Heterogeneous Porous Synergistic Photocatalysts for Organic Transformations
Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recove...
Saved in:
Published in | Chemistry : a European journal Vol. 30; no. 37; pp. e202400842 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini‐review summarizes recent advancements in developing heterogeneous carriers, including metal–organic frameworks, covalent–organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.
Porous materials including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), and porous organic polymers (POPs) have recently been established as an ideal platform to enhance synergistic photocatalysis for organic transformations. Benefitting from the designability of these molecular materials, both photosensitizers and catalysts can be intricately incorporated into the porous carriers, leading to greatly enhanced performance over their homogeneous counterparts. |
---|---|
AbstractList | Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini‐review summarizes recent advancements in developing heterogeneous carriers, including metal–organic frameworks, covalent–organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.
Porous materials including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), and porous organic polymers (POPs) have recently been established as an ideal platform to enhance synergistic photocatalysis for organic transformations. Benefitting from the designability of these molecular materials, both photosensitizers and catalysts can be intricately incorporated into the porous carriers, leading to greatly enhanced performance over their homogeneous counterparts. Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications. Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini‐review summarizes recent advancements in developing heterogeneous carriers, including metal–organic frameworks, covalent–organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.Dedicated to Prof. Song Gao on the occasion of his 60th birthday Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications. |
Author | He, Yuan‐Yuan Li, Yan‐Xiang Lin, Wenbin Liu, Chun‐Hua Zhu, Yuan‐Yuan |
Author_xml | – sequence: 1 givenname: Yuan‐Yuan orcidid: 0000-0002-3142-0396 surname: Zhu fullname: Zhu, Yuan‐Yuan email: yyzhu@hfut.edu.cn organization: Hefei University of Technology – sequence: 2 givenname: Yuan‐Yuan orcidid: 0009-0000-4106-6127 surname: He fullname: He, Yuan‐Yuan organization: Hefei University of Technology – sequence: 3 givenname: Yan‐Xiang orcidid: 0009-0008-8082-5796 surname: Li fullname: Li, Yan‐Xiang organization: Hefei University of Technology – sequence: 4 givenname: Chun‐Hua orcidid: 0009-0009-6761-2312 surname: Liu fullname: Liu, Chun‐Hua organization: Hefei University of Technology – sequence: 5 givenname: Wenbin orcidid: 0000-0001-7035-7759 surname: Lin fullname: Lin, Wenbin organization: The University of Chicago |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38691421$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctLAzEQh4MoWh9Xj1Lw4mVrHptN9iilWrGiYD2HaXa23bK70SRF-t-7tT5AEE8Dme8bZvI7JLuta5GQU0YHjFJ-aRfYDDjlKaU65TukxyRniVCZ3CU9mqcqyaTID8hhCEtKaZ4JsU8OhM5ylnLWI3djjOjdHFt0q9B_dH5TntYt-nkVYmX7jwsXnYUI9TrE0C-d7z_4ObRda-qhDd1DA7FybTgmeyXUAU8-6xF5vh5Nh-Nk8nBzO7yaJFYowRPBtEwBOEqrkOdSyTxjVhcCdJYit3I2Y2XBZ5CVGhAsZYUsmULMCwugS3FELrZzX7x7XWGIpqmCxbqGjyOMoJIypaQSHXr-C126lW-77TpKpZlmkuqOOvukVrMGC_Piqwb82nx9UwekW8B6F4LH0tgqfhwdPVS1YdRs0jCbNMx3Gp02-KV9Tf5TyLfCW1Xj-h_aDMej-x_3HRNanaM |
CitedBy_id | crossref_primary_10_1039_D4GC03991B crossref_primary_10_1021_acscatal_4c04920 crossref_primary_10_1080_02603594_2025_2451829 crossref_primary_10_1002_cctc_202401327 crossref_primary_10_1002_chem_202404699 crossref_primary_10_1039_D4CS00095A |
Cites_doi | 10.1021/acscatal.0c03597 10.1039/D3QI01120H 10.1039/D0TA00364F 10.1021/jacs.2c01814 10.1021/ja109166b 10.1002/anie.201809493 10.1021/jacs.2c12599 10.1021/acs.accounts.8b00521 10.1002/anie.202011519 10.1002/anie.202310470 10.1002/cssc.202202163 10.1021/acscentsci.0c01150 10.1039/C6PY00561F 10.1002/chem.201703602 10.1039/C5CS00198F 10.1126/science.aan0202 10.1039/C9GC03688A 10.1039/C8EN01167B 10.1039/C9QM00633H 10.1039/D1QI00394A 10.1021/jacs.1c01083 10.1021/acs.accounts.5b00369 10.1002/adma.200801971 10.1039/C1CS15227K 10.1039/C6CS00250A 10.1126/science.abc3183 10.1002/anie.202203176 10.1021/acs.accounts.8b00297 10.1021/acs.chemrev.7b00443 10.1002/anie.201809984 10.1002/chem.202202967 10.1002/anie.201512054 10.1021/cr300014x 10.1039/c2cs35157a 10.1039/C6CS00724D 10.1021/cs200131g 10.1016/j.ccr.2022.214889 10.1021/cr068352x 10.1021/acscatal.1c03634 10.1021/acsapm.0c00800 10.1039/D2TA01325H 10.1021/jacs.1c07963 10.1039/b700395c 10.1021/acscatal.1c05070 10.1002/smll.201500084 10.1021/jacs.0c02966 10.1021/jacs.6b00849 10.1039/D2CS00289B 10.1002/aenm.202003052 10.1002/anie.202216511 10.1021/cs3005874 10.1039/b714786b 10.1126/science.1239176 10.1021/jacs.9b08956 10.1021/acsmacrolett.9b00872 10.1002/cptc.202000014 10.1002/chem.202303556 10.1039/D0DT03507F 10.1021/acs.chemrev.0c00245 10.1039/C4CS00103F 10.1039/D3SC02440G 10.1002/anie.202218908 10.1021/jacs.9b12593 10.1002/anie.202319732 10.1039/C2CS35072F 10.1002/chem.202303476 10.1021/jacs.3c02703 10.1021/jacs.2c03062 10.1039/D0GC02367A 10.1021/acscatal.0c04725 10.1016/B978-0-08-102688-5.00025-8 10.1039/C2CS35244C 10.1126/science.1230444 10.1002/anie.201410738 10.1002/anie.201607375 10.1038/s41570-017-0052 10.1039/D2QI00173J 10.1002/anie.202204918 10.1016/j.cct.2003.08.004 10.1039/D2CY01535H 10.1002/anie.202101036 10.1039/C5CS00659G 10.1039/D1QM00015B 10.1021/acs.chemrev.1c00403 10.1039/C9SC04882K 10.1039/D2TA09375H 10.1039/b600349d 10.1039/c2sc00907b 10.1021/ja305367j 10.1002/adma.201500033 10.1002/anie.202318180 10.1021/acscatal.0c05053 10.1038/s41467-022-28474-7 10.1039/D1GC01902C 10.1021/jacs.3c09729 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley‐VCH GmbH. 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202400842 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 38691421 10_1002_chem_202400842 CHEM202400842 |
Genre | reviewArticle Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for Central Universities of the Central South University funderid: PA2021GDSK0063 – fundername: National Natural Science Foundation of China funderid: 22371063 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION ACUHS EBD NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3732-31854aa2e5c7e29575961c8d3a864e2c5bb1fd2ba6f8aeac01d5f17ee9dcaa8f3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 06:46:23 EDT 2025 Fri Jul 25 11:51:32 EDT 2025 Mon Jul 21 05:55:38 EDT 2025 Tue Jul 01 05:25:51 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Wed Jan 22 17:18:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | synergistic catalysis heterogeneous catalysis organic transformations photocatalysis Porous materials |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-31854aa2e5c7e29575961c8d3a864e2c5bb1fd2ba6f8aeac01d5f17ee9dcaa8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3142-0396 0009-0000-4106-6127 0009-0008-8082-5796 0009-0009-6761-2312 0000-0001-7035-7759 |
PMID | 38691421 |
PQID | 3074681508 |
PQPubID | 986340 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3050177573 proquest_journals_3074681508 pubmed_primary_38691421 crossref_citationtrail_10_1002_chem_202400842 crossref_primary_10_1002_chem_202400842 wiley_primary_10_1002_chem_202400842_CHEM202400842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2, 2024 |
PublicationDateYYYYMMDD | 2024-07-02 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2, 2024 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 107 2017; 1 2021; 23 2019; 52 2006; 35 2020; 120 2023; 145 2017; 46 2019; 58 2020; 369 2024; 30 2020; 11 2020; 10 2017; 357 2022; 122 2020; 8 2023; 62 2020; 6 2015; 48 2020; 4 2012; 134 2020; 2 2023; 29 2015; 44 2020; 9 2020; 49 2024; 63 2003; 246 2016; 45 2021; 8 2023; 10 2023; 52 2021; 5 2023; 13 2023; 14 2023; 11 2019; 6 2009; 21 2011; 1 2020; 142 2023; 16 2015; 11 2013; 42 2015; 54 2007 2013; 341 2021; 143 2020; 32 2019; 141 2011; 133 2014; 43 2018; 24 2016; 55 2022; 144 2016; 7 2012; 2 2012; 3 2015; 27 2012; 112 2021; 11 2023 2021 2022; 61 2018; 118 2023; 475 2022; 9 2022; 12 2022; 13 2018; 51 2016; 138 2022; 10 2020; 22 2021; 60 2009; 38 2014; 343 2012; 41 2018; 57 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_74_1 e_1_2_10_18_2 e_1_2_10_6_1 e_1_2_10_97_2 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_55_2 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_2 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_29_2 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_2 e_1_2_10_101_1 He T. (e_1_2_10_21_2) 2023; 62 e_1_2_10_22_2 e_1_2_10_45_1 Zhao C. (e_1_2_10_71_2) 2020; 32 e_1_2_10_41_1 e_1_2_10_90_2 e_1_2_10_19_2 e_1_2_10_94_2 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_75_1 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_98_2 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_33_2 e_1_2_10_10_2 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_2 e_1_2_10_72_2 e_1_2_10_39_2 e_1_2_10_95_2 e_1_2_10_53_2 e_1_2_10_76_1 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_8_1 e_1_2_10_35_2 e_1_2_10_57_1 e_1_2_10_99_2 e_1_2_10_11_2 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_30_1 e_1_2_10_80_2 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_88_1 e_1_2_10_27_2 e_1_2_10_65_2 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_20_2 e_1_2_10_43_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_17_2 e_1_2_10_96_1 e_1_2_10_5_2 e_1_2_10_77_1 e_1_2_10_36_2 e_1_2_10_111_1 e_1_2_10_9_1 e_1_2_10_12_2 e_1_2_10_59_1 e_1_2_10_31_2 e_1_2_10_50_1 Li A. (e_1_2_10_54_2) 2023 e_1_2_10_81_2 e_1_2_10_62_1 e_1_2_10_28_2 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_66_2 e_1_2_10_47_1 e_1_2_10_89_1 e_1_2_10_100_2 |
References_xml | – volume: 57 start-page: 14090 year: 2018 end-page: 14094 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 2150 year: 2015 end-page: 2176 publication-title: Adv. Mater. – volume: 46 start-page: 126 year: 2017 end-page: 157 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 332 year: 2020 end-page: 353 publication-title: Mater. Chem. Front. – volume: 22 start-page: 7417 year: 2020 end-page: 7423 publication-title: Green Chem. – volume: 49 start-page: 17147 year: 2020 end-page: 17151 publication-title: Dalton Trans. – volume: 11 start-page: 1024 year: 2021 end-page: 1032 publication-title: ACS Catal. – volume: 42 start-page: 548 year: 2013 end-page: 568 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 2039 year: 2018 end-page: 2058 publication-title: Chem. Eur. J. – volume: 141 start-page: 15767 year: 2019 end-page: 15772 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2931 year: 2021 end-page: 2949 publication-title: Mater. Chem. Front. – volume: 41 start-page: 6010 year: 2012 end-page: 6022 publication-title: Chem. Soc. Rev. – volume: 143 start-page: 3075 year: 2021 end-page: 3080 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 6018 year: 2015 end-page: 6034 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 1006 year: 2019 end-page: 1025 publication-title: Environ. Sci.-Nano – volume: 120 start-page: 13382 year: 2020 end-page: 13433 publication-title: Chem. Rev. – volume: 1 start-page: 819 year: 2011 end-page: 835 publication-title: ACS Catal. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 122 start-page: 1543 year: 2022 end-page: 1625 publication-title: Chem. Rev. – volume: 2 start-page: 4885 year: 2020 end-page: 4892 publication-title: ACS Appl. Polym. Mater. – volume: 143 start-page: 16718 year: 2021 end-page: 16724 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 1746 year: 2020 end-page: 1751 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1999 year: 2009 end-page: 2011 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 6068 year: 2022 end-page: 6080 publication-title: ACS Catal. – volume: 133 start-page: 2056 year: 2011 end-page: 2059 publication-title: J. Am. Chem. Soc. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 7 start-page: 4176 year: 2016 end-page: 4181 publication-title: Polym. Chem. – volume: 48 start-page: 3053 year: 2015 end-page: 3063 publication-title: Acc. Chem. Res. – volume: 14 start-page: 8624 year: 2023 end-page: 8634 publication-title: Chem. Sci. – volume: 10 start-page: 15178 year: 2020 end-page: 15185 publication-title: ACS Catal. – volume: 8 start-page: 7003 year: 2020 end-page: 7034 publication-title: J. Mater. Chem. A – volume: 16 year: 2023 publication-title: ChemSusChem – volume: 145 start-page: 4158 year: 2023 end-page: 4165 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 1291 year: 2009 end-page: 1295 publication-title: Adv. Mater. – start-page: 3425 year: 2007 end-page: 3437 publication-title: Chem. Commun. – volume: 51 start-page: 2129 year: 2018 end-page: 2138 publication-title: Acc. Chem. Res. – volume: 11 start-page: 1494 year: 2020 end-page: 1502 publication-title: Chem. Sci. – volume: 118 start-page: 2249 year: 2018 end-page: 2295 publication-title: Chem. Rev. – volume: 6 start-page: 2149 year: 2020 end-page: 2158 publication-title: ACS Cent. Sci. – volume: 45 start-page: 3026 year: 2016 end-page: 3038 publication-title: Chem. Soc. Rev. – volume: 341 start-page: 974 year: 2013 end-page: 986 publication-title: Science – volume: 63 year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 42 start-page: 3956 year: 2013 end-page: 3976 publication-title: Chem. Soc. Rev. – volume: 112 start-page: 673 year: 2012 end-page: 674 publication-title: Chem. Rev. – volume: 52 start-page: 7949 year: 2023 end-page: 8004 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 3097 year: 2015 end-page: 3112 publication-title: Small – volume: 4 start-page: 456 year: 2020 end-page: 475 publication-title: ChemPhotoChem – volume: 46 start-page: 4774 year: 2017 end-page: 4808 publication-title: Chem. Soc. Rev. – volume: 144 start-page: 7822 year: 2022 end-page: 7833 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 928 year: 2022 publication-title: Nat. Commun. – volume: 10 start-page: 11758 year: 2020 end-page: 11767 publication-title: ACS Catal. – volume: 43 start-page: 5982 year: 2014 end-page: 5993 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 3618 year: 2021 end-page: 3658 publication-title: Inorg. Chem. Front. – volume: 134 start-page: 14991 year: 2012 end-page: 14999 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 90 year: 2020 end-page: 95 publication-title: ACS Macro Lett. – year: 2023 publication-title: Sci. China Chem. – volume: 22 start-page: 136 year: 2020 end-page: 143 publication-title: Green Chem. – volume: 41 start-page: 2083 year: 2012 end-page: 2094 publication-title: Chem. Soc. Rev. – volume: 107 start-page: 2725 year: 2007 end-page: 2756 publication-title: Chem. Rev. – volume: 369 start-page: 786 year: 2020 end-page: 795 publication-title: Science – volume: 60 start-page: 10820 year: 2021 end-page: 10827 publication-title: Angew. Chem. Int. Ed. – volume: 246 start-page: 305 year: 2003 end-page: 326 publication-title: Coord. Chem. Rev. – start-page: 228 year: 2021 end-page: 259 – volume: 13 start-page: 1518 year: 2023 end-page: 1526 publication-title: Catal. Sci. Technol. – volume: 35 start-page: 675 year: 2006 end-page: 683 publication-title: Chem. Soc. Rev. – volume: 142 start-page: 8602 year: 2020 end-page: 8607 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 5439 year: 2023 end-page: 5451 publication-title: Inorg. Chem. Front. – volume: 357 start-page: 673 year: 2017 end-page: 676 publication-title: Science – volume: 52 start-page: 356 year: 2019 end-page: 366 publication-title: Acc. Chem. Res. – volume: 58 start-page: 3730 year: 2019 end-page: 3747 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 3116 year: 2022 end-page: 3129 publication-title: Inorg. Chem. Front. – volume: 1 start-page: 0052 year: 2017 publication-title: Nat. Chem. Rev. – volume: 144 start-page: 10694 year: 2022 end-page: 10699 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 3465 year: 2015 end-page: 3520 publication-title: Angew. Chem. Int. Ed. – volume: 60 start-page: 3115 year: 2021 end-page: 3120 publication-title: Angew. Chem. Int. Ed. – volume: 343 year: 2014 publication-title: Science – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 2 start-page: 2630 year: 2012 end-page: 2640 publication-title: ACS Catal. – volume: 29 year: 2023 publication-title: Chem. Eur. J. – volume: 55 start-page: 15712 year: 2016 end-page: 15727 publication-title: Angew. Chem. Int. Ed. – volume: 138 start-page: 3241 year: 2016 end-page: 3249 publication-title: J. Am. Chem. Soc. – volume: 145 start-page: 25074 year: 2023 end-page: 25079 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 633 year: 2012 end-page: 658 publication-title: Chem. Sci. – volume: 145 start-page: 9994 year: 2023 end-page: 10000 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 12344 year: 2021 end-page: 12354 publication-title: ACS Catal. – volume: 11 start-page: 12521 year: 2023 end-page: 12538 publication-title: J. Mater. Chem. A – volume: 30 year: 2024 publication-title: Chem. Eur. J. – volume: 55 start-page: 4962 year: 2016 end-page: 4966 publication-title: Angew. Chem. Int. Ed. – volume: 475 year: 2023 publication-title: Coord. Chem. Rev. – volume: 10 start-page: 11514 year: 2022 end-page: 11523 publication-title: J. Mater. Chem. A – volume: 23 start-page: 5797 year: 2021 end-page: 5805 publication-title: Green Chem. – volume: 62 year: 2023 ident: e_1_2_10_21_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_10_112_1 doi: 10.1021/acscatal.0c03597 – ident: e_1_2_10_30_1 – ident: e_1_2_10_47_1 doi: 10.1039/D3QI01120H – ident: e_1_2_10_89_1 – ident: e_1_2_10_100_2 doi: 10.1039/D0TA00364F – ident: e_1_2_10_74_1 doi: 10.1021/jacs.2c01814 – ident: e_1_2_10_101_1 doi: 10.1021/ja109166b – ident: e_1_2_10_42_1 doi: 10.1002/anie.201809493 – ident: e_1_2_10_63_1 doi: 10.1021/jacs.2c12599 – ident: e_1_2_10_19_2 doi: 10.1021/acs.accounts.8b00521 – ident: e_1_2_10_61_1 doi: 10.1002/anie.202011519 – ident: e_1_2_10_105_1 doi: 10.1002/anie.202310470 – ident: e_1_2_10_26_1 – ident: e_1_2_10_45_1 doi: 10.1002/cssc.202202163 – ident: e_1_2_10_55_2 doi: 10.1021/acscentsci.0c01150 – ident: e_1_2_10_80_2 doi: 10.1039/C6PY00561F – ident: e_1_2_10_50_1 doi: 10.1002/chem.201703602 – ident: e_1_2_10_17_2 doi: 10.1039/C5CS00198F – ident: e_1_2_10_81_2 doi: 10.1126/science.aan0202 – ident: e_1_2_10_102_1 doi: 10.1039/C9GC03688A – ident: e_1_2_10_28_2 doi: 10.1039/C8EN01167B – ident: e_1_2_10_99_2 doi: 10.1039/C9QM00633H – ident: e_1_2_10_39_2 doi: 10.1039/D1QI00394A – ident: e_1_2_10_57_1 doi: 10.1021/jacs.1c01083 – ident: e_1_2_10_67_2 doi: 10.1021/acs.accounts.5b00369 – ident: e_1_2_10_95_2 doi: 10.1002/adma.200801971 – ident: e_1_2_10_98_2 doi: 10.1039/C1CS15227K – ident: e_1_2_10_38_2 doi: 10.1039/C6CS00250A – ident: e_1_2_10_49_1 doi: 10.1126/science.abc3183 – ident: e_1_2_10_110_1 doi: 10.1002/anie.202203176 – ident: e_1_2_10_18_2 doi: 10.1021/acs.accounts.8b00297 – ident: e_1_2_10_41_1 doi: 10.1021/acs.chemrev.7b00443 – ident: e_1_2_10_8_1 doi: 10.1002/anie.201809984 – ident: e_1_2_10_78_1 doi: 10.1002/chem.202202967 – ident: e_1_2_10_53_2 doi: 10.1002/anie.201512054 – year: 2023 ident: e_1_2_10_54_2 publication-title: Sci. China Chem. – ident: e_1_2_10_31_2 doi: 10.1021/cr300014x – ident: e_1_2_10_65_2 doi: 10.1039/c2cs35157a – volume: 32 year: 2020 ident: e_1_2_10_71_2 publication-title: Adv. Mater. – ident: e_1_2_10_27_2 doi: 10.1039/C6CS00724D – ident: e_1_2_10_97_2 doi: 10.1021/cs200131g – ident: e_1_2_10_93_1 – ident: e_1_2_10_68_1 doi: 10.1016/j.ccr.2022.214889 – ident: e_1_2_10_7_1 doi: 10.1021/cr068352x – ident: e_1_2_10_9_1 – ident: e_1_2_10_73_1 doi: 10.1021/acscatal.1c03634 – ident: e_1_2_10_14_1 – ident: e_1_2_10_3_1 – ident: e_1_2_10_103_1 doi: 10.1021/acsapm.0c00800 – ident: e_1_2_10_90_2 doi: 10.1039/D2TA01325H – ident: e_1_2_10_62_1 doi: 10.1021/jacs.1c07963 – ident: e_1_2_10_5_2 doi: 10.1039/b700395c – ident: e_1_2_10_76_1 doi: 10.1021/acscatal.1c05070 – ident: e_1_2_10_16_2 doi: 10.1002/smll.201500084 – ident: e_1_2_10_43_1 doi: 10.1021/jacs.0c02966 – ident: e_1_2_10_24_1 doi: 10.1021/jacs.6b00849 – ident: e_1_2_10_36_2 doi: 10.1039/D2CS00289B – ident: e_1_2_10_29_2 doi: 10.1002/aenm.202003052 – ident: e_1_2_10_109_1 doi: 10.1002/anie.202216511 – ident: e_1_2_10_33_2 doi: 10.1021/cs3005874 – ident: e_1_2_10_6_1 doi: 10.1039/b714786b – ident: e_1_2_10_52_1 – ident: e_1_2_10_4_2 doi: 10.1126/science.1239176 – ident: e_1_2_10_56_1 doi: 10.1021/jacs.9b08956 – ident: e_1_2_10_104_1 doi: 10.1021/acsmacrolett.9b00872 – ident: e_1_2_10_25_1 doi: 10.1002/cptc.202000014 – ident: e_1_2_10_87_1 doi: 10.1002/chem.202303556 – ident: e_1_2_10_96_1 – ident: e_1_2_10_111_1 doi: 10.1039/D0DT03507F – ident: e_1_2_10_2_1 doi: 10.1021/acs.chemrev.0c00245 – ident: e_1_2_10_35_2 doi: 10.1039/C4CS00103F – ident: e_1_2_10_83_1 doi: 10.1039/D3SC02440G – ident: e_1_2_10_37_1 – ident: e_1_2_10_34_1 – ident: e_1_2_10_84_1 doi: 10.1002/anie.202218908 – ident: e_1_2_10_58_1 doi: 10.1021/jacs.9b12593 – ident: e_1_2_10_92_1 doi: 10.1002/anie.202319732 – ident: e_1_2_10_66_2 doi: 10.1039/C2CS35072F – ident: e_1_2_10_86_1 doi: 10.1002/chem.202303476 – ident: e_1_2_10_59_1 doi: 10.1021/jacs.3c02703 – ident: e_1_2_10_60_1 doi: 10.1021/jacs.2c03062 – ident: e_1_2_10_108_1 doi: 10.1039/D0GC02367A – ident: e_1_2_10_64_1 – ident: e_1_2_10_107_1 doi: 10.1021/acscatal.0c04725 – ident: e_1_2_10_20_2 doi: 10.1016/B978-0-08-102688-5.00025-8 – ident: e_1_2_10_23_1 doi: 10.1039/C2CS35244C – ident: e_1_2_10_32_2 doi: 10.1126/science.1230444 – ident: e_1_2_10_13_1 doi: 10.1002/anie.201410738 – ident: e_1_2_10_72_2 doi: 10.1002/anie.201607375 – ident: e_1_2_10_11_2 doi: 10.1038/s41570-017-0052 – ident: e_1_2_10_46_1 doi: 10.1039/D2QI00173J – ident: e_1_2_10_44_1 doi: 10.1002/anie.202204918 – ident: e_1_2_10_15_2 doi: 10.1016/j.cct.2003.08.004 – ident: e_1_2_10_77_1 doi: 10.1039/D2CY01535H – ident: e_1_2_10_75_1 doi: 10.1002/anie.202101036 – ident: e_1_2_10_79_1 – ident: e_1_2_10_10_2 doi: 10.1039/C5CS00659G – ident: e_1_2_10_69_1 doi: 10.1039/D1QM00015B – ident: e_1_2_10_70_1 – ident: e_1_2_10_12_2 doi: 10.1021/acs.chemrev.1c00403 – ident: e_1_2_10_88_1 doi: 10.1039/C9SC04882K – ident: e_1_2_10_22_2 doi: 10.1039/D2TA09375H – ident: e_1_2_10_94_2 doi: 10.1039/b600349d – ident: e_1_2_10_1_1 doi: 10.1039/c2sc00907b – ident: e_1_2_10_40_1 doi: 10.1021/ja305367j – ident: e_1_2_10_106_1 doi: 10.1002/adma.201500033 – ident: e_1_2_10_91_2 doi: 10.1002/anie.202318180 – ident: e_1_2_10_51_1 doi: 10.1021/acscatal.0c05053 – ident: e_1_2_10_48_1 doi: 10.1038/s41467-022-28474-7 – ident: e_1_2_10_82_1 doi: 10.1039/D1GC01902C – ident: e_1_2_10_85_1 doi: 10.1021/jacs.3c09729 |
SSID | ssj0009633 |
Score | 2.490948 |
SecondaryResourceType | review_article |
Snippet | Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202400842 |
SubjectTerms | Catalysis Catalysts heterogeneous catalysis Industrial applications Mass transport Metal-organic frameworks organic transformations Performance enhancement Photocatalysis Photocatalysts Polymers Porous materials Recovery synergistic catalysis |
Title | Heterogeneous Porous Synergistic Photocatalysts for Organic Transformations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400842 https://www.ncbi.nlm.nih.gov/pubmed/38691421 https://www.proquest.com/docview/3074681508 https://www.proquest.com/docview/3050177573 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_iRS9-f0ynVBA8dVuTNkmPMhxDQYZusFtJ0gRBWWXtDvOvNy9du00RQU9tadIkLy8vP9L3fg-ha62Z4TGVPiZGw2kV9UUsqa845VFHUq2k87Z4pP1ReD-OxitR_CU_RH3gBivD2WtY4ELm7SVpqB0TRJKDDyQPwQiDwxagoqclf5TVrjKXfMh84GCtWBs7uL1efX1X-gY115Gr23p6u0hUnS49Tl5bs0K21McXPsf_jGoP7SxwqXdbKtI-2tCTA7TVrdLBHaKHPjjOZFbfdDbLvUE2hcvzHGIHHdmzN3jJiswdB83zIvcsGvbKSE_lDVfgsVXzIzTq3Q27fX-RicFXhBHsQqxDIbCOFNM4hqSeNFA8JYLTUGMVSRmYFEtBDRfWlHeCNDIB0zpOlRDckGO0Ockm-hR5TMbCiJgYLk0YYiVTIwRj2n4h1SIgDeRXM5GoBU05ZMt4S0qCZZyAiJJaRA10U5d_Lwk6fizZrCY2WSzUPCGQb4UDKX4DXdWvrWjhv4lwErVlImu3WMRs505KhaibIpzGQYiDBsJuWn_pQwJEF_XT2V8qnaNtuHcuw7iJNovpTF9YYFTIS6f8n0emBto |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5ED3rx_VifFQRP1W3SJulRfLA-EV3BW0nSBEHZits96K83k26rq4igp9I2aZLJzGSYznwDsGMMtyJlKiTUGvRWsVCmioVaMJG0FTNa-WiLK9a5i8_ukzqaEHNhKnyIxuGGkuH1NQo4OqT3P1BD3aIwlRyDIEXstPAElvVG-Pyjmw8EKcdfVTX5mIeIwlrjNrbJ_mj_0XPpm7E5arv6w-dkBlQ97Srm5HFvUKo9_fYF0fFf65qF6aFpGhxUvDQHY6Y3D5OHdUW4BTjvYOxM4VjOFIN-cF284OX2FdMHPd5zcP1QlIX3CL32y37gDOKgSvbUQfeThew4fRHuTo67h51wWIwh1JRT4rOsYymJSTQ3JMW6nizSIqdSsNgQnSgV2ZwoyayQTpu3ozyxETcmzbWUwtIlGO8VPbMCAVeptDKlVigbx0Sr3ErJuXFfyI2MaAvCeisyPUQqx4IZT1mFsUwyJFHWkKgFu0375wqj48eW6_XOZkNZ7WcUS64IxMVvwXbz2pEWf51IT1HXJnGqiyfcTW654ohmKCpYGsUkagHx-_rLHDLEumjuVv_SaQsmO93Li-zi9Op8DabwuY8gJuswXr4MzIazk0q16SXhHbCiCvY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB9EwbsXP-48Xb-uB4JP1W2SJumjqMuqhyx-gG8lSRMEZStu90H_ejPptrrKcaBPpW3aJpOZyZDO_H4AO9YKJzOuY0Kdxd0qHqtM89hILtOu5tbokG1xzvvX7PQmvXlTxV_jQ7QbbmgZwV-jgT8Ubv8VNNSPCSvJMQdSMu-E5xjvZkjecHTxCiDl1asmk2ciRhDWBraxS_ann59elj7EmtOha1h7eougml7XKSd3e-NK75nnd4COXxnWEixMAtPooNakZZixwx_w7bDhg_sJZ33MnCm9wtlyPIoG5SMeLp-weDCgPUeD27Iqw37Q06gaRT4cjupSTxNdvYmPvZ6vwHXv-OqwH0-oGGJDBSWhxpopRWxqhCUZsnryxMiCKsmZJSbVOnEF0Yo7qbwv7yZF6hJhbVYYpaSjv2B2WA7tGkRCZ8qpjDqpHWPE6MIpJYT1byisSmgH4mYmcjPBKUe6jPu8RlgmOYoob0XUgd22_UON0PHPlpvNxOYTSx3lFAlXJKLid-BPe9uLFn-cqCBR3yb1jkukwndutVaI9lNU8ixhJOkACdP6nz7kiHTRnq1_5qHfMD846uV_T87PNuA7Xg7pw2QTZqvHsd3yQVKlt4MdvACHPwml |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Porous+Synergistic+Photocatalysts+for+Organic+Transformations&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zhu%2C+Yuan%E2%80%90Yuan&rft.au=He%2C+Yuan%E2%80%90Yuan&rft.au=Li%2C+Yan%E2%80%90Xiang&rft.au=Liu%2C+Chun%E2%80%90Hua&rft.date=2024-07-02&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=37&rft_id=info:doi/10.1002%2Fchem.202400842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_202400842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |