Heterogeneous Porous Synergistic Photocatalysts for Organic Transformations

Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recove...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 30; no. 37; pp. e202400842 - n/a
Main Authors Zhu, Yuan‐Yuan, He, Yuan‐Yuan, Li, Yan‐Xiang, Liu, Chun‐Hua, Lin, Wenbin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini‐review summarizes recent advancements in developing heterogeneous carriers, including metal–organic frameworks, covalent–organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications. Porous materials including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), and porous organic polymers (POPs) have recently been established as an ideal platform to enhance synergistic photocatalysis for organic transformations. Benefitting from the designability of these molecular materials, both photosensitizers and catalysts can be intricately incorporated into the porous carriers, leading to greatly enhanced performance over their homogeneous counterparts.
AbstractList Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini‐review summarizes recent advancements in developing heterogeneous carriers, including metal–organic frameworks, covalent–organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications. Porous materials including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), and porous organic polymers (POPs) have recently been established as an ideal platform to enhance synergistic photocatalysis for organic transformations. Benefitting from the designability of these molecular materials, both photosensitizers and catalysts can be intricately incorporated into the porous carriers, leading to greatly enhanced performance over their homogeneous counterparts.
Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.
Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini‐review summarizes recent advancements in developing heterogeneous carriers, including metal–organic frameworks, covalent–organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.Dedicated to Prof. Song Gao on the occasion of his 60th birthday
Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.
Author He, Yuan‐Yuan
Li, Yan‐Xiang
Lin, Wenbin
Liu, Chun‐Hua
Zhu, Yuan‐Yuan
Author_xml – sequence: 1
  givenname: Yuan‐Yuan
  orcidid: 0000-0002-3142-0396
  surname: Zhu
  fullname: Zhu, Yuan‐Yuan
  email: yyzhu@hfut.edu.cn
  organization: Hefei University of Technology
– sequence: 2
  givenname: Yuan‐Yuan
  orcidid: 0009-0000-4106-6127
  surname: He
  fullname: He, Yuan‐Yuan
  organization: Hefei University of Technology
– sequence: 3
  givenname: Yan‐Xiang
  orcidid: 0009-0008-8082-5796
  surname: Li
  fullname: Li, Yan‐Xiang
  organization: Hefei University of Technology
– sequence: 4
  givenname: Chun‐Hua
  orcidid: 0009-0009-6761-2312
  surname: Liu
  fullname: Liu, Chun‐Hua
  organization: Hefei University of Technology
– sequence: 5
  givenname: Wenbin
  orcidid: 0000-0001-7035-7759
  surname: Lin
  fullname: Lin, Wenbin
  organization: The University of Chicago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38691421$$D View this record in MEDLINE/PubMed
BookMark eNqFkctLAzEQh4MoWh9Xj1Lw4mVrHptN9iilWrGiYD2HaXa23bK70SRF-t-7tT5AEE8Dme8bZvI7JLuta5GQU0YHjFJ-aRfYDDjlKaU65TukxyRniVCZ3CU9mqcqyaTID8hhCEtKaZ4JsU8OhM5ylnLWI3djjOjdHFt0q9B_dH5TntYt-nkVYmX7jwsXnYUI9TrE0C-d7z_4ObRda-qhDd1DA7FybTgmeyXUAU8-6xF5vh5Nh-Nk8nBzO7yaJFYowRPBtEwBOEqrkOdSyTxjVhcCdJYit3I2Y2XBZ5CVGhAsZYUsmULMCwugS3FELrZzX7x7XWGIpqmCxbqGjyOMoJIypaQSHXr-C126lW-77TpKpZlmkuqOOvukVrMGC_Piqwb82nx9UwekW8B6F4LH0tgqfhwdPVS1YdRs0jCbNMx3Gp02-KV9Tf5TyLfCW1Xj-h_aDMej-x_3HRNanaM
CitedBy_id crossref_primary_10_1039_D4GC03991B
crossref_primary_10_1021_acscatal_4c04920
crossref_primary_10_1080_02603594_2025_2451829
crossref_primary_10_1002_cctc_202401327
crossref_primary_10_1002_chem_202404699
crossref_primary_10_1039_D4CS00095A
Cites_doi 10.1021/acscatal.0c03597
10.1039/D3QI01120H
10.1039/D0TA00364F
10.1021/jacs.2c01814
10.1021/ja109166b
10.1002/anie.201809493
10.1021/jacs.2c12599
10.1021/acs.accounts.8b00521
10.1002/anie.202011519
10.1002/anie.202310470
10.1002/cssc.202202163
10.1021/acscentsci.0c01150
10.1039/C6PY00561F
10.1002/chem.201703602
10.1039/C5CS00198F
10.1126/science.aan0202
10.1039/C9GC03688A
10.1039/C8EN01167B
10.1039/C9QM00633H
10.1039/D1QI00394A
10.1021/jacs.1c01083
10.1021/acs.accounts.5b00369
10.1002/adma.200801971
10.1039/C1CS15227K
10.1039/C6CS00250A
10.1126/science.abc3183
10.1002/anie.202203176
10.1021/acs.accounts.8b00297
10.1021/acs.chemrev.7b00443
10.1002/anie.201809984
10.1002/chem.202202967
10.1002/anie.201512054
10.1021/cr300014x
10.1039/c2cs35157a
10.1039/C6CS00724D
10.1021/cs200131g
10.1016/j.ccr.2022.214889
10.1021/cr068352x
10.1021/acscatal.1c03634
10.1021/acsapm.0c00800
10.1039/D2TA01325H
10.1021/jacs.1c07963
10.1039/b700395c
10.1021/acscatal.1c05070
10.1002/smll.201500084
10.1021/jacs.0c02966
10.1021/jacs.6b00849
10.1039/D2CS00289B
10.1002/aenm.202003052
10.1002/anie.202216511
10.1021/cs3005874
10.1039/b714786b
10.1126/science.1239176
10.1021/jacs.9b08956
10.1021/acsmacrolett.9b00872
10.1002/cptc.202000014
10.1002/chem.202303556
10.1039/D0DT03507F
10.1021/acs.chemrev.0c00245
10.1039/C4CS00103F
10.1039/D3SC02440G
10.1002/anie.202218908
10.1021/jacs.9b12593
10.1002/anie.202319732
10.1039/C2CS35072F
10.1002/chem.202303476
10.1021/jacs.3c02703
10.1021/jacs.2c03062
10.1039/D0GC02367A
10.1021/acscatal.0c04725
10.1016/B978-0-08-102688-5.00025-8
10.1039/C2CS35244C
10.1126/science.1230444
10.1002/anie.201410738
10.1002/anie.201607375
10.1038/s41570-017-0052
10.1039/D2QI00173J
10.1002/anie.202204918
10.1016/j.cct.2003.08.004
10.1039/D2CY01535H
10.1002/anie.202101036
10.1039/C5CS00659G
10.1039/D1QM00015B
10.1021/acs.chemrev.1c00403
10.1039/C9SC04882K
10.1039/D2TA09375H
10.1039/b600349d
10.1039/c2sc00907b
10.1021/ja305367j
10.1002/adma.201500033
10.1002/anie.202318180
10.1021/acscatal.0c05053
10.1038/s41467-022-28474-7
10.1039/D1GC01902C
10.1021/jacs.3c09729
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley‐VCH GmbH.
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202400842
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 38691421
10_1002_chem_202400842
CHEM202400842
Genre reviewArticle
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for Central Universities of the Central South University
  funderid: PA2021GDSK0063
– fundername: National Natural Science Foundation of China
  funderid: 22371063
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
ACUHS
EBD
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3732-31854aa2e5c7e29575961c8d3a864e2c5bb1fd2ba6f8aeac01d5f17ee9dcaa8f3
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 06:46:23 EDT 2025
Fri Jul 25 11:51:32 EDT 2025
Mon Jul 21 05:55:38 EDT 2025
Tue Jul 01 05:25:51 EDT 2025
Thu Apr 24 23:08:56 EDT 2025
Wed Jan 22 17:18:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords synergistic catalysis
heterogeneous catalysis
organic transformations
photocatalysis
Porous materials
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-31854aa2e5c7e29575961c8d3a864e2c5bb1fd2ba6f8aeac01d5f17ee9dcaa8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3142-0396
0009-0000-4106-6127
0009-0008-8082-5796
0009-0009-6761-2312
0000-0001-7035-7759
PMID 38691421
PQID 3074681508
PQPubID 986340
PageCount 14
ParticipantIDs proquest_miscellaneous_3050177573
proquest_journals_3074681508
pubmed_primary_38691421
crossref_citationtrail_10_1002_chem_202400842
crossref_primary_10_1002_chem_202400842
wiley_primary_10_1002_chem_202400842_CHEM202400842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2, 2024
PublicationDateYYYYMMDD 2024-07-02
PublicationDate_xml – month: 07
  year: 2024
  text: July 2, 2024
  day: 02
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 107
2017; 1
2021; 23
2019; 52
2006; 35
2020; 120
2023; 145
2017; 46
2019; 58
2020; 369
2024; 30
2020; 11
2020; 10
2017; 357
2022; 122
2020; 8
2023; 62
2020; 6
2015; 48
2020; 4
2012; 134
2020; 2
2023; 29
2015; 44
2020; 9
2020; 49
2024; 63
2003; 246
2016; 45
2021; 8
2023; 10
2023; 52
2021; 5
2023; 13
2023; 14
2023; 11
2019; 6
2009; 21
2011; 1
2020; 142
2023; 16
2015; 11
2013; 42
2015; 54
2007
2013; 341
2021; 143
2020; 32
2019; 141
2011; 133
2014; 43
2018; 24
2016; 55
2022; 144
2016; 7
2012; 2
2012; 3
2015; 27
2012; 112
2021; 11
2023
2021
2022; 61
2018; 118
2023; 475
2022; 9
2022; 12
2022; 13
2018; 51
2016; 138
2022; 10
2020; 22
2021; 60
2009; 38
2014; 343
2012; 41
2018; 57
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_74_1
e_1_2_10_18_2
e_1_2_10_6_1
e_1_2_10_97_2
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_55_2
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_2
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_29_2
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_2
e_1_2_10_101_1
He T. (e_1_2_10_21_2) 2023; 62
e_1_2_10_22_2
e_1_2_10_45_1
Zhao C. (e_1_2_10_71_2) 2020; 32
e_1_2_10_41_1
e_1_2_10_90_2
e_1_2_10_19_2
e_1_2_10_94_2
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_75_1
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_98_2
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_33_2
e_1_2_10_10_2
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_2
e_1_2_10_72_2
e_1_2_10_39_2
e_1_2_10_95_2
e_1_2_10_53_2
e_1_2_10_76_1
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_8_1
e_1_2_10_35_2
e_1_2_10_57_1
e_1_2_10_99_2
e_1_2_10_11_2
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_30_1
e_1_2_10_80_2
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_88_1
e_1_2_10_27_2
e_1_2_10_65_2
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_20_2
e_1_2_10_43_1
e_1_2_10_108_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_17_2
e_1_2_10_96_1
e_1_2_10_5_2
e_1_2_10_77_1
e_1_2_10_36_2
e_1_2_10_111_1
e_1_2_10_9_1
e_1_2_10_12_2
e_1_2_10_59_1
e_1_2_10_31_2
e_1_2_10_50_1
Li A. (e_1_2_10_54_2) 2023
e_1_2_10_81_2
e_1_2_10_62_1
e_1_2_10_28_2
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_66_2
e_1_2_10_47_1
e_1_2_10_89_1
e_1_2_10_100_2
References_xml – volume: 57
  start-page: 14090
  year: 2018
  end-page: 14094
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 2150
  year: 2015
  end-page: 2176
  publication-title: Adv. Mater.
– volume: 46
  start-page: 126
  year: 2017
  end-page: 157
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 332
  year: 2020
  end-page: 353
  publication-title: Mater. Chem. Front.
– volume: 22
  start-page: 7417
  year: 2020
  end-page: 7423
  publication-title: Green Chem.
– volume: 49
  start-page: 17147
  year: 2020
  end-page: 17151
  publication-title: Dalton Trans.
– volume: 11
  start-page: 1024
  year: 2021
  end-page: 1032
  publication-title: ACS Catal.
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 2039
  year: 2018
  end-page: 2058
  publication-title: Chem. Eur. J.
– volume: 141
  start-page: 15767
  year: 2019
  end-page: 15772
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2931
  year: 2021
  end-page: 2949
  publication-title: Mater. Chem. Front.
– volume: 41
  start-page: 6010
  year: 2012
  end-page: 6022
  publication-title: Chem. Soc. Rev.
– volume: 143
  start-page: 3075
  year: 2021
  end-page: 3080
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 6018
  year: 2015
  end-page: 6034
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 1006
  year: 2019
  end-page: 1025
  publication-title: Environ. Sci.-Nano
– volume: 120
  start-page: 13382
  year: 2020
  end-page: 13433
  publication-title: Chem. Rev.
– volume: 1
  start-page: 819
  year: 2011
  end-page: 835
  publication-title: ACS Catal.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 122
  start-page: 1543
  year: 2022
  end-page: 1625
  publication-title: Chem. Rev.
– volume: 2
  start-page: 4885
  year: 2020
  end-page: 4892
  publication-title: ACS Appl. Polym. Mater.
– volume: 143
  start-page: 16718
  year: 2021
  end-page: 16724
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 1746
  year: 2020
  end-page: 1751
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1999
  year: 2009
  end-page: 2011
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 6068
  year: 2022
  end-page: 6080
  publication-title: ACS Catal.
– volume: 133
  start-page: 2056
  year: 2011
  end-page: 2059
  publication-title: J. Am. Chem. Soc.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 4176
  year: 2016
  end-page: 4181
  publication-title: Polym. Chem.
– volume: 48
  start-page: 3053
  year: 2015
  end-page: 3063
  publication-title: Acc. Chem. Res.
– volume: 14
  start-page: 8624
  year: 2023
  end-page: 8634
  publication-title: Chem. Sci.
– volume: 10
  start-page: 15178
  year: 2020
  end-page: 15185
  publication-title: ACS Catal.
– volume: 8
  start-page: 7003
  year: 2020
  end-page: 7034
  publication-title: J. Mater. Chem. A
– volume: 16
  year: 2023
  publication-title: ChemSusChem
– volume: 145
  start-page: 4158
  year: 2023
  end-page: 4165
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 1291
  year: 2009
  end-page: 1295
  publication-title: Adv. Mater.
– start-page: 3425
  year: 2007
  end-page: 3437
  publication-title: Chem. Commun.
– volume: 51
  start-page: 2129
  year: 2018
  end-page: 2138
  publication-title: Acc. Chem. Res.
– volume: 11
  start-page: 1494
  year: 2020
  end-page: 1502
  publication-title: Chem. Sci.
– volume: 118
  start-page: 2249
  year: 2018
  end-page: 2295
  publication-title: Chem. Rev.
– volume: 6
  start-page: 2149
  year: 2020
  end-page: 2158
  publication-title: ACS Cent. Sci.
– volume: 45
  start-page: 3026
  year: 2016
  end-page: 3038
  publication-title: Chem. Soc. Rev.
– volume: 341
  start-page: 974
  year: 2013
  end-page: 986
  publication-title: Science
– volume: 63
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 42
  start-page: 3956
  year: 2013
  end-page: 3976
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 673
  year: 2012
  end-page: 674
  publication-title: Chem. Rev.
– volume: 52
  start-page: 7949
  year: 2023
  end-page: 8004
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 3097
  year: 2015
  end-page: 3112
  publication-title: Small
– volume: 4
  start-page: 456
  year: 2020
  end-page: 475
  publication-title: ChemPhotoChem
– volume: 46
  start-page: 4774
  year: 2017
  end-page: 4808
  publication-title: Chem. Soc. Rev.
– volume: 144
  start-page: 7822
  year: 2022
  end-page: 7833
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 928
  year: 2022
  publication-title: Nat. Commun.
– volume: 10
  start-page: 11758
  year: 2020
  end-page: 11767
  publication-title: ACS Catal.
– volume: 43
  start-page: 5982
  year: 2014
  end-page: 5993
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 3618
  year: 2021
  end-page: 3658
  publication-title: Inorg. Chem. Front.
– volume: 134
  start-page: 14991
  year: 2012
  end-page: 14999
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 90
  year: 2020
  end-page: 95
  publication-title: ACS Macro Lett.
– year: 2023
  publication-title: Sci. China Chem.
– volume: 22
  start-page: 136
  year: 2020
  end-page: 143
  publication-title: Green Chem.
– volume: 41
  start-page: 2083
  year: 2012
  end-page: 2094
  publication-title: Chem. Soc. Rev.
– volume: 107
  start-page: 2725
  year: 2007
  end-page: 2756
  publication-title: Chem. Rev.
– volume: 369
  start-page: 786
  year: 2020
  end-page: 795
  publication-title: Science
– volume: 60
  start-page: 10820
  year: 2021
  end-page: 10827
  publication-title: Angew. Chem. Int. Ed.
– volume: 246
  start-page: 305
  year: 2003
  end-page: 326
  publication-title: Coord. Chem. Rev.
– start-page: 228
  year: 2021
  end-page: 259
– volume: 13
  start-page: 1518
  year: 2023
  end-page: 1526
  publication-title: Catal. Sci. Technol.
– volume: 35
  start-page: 675
  year: 2006
  end-page: 683
  publication-title: Chem. Soc. Rev.
– volume: 142
  start-page: 8602
  year: 2020
  end-page: 8607
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 5439
  year: 2023
  end-page: 5451
  publication-title: Inorg. Chem. Front.
– volume: 357
  start-page: 673
  year: 2017
  end-page: 676
  publication-title: Science
– volume: 52
  start-page: 356
  year: 2019
  end-page: 366
  publication-title: Acc. Chem. Res.
– volume: 58
  start-page: 3730
  year: 2019
  end-page: 3747
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 3116
  year: 2022
  end-page: 3129
  publication-title: Inorg. Chem. Front.
– volume: 1
  start-page: 0052
  year: 2017
  publication-title: Nat. Chem. Rev.
– volume: 144
  start-page: 10694
  year: 2022
  end-page: 10699
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 3465
  year: 2015
  end-page: 3520
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 3115
  year: 2021
  end-page: 3120
  publication-title: Angew. Chem. Int. Ed.
– volume: 343
  year: 2014
  publication-title: Science
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 2
  start-page: 2630
  year: 2012
  end-page: 2640
  publication-title: ACS Catal.
– volume: 29
  year: 2023
  publication-title: Chem. Eur. J.
– volume: 55
  start-page: 15712
  year: 2016
  end-page: 15727
  publication-title: Angew. Chem. Int. Ed.
– volume: 138
  start-page: 3241
  year: 2016
  end-page: 3249
  publication-title: J. Am. Chem. Soc.
– volume: 145
  start-page: 25074
  year: 2023
  end-page: 25079
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 633
  year: 2012
  end-page: 658
  publication-title: Chem. Sci.
– volume: 145
  start-page: 9994
  year: 2023
  end-page: 10000
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 12344
  year: 2021
  end-page: 12354
  publication-title: ACS Catal.
– volume: 11
  start-page: 12521
  year: 2023
  end-page: 12538
  publication-title: J. Mater. Chem. A
– volume: 30
  year: 2024
  publication-title: Chem. Eur. J.
– volume: 55
  start-page: 4962
  year: 2016
  end-page: 4966
  publication-title: Angew. Chem. Int. Ed.
– volume: 475
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 10
  start-page: 11514
  year: 2022
  end-page: 11523
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 5797
  year: 2021
  end-page: 5805
  publication-title: Green Chem.
– volume: 62
  year: 2023
  ident: e_1_2_10_21_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_10_112_1
  doi: 10.1021/acscatal.0c03597
– ident: e_1_2_10_30_1
– ident: e_1_2_10_47_1
  doi: 10.1039/D3QI01120H
– ident: e_1_2_10_89_1
– ident: e_1_2_10_100_2
  doi: 10.1039/D0TA00364F
– ident: e_1_2_10_74_1
  doi: 10.1021/jacs.2c01814
– ident: e_1_2_10_101_1
  doi: 10.1021/ja109166b
– ident: e_1_2_10_42_1
  doi: 10.1002/anie.201809493
– ident: e_1_2_10_63_1
  doi: 10.1021/jacs.2c12599
– ident: e_1_2_10_19_2
  doi: 10.1021/acs.accounts.8b00521
– ident: e_1_2_10_61_1
  doi: 10.1002/anie.202011519
– ident: e_1_2_10_105_1
  doi: 10.1002/anie.202310470
– ident: e_1_2_10_26_1
– ident: e_1_2_10_45_1
  doi: 10.1002/cssc.202202163
– ident: e_1_2_10_55_2
  doi: 10.1021/acscentsci.0c01150
– ident: e_1_2_10_80_2
  doi: 10.1039/C6PY00561F
– ident: e_1_2_10_50_1
  doi: 10.1002/chem.201703602
– ident: e_1_2_10_17_2
  doi: 10.1039/C5CS00198F
– ident: e_1_2_10_81_2
  doi: 10.1126/science.aan0202
– ident: e_1_2_10_102_1
  doi: 10.1039/C9GC03688A
– ident: e_1_2_10_28_2
  doi: 10.1039/C8EN01167B
– ident: e_1_2_10_99_2
  doi: 10.1039/C9QM00633H
– ident: e_1_2_10_39_2
  doi: 10.1039/D1QI00394A
– ident: e_1_2_10_57_1
  doi: 10.1021/jacs.1c01083
– ident: e_1_2_10_67_2
  doi: 10.1021/acs.accounts.5b00369
– ident: e_1_2_10_95_2
  doi: 10.1002/adma.200801971
– ident: e_1_2_10_98_2
  doi: 10.1039/C1CS15227K
– ident: e_1_2_10_38_2
  doi: 10.1039/C6CS00250A
– ident: e_1_2_10_49_1
  doi: 10.1126/science.abc3183
– ident: e_1_2_10_110_1
  doi: 10.1002/anie.202203176
– ident: e_1_2_10_18_2
  doi: 10.1021/acs.accounts.8b00297
– ident: e_1_2_10_41_1
  doi: 10.1021/acs.chemrev.7b00443
– ident: e_1_2_10_8_1
  doi: 10.1002/anie.201809984
– ident: e_1_2_10_78_1
  doi: 10.1002/chem.202202967
– ident: e_1_2_10_53_2
  doi: 10.1002/anie.201512054
– year: 2023
  ident: e_1_2_10_54_2
  publication-title: Sci. China Chem.
– ident: e_1_2_10_31_2
  doi: 10.1021/cr300014x
– ident: e_1_2_10_65_2
  doi: 10.1039/c2cs35157a
– volume: 32
  year: 2020
  ident: e_1_2_10_71_2
  publication-title: Adv. Mater.
– ident: e_1_2_10_27_2
  doi: 10.1039/C6CS00724D
– ident: e_1_2_10_97_2
  doi: 10.1021/cs200131g
– ident: e_1_2_10_93_1
– ident: e_1_2_10_68_1
  doi: 10.1016/j.ccr.2022.214889
– ident: e_1_2_10_7_1
  doi: 10.1021/cr068352x
– ident: e_1_2_10_9_1
– ident: e_1_2_10_73_1
  doi: 10.1021/acscatal.1c03634
– ident: e_1_2_10_14_1
– ident: e_1_2_10_3_1
– ident: e_1_2_10_103_1
  doi: 10.1021/acsapm.0c00800
– ident: e_1_2_10_90_2
  doi: 10.1039/D2TA01325H
– ident: e_1_2_10_62_1
  doi: 10.1021/jacs.1c07963
– ident: e_1_2_10_5_2
  doi: 10.1039/b700395c
– ident: e_1_2_10_76_1
  doi: 10.1021/acscatal.1c05070
– ident: e_1_2_10_16_2
  doi: 10.1002/smll.201500084
– ident: e_1_2_10_43_1
  doi: 10.1021/jacs.0c02966
– ident: e_1_2_10_24_1
  doi: 10.1021/jacs.6b00849
– ident: e_1_2_10_36_2
  doi: 10.1039/D2CS00289B
– ident: e_1_2_10_29_2
  doi: 10.1002/aenm.202003052
– ident: e_1_2_10_109_1
  doi: 10.1002/anie.202216511
– ident: e_1_2_10_33_2
  doi: 10.1021/cs3005874
– ident: e_1_2_10_6_1
  doi: 10.1039/b714786b
– ident: e_1_2_10_52_1
– ident: e_1_2_10_4_2
  doi: 10.1126/science.1239176
– ident: e_1_2_10_56_1
  doi: 10.1021/jacs.9b08956
– ident: e_1_2_10_104_1
  doi: 10.1021/acsmacrolett.9b00872
– ident: e_1_2_10_25_1
  doi: 10.1002/cptc.202000014
– ident: e_1_2_10_87_1
  doi: 10.1002/chem.202303556
– ident: e_1_2_10_96_1
– ident: e_1_2_10_111_1
  doi: 10.1039/D0DT03507F
– ident: e_1_2_10_2_1
  doi: 10.1021/acs.chemrev.0c00245
– ident: e_1_2_10_35_2
  doi: 10.1039/C4CS00103F
– ident: e_1_2_10_83_1
  doi: 10.1039/D3SC02440G
– ident: e_1_2_10_37_1
– ident: e_1_2_10_34_1
– ident: e_1_2_10_84_1
  doi: 10.1002/anie.202218908
– ident: e_1_2_10_58_1
  doi: 10.1021/jacs.9b12593
– ident: e_1_2_10_92_1
  doi: 10.1002/anie.202319732
– ident: e_1_2_10_66_2
  doi: 10.1039/C2CS35072F
– ident: e_1_2_10_86_1
  doi: 10.1002/chem.202303476
– ident: e_1_2_10_59_1
  doi: 10.1021/jacs.3c02703
– ident: e_1_2_10_60_1
  doi: 10.1021/jacs.2c03062
– ident: e_1_2_10_108_1
  doi: 10.1039/D0GC02367A
– ident: e_1_2_10_64_1
– ident: e_1_2_10_107_1
  doi: 10.1021/acscatal.0c04725
– ident: e_1_2_10_20_2
  doi: 10.1016/B978-0-08-102688-5.00025-8
– ident: e_1_2_10_23_1
  doi: 10.1039/C2CS35244C
– ident: e_1_2_10_32_2
  doi: 10.1126/science.1230444
– ident: e_1_2_10_13_1
  doi: 10.1002/anie.201410738
– ident: e_1_2_10_72_2
  doi: 10.1002/anie.201607375
– ident: e_1_2_10_11_2
  doi: 10.1038/s41570-017-0052
– ident: e_1_2_10_46_1
  doi: 10.1039/D2QI00173J
– ident: e_1_2_10_44_1
  doi: 10.1002/anie.202204918
– ident: e_1_2_10_15_2
  doi: 10.1016/j.cct.2003.08.004
– ident: e_1_2_10_77_1
  doi: 10.1039/D2CY01535H
– ident: e_1_2_10_75_1
  doi: 10.1002/anie.202101036
– ident: e_1_2_10_79_1
– ident: e_1_2_10_10_2
  doi: 10.1039/C5CS00659G
– ident: e_1_2_10_69_1
  doi: 10.1039/D1QM00015B
– ident: e_1_2_10_70_1
– ident: e_1_2_10_12_2
  doi: 10.1021/acs.chemrev.1c00403
– ident: e_1_2_10_88_1
  doi: 10.1039/C9SC04882K
– ident: e_1_2_10_22_2
  doi: 10.1039/D2TA09375H
– ident: e_1_2_10_94_2
  doi: 10.1039/b600349d
– ident: e_1_2_10_1_1
  doi: 10.1039/c2sc00907b
– ident: e_1_2_10_40_1
  doi: 10.1021/ja305367j
– ident: e_1_2_10_106_1
  doi: 10.1002/adma.201500033
– ident: e_1_2_10_91_2
  doi: 10.1002/anie.202318180
– ident: e_1_2_10_51_1
  doi: 10.1021/acscatal.0c05053
– ident: e_1_2_10_48_1
  doi: 10.1038/s41467-022-28474-7
– ident: e_1_2_10_82_1
  doi: 10.1039/D1GC01902C
– ident: e_1_2_10_85_1
  doi: 10.1021/jacs.3c09729
SSID ssj0009633
Score 2.490948
SecondaryResourceType review_article
Snippet Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202400842
SubjectTerms Catalysis
Catalysts
heterogeneous catalysis
Industrial applications
Mass transport
Metal-organic frameworks
organic transformations
Performance enhancement
Photocatalysis
Photocatalysts
Polymers
Porous materials
Recovery
synergistic catalysis
Title Heterogeneous Porous Synergistic Photocatalysts for Organic Transformations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202400842
https://www.ncbi.nlm.nih.gov/pubmed/38691421
https://www.proquest.com/docview/3074681508
https://www.proquest.com/docview/3050177573
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_iRS9-f0ynVBA8dVuTNkmPMhxDQYZusFtJ0gRBWWXtDvOvNy9du00RQU9tadIkLy8vP9L3fg-ha62Z4TGVPiZGw2kV9UUsqa845VFHUq2k87Z4pP1ReD-OxitR_CU_RH3gBivD2WtY4ELm7SVpqB0TRJKDDyQPwQiDwxagoqclf5TVrjKXfMh84GCtWBs7uL1efX1X-gY115Gr23p6u0hUnS49Tl5bs0K21McXPsf_jGoP7SxwqXdbKtI-2tCTA7TVrdLBHaKHPjjOZFbfdDbLvUE2hcvzHGIHHdmzN3jJiswdB83zIvcsGvbKSE_lDVfgsVXzIzTq3Q27fX-RicFXhBHsQqxDIbCOFNM4hqSeNFA8JYLTUGMVSRmYFEtBDRfWlHeCNDIB0zpOlRDckGO0Ockm-hR5TMbCiJgYLk0YYiVTIwRj2n4h1SIgDeRXM5GoBU05ZMt4S0qCZZyAiJJaRA10U5d_Lwk6fizZrCY2WSzUPCGQb4UDKX4DXdWvrWjhv4lwErVlImu3WMRs505KhaibIpzGQYiDBsJuWn_pQwJEF_XT2V8qnaNtuHcuw7iJNovpTF9YYFTIS6f8n0emBto
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5ED3rx_VifFQRP1W3SJulRfLA-EV3BW0nSBEHZits96K83k26rq4igp9I2aZLJzGSYznwDsGMMtyJlKiTUGvRWsVCmioVaMJG0FTNa-WiLK9a5i8_ukzqaEHNhKnyIxuGGkuH1NQo4OqT3P1BD3aIwlRyDIEXstPAElvVG-Pyjmw8EKcdfVTX5mIeIwlrjNrbJ_mj_0XPpm7E5arv6w-dkBlQ97Srm5HFvUKo9_fYF0fFf65qF6aFpGhxUvDQHY6Y3D5OHdUW4BTjvYOxM4VjOFIN-cF284OX2FdMHPd5zcP1QlIX3CL32y37gDOKgSvbUQfeThew4fRHuTo67h51wWIwh1JRT4rOsYymJSTQ3JMW6nizSIqdSsNgQnSgV2ZwoyayQTpu3ozyxETcmzbWUwtIlGO8VPbMCAVeptDKlVigbx0Sr3ErJuXFfyI2MaAvCeisyPUQqx4IZT1mFsUwyJFHWkKgFu0375wqj48eW6_XOZkNZ7WcUS64IxMVvwXbz2pEWf51IT1HXJnGqiyfcTW654ohmKCpYGsUkagHx-_rLHDLEumjuVv_SaQsmO93Li-zi9Op8DabwuY8gJuswXr4MzIazk0q16SXhHbCiCvY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB9EwbsXP-48Xb-uB4JP1W2SJumjqMuqhyx-gG8lSRMEZStu90H_ejPptrrKcaBPpW3aJpOZyZDO_H4AO9YKJzOuY0Kdxd0qHqtM89hILtOu5tbokG1xzvvX7PQmvXlTxV_jQ7QbbmgZwV-jgT8Ubv8VNNSPCSvJMQdSMu-E5xjvZkjecHTxCiDl1asmk2ciRhDWBraxS_ann59elj7EmtOha1h7eougml7XKSd3e-NK75nnd4COXxnWEixMAtPooNakZZixwx_w7bDhg_sJZ33MnCm9wtlyPIoG5SMeLp-weDCgPUeD27Iqw37Q06gaRT4cjupSTxNdvYmPvZ6vwHXv-OqwH0-oGGJDBSWhxpopRWxqhCUZsnryxMiCKsmZJSbVOnEF0Yo7qbwv7yZF6hJhbVYYpaSjv2B2WA7tGkRCZ8qpjDqpHWPE6MIpJYT1byisSmgH4mYmcjPBKUe6jPu8RlgmOYoob0XUgd22_UON0PHPlpvNxOYTSx3lFAlXJKLid-BPe9uLFn-cqCBR3yb1jkukwndutVaI9lNU8ixhJOkACdP6nz7kiHTRnq1_5qHfMD846uV_T87PNuA7Xg7pw2QTZqvHsd3yQVKlt4MdvACHPwml
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Porous+Synergistic+Photocatalysts+for+Organic+Transformations&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zhu%2C+Yuan%E2%80%90Yuan&rft.au=He%2C+Yuan%E2%80%90Yuan&rft.au=Li%2C+Yan%E2%80%90Xiang&rft.au=Liu%2C+Chun%E2%80%90Hua&rft.date=2024-07-02&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=37&rft_id=info:doi/10.1002%2Fchem.202400842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_202400842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon