-title: Nucleic Acids Res. Nucleic Acids Res. – volume: 37 start-page: 276 year: 2019 publication-title: Nat. Biotechnol. – volume: 43 start-page: 8183 year: 2015 publication-title: Nucleic Acids Res. – volume: 17 start-page: 309 year: 2020 publication-title: Mol. Ther. Methods Clin. Dev. – volume: 297 year: 2023 publication-title: Biomaterials – volume: 15 start-page: 882 year: 2019 publication-title: Nat. Chem. Biol. – volume: 10 start-page: 2656 year: 2020 publication-title: FEBS Open Bio – volume: 13 13 32 start-page: 845 659 6505 year: 2005 2007 2011 publication-title: Osteoarthritis Cartilage Tissue Eng. Biomaterials – volume: 74 start-page: 155 year: 2016 publication-title: Biomaterials – volume: 14 start-page: 1163 year: 2017 publication-title: Nat. Methods – volume: 50 start-page: 1162 year: 2022 publication-title: Nucleic Acids Res. – volume: 30 start-page: 92 year: 2022 publication-title: Mol. Ther. – volume: 61 start-page: 39 year: 2019 publication-title: Curr. Opin. Cell Biol. – volume: 19 start-page: 308 year: 2013 publication-title: Tissue Eng., Part B – volume: 29 29 start-page: E8 1241 year: 2010 2011 publication-title: Neurosurg. Focus Stem Cells – volume: 67 start-page: 12 year: 2020 publication-title: Semin. Cancer Biol. – volume: 10 start-page: 1 year: 2020 publication-title: Cell Syst. – volume: 285 year: 2010 publication-title: J. Biol. Chem. – volume: 275 year: 2021 publication-title: Biomaterials – volume: 33 start-page: 2016 year: 2012 publication-title: Biomaterials – volume: 214 start-page: 241 year: 2012 publication-title: J. Endocrinol. – volume: 9 41 start-page: 1882 year: 2014 2013 publication-title: Nat. Protoc. Nucleic Acids Res. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 532 163 start-page: 522 759 year: 2016 2015 publication-title: Nature Cell – volume: 28 start-page: 441 year: 2020 publication-title: Mol. Ther. – ident: e_1_2_8_3_4 doi: 10.1016/j.biomaterials.2010.01.030 – ident: e_1_2_8_3_5 doi: 10.1016/j.biomaterials.2017.01.033 – ident: e_1_2_8_22_1 doi: 10.1093/nar/gkv688 – ident: e_1_2_8_4_2 doi: 10.1016/j.cell.2015.09.038 – ident: e_1_2_8_15_2 doi: 10.1093/nar/gkt442 – ident: e_1_2_8_29_1 doi: 10.1016/j.biomaterials.2020.120094 – ident: e_1_2_8_17_2 doi: 10.1089/ten.2006.0118 – ident: e_1_2_8_25_1 doi: 10.1016/j.ymthe.2019.11.029 – ident: e_1_2_8_30_1 doi: 10.1016/j.biomaterials.2015.09.046 – ident: e_1_2_8_20_1 doi: 10.1016/j.cels.2019.10.003 – ident: e_1_2_8_13_1 doi: 10.1016/j.biomaterials.2010.01.085 – ident: e_1_2_8_23_1 doi: 10.1074/jbc.M110.111328 – ident: e_1_2_8_5_1 doi: 10.1038/nbt.3737 – ident: e_1_2_8_17_1 doi: 10.1016/j.joca.2005.05.005 – ident: e_1_2_8_27_1 doi: 10.1093/nar/gkab1227 – ident: e_1_2_8_9_1 doi: 10.1016/j.biomaterials.2023.122106 – ident: e_1_2_8_6_1 doi: 10.1038/nmeth.4483 – ident: e_1_2_8_26_1 doi: 10.1016/j.biomaterials.2021.120965 – ident: e_1_2_8_16_1 doi: 10.1016/j.semcancer.2020.04.008 – ident: e_1_2_8_19_1 doi: 10.1016/j.ymthe.2021.08.024 – ident: e_1_2_8_7_2 doi: 10.1093/nar/gkab529 – ident: e_1_2_8_14_1 doi: 10.1089/ten.teb.2012.0138 – ident: e_1_2_8_24_1 doi: 10.1530/JOE-12-0143 – ident: e_1_2_8_2_1 doi: 10.3171/2010.9.FOCUS10201 – ident: e_1_2_8_28_1 doi: 10.1038/s41587-018-0011-0 – ident: e_1_2_8_3_1 doi: 10.1016/j.biomaterials.2011.09.005 – ident: e_1_2_8_11_1 doi: 10.1002/2211-5463.13002 – ident: e_1_2_8_17_3 doi: 10.1016/j.biomaterials.2011.05.059 – ident: e_1_2_8_18_1 doi: 10.1016/j.biomaterials.2011.11.050 – ident: e_1_2_8_4_1 doi: 10.1038/nature17944 – ident: e_1_2_8_12_1 doi: 10.1038/srep28897 – ident: e_1_2_8_1_1 doi: 10.3390/pharmaceutics14010132 – ident: e_1_2_8_3_3 doi: 10.1016/j.biomaterials.2012.02.007 – ident: e_1_2_8_3_2 doi: 10.22203/eCM.v022a10 – ident: e_1_2_8_7_1 doi: 10.1093/nar/gkab1191 – ident: e_1_2_8_10_1 doi: 10.1038/s41589-019-0338-y – ident: e_1_2_8_21_1 doi: 10.1016/j.ceb.2019.07.008 – ident: e_1_2_8_8_1 doi: 10.1016/j.omtm.2019.12.010 – ident: e_1_2_8_2_2 doi: 10.1002/stem.670 – ident: e_1_2_8_15_1 doi: 10.1038/nprot.2014.130 |
SSID | ssj0031247 |
Score | 2.4633412 |
Snippet | Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19... Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19... Healing of large calvarial bone defects remains challenging. An RNA-guided Split dCas12a system is previously harnessed to activate long non-coding RNA H19... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2306612 |
SubjectTerms | Adipose Tissue - cytology Animals Bone marrow calvarial bone healing Cell Differentiation Chondrogenesis CRISPR activation Differentiation H19 Healing Humans Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Osteogenesis - genetics Regeneration (physiology) Ribonucleic acid RNA RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism Skull Sox5 Sox6 SOXD Transcription Factors - genetics SOXD Transcription Factors - metabolism Split dCas12a Stem cells Stem Cells - cytology Stem Cells - metabolism Tissue engineering |
Title | Enhanced Calvarial Bone Repair Using ASCs Engineered with RNA‐Guided Split dCas12a System that Co‐Activates Sox 5, Sox6, and Long Non‐Coding RNA H19 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202306612 https://www.ncbi.nlm.nih.gov/pubmed/38126683 https://www.proquest.com/docview/3059109864 https://www.proquest.com/docview/2904573993 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnuiBV3kstGgqIXFp2sSJ4-S4jVpWaLuHLpV6i2zHUSuWBDVZhDjxEzjz8_glzDib0AUhpPaU1zhOnBnPZ2f8DWOveaFLIUzoSY3WhErBPR1G1vMVDpqF9Y1IaO3w6SyenEfvLsTFjVX8HT_EMOFGluH6azJwpZvD36ShzccF_TogCB27NMMUsEWo6GzgjwrRebnsKuizPCLe6lkbfX64XnzdK_0FNdeRq3M9Jw-Y6h-6izj5cLBs9YH5-gef413e6iG7v8KlMO4U6RHbsNVjtnWDrXCb_TiuLl28AGRq8VmR5sJRXVlAEK-ursFFH8B4njXQl0NZmuiFs9n457fvb5dXBZ6ZI-5tochUE3AFHWU6tJeqhaxGqbFxGddsA_P6C4h92sT7oKoCpjVWMKsrlMpqcrp0Y5gE6RN2fnL8Ppt4q9QOnglliJjexMYSvCkKbnHIqGRSYFfglxR1WppSxCayZYKu1IggKYOkUIhLcWyWWnTqRodP2WaFb_icgeXSl6VMglCrSCilZRKW3Ng0iiObxnLEvP7T5mbFe07pNxZ5x9jMc2rzfGjzEXszyH_qGD_-KbnTa0q-svwmx_4TERiR3o_Y3nAZbZZ-xKjK1ssm5ykCaUnQcMSedRo2VIUICjFTgle405P_PEM-P51Oh6MXtyn0kt3D_aiL4txhm-310u4i0mr1K2dNvwDFSh-v |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOQCH8k8XChgJiUvTJk4cJ8clalkgu4duK3GzbMdRK7ZJ1WRR1ROPwJnH40mYcTaBBSEkOEWJx7GTzHg-25NvCHnJCl1ybkJPaLAmUArm6TCynq9g0sytb3iC_w5PZ_HkOHr3gffRhPgvTMcPMSy4oWW48RoNHBek936whjZnC9w7QAwdY57h65jW282qDgcGqRDcl8uvAl7LQ-qtnrfRZ3vr9df90m9gcx27OudzcJvovttdzMnH3WWrd83VL4yO__Vcd8jmCprScadLd8k1W90jt34iLLxPvu5XJy5kgGZq8Umh8tLXdWUp4Hh1ekFdAAIdz7OG9vVAFtd66eFs_O3zlzfL0wKuzAH6trTIVBMwRTvWdNqeqJZmNUiNjUu6Zhs6ry8p38FDvENVVdC8hgZmdQVSWY1-F29MJ0H6gBwf7B9lE2-V3cEzoQgB1pvYWEQ4RcEszBqVSAoYDfwSA09LU_LYRLZMwJsaHiRlkBQKoClMz1ILft3o8CHZqOAJtwi1TPiiFEkQahVxpbRIwpIZm0ZxZNNYjIjXf1tpVtTnmIFjITvSZibxncvhnY_Iq0H-vCP9-KPkdq8qcmX8jYQhFEAY8t6PyIuhGMwW92JUZetlI1kKWFogOhyRR52KDU0BiALYlEAJc4rylz7I-TTPh7PH_1LpObkxOZrmMn87e_-E3ITrURfUuU022oulfQrAq9XPnGl9B7StI8o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQkRAc-KcsFDASEpemTZw4do7btMsC2xXqUqm3yPGPWrEkVZNFiBOP0HMfjyfpTLIJXRBCglMUZxw7zoznszP5hpBXzOSOcx16IgdrAqVgXh5G1vMVLJq59TWX-O_w_jQeH0bvjvjRlb_4W36IfsMNLaOZr9HAT43b_kkaWn2e46cDhNAxphm-HsW-RL3ePegJpELwXk16FXBaHjJvdbSNPtterb_qln7DmqvQtfE9oztEdb1uQ04-bS3qfEt_-4XQ8X8e6y65vQSmdNhq0j1yzRb3ya0rdIUPyMVecdwEDNBUzb8oVF26UxaWAopXJ2e0CT-gw1la0a4eyOJOLz2YDn98P3-zODFQMgPgW1OTqipgirac6bQ-VjVNS5Aa6iblmq3orPxK-SYe4k2qCkMnJTQwLQuQSkv0unhjOg6Sh-RwtPcxHXvL3A6eDkUIoF7H2iK-MYZZWDMqIQ3MBb7DsFOnHY91ZJ0EX6p5IF0gjQJgCouzxIJX13n4iKwV8ISPCbVM-MIJGYS5irhSuZChY9omURzZJBYD4nWvNtNL4nPMvzHPWspmluGYZ_2YD8jrXv60pfz4o-RGpynZ0vSrDCZQgGDIej8gL_vLYLT4JUYVtlxUGUsASQvEhgOy3mpY3xRAKABNEq6wRk_-0odstj-Z9GdP_qXSC3Ljw-4om7ydvn9KbkJx1EZ0bpC1-mxhnwHqqvPnjWFdAkQvIoI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Calvarial+Bone+Repair+Using+ASCs+Engineered+with+RNA-Guided+Split+dCas12a+System+that+Co-Activates+Sox+5%2C+Sox6%2C+and+Long+Non-Coding+RNA+H19&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Nguyen%2C+Nuong+Thi+Kieu&rft.au=Lee%2C+Shang-Shung&rft.au=Chen%2C+Pin-Hsin&rft.au=Chang%2C+Yi-Hao&rft.date=2024-05-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=21&rft.spage=e2306612&rft_id=info:doi/10.1002%2Fsmll.202306612&rft_id=info%3Apmid%2F38126683&rft.externalDocID=38126683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |