Enhanced Calvarial Bone Repair Using ASCs Engineered with RNA‐Guided Split dCas12a System that Co‐Activates Sox 5, Sox6, and Long Non‐Coding RNA H19

Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow‐derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 21; pp. e2306612 - n/a
Main Authors Nguyen, Nuong Thi Kieu, Lee, Shang‐Shung, Chen, Pin‐Hsin, Chang, Yi‐Hao, Pham, Nam Ngoc, Chang, Chin‐Wei, Pham, Dang Huu, Ngo, Dung Kim Thi, Dang, Quyen Thuc, Truong, Vy Anh, Truong, Vu Anh, Chang, Yu‐Han, Hu, Yu‐Chen
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow‐derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose‐derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co‐activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co‐activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co‐activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration. A new Split dCas12a activator is designed for delivery into ASCs to co‐activate long non‐coding RNA H19, Sox5, and Sox6. The split dCas12a spontaneously dimerizes in ASCs and activates H19, Sox5, and Sox6, hence enhancing chondrogenesis, suppressing adipogenesis, and augmenting calvarial bone healing in rats.
AbstractList Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19 (lncRNA H19 , referred to as H19 thereafter) in bone marrow‐derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose‐derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co‐activate other chondroinductive transcription factors ( Sox5 , Sox6 , and Sox9 ) to synergistically potentiate differentiation. It is found that co‐activation of H19 / Sox5 / Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5 / Sox6/Sox9 or H19 alone. Co‐activating H19 / Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration.
Healing of large calvarial bone defects remains challenging. An RNA-guided Split dCas12a system is previously harnessed to activate long non-coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow-derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose-derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co-activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co-activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co-activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration.Healing of large calvarial bone defects remains challenging. An RNA-guided Split dCas12a system is previously harnessed to activate long non-coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow-derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose-derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co-activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co-activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co-activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration.
Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow‐derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose‐derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co‐activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co‐activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co‐activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration.
Healing of large calvarial bone defects remains challenging. An RNA-guided Split dCas12a system is previously harnessed to activate long non-coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow-derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose-derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co-activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co-activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co-activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration.
Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow‐derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose‐derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co‐activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co‐activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co‐activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration. A new Split dCas12a activator is designed for delivery into ASCs to co‐activate long non‐coding RNA H19, Sox5, and Sox6. The split dCas12a spontaneously dimerizes in ASCs and activates H19, Sox5, and Sox6, hence enhancing chondrogenesis, suppressing adipogenesis, and augmenting calvarial bone healing in rats.
Author Dang, Quyen Thuc
Lee, Shang‐Shung
Chang, Chin‐Wei
Truong, Vy Anh
Chen, Pin‐Hsin
Pham, Nam Ngoc
Ngo, Dung Kim Thi
Hu, Yu‐Chen
Truong, Vu Anh
Chang, Yi‐Hao
Pham, Dang Huu
Chang, Yu‐Han
Nguyen, Nuong Thi Kieu
Author_xml – sequence: 1
  givenname: Nuong Thi Kieu
  surname: Nguyen
  fullname: Nguyen, Nuong Thi Kieu
  organization: National Tsing Hua University
– sequence: 2
  givenname: Shang‐Shung
  surname: Lee
  fullname: Lee, Shang‐Shung
  organization: National Tsing Hua University
– sequence: 3
  givenname: Pin‐Hsin
  surname: Chen
  fullname: Chen, Pin‐Hsin
  organization: National Tsing Hua University
– sequence: 4
  givenname: Yi‐Hao
  surname: Chang
  fullname: Chang, Yi‐Hao
  organization: National Tsing Hua University
– sequence: 5
  givenname: Nam Ngoc
  surname: Pham
  fullname: Pham, Nam Ngoc
  organization: National Tsing Hua University
– sequence: 6
  givenname: Chin‐Wei
  surname: Chang
  fullname: Chang, Chin‐Wei
  organization: National Tsing Hua University
– sequence: 7
  givenname: Dang Huu
  surname: Pham
  fullname: Pham, Dang Huu
  organization: National Tsing Hua University
– sequence: 8
  givenname: Dung Kim Thi
  surname: Ngo
  fullname: Ngo, Dung Kim Thi
  organization: National Tsing Hua University
– sequence: 9
  givenname: Quyen Thuc
  surname: Dang
  fullname: Dang, Quyen Thuc
  organization: National Tsing Hua University
– sequence: 10
  givenname: Vy Anh
  surname: Truong
  fullname: Truong, Vy Anh
  organization: National Tsing Hua University
– sequence: 11
  givenname: Vu Anh
  surname: Truong
  fullname: Truong, Vu Anh
  organization: National Tsing Hua University
– sequence: 12
  givenname: Yu‐Han
  surname: Chang
  fullname: Chang, Yu‐Han
  email: Yhchang@cloud.cgmh.org.tw
  organization: Chang Gung Memorial Hospital
– sequence: 13
  givenname: Yu‐Chen
  orcidid: 0000-0002-9997-4467
  surname: Hu
  fullname: Hu, Yu‐Chen
  email: yuchen@che.nthu.edu.tw
  organization: National Tsing Hua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38126683$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAYRSNURH9gyxJZYsOiM_gnceLlEA0tUihSQ9eWazsdV4492E7L7PoIXfN4PAkeTVukSojVZ1nn3M_yPSz2nHe6KN4iOEcQ4o9xtHaOISaQUoRfFAeIIjKjDWZ7T2cE94vDGK8hJAiX9atinzQIU9qQg-LX0q2Ek1qBVtgbEYyw4FNeAc71WpgALqJxV2DRtxEs3ZVxWofM3pq0Audni9939yeTUfmmX1uTgGpFRFiAfhOTHkFaiQRan6mFTOZGJB1B73-C6ng76DEQToHO5wVn3mWq9Wq7LQeDU8ReFy8HYaN-8zCPiovPy-_t6az7dvKlXXQzSWqCZ7WkUkNYI6WwRgyJulGMEjiUCFaDHCoqSz00kNayQs2AGiUqQhijTGut5CU5Kj7sctfB_5h0THw0UWprhdN-ihwzWFZ1NkhG3z9Dr_0UXH4dJ7BiCLKGlpl690BNl6NWfB3MKMKGP_56BsodIIOPMeiBS5NEMt6lIIzlCPJtuXxbLn8qN2vzZ9pj8j8FthNujdWb_9C8_9p1f90_pI-3Tw
CitedBy_id crossref_primary_10_1007_s00109_024_02507_8
Cites_doi 10.1016/j.biomaterials.2010.01.030
10.1016/j.biomaterials.2017.01.033
10.1093/nar/gkv688
10.1016/j.cell.2015.09.038
10.1093/nar/gkt442
10.1016/j.biomaterials.2020.120094
10.1089/ten.2006.0118
10.1016/j.ymthe.2019.11.029
10.1016/j.biomaterials.2015.09.046
10.1016/j.cels.2019.10.003
10.1016/j.biomaterials.2010.01.085
10.1074/jbc.M110.111328
10.1038/nbt.3737
10.1016/j.joca.2005.05.005
10.1093/nar/gkab1227
10.1016/j.biomaterials.2023.122106
10.1038/nmeth.4483
10.1016/j.biomaterials.2021.120965
10.1016/j.semcancer.2020.04.008
10.1016/j.ymthe.2021.08.024
10.1093/nar/gkab529
10.1089/ten.teb.2012.0138
10.1530/JOE-12-0143
10.3171/2010.9.FOCUS10201
10.1038/s41587-018-0011-0
10.1016/j.biomaterials.2011.09.005
10.1002/2211-5463.13002
10.1016/j.biomaterials.2011.05.059
10.1016/j.biomaterials.2011.11.050
10.1038/nature17944
10.1038/srep28897
10.3390/pharmaceutics14010132
10.1016/j.biomaterials.2012.02.007
10.22203/eCM.v022a10
10.1093/nar/gkab1191
10.1038/s41589-019-0338-y
10.1016/j.ceb.2019.07.008
10.1016/j.omtm.2019.12.010
10.1002/stem.670
10.1038/nprot.2014.130
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH.
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202306612
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38126683
10_1002_smll_202306612
SMLL202306612
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Health Research Institutes
  funderid: NHRI‐EX110‐11014BI; NHRI‐EX111‐11014BI; NHRI‐EX112‐11014BI
– fundername: National Science and Technology Council
  funderid: 112‐2223‐E‐007‐002; 112‐2314‐B‐007‐004‐MY3; 111‐2223‐E‐007‐003; 111‐2622‐E‐007‐003
– fundername: Chang Gung Memorial Hospital
  funderid: CMRPG3M0782; CMRPG3M0781
– fundername: Chang Gung Memorial Hospital
  grantid: CMRPG3M0782
– fundername: National Health Research Institutes
  grantid: NHRI-EX112-11014BI
– fundername: National Science and Technology Council
  grantid: 111-2223-E-007-003
– fundername: National Science and Technology Council
  grantid: 112-2223-E-007-002
– fundername: National Health Research Institutes
  grantid: NHRI-EX111-11014BI
– fundername: National Science and Technology Council
  grantid: 112-2314-B-007-004-MY3
– fundername: Chang Gung Memorial Hospital
  grantid: CMRPG3M0781
– fundername: National Health Research Institutes
  grantid: NHRI-EX110-11014BI
– fundername: National Science and Technology Council
  grantid: 111-2622-E-007-003
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3732-7c6ce0071dd2e191a78d9630f4105fcf56c4ef8067c518f18da5339969eeedcb3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 11:38:54 EDT 2025
Fri Jul 25 12:01:16 EDT 2025
Sat Mar 29 01:29:22 EDT 2025
Tue Jul 01 02:54:52 EDT 2025
Thu Apr 24 22:53:54 EDT 2025
Wed Jan 22 17:18:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords H19
calvarial bone healing
CRISPR activation
Split dCas12a
Sox6
Sox5
Language English
License 2023 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-7c6ce0071dd2e191a78d9630f4105fcf56c4ef8067c518f18da5339969eeedcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9997-4467
PMID 38126683
PQID 3059109864
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2904573993
proquest_journals_3059109864
pubmed_primary_38126683
crossref_citationtrail_10_1002_smll_202306612
crossref_primary_10_1002_smll_202306612
wiley_primary_10_1002_smll_202306612_SMLL202306612
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 31
2022; 50
2016 2015; 532 163
2019; 15
2019; 37
2020; 17
2016; 74
2010; 285
2022 2021; 50 49
2020; 10
2012; 33
2013; 19
2016; 6
2019; 61
2014 2013; 9 41
2017; 14
2020; 252
2017; 35
2023; 297
2015; 43
2020; 28
2022; 14
2005 2007 2011; 13 13 32
2022; 30
2020; 67
2021; 275
2010 2011; 29 29
2012; 214
2011 2011 2012 2010 2017; 32 22 33 31 124
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_3_3
e_1_2_8_4_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_4_1
e_1_2_8_3_5
e_1_2_8_7_1
e_1_2_8_3_4
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_18_1
e_1_2_8_17_3
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 14
  start-page: 132
  year: 2022
  publication-title: Pharmaceutics
– volume: 252
  year: 2020
  publication-title: Biomaterials
– volume: 31
  start-page: 3572
  year: 2010
  publication-title: Biomaterials
– volume: 35
  start-page: 31
  year: 2017
  publication-title: Nat. Biotechnol.
– volume: 32 22 33 31 124
  start-page: 9707 124 3682 3222 1
  year: 2011 2011 2012 2010 2017
  publication-title: Biomaterials Eur. Cell Mater. Biomaterials Biomaterials Biomaterials
– volume: 50 49
  start-page: 549 7775
  year: 2022 2021
  publication-title: Nucleic Acids Res. Nucleic Acids Res.
– volume: 37
  start-page: 276
  year: 2019
  publication-title: Nat. Biotechnol.
– volume: 43
  start-page: 8183
  year: 2015
  publication-title: Nucleic Acids Res.
– volume: 17
  start-page: 309
  year: 2020
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 297
  year: 2023
  publication-title: Biomaterials
– volume: 15
  start-page: 882
  year: 2019
  publication-title: Nat. Chem. Biol.
– volume: 10
  start-page: 2656
  year: 2020
  publication-title: FEBS Open Bio
– volume: 13 13 32
  start-page: 845 659 6505
  year: 2005 2007 2011
  publication-title: Osteoarthritis Cartilage Tissue Eng. Biomaterials
– volume: 74
  start-page: 155
  year: 2016
  publication-title: Biomaterials
– volume: 14
  start-page: 1163
  year: 2017
  publication-title: Nat. Methods
– volume: 50
  start-page: 1162
  year: 2022
  publication-title: Nucleic Acids Res.
– volume: 30
  start-page: 92
  year: 2022
  publication-title: Mol. Ther.
– volume: 61
  start-page: 39
  year: 2019
  publication-title: Curr. Opin. Cell Biol.
– volume: 19
  start-page: 308
  year: 2013
  publication-title: Tissue Eng., Part B
– volume: 29 29
  start-page: E8 1241
  year: 2010 2011
  publication-title: Neurosurg. Focus Stem Cells
– volume: 67
  start-page: 12
  year: 2020
  publication-title: Semin. Cancer Biol.
– volume: 10
  start-page: 1
  year: 2020
  publication-title: Cell Syst.
– volume: 285
  year: 2010
  publication-title: J. Biol. Chem.
– volume: 275
  year: 2021
  publication-title: Biomaterials
– volume: 33
  start-page: 2016
  year: 2012
  publication-title: Biomaterials
– volume: 214
  start-page: 241
  year: 2012
  publication-title: J. Endocrinol.
– volume: 9 41
  start-page: 1882
  year: 2014 2013
  publication-title: Nat. Protoc. Nucleic Acids Res.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 532 163
  start-page: 522 759
  year: 2016 2015
  publication-title: Nature Cell
– volume: 28
  start-page: 441
  year: 2020
  publication-title: Mol. Ther.
– ident: e_1_2_8_3_4
  doi: 10.1016/j.biomaterials.2010.01.030
– ident: e_1_2_8_3_5
  doi: 10.1016/j.biomaterials.2017.01.033
– ident: e_1_2_8_22_1
  doi: 10.1093/nar/gkv688
– ident: e_1_2_8_4_2
  doi: 10.1016/j.cell.2015.09.038
– ident: e_1_2_8_15_2
  doi: 10.1093/nar/gkt442
– ident: e_1_2_8_29_1
  doi: 10.1016/j.biomaterials.2020.120094
– ident: e_1_2_8_17_2
  doi: 10.1089/ten.2006.0118
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ymthe.2019.11.029
– ident: e_1_2_8_30_1
  doi: 10.1016/j.biomaterials.2015.09.046
– ident: e_1_2_8_20_1
  doi: 10.1016/j.cels.2019.10.003
– ident: e_1_2_8_13_1
  doi: 10.1016/j.biomaterials.2010.01.085
– ident: e_1_2_8_23_1
  doi: 10.1074/jbc.M110.111328
– ident: e_1_2_8_5_1
  doi: 10.1038/nbt.3737
– ident: e_1_2_8_17_1
  doi: 10.1016/j.joca.2005.05.005
– ident: e_1_2_8_27_1
  doi: 10.1093/nar/gkab1227
– ident: e_1_2_8_9_1
  doi: 10.1016/j.biomaterials.2023.122106
– ident: e_1_2_8_6_1
  doi: 10.1038/nmeth.4483
– ident: e_1_2_8_26_1
  doi: 10.1016/j.biomaterials.2021.120965
– ident: e_1_2_8_16_1
  doi: 10.1016/j.semcancer.2020.04.008
– ident: e_1_2_8_19_1
  doi: 10.1016/j.ymthe.2021.08.024
– ident: e_1_2_8_7_2
  doi: 10.1093/nar/gkab529
– ident: e_1_2_8_14_1
  doi: 10.1089/ten.teb.2012.0138
– ident: e_1_2_8_24_1
  doi: 10.1530/JOE-12-0143
– ident: e_1_2_8_2_1
  doi: 10.3171/2010.9.FOCUS10201
– ident: e_1_2_8_28_1
  doi: 10.1038/s41587-018-0011-0
– ident: e_1_2_8_3_1
  doi: 10.1016/j.biomaterials.2011.09.005
– ident: e_1_2_8_11_1
  doi: 10.1002/2211-5463.13002
– ident: e_1_2_8_17_3
  doi: 10.1016/j.biomaterials.2011.05.059
– ident: e_1_2_8_18_1
  doi: 10.1016/j.biomaterials.2011.11.050
– ident: e_1_2_8_4_1
  doi: 10.1038/nature17944
– ident: e_1_2_8_12_1
  doi: 10.1038/srep28897
– ident: e_1_2_8_1_1
  doi: 10.3390/pharmaceutics14010132
– ident: e_1_2_8_3_3
  doi: 10.1016/j.biomaterials.2012.02.007
– ident: e_1_2_8_3_2
  doi: 10.22203/eCM.v022a10
– ident: e_1_2_8_7_1
  doi: 10.1093/nar/gkab1191
– ident: e_1_2_8_10_1
  doi: 10.1038/s41589-019-0338-y
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ceb.2019.07.008
– ident: e_1_2_8_8_1
  doi: 10.1016/j.omtm.2019.12.010
– ident: e_1_2_8_2_2
  doi: 10.1002/stem.670
– ident: e_1_2_8_15_1
  doi: 10.1038/nprot.2014.130
SSID ssj0031247
Score 2.4633412
Snippet Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19...
Healing of large calvarial bone defects remains challenging. An RNA‐guided Split dCas12a system is previously harnessed to activate long non‐coding RNA H19...
Healing of large calvarial bone defects remains challenging. An RNA-guided Split dCas12a system is previously harnessed to activate long non-coding RNA H19...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2306612
SubjectTerms Adipose Tissue - cytology
Animals
Bone marrow
calvarial bone healing
Cell Differentiation
Chondrogenesis
CRISPR activation
Differentiation
H19
Healing
Humans
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Osteogenesis - genetics
Regeneration (physiology)
Ribonucleic acid
RNA
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Skull
Sox5
Sox6
SOXD Transcription Factors - genetics
SOXD Transcription Factors - metabolism
Split dCas12a
Stem cells
Stem Cells - cytology
Stem Cells - metabolism
Tissue engineering
Title Enhanced Calvarial Bone Repair Using ASCs Engineered with RNA‐Guided Split dCas12a System that Co‐Activates Sox 5, Sox6, and Long Non‐Coding RNA H19
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202306612
https://www.ncbi.nlm.nih.gov/pubmed/38126683
https://www.proquest.com/docview/3059109864
https://www.proquest.com/docview/2904573993
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnuiBV3kstGgqIXFp2sSJ4-S4jVpWaLuHLpV6i2zHUSuWBDVZhDjxEzjz8_glzDib0AUhpPaU1zhOnBnPZ2f8DWOveaFLIUzoSY3WhErBPR1G1vMVDpqF9Y1IaO3w6SyenEfvLsTFjVX8HT_EMOFGluH6azJwpZvD36ShzccF_TogCB27NMMUsEWo6GzgjwrRebnsKuizPCLe6lkbfX64XnzdK_0FNdeRq3M9Jw-Y6h-6izj5cLBs9YH5-gef413e6iG7v8KlMO4U6RHbsNVjtnWDrXCb_TiuLl28AGRq8VmR5sJRXVlAEK-ursFFH8B4njXQl0NZmuiFs9n457fvb5dXBZ6ZI-5tochUE3AFHWU6tJeqhaxGqbFxGddsA_P6C4h92sT7oKoCpjVWMKsrlMpqcrp0Y5gE6RN2fnL8Ppt4q9QOnglliJjexMYSvCkKbnHIqGRSYFfglxR1WppSxCayZYKu1IggKYOkUIhLcWyWWnTqRodP2WaFb_icgeXSl6VMglCrSCilZRKW3Ng0iiObxnLEvP7T5mbFe07pNxZ5x9jMc2rzfGjzEXszyH_qGD_-KbnTa0q-svwmx_4TERiR3o_Y3nAZbZZ-xKjK1ssm5ykCaUnQcMSedRo2VIUICjFTgle405P_PEM-P51Oh6MXtyn0kt3D_aiL4txhm-310u4i0mr1K2dNvwDFSh-v
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOQCH8k8XChgJiUvTJk4cJ8clalkgu4duK3GzbMdRK7ZJ1WRR1ROPwJnH40mYcTaBBSEkOEWJx7GTzHg-25NvCHnJCl1ybkJPaLAmUArm6TCynq9g0sytb3iC_w5PZ_HkOHr3gffRhPgvTMcPMSy4oWW48RoNHBek936whjZnC9w7QAwdY57h65jW282qDgcGqRDcl8uvAl7LQ-qtnrfRZ3vr9df90m9gcx27OudzcJvovttdzMnH3WWrd83VL4yO__Vcd8jmCprScadLd8k1W90jt34iLLxPvu5XJy5kgGZq8Umh8tLXdWUp4Hh1ekFdAAIdz7OG9vVAFtd66eFs_O3zlzfL0wKuzAH6trTIVBMwRTvWdNqeqJZmNUiNjUu6Zhs6ry8p38FDvENVVdC8hgZmdQVSWY1-F29MJ0H6gBwf7B9lE2-V3cEzoQgB1pvYWEQ4RcEszBqVSAoYDfwSA09LU_LYRLZMwJsaHiRlkBQKoClMz1ILft3o8CHZqOAJtwi1TPiiFEkQahVxpbRIwpIZm0ZxZNNYjIjXf1tpVtTnmIFjITvSZibxncvhnY_Iq0H-vCP9-KPkdq8qcmX8jYQhFEAY8t6PyIuhGMwW92JUZetlI1kKWFogOhyRR52KDU0BiALYlEAJc4rylz7I-TTPh7PH_1LpObkxOZrmMn87e_-E3ITrURfUuU022oulfQrAq9XPnGl9B7StI8o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQkRAc-KcsFDASEpemTZw4do7btMsC2xXqUqm3yPGPWrEkVZNFiBOP0HMfjyfpTLIJXRBCglMUZxw7zoznszP5hpBXzOSOcx16IgdrAqVgXh5G1vMVLJq59TWX-O_w_jQeH0bvjvjRlb_4W36IfsMNLaOZr9HAT43b_kkaWn2e46cDhNAxphm-HsW-RL3ePegJpELwXk16FXBaHjJvdbSNPtterb_qln7DmqvQtfE9oztEdb1uQ04-bS3qfEt_-4XQ8X8e6y65vQSmdNhq0j1yzRb3ya0rdIUPyMVecdwEDNBUzb8oVF26UxaWAopXJ2e0CT-gw1la0a4eyOJOLz2YDn98P3-zODFQMgPgW1OTqipgirac6bQ-VjVNS5Aa6iblmq3orPxK-SYe4k2qCkMnJTQwLQuQSkv0unhjOg6Sh-RwtPcxHXvL3A6eDkUIoF7H2iK-MYZZWDMqIQ3MBb7DsFOnHY91ZJ0EX6p5IF0gjQJgCouzxIJX13n4iKwV8ISPCbVM-MIJGYS5irhSuZChY9omURzZJBYD4nWvNtNL4nPMvzHPWspmluGYZ_2YD8jrXv60pfz4o-RGpynZ0vSrDCZQgGDIej8gL_vLYLT4JUYVtlxUGUsASQvEhgOy3mpY3xRAKABNEq6wRk_-0odstj-Z9GdP_qXSC3Ljw-4om7ydvn9KbkJx1EZ0bpC1-mxhnwHqqvPnjWFdAkQvIoI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Calvarial+Bone+Repair+Using+ASCs+Engineered+with+RNA-Guided+Split+dCas12a+System+that+Co-Activates+Sox+5%2C+Sox6%2C+and+Long+Non-Coding+RNA+H19&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Nguyen%2C+Nuong+Thi+Kieu&rft.au=Lee%2C+Shang-Shung&rft.au=Chen%2C+Pin-Hsin&rft.au=Chang%2C+Yi-Hao&rft.date=2024-05-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=21&rft.spage=e2306612&rft_id=info:doi/10.1002%2Fsmll.202306612&rft_id=info%3Apmid%2F38126683&rft.externalDocID=38126683
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon