Synergistic Combination of Bioactive Hydroxyapatite Nanoparticles and the Chemotherapeutic Doxorubicin to Overcome Tumor Multidrug Resistance

Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150‐fold reduct...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 18; pp. e2007672 - n/a
Main Authors Dong, Xiulin, Sun, Yi, Li, Yuanyuan, Ma, Xiaoyu, Zhang, Shuiquan, Yuan, Yuan, Kohn, Joachim, Liu, Changsheng, Qian, Jiangchao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150‐fold reduction in IC50 compared with free DOX for human MDR breast cancer MCF‐7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF‐7/ADR cells, more importantly, drug‐free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR. The major components of bone, hydroxyapatite nanoparticles, are able to kill multidrug resistant (MDR) MCF‐7/ADR cells. They can facilitate drug delivery into and prevent doxorubicin (DOX) efflux from MDR cells, thus act synergistically with DOX to overcome MDR, leading to a 150‐fold decrease in the IC50 of DOX and almost complete inhibition of tumor growth in vivo.
AbstractList Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150‐fold reduction in IC50 compared with free DOX for human MDR breast cancer MCF‐7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF‐7/ADR cells, more importantly, drug‐free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR.
Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150-fold reduction in IC compared with free DOX for human MDR breast cancer MCF-7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF-7/ADR cells, more importantly, drug-free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR.
Abstract M ultidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150‐fold reduction in IC 50 compared with free DOX for human MDR breast cancer MCF‐7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF‐7/ADR cells, more importantly, drug‐free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR.
Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150‐fold reduction in IC50 compared with free DOX for human MDR breast cancer MCF‐7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF‐7/ADR cells, more importantly, drug‐free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR. The major components of bone, hydroxyapatite nanoparticles, are able to kill multidrug resistant (MDR) MCF‐7/ADR cells. They can facilitate drug delivery into and prevent doxorubicin (DOX) efflux from MDR cells, thus act synergistically with DOX to overcome MDR, leading to a 150‐fold decrease in the IC50 of DOX and almost complete inhibition of tumor growth in vivo.
Author Dong, Xiulin
Kohn, Joachim
Ma, Xiaoyu
Li, Yuanyuan
Yuan, Yuan
Liu, Changsheng
Zhang, Shuiquan
Sun, Yi
Qian, Jiangchao
Author_xml – sequence: 1
  givenname: Xiulin
  surname: Dong
  fullname: Dong, Xiulin
  organization: East China University of Science and Technology
– sequence: 2
  givenname: Yi
  surname: Sun
  fullname: Sun, Yi
  organization: East China University of Science and Technology
– sequence: 3
  givenname: Yuanyuan
  surname: Li
  fullname: Li, Yuanyuan
  organization: East China University of Science and Technology
– sequence: 4
  givenname: Xiaoyu
  surname: Ma
  fullname: Ma, Xiaoyu
  organization: East China University of Science and Technology
– sequence: 5
  givenname: Shuiquan
  surname: Zhang
  fullname: Zhang, Shuiquan
  organization: East China University of Science and Technology
– sequence: 6
  givenname: Yuan
  surname: Yuan
  fullname: Yuan, Yuan
  organization: East China University of Science and Technology
– sequence: 7
  givenname: Joachim
  surname: Kohn
  fullname: Kohn, Joachim
  organization: The State University of New Jersey
– sequence: 8
  givenname: Changsheng
  surname: Liu
  fullname: Liu, Changsheng
  email: liucs@ecust.edu.cn
  organization: East China University of Science and Technology
– sequence: 9
  givenname: Jiangchao
  orcidid: 0000-0002-0316-2959
  surname: Qian
  fullname: Qian, Jiangchao
  email: jiangchaoqian@ecust.edu.cn
  organization: East China University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33759364$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URD_gyhFZ4sIlwR8bOz5C-ChSSiVaziuvPW5d7dqLvS7dH8F_xlFKkLhwmpHmmWdGek_RUYgBEHpJyZISwt7moe-XjDBCpJDsCTqhgvKFWDN1dOgpOUanOd8Rwilr5DN0zLlcKS6aE_Trag6QbnyevMGbOHQ-6MnHgKPD733UZvL3gM9nm-LDrMc6mwB_1SGOOtWVHjLWweLpFvDmFoZYm6RHKDvdh_gQU-m88QFPEV_eQzJxAHxdhpjwReknb1O5wd8g1_s6GHiOnjrdZ3jxWM_Q908frzfni-3l5y-bd9uF4ZKzRWM4EOIa5jqpnWmcUMQovrK6AyrWnFm75uuGqc4wacyKKwVCKOrAOu2s42fozd47pvijQJ7awWcDfa8DxJJbtiKNlFTSpqKv_0HvYkmhflcpxlg9K0SllnvKpJhzAteOyQ86zS0l7S6odhdUewiqLrx61JZuAHvA_yRTAbUHfvoe5v_o2quL7fav_DcHJqV6
CitedBy_id crossref_primary_10_1002_advs_202206393
crossref_primary_10_1021_acsami_2c02552
crossref_primary_10_1039_D1TB01136G
crossref_primary_10_1039_D3TB00542A
crossref_primary_10_1186_s12951_021_01217_4
crossref_primary_10_1016_j_cej_2023_142478
crossref_primary_10_1002_smll_202102269
crossref_primary_10_1016_j_ijpharm_2022_121931
crossref_primary_10_3390_nu15183984
crossref_primary_10_2147_IJN_S375950
crossref_primary_10_1007_s10118_022_2775_4
crossref_primary_10_1039_D3MA00279A
crossref_primary_10_1002_advs_202306203
crossref_primary_10_1021_acsami_2c01913
crossref_primary_10_1093_rb_rbac050
crossref_primary_10_3390_pharmaceutics15010302
crossref_primary_10_1016_j_cej_2021_134438
crossref_primary_10_1021_acs_molpharmaceut_1c00998
crossref_primary_10_1016_j_colsurfb_2021_112014
crossref_primary_10_1039_D3CC06205H
crossref_primary_10_1002_smsc_202300111
crossref_primary_10_1002_smll_202206272
crossref_primary_10_1016_j_mtbio_2022_100318
crossref_primary_10_1016_j_ijbiomac_2024_131428
crossref_primary_10_1007_s10555_023_10119_w
crossref_primary_10_1016_j_jcis_2021_07_080
crossref_primary_10_1016_j_jconrel_2023_01_009
crossref_primary_10_1021_acsnano_3c10173
crossref_primary_10_1088_1361_6528_ac61ca
crossref_primary_10_1016_j_carbpol_2023_121487
crossref_primary_10_1186_s12951_023_01768_8
crossref_primary_10_1016_j_canlet_2023_216181
crossref_primary_10_1016_j_carbpol_2023_120899
crossref_primary_10_1016_j_ccr_2023_215050
crossref_primary_10_1016_j_colsurfb_2022_113076
crossref_primary_10_3389_fonc_2022_813854
crossref_primary_10_3390_pharmaceutics15082065
crossref_primary_10_1016_j_jddst_2022_103157
crossref_primary_10_1016_j_phrs_2023_106945
crossref_primary_10_3390_pharmaceutics14081606
crossref_primary_10_2147_IJN_S403887
Cites_doi 10.1039/c2dt30984j
10.1016/j.yjmcc.2009.07.024
10.1038/nrc3599
10.1016/j.jconrel.2014.11.019
10.1021/acsami.7b05142
10.1039/C7NR01857F
10.1038/s41467-020-14780-5
10.1016/j.biopha.2020.110156
10.1016/j.msec.2016.05.034
10.1021/nl103992v
10.1038/s41568-018-0005-8
10.1016/j.biomaterials.2014.10.001
10.3390/cancers12040887
10.1016/j.actbio.2011.03.019
10.3390/ijms21093233
10.1021/acsnano.6b03835
10.1038/nrc3893
10.1155/2014/731897
10.3322/caac.21590
10.1021/acsami.5b09340
10.1016/j.ceramint.2014.04.100
10.1146/annurev-pharmtox-010715-103111
10.2217/nnm.12.217
10.1016/j.biomaterials.2009.09.088
10.1007/BF01971842
10.1021/acs.nanolett.6b03122
10.1038/nrc706
10.1021/acsnano.8b01996
10.1002/jbm.a.33270
10.1002/smll.201803262
10.1016/j.biomaterials.2015.04.006
10.1016/j.jconrel.2014.05.030
10.1016/j.biomaterials.2009.12.043
10.1016/j.biomaterials.2011.03.006
10.1073/pnas.1214547110
10.1097/FPC.0b013e32833ffb56
10.1021/acsami.6b06094
10.1038/ncomms6988
10.1016/j.addr.2013.09.018
10.1111/j.1432-1033.1997.00104.x
10.1016/j.biomaterials.2016.04.004
10.1038/ncomms13936
10.1038/nnano.2017.54
10.1159/000086183
10.1002/ange.201810878
10.1002/smll.201303951
10.1248/bpb.30.128
10.1002/smll.201402581
10.1016/j.yjmcc.2012.03.006
10.1126/sciadv.aax6946
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202007672
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202007672
33759364
SMLL202007672
Genre article
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2020YFA0908900
– fundername: Ministry of Education of China
  funderid: 111 Project; B14018
– fundername: National Natural Science Foundation of China
  funderid: 31871011
– fundername: Ministry of Education of the People's Republic of China
  funderid: 111 Project; B14018
– fundername: National Key Research and Development Program of China
  grantid: 2020YFA0908900
– fundername: Ministry of Education of the People's Republic of China
  grantid: B14018
– fundername: Ministry of Education of China
  grantid: B14018
– fundername: Ministry of Education of the People's Republic of China
  grantid: 111 Project
– fundername: National Natural Science Foundation of China
  grantid: 31871011
– fundername: Ministry of Education of China
  grantid: 111 Project
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
EJD
FEDTE
GODZA
HVGLF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3732-4c3e00f42fb7afc4f690c935dabe16832dd838429bc27cc5399e6691fedfafdf3
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Aug 16 05:38:57 EDT 2024
Thu Oct 10 18:08:21 EDT 2024
Wed Aug 28 12:35:56 EDT 2024
Sat Sep 28 08:24:58 EDT 2024
Sat Aug 24 01:04:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords multidrug resistance reversal
hydroxyapatite nanoparticles
anti-tumor activity
bioactivity
mitochondrial Ca 2+ overload
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-4c3e00f42fb7afc4f690c935dabe16832dd838429bc27cc5399e6691fedfafdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0316-2959
PMID 33759364
PQID 2522293566
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_2504771714
proquest_journals_2522293566
crossref_primary_10_1002_smll_202007672
pubmed_primary_33759364
wiley_primary_10_1002_smll_202007672_SMLL202007672
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 37
2009; 47
2017; 8
2013; 65
2020; 127
2011; 11
2020; 12
2020; 11
2007; 30
2017; 9
2012; 52
2013; 13
2011; 21
2013; 110
2014; 9
2014; 10
2015; 57
2015; 15
2010; 31
2015; 6
2012; 100
2019; 5
2015; 11
2016; 10
2002; 2
2011; 32
1994; 46
2016; 94
2014; 2014
2014; 193
2014; 40
2016; 16
2011; 7
2016; 56
2018; 18
1990; 64
1997; 248
2020; 70
2017; 12
2015; 198
2020; 21
2018; 12
2008; 255
2016; 8
2019; 131
2018; 14
2012; 41
2016; 67
2005; 14
Zhou W. (e_1_2_8_7_1) 2019; 131
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Lee J. S. (e_1_2_8_47_1) 1994; 46
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Yin M. (e_1_2_8_42_1) 2014; 2014
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
Li B. (e_1_2_8_33_1) 2008; 255
e_1_2_8_12_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 13
  start-page: 714
  year: 2013
  publication-title: Nat. Rev. Cancer
– volume: 18
  start-page: 452
  year: 2018
  publication-title: Nat. Rev. Cancer
– volume: 198
  start-page: 1
  year: 2015
  publication-title: J. Controlled Release
– volume: 2014
  year: 2014
  publication-title: J. Nanomater.
– volume: 11
  start-page: 972
  year: 2020
  publication-title: Nat. Commun.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 7
  start-page: 2769
  year: 2011
  publication-title: Acta Biomater.
– volume: 15
  start-page: 96
  year: 2015
  publication-title: Nat. Rev. Cancer
– volume: 31
  start-page: 2882
  year: 2010
  publication-title: Biomaterials
– volume: 52
  start-page: 1213
  year: 2012
  publication-title: J. Mol. Cell. Cardiol.
– volume: 37
  start-page: 447
  year: 2015
  publication-title: Biomaterials
– volume: 21
  start-page: 440
  year: 2011
  publication-title: Pharmacogenet. Genomics
– volume: 30
  start-page: 128
  year: 2007
  publication-title: Biol. Pharm. Bull.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 131
  start-page: 779
  year: 2019
  publication-title: Angew. Chem.
– volume: 11
  start-page: 1580
  year: 2015
  publication-title: Small
– volume: 12
  start-page: 887
  year: 2020
  publication-title: Cancers
– volume: 193
  start-page: 113
  year: 2014
  publication-title: J. Controlled Release
– volume: 46
  start-page: 627
  year: 1994
  publication-title: Mol. Pharmacol.
– volume: 10
  start-page: 9927
  year: 2016
  publication-title: ACS Nano
– volume: 12
  start-page: 7838
  year: 2018
  publication-title: ACS Nano
– volume: 9
  start-page: 8781
  year: 2017
  publication-title: Nanoscale
– volume: 94
  start-page: 70
  year: 2016
  publication-title: Biomaterials
– volume: 67
  start-page: 453
  year: 2016
  publication-title: Mater. Sci. Eng., C
– volume: 11
  start-page: 772
  year: 2011
  publication-title: Nano Lett.
– volume: 248
  start-page: 104
  year: 1997
  publication-title: Eur. J. Biochem.
– volume: 6
  start-page: 5988
  year: 2015
  publication-title: Nat. Commun.
– volume: 21
  start-page: 3233
  year: 2020
  publication-title: Int. J. Mol. Sci.
– volume: 10
  start-page: 2678
  year: 2014
  publication-title: Small
– volume: 14
  start-page: 35
  year: 2005
  publication-title: Med. Princ. Pract.
– volume: 47
  start-page: 698
  year: 2009
  publication-title: J. Mol. Cell. Cardiol.
– volume: 70
  start-page: 7
  year: 2020
  publication-title: Ca‐Cancer J. Clin.
– volume: 2
  start-page: 48
  year: 2002
  publication-title: Nat. Rev. Cancer
– volume: 31
  start-page: 730
  year: 2010
  publication-title: Biomaterials
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 110
  start-page: 6700
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 397
  year: 2014
  publication-title: Nanomedicine
– volume: 40
  year: 2014
  publication-title: Ceram. Int.
– volume: 65
  start-page: 1852
  year: 2013
  publication-title: Adv. Drug Delivery Rev.
– volume: 32
  start-page: 4565
  year: 2011
  publication-title: Biomaterials
– volume: 64
  start-page: 597
  year: 1990
  publication-title: Arch. Toxicol.
– volume: 56
  start-page: 85
  year: 2016
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 41
  year: 2012
  publication-title: Dalton Trans.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 100
  start-page: 738
  year: 2012
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 16
  start-page: 7455
  year: 2016
  publication-title: Nano Lett.
– volume: 127
  year: 2020
  publication-title: Biomed. Pharmacother.
– volume: 8
  start-page: 4368
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 255
  start-page: 357
  year: 2008
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 692
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 57
  start-page: 93
  year: 2015
  publication-title: Biomaterials
– ident: e_1_2_8_31_1
  doi: 10.1039/c2dt30984j
– ident: e_1_2_8_45_1
  doi: 10.1016/j.yjmcc.2009.07.024
– ident: e_1_2_8_3_1
  doi: 10.1038/nrc3599
– volume: 255
  start-page: 357
  year: 2008
  ident: e_1_2_8_33_1
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Li B.
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jconrel.2014.11.019
– ident: e_1_2_8_20_1
  doi: 10.1021/acsami.7b05142
– ident: e_1_2_8_27_1
  doi: 10.1039/C7NR01857F
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-020-14780-5
– ident: e_1_2_8_51_1
  doi: 10.1016/j.biopha.2020.110156
– ident: e_1_2_8_40_1
  doi: 10.1016/j.msec.2016.05.034
– ident: e_1_2_8_10_1
  doi: 10.1021/nl103992v
– ident: e_1_2_8_21_1
  doi: 10.1038/s41568-018-0005-8
– ident: e_1_2_8_25_1
  doi: 10.1016/j.biomaterials.2014.10.001
– ident: e_1_2_8_49_1
  doi: 10.3390/cancers12040887
– ident: e_1_2_8_29_1
  doi: 10.1016/j.actbio.2011.03.019
– ident: e_1_2_8_48_1
  doi: 10.3390/ijms21093233
– ident: e_1_2_8_41_1
  doi: 10.1021/acsnano.6b03835
– ident: e_1_2_8_50_1
  doi: 10.1038/nrc3893
– volume: 2014
  start-page: 731897
  year: 2014
  ident: e_1_2_8_42_1
  publication-title: J. Nanomater.
  doi: 10.1155/2014/731897
  contributor:
    fullname: Yin M.
– ident: e_1_2_8_36_1
  doi: 10.3322/caac.21590
– volume: 46
  start-page: 627
  year: 1994
  ident: e_1_2_8_47_1
  publication-title: Mol. Pharmacol.
  contributor:
    fullname: Lee J. S.
– ident: e_1_2_8_19_1
  doi: 10.1021/acsami.5b09340
– ident: e_1_2_8_30_1
  doi: 10.1016/j.ceramint.2014.04.100
– ident: e_1_2_8_4_1
  doi: 10.1146/annurev-pharmtox-010715-103111
– ident: e_1_2_8_12_1
  doi: 10.2217/nnm.12.217
– ident: e_1_2_8_14_1
  doi: 10.1016/j.biomaterials.2009.09.088
– ident: e_1_2_8_46_1
  doi: 10.1007/BF01971842
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.nanolett.6b03122
– ident: e_1_2_8_2_1
  doi: 10.1038/nrc706
– ident: e_1_2_8_11_1
  doi: 10.1021/acsnano.8b01996
– ident: e_1_2_8_35_1
  doi: 10.1002/jbm.a.33270
– ident: e_1_2_8_16_1
  doi: 10.1002/smll.201803262
– ident: e_1_2_8_26_1
  doi: 10.1016/j.biomaterials.2015.04.006
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jconrel.2014.05.030
– ident: e_1_2_8_43_1
  doi: 10.1016/j.biomaterials.2009.12.043
– ident: e_1_2_8_9_1
  doi: 10.1016/j.biomaterials.2011.03.006
– ident: e_1_2_8_5_1
  doi: 10.1073/pnas.1214547110
– ident: e_1_2_8_38_1
  doi: 10.1097/FPC.0b013e32833ffb56
– ident: e_1_2_8_13_1
  doi: 10.1021/acsami.6b06094
– ident: e_1_2_8_8_1
  doi: 10.1038/ncomms6988
– ident: e_1_2_8_44_1
  doi: 10.1016/j.addr.2013.09.018
– ident: e_1_2_8_52_1
  doi: 10.1111/j.1432-1033.1997.00104.x
– ident: e_1_2_8_32_1
  doi: 10.1016/j.biomaterials.2016.04.004
– ident: e_1_2_8_6_1
  doi: 10.1038/ncomms13936
– ident: e_1_2_8_18_1
  doi: 10.1038/nnano.2017.54
– ident: e_1_2_8_1_1
  doi: 10.1159/000086183
– volume: 131
  start-page: 779
  year: 2019
  ident: e_1_2_8_7_1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201810878
  contributor:
    fullname: Zhou W.
– ident: e_1_2_8_23_1
  doi: 10.1002/smll.201303951
– ident: e_1_2_8_34_1
  doi: 10.1248/bpb.30.128
– ident: e_1_2_8_15_1
  doi: 10.1002/smll.201402581
– ident: e_1_2_8_39_1
  doi: 10.1016/j.yjmcc.2012.03.006
– ident: e_1_2_8_37_1
  doi: 10.1126/sciadv.aax6946
SSID ssj0031247
Score 2.576743
Snippet Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic...
Abstract M ultidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2007672
SubjectTerms anti‐tumor activity
Apoptosis
bioactivity
Biological activity
Breast cancer
Doxorubicin
Hydroxyapatite
hydroxyapatite nanoparticles
Mitochondria
mitochondrial Ca 2+ overload
multidrug resistance reversal
Nanoparticles
Nanotechnology
Side effects
Synergistic effect
Tumors
Title Synergistic Combination of Bioactive Hydroxyapatite Nanoparticles and the Chemotherapeutic Doxorubicin to Overcome Tumor Multidrug Resistance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202007672
https://www.ncbi.nlm.nih.gov/pubmed/33759364
https://www.proquest.com/docview/2522293566
https://search.proquest.com/docview/2504771714
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcQT_CwjcG2bjAZaRJPgcZ24_YRKFU1AZP4kHiLzl9o2kimNpEG_wP_M3dOG9rtYRJ7jBwrF9-n7bvfMfYFwKKTQA70xAAShTKVgANUd3SOok8HAzHl_-w8G1-rrze9m4Uq_gYfoj1wI82I9poUHMz04Bk0dHr3k64O6Kwt02SEU6kpp2t40eJHSXResbsKkpMQ8NYctbErDpanL3ulv0LN5cg1up7RawZzopuMkx_7dWX27cMfeI7_81dv2KtZXMoPG0HaYCu-eMvWF9AKN9nj5T0VCkZkZ452BPfUka28DPzoewnRcvLxvSM6gTK1K8_ReuO2fJZ9x6FwHCNOTjAFi6VffFj-Lie1oWt-XpX8GyoYUu75VX1XTnisEnaT-pZf-CkFvCipW-x6dHJ1PE5m3RwSK7UUibLSd7tBiWA0BKsC7svtQPYcGJ9maFic68s-ukdjhbaWEHN9lg3S4F2A4IJ8x1aLsvAfGAfrrHfpAKxPldEayIxgYKa88k4F02F7c27mvxrQjryBZxY5LXDeLnCHbc-Znc-Ud5qLHjU5lxjodthuO4xqR3cpUPiypne6SmvqHt9h7xshaT8lpaY-iTgiIqv_QUN-eXZ62j59fMmkT2xNUK5NTMTcZqvVpPY7GCxV5nNUiCcrkw_P
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcgAOQAuU9MVWQuLkNtndeJMjtFQBkiK1qcTN2idCbe0qsaW2_6H_mZl1bBo4IMHRWq883tl57OzMNwBvtbZoJJADfT7UicQ9lWinUdzROPIBBQZiyv_kOB2dyc_f-k02IdXC1PgQbcCNJCPqaxJwCkjv_0INnV9e0N0BBdtShVr4Icq8oO4NhyctgpRA8xX7qyBBCUFvNbiNXb6_PH_ZLv3hbC77rtH4HD0D05Bd55yc71Wl2bO3vyE6_td_PYenC9eUva_30io88PkaPLkHWPgC7k5vqFYwgjszVCV4rI6cZUVgH34UOipPNrpxRKimZO3SM1TgeDJfJOAxnTuGTicjpIL71V_ssLguZpWhm35WFuwryhiS7tm0uixmLBYKu1n1nZ34Ofm8uFlfwtnRx-nBKFk0dEisUIIn0grf7QbJg1E6WBnwaG6Hou-08b0UdYtzAzFAC2ksV9YSaK5P02EveBd0cEG8gpW8yP1rYNo6611vqK3vSaOUJk2Cvpn00jsZTAfeNezMrmrcjqxGaOYZLXDWLnAHthpuZwv5nWe8T33OBfq6Hdhth1Hy6DpF576o6J2uVIoayHdgvd4l7aeEUNQqEUd45PVfaMhOJ-Nx-7TxL5PewKPRdDLOxp-Ov2zCY06pNzEvcwtWylnlt9F3Ks1OlI6fCF8T5w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8hJk3jgW18jALbjIS0p0Bru3H7uI1VHRSY-JB4ixx_TNNogtpEGvsf-J9357ShHQ9I8Bg5Vi4-393P9vl3ALtaGwwSqIE27-pI4pyKtNVo7hgceYc2BkLK__FJ3L-Uh1ftq5lb_BU_RL3hRpYR_DUZ-I31-_ekoePhNR0d0F5brNAJv5Axwl-CRWc1gZTA6BXKq6A8ETFvTWkbm3x_vv98WHqANeeha4g9vdegp1JXKSe_98oi3TN__yN0fM5vvYHlCTBln6uZ9BYWXLYCSzN0hatwd35LNwUDtTNDR4KL6qBXlnv25Veug-tk_VtLcmpK1S4cQ_eN6_JJ-h3TmWUIORnxFMze_WIH-Z98VKZ0zs-KnJ2ihaHkjl2Uw3zEwjVhOyp_sjM3JsSLU3UNLnvfLr72o0k5h8gIJXgkjXDNppfcp0p7Iz0uzE1XtK1OXStGz2JtR3QwPqaGK2OIMtfFcbflnfXaWy_WYTHLM7cBTBtrnG11tXEtmSqlyY8gMpNOOit92oBPU20mNxVrR1LxM_OEBjipB7gB21NlJxPrHSe8TVXOBSLdBuzUzWh3dJiiM5eX9E5TKkXl4xvwrpok9aeEUFQoEVt4UPUjMiTnx4NB_bT5lE4f4eWPg14y-H5ytAWvOOXdhKTMbVgsRqV7j8CpSD8E2_gHxRASlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Combination+of+Bioactive+Hydroxyapatite+Nanoparticles+and+the+Chemotherapeutic+Doxorubicin+to+Overcome+Tumor+Multidrug+Resistance&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Dong%2C+Xiulin&rft.au=Sun%2C+Yi&rft.au=Li%2C+Yuanyuan&rft.au=Ma%2C+Xiaoyu&rft.date=2021-05-01&rft.eissn=1613-6829&rft.volume=17&rft.issue=18&rft.spage=e2007672&rft.epage=e2007672&rft_id=info:doi/10.1002%2Fsmll.202007672&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon