Synergistic Combination of Bioactive Hydroxyapatite Nanoparticles and the Chemotherapeutic Doxorubicin to Overcome Tumor Multidrug Resistance
Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150‐fold reduct...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 18; pp. e2007672 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150‐fold reduction in IC50 compared with free DOX for human MDR breast cancer MCF‐7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF‐7/ADR cells, more importantly, drug‐free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR.
The major components of bone, hydroxyapatite nanoparticles, are able to kill multidrug resistant (MDR) MCF‐7/ADR cells. They can facilitate drug delivery into and prevent doxorubicin (DOX) efflux from MDR cells, thus act synergistically with DOX to overcome MDR, leading to a 150‐fold decrease in the IC50 of DOX and almost complete inhibition of tumor growth in vivo. |
---|---|
AbstractList | Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150‐fold reduction in IC50 compared with free DOX for human MDR breast cancer MCF‐7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF‐7/ADR cells, more importantly, drug‐free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR. Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150-fold reduction in IC compared with free DOX for human MDR breast cancer MCF-7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF-7/ADR cells, more importantly, drug-free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR. Abstract M ultidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150‐fold reduction in IC 50 compared with free DOX for human MDR breast cancer MCF‐7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF‐7/ADR cells, more importantly, drug‐free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR. Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150‐fold reduction in IC50 compared with free DOX for human MDR breast cancer MCF‐7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF‐7/ADR cells, more importantly, drug‐free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR. The major components of bone, hydroxyapatite nanoparticles, are able to kill multidrug resistant (MDR) MCF‐7/ADR cells. They can facilitate drug delivery into and prevent doxorubicin (DOX) efflux from MDR cells, thus act synergistically with DOX to overcome MDR, leading to a 150‐fold decrease in the IC50 of DOX and almost complete inhibition of tumor growth in vivo. |
Author | Dong, Xiulin Kohn, Joachim Ma, Xiaoyu Li, Yuanyuan Yuan, Yuan Liu, Changsheng Zhang, Shuiquan Sun, Yi Qian, Jiangchao |
Author_xml | – sequence: 1 givenname: Xiulin surname: Dong fullname: Dong, Xiulin organization: East China University of Science and Technology – sequence: 2 givenname: Yi surname: Sun fullname: Sun, Yi organization: East China University of Science and Technology – sequence: 3 givenname: Yuanyuan surname: Li fullname: Li, Yuanyuan organization: East China University of Science and Technology – sequence: 4 givenname: Xiaoyu surname: Ma fullname: Ma, Xiaoyu organization: East China University of Science and Technology – sequence: 5 givenname: Shuiquan surname: Zhang fullname: Zhang, Shuiquan organization: East China University of Science and Technology – sequence: 6 givenname: Yuan surname: Yuan fullname: Yuan, Yuan organization: East China University of Science and Technology – sequence: 7 givenname: Joachim surname: Kohn fullname: Kohn, Joachim organization: The State University of New Jersey – sequence: 8 givenname: Changsheng surname: Liu fullname: Liu, Changsheng email: liucs@ecust.edu.cn organization: East China University of Science and Technology – sequence: 9 givenname: Jiangchao orcidid: 0000-0002-0316-2959 surname: Qian fullname: Qian, Jiangchao email: jiangchaoqian@ecust.edu.cn organization: East China University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33759364$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URD_gyhFZ4sIlwR8bOz5C-ChSSiVaziuvPW5d7dqLvS7dH8F_xlFKkLhwmpHmmWdGek_RUYgBEHpJyZISwt7moe-XjDBCpJDsCTqhgvKFWDN1dOgpOUanOd8Rwilr5DN0zLlcKS6aE_Trag6QbnyevMGbOHQ-6MnHgKPD733UZvL3gM9nm-LDrMc6mwB_1SGOOtWVHjLWweLpFvDmFoZYm6RHKDvdh_gQU-m88QFPEV_eQzJxAHxdhpjwReknb1O5wd8g1_s6GHiOnjrdZ3jxWM_Q908frzfni-3l5y-bd9uF4ZKzRWM4EOIa5jqpnWmcUMQovrK6AyrWnFm75uuGqc4wacyKKwVCKOrAOu2s42fozd47pvijQJ7awWcDfa8DxJJbtiKNlFTSpqKv_0HvYkmhflcpxlg9K0SllnvKpJhzAteOyQ86zS0l7S6odhdUewiqLrx61JZuAHvA_yRTAbUHfvoe5v_o2quL7fav_DcHJqV6 |
CitedBy_id | crossref_primary_10_1002_advs_202206393 crossref_primary_10_1021_acsami_2c02552 crossref_primary_10_1039_D1TB01136G crossref_primary_10_1039_D3TB00542A crossref_primary_10_1186_s12951_021_01217_4 crossref_primary_10_1016_j_cej_2023_142478 crossref_primary_10_1002_smll_202102269 crossref_primary_10_1016_j_ijpharm_2022_121931 crossref_primary_10_3390_nu15183984 crossref_primary_10_2147_IJN_S375950 crossref_primary_10_1007_s10118_022_2775_4 crossref_primary_10_1039_D3MA00279A crossref_primary_10_1002_advs_202306203 crossref_primary_10_1021_acsami_2c01913 crossref_primary_10_1093_rb_rbac050 crossref_primary_10_3390_pharmaceutics15010302 crossref_primary_10_1016_j_cej_2021_134438 crossref_primary_10_1021_acs_molpharmaceut_1c00998 crossref_primary_10_1016_j_colsurfb_2021_112014 crossref_primary_10_1039_D3CC06205H crossref_primary_10_1002_smsc_202300111 crossref_primary_10_1002_smll_202206272 crossref_primary_10_1016_j_mtbio_2022_100318 crossref_primary_10_1016_j_ijbiomac_2024_131428 crossref_primary_10_1007_s10555_023_10119_w crossref_primary_10_1016_j_jcis_2021_07_080 crossref_primary_10_1016_j_jconrel_2023_01_009 crossref_primary_10_1021_acsnano_3c10173 crossref_primary_10_1088_1361_6528_ac61ca crossref_primary_10_1016_j_carbpol_2023_121487 crossref_primary_10_1186_s12951_023_01768_8 crossref_primary_10_1016_j_canlet_2023_216181 crossref_primary_10_1016_j_carbpol_2023_120899 crossref_primary_10_1016_j_ccr_2023_215050 crossref_primary_10_1016_j_colsurfb_2022_113076 crossref_primary_10_3389_fonc_2022_813854 crossref_primary_10_3390_pharmaceutics15082065 crossref_primary_10_1016_j_jddst_2022_103157 crossref_primary_10_1016_j_phrs_2023_106945 crossref_primary_10_3390_pharmaceutics14081606 crossref_primary_10_2147_IJN_S403887 |
Cites_doi | 10.1039/c2dt30984j 10.1016/j.yjmcc.2009.07.024 10.1038/nrc3599 10.1016/j.jconrel.2014.11.019 10.1021/acsami.7b05142 10.1039/C7NR01857F 10.1038/s41467-020-14780-5 10.1016/j.biopha.2020.110156 10.1016/j.msec.2016.05.034 10.1021/nl103992v 10.1038/s41568-018-0005-8 10.1016/j.biomaterials.2014.10.001 10.3390/cancers12040887 10.1016/j.actbio.2011.03.019 10.3390/ijms21093233 10.1021/acsnano.6b03835 10.1038/nrc3893 10.1155/2014/731897 10.3322/caac.21590 10.1021/acsami.5b09340 10.1016/j.ceramint.2014.04.100 10.1146/annurev-pharmtox-010715-103111 10.2217/nnm.12.217 10.1016/j.biomaterials.2009.09.088 10.1007/BF01971842 10.1021/acs.nanolett.6b03122 10.1038/nrc706 10.1021/acsnano.8b01996 10.1002/jbm.a.33270 10.1002/smll.201803262 10.1016/j.biomaterials.2015.04.006 10.1016/j.jconrel.2014.05.030 10.1016/j.biomaterials.2009.12.043 10.1016/j.biomaterials.2011.03.006 10.1073/pnas.1214547110 10.1097/FPC.0b013e32833ffb56 10.1021/acsami.6b06094 10.1038/ncomms6988 10.1016/j.addr.2013.09.018 10.1111/j.1432-1033.1997.00104.x 10.1016/j.biomaterials.2016.04.004 10.1038/ncomms13936 10.1038/nnano.2017.54 10.1159/000086183 10.1002/ange.201810878 10.1002/smll.201303951 10.1248/bpb.30.128 10.1002/smll.201402581 10.1016/j.yjmcc.2012.03.006 10.1126/sciadv.aax6946 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202007672 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202007672 33759364 SMLL202007672 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2020YFA0908900 – fundername: Ministry of Education of China funderid: 111 Project; B14018 – fundername: National Natural Science Foundation of China funderid: 31871011 – fundername: Ministry of Education of the People's Republic of China funderid: 111 Project; B14018 – fundername: National Key Research and Development Program of China grantid: 2020YFA0908900 – fundername: Ministry of Education of the People's Republic of China grantid: B14018 – fundername: Ministry of Education of China grantid: B14018 – fundername: Ministry of Education of the People's Republic of China grantid: 111 Project – fundername: National Natural Science Foundation of China grantid: 31871011 – fundername: Ministry of Education of China grantid: 111 Project |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AASGY AAYOK ACBWZ ASPBG AVWKF AZFZN BDRZF EJD FEDTE GODZA HVGLF NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3732-4c3e00f42fb7afc4f690c935dabe16832dd838429bc27cc5399e6691fedfafdf3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Fri Aug 16 05:38:57 EDT 2024 Thu Oct 10 18:08:21 EDT 2024 Wed Aug 28 12:35:56 EDT 2024 Sat Sep 28 08:24:58 EDT 2024 Sat Aug 24 01:04:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | multidrug resistance reversal hydroxyapatite nanoparticles anti-tumor activity bioactivity mitochondrial Ca 2+ overload |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-4c3e00f42fb7afc4f690c935dabe16832dd838429bc27cc5399e6691fedfafdf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0316-2959 |
PMID | 33759364 |
PQID | 2522293566 |
PQPubID | 1046358 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2504771714 proquest_journals_2522293566 crossref_primary_10_1002_smll_202007672 pubmed_primary_33759364 wiley_primary_10_1002_smll_202007672_SMLL202007672 |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 37 2009; 47 2017; 8 2013; 65 2020; 127 2011; 11 2020; 12 2020; 11 2007; 30 2017; 9 2012; 52 2013; 13 2011; 21 2013; 110 2014; 9 2014; 10 2015; 57 2015; 15 2010; 31 2015; 6 2012; 100 2019; 5 2015; 11 2016; 10 2002; 2 2011; 32 1994; 46 2016; 94 2014; 2014 2014; 193 2014; 40 2016; 16 2011; 7 2016; 56 2018; 18 1990; 64 1997; 248 2020; 70 2017; 12 2015; 198 2020; 21 2018; 12 2008; 255 2016; 8 2019; 131 2018; 14 2012; 41 2016; 67 2005; 14 Zhou W. (e_1_2_8_7_1) 2019; 131 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Lee J. S. (e_1_2_8_47_1) 1994; 46 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Yin M. (e_1_2_8_42_1) 2014; 2014 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 Li B. (e_1_2_8_33_1) 2008; 255 e_1_2_8_12_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 13 start-page: 714 year: 2013 publication-title: Nat. Rev. Cancer – volume: 18 start-page: 452 year: 2018 publication-title: Nat. Rev. Cancer – volume: 198 start-page: 1 year: 2015 publication-title: J. Controlled Release – volume: 2014 year: 2014 publication-title: J. Nanomater. – volume: 11 start-page: 972 year: 2020 publication-title: Nat. Commun. – volume: 14 year: 2018 publication-title: Small – volume: 7 start-page: 2769 year: 2011 publication-title: Acta Biomater. – volume: 15 start-page: 96 year: 2015 publication-title: Nat. Rev. Cancer – volume: 31 start-page: 2882 year: 2010 publication-title: Biomaterials – volume: 52 start-page: 1213 year: 2012 publication-title: J. Mol. Cell. Cardiol. – volume: 37 start-page: 447 year: 2015 publication-title: Biomaterials – volume: 21 start-page: 440 year: 2011 publication-title: Pharmacogenet. Genomics – volume: 30 start-page: 128 year: 2007 publication-title: Biol. Pharm. Bull. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 131 start-page: 779 year: 2019 publication-title: Angew. Chem. – volume: 11 start-page: 1580 year: 2015 publication-title: Small – volume: 12 start-page: 887 year: 2020 publication-title: Cancers – volume: 193 start-page: 113 year: 2014 publication-title: J. Controlled Release – volume: 46 start-page: 627 year: 1994 publication-title: Mol. Pharmacol. – volume: 10 start-page: 9927 year: 2016 publication-title: ACS Nano – volume: 12 start-page: 7838 year: 2018 publication-title: ACS Nano – volume: 9 start-page: 8781 year: 2017 publication-title: Nanoscale – volume: 94 start-page: 70 year: 2016 publication-title: Biomaterials – volume: 67 start-page: 453 year: 2016 publication-title: Mater. Sci. Eng., C – volume: 11 start-page: 772 year: 2011 publication-title: Nano Lett. – volume: 248 start-page: 104 year: 1997 publication-title: Eur. J. Biochem. – volume: 6 start-page: 5988 year: 2015 publication-title: Nat. Commun. – volume: 21 start-page: 3233 year: 2020 publication-title: Int. J. Mol. Sci. – volume: 10 start-page: 2678 year: 2014 publication-title: Small – volume: 14 start-page: 35 year: 2005 publication-title: Med. Princ. Pract. – volume: 47 start-page: 698 year: 2009 publication-title: J. Mol. Cell. Cardiol. – volume: 70 start-page: 7 year: 2020 publication-title: Ca‐Cancer J. Clin. – volume: 2 start-page: 48 year: 2002 publication-title: Nat. Rev. Cancer – volume: 31 start-page: 730 year: 2010 publication-title: Biomaterials – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 110 start-page: 6700 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 397 year: 2014 publication-title: Nanomedicine – volume: 40 year: 2014 publication-title: Ceram. Int. – volume: 65 start-page: 1852 year: 2013 publication-title: Adv. Drug Delivery Rev. – volume: 32 start-page: 4565 year: 2011 publication-title: Biomaterials – volume: 64 start-page: 597 year: 1990 publication-title: Arch. Toxicol. – volume: 56 start-page: 85 year: 2016 publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 41 year: 2012 publication-title: Dalton Trans. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 100 start-page: 738 year: 2012 publication-title: J. Biomed. Mater. Res., Part A – volume: 16 start-page: 7455 year: 2016 publication-title: Nano Lett. – volume: 127 year: 2020 publication-title: Biomed. Pharmacother. – volume: 8 start-page: 4368 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 255 start-page: 357 year: 2008 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 692 year: 2017 publication-title: Nat. Nanotechnol. – volume: 57 start-page: 93 year: 2015 publication-title: Biomaterials – ident: e_1_2_8_31_1 doi: 10.1039/c2dt30984j – ident: e_1_2_8_45_1 doi: 10.1016/j.yjmcc.2009.07.024 – ident: e_1_2_8_3_1 doi: 10.1038/nrc3599 – volume: 255 start-page: 357 year: 2008 ident: e_1_2_8_33_1 publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Li B. – ident: e_1_2_8_22_1 doi: 10.1016/j.jconrel.2014.11.019 – ident: e_1_2_8_20_1 doi: 10.1021/acsami.7b05142 – ident: e_1_2_8_27_1 doi: 10.1039/C7NR01857F – ident: e_1_2_8_17_1 doi: 10.1038/s41467-020-14780-5 – ident: e_1_2_8_51_1 doi: 10.1016/j.biopha.2020.110156 – ident: e_1_2_8_40_1 doi: 10.1016/j.msec.2016.05.034 – ident: e_1_2_8_10_1 doi: 10.1021/nl103992v – ident: e_1_2_8_21_1 doi: 10.1038/s41568-018-0005-8 – ident: e_1_2_8_25_1 doi: 10.1016/j.biomaterials.2014.10.001 – ident: e_1_2_8_49_1 doi: 10.3390/cancers12040887 – ident: e_1_2_8_29_1 doi: 10.1016/j.actbio.2011.03.019 – ident: e_1_2_8_48_1 doi: 10.3390/ijms21093233 – ident: e_1_2_8_41_1 doi: 10.1021/acsnano.6b03835 – ident: e_1_2_8_50_1 doi: 10.1038/nrc3893 – volume: 2014 start-page: 731897 year: 2014 ident: e_1_2_8_42_1 publication-title: J. Nanomater. doi: 10.1155/2014/731897 contributor: fullname: Yin M. – ident: e_1_2_8_36_1 doi: 10.3322/caac.21590 – volume: 46 start-page: 627 year: 1994 ident: e_1_2_8_47_1 publication-title: Mol. Pharmacol. contributor: fullname: Lee J. S. – ident: e_1_2_8_19_1 doi: 10.1021/acsami.5b09340 – ident: e_1_2_8_30_1 doi: 10.1016/j.ceramint.2014.04.100 – ident: e_1_2_8_4_1 doi: 10.1146/annurev-pharmtox-010715-103111 – ident: e_1_2_8_12_1 doi: 10.2217/nnm.12.217 – ident: e_1_2_8_14_1 doi: 10.1016/j.biomaterials.2009.09.088 – ident: e_1_2_8_46_1 doi: 10.1007/BF01971842 – ident: e_1_2_8_28_1 doi: 10.1021/acs.nanolett.6b03122 – ident: e_1_2_8_2_1 doi: 10.1038/nrc706 – ident: e_1_2_8_11_1 doi: 10.1021/acsnano.8b01996 – ident: e_1_2_8_35_1 doi: 10.1002/jbm.a.33270 – ident: e_1_2_8_16_1 doi: 10.1002/smll.201803262 – ident: e_1_2_8_26_1 doi: 10.1016/j.biomaterials.2015.04.006 – ident: e_1_2_8_24_1 doi: 10.1016/j.jconrel.2014.05.030 – ident: e_1_2_8_43_1 doi: 10.1016/j.biomaterials.2009.12.043 – ident: e_1_2_8_9_1 doi: 10.1016/j.biomaterials.2011.03.006 – ident: e_1_2_8_5_1 doi: 10.1073/pnas.1214547110 – ident: e_1_2_8_38_1 doi: 10.1097/FPC.0b013e32833ffb56 – ident: e_1_2_8_13_1 doi: 10.1021/acsami.6b06094 – ident: e_1_2_8_8_1 doi: 10.1038/ncomms6988 – ident: e_1_2_8_44_1 doi: 10.1016/j.addr.2013.09.018 – ident: e_1_2_8_52_1 doi: 10.1111/j.1432-1033.1997.00104.x – ident: e_1_2_8_32_1 doi: 10.1016/j.biomaterials.2016.04.004 – ident: e_1_2_8_6_1 doi: 10.1038/ncomms13936 – ident: e_1_2_8_18_1 doi: 10.1038/nnano.2017.54 – ident: e_1_2_8_1_1 doi: 10.1159/000086183 – volume: 131 start-page: 779 year: 2019 ident: e_1_2_8_7_1 publication-title: Angew. Chem. doi: 10.1002/ange.201810878 contributor: fullname: Zhou W. – ident: e_1_2_8_23_1 doi: 10.1002/smll.201303951 – ident: e_1_2_8_34_1 doi: 10.1248/bpb.30.128 – ident: e_1_2_8_15_1 doi: 10.1002/smll.201402581 – ident: e_1_2_8_39_1 doi: 10.1016/j.yjmcc.2012.03.006 – ident: e_1_2_8_37_1 doi: 10.1126/sciadv.aax6946 |
SSID | ssj0031247 |
Score | 2.576743 |
Snippet | Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic... Abstract M ultidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2007672 |
SubjectTerms | anti‐tumor activity Apoptosis bioactivity Biological activity Breast cancer Doxorubicin Hydroxyapatite hydroxyapatite nanoparticles Mitochondria mitochondrial Ca 2+ overload multidrug resistance reversal Nanoparticles Nanotechnology Side effects Synergistic effect Tumors |
Title | Synergistic Combination of Bioactive Hydroxyapatite Nanoparticles and the Chemotherapeutic Doxorubicin to Overcome Tumor Multidrug Resistance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202007672 https://www.ncbi.nlm.nih.gov/pubmed/33759364 https://www.proquest.com/docview/2522293566 https://search.proquest.com/docview/2504771714 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcQT_CwjcG2bjAZaRJPgcZ24_YRKFU1AZP4kHiLzl9o2kimNpEG_wP_M3dOG9rtYRJ7jBwrF9-n7bvfMfYFwKKTQA70xAAShTKVgANUd3SOok8HAzHl_-w8G1-rrze9m4Uq_gYfoj1wI82I9poUHMz04Bk0dHr3k64O6Kwt02SEU6kpp2t40eJHSXResbsKkpMQ8NYctbErDpanL3ulv0LN5cg1up7RawZzopuMkx_7dWX27cMfeI7_81dv2KtZXMoPG0HaYCu-eMvWF9AKN9nj5T0VCkZkZ452BPfUka28DPzoewnRcvLxvSM6gTK1K8_ReuO2fJZ9x6FwHCNOTjAFi6VffFj-Lie1oWt-XpX8GyoYUu75VX1XTnisEnaT-pZf-CkFvCipW-x6dHJ1PE5m3RwSK7UUibLSd7tBiWA0BKsC7svtQPYcGJ9maFic68s-ukdjhbaWEHN9lg3S4F2A4IJ8x1aLsvAfGAfrrHfpAKxPldEayIxgYKa88k4F02F7c27mvxrQjryBZxY5LXDeLnCHbc-Znc-Ud5qLHjU5lxjodthuO4xqR3cpUPiypne6SmvqHt9h7xshaT8lpaY-iTgiIqv_QUN-eXZ62j59fMmkT2xNUK5NTMTcZqvVpPY7GCxV5nNUiCcrkw_P |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcgAOQAuU9MVWQuLkNtndeJMjtFQBkiK1qcTN2idCbe0qsaW2_6H_mZl1bBo4IMHRWq883tl57OzMNwBvtbZoJJADfT7UicQ9lWinUdzROPIBBQZiyv_kOB2dyc_f-k02IdXC1PgQbcCNJCPqaxJwCkjv_0INnV9e0N0BBdtShVr4Icq8oO4NhyctgpRA8xX7qyBBCUFvNbiNXb6_PH_ZLv3hbC77rtH4HD0D05Bd55yc71Wl2bO3vyE6_td_PYenC9eUva_30io88PkaPLkHWPgC7k5vqFYwgjszVCV4rI6cZUVgH34UOipPNrpxRKimZO3SM1TgeDJfJOAxnTuGTicjpIL71V_ssLguZpWhm35WFuwryhiS7tm0uixmLBYKu1n1nZ34Ofm8uFlfwtnRx-nBKFk0dEisUIIn0grf7QbJg1E6WBnwaG6Hou-08b0UdYtzAzFAC2ksV9YSaK5P02EveBd0cEG8gpW8yP1rYNo6611vqK3vSaOUJk2Cvpn00jsZTAfeNezMrmrcjqxGaOYZLXDWLnAHthpuZwv5nWe8T33OBfq6Hdhth1Hy6DpF576o6J2uVIoayHdgvd4l7aeEUNQqEUd45PVfaMhOJ-Nx-7TxL5PewKPRdDLOxp-Ov2zCY06pNzEvcwtWylnlt9F3Ks1OlI6fCF8T5w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8hJk3jgW18jALbjIS0p0Bru3H7uI1VHRSY-JB4ixx_TNNogtpEGvsf-J9357ShHQ9I8Bg5Vi4-393P9vl3ALtaGwwSqIE27-pI4pyKtNVo7hgceYc2BkLK__FJ3L-Uh1ftq5lb_BU_RL3hRpYR_DUZ-I31-_ekoePhNR0d0F5brNAJv5Axwl-CRWc1gZTA6BXKq6A8ETFvTWkbm3x_vv98WHqANeeha4g9vdegp1JXKSe_98oi3TN__yN0fM5vvYHlCTBln6uZ9BYWXLYCSzN0hatwd35LNwUDtTNDR4KL6qBXlnv25Veug-tk_VtLcmpK1S4cQ_eN6_JJ-h3TmWUIORnxFMze_WIH-Z98VKZ0zs-KnJ2ihaHkjl2Uw3zEwjVhOyp_sjM3JsSLU3UNLnvfLr72o0k5h8gIJXgkjXDNppfcp0p7Iz0uzE1XtK1OXStGz2JtR3QwPqaGK2OIMtfFcbflnfXaWy_WYTHLM7cBTBtrnG11tXEtmSqlyY8gMpNOOit92oBPU20mNxVrR1LxM_OEBjipB7gB21NlJxPrHSe8TVXOBSLdBuzUzWh3dJiiM5eX9E5TKkXl4xvwrpok9aeEUFQoEVt4UPUjMiTnx4NB_bT5lE4f4eWPg14y-H5ytAWvOOXdhKTMbVgsRqV7j8CpSD8E2_gHxRASlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Combination+of+Bioactive+Hydroxyapatite+Nanoparticles+and+the+Chemotherapeutic+Doxorubicin+to+Overcome+Tumor+Multidrug+Resistance&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Dong%2C+Xiulin&rft.au=Sun%2C+Yi&rft.au=Li%2C+Yuanyuan&rft.au=Ma%2C+Xiaoyu&rft.date=2021-05-01&rft.eissn=1613-6829&rft.volume=17&rft.issue=18&rft.spage=e2007672&rft.epage=e2007672&rft_id=info:doi/10.1002%2Fsmll.202007672&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |