2D Metal–Organic Frameworks as Competent Electrocatalysts for Water Splitting
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 15; pp. e2207342 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal–organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF‐based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Pristine 2D metal–organic frameworks (MOFs) for electrocatalytic water splitting are reviewed to reveal different strategies to improve their catalytic performance. Their intrinsic catalytic properties are detailly analyzed to disclose important roles of inherent MOF active centers, or other in situ derived active phases responsible for the electrocatalysis. |
---|---|
AbstractList | Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed. Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal–organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF‐based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed. Pristine 2D metal–organic frameworks (MOFs) for electrocatalytic water splitting are reviewed to reveal different strategies to improve their catalytic performance. Their intrinsic catalytic properties are detailly analyzed to disclose important roles of inherent MOF active centers, or other in situ derived active phases responsible for the electrocatalysis. Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed. |
Author | Bu, Xian‐He Wang, Chao‐Peng Zhu, Jian Cui, Lei Lin, Yu‐Xuan |
Author_xml | – sequence: 1 givenname: Chao‐Peng surname: Wang fullname: Wang, Chao‐Peng organization: Nankai University – sequence: 2 givenname: Yu‐Xuan surname: Lin fullname: Lin, Yu‐Xuan organization: Nankai University – sequence: 3 givenname: Lei surname: Cui fullname: Cui, Lei organization: Nankai University – sequence: 4 givenname: Jian orcidid: 0000-0002-7004-0257 surname: Zhu fullname: Zhu, Jian email: zj@nankai.edu.cn organization: Nankai University – sequence: 5 givenname: Xian‐He surname: Bu fullname: Bu, Xian‐He email: buxh@nankai.edu.cn organization: Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36605002$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKQzEQhoNUbL1sXcoBN25aczlNmqXUK1S6UHF5yIkTieac1CRFuvMdfEOfxEi1QkFczUC-bzLMv406rW8BoX2CBwRjehwb5wYUU4oFK-kG6hFOWJ-PqOyseoK7aDvGJ4wZoaXYQl3GOR5mvYem9LS4hqTcx9v7NDyq1uriPKgGXn14joWKxdg3M0jQpuLMgU7Ba5XxRUyxMD4U9ypBKG5mzqZk28ddtGmUi7D3XXfQ3fnZ7fiyP5leXI1PJn3NBKN9Kh-MZFIRQ4ApkSuGIR0aTqEUZZ0famzYiEFdC2y4pqCFqCWlNZgaiGQ76Gg5dxb8yxxiqhobNTinWvDzWFHBiRQSc5zRwzX0yc9Dm7fLlJSS8RHnmTr4puZ1Aw_VLNhGhUX1c6oMDJaADj7GAGaFEFx9ZVF9ZVGtsshCuSZom1Syvk1BWfe3Jpfaq3Ww-OeT6uZ6Mvl1PwHyiJ7K |
CitedBy_id | crossref_primary_10_1002_smll_202306085 crossref_primary_10_1021_acs_inorgchem_4c00449 crossref_primary_10_1016_j_cej_2023_146553 crossref_primary_10_1002_ifm2_19 crossref_primary_10_1002_smll_202309078 crossref_primary_10_1016_j_apsusc_2023_158652 crossref_primary_10_1016_j_cej_2023_147723 crossref_primary_10_1002_advs_202403197 crossref_primary_10_1002_smll_202408394 crossref_primary_10_1016_j_jcis_2024_02_198 crossref_primary_10_1039_D3NR05348B crossref_primary_10_1016_j_jcis_2024_08_012 crossref_primary_10_1039_D3CS00727H crossref_primary_10_1016_j_cej_2024_155194 crossref_primary_10_1016_j_memsci_2024_122920 crossref_primary_10_1016_j_jallcom_2023_170376 crossref_primary_10_1002_aenm_202303281 crossref_primary_10_1039_D3CC06015B crossref_primary_10_1016_j_molstruc_2023_137147 crossref_primary_10_1016_j_ijhydene_2024_03_312 crossref_primary_10_3390_molecules28073051 crossref_primary_10_1016_j_jcis_2025_137357 crossref_primary_10_1002_cnma_202400649 crossref_primary_10_2174_0115734137274085231214100609 crossref_primary_10_1021_acs_inorgchem_3c04446 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1002_smll_202408227 crossref_primary_10_1016_j_jcis_2024_09_137 crossref_primary_10_1039_D3CS00873H crossref_primary_10_1021_acsmaterialslett_4c00902 crossref_primary_10_1021_acsaem_4c00170 crossref_primary_10_1002_smll_202305548 crossref_primary_10_1007_s12274_023_5917_2 crossref_primary_10_1016_j_surfin_2024_105609 crossref_primary_10_1039_D4NJ01321B crossref_primary_10_1021_acsanm_4c07166 crossref_primary_10_1016_j_jcis_2023_10_006 crossref_primary_10_1021_acs_orglett_5c00037 crossref_primary_10_1021_acs_energyfuels_4c01798 crossref_primary_10_1039_D4DT01825G crossref_primary_10_1021_acs_inorgchem_4c05162 crossref_primary_10_1039_D4SC06574C crossref_primary_10_1038_s41467_024_51521_4 crossref_primary_10_1021_acs_energyfuels_3c05075 crossref_primary_10_1021_acs_langmuir_3c03558 crossref_primary_10_1021_acssuschemeng_3c06742 crossref_primary_10_1016_j_fuel_2024_134092 crossref_primary_10_1016_j_jece_2025_116076 crossref_primary_10_1016_j_ijhydene_2024_12_458 crossref_primary_10_1039_D4TA01929F crossref_primary_10_1002_adma_202402184 crossref_primary_10_1002_smll_202306970 crossref_primary_10_1063_5_0179574 crossref_primary_10_1039_D3CY01630G crossref_primary_10_1016_j_ijhydene_2024_06_208 crossref_primary_10_1016_j_mtphys_2023_101169 crossref_primary_10_1039_D3EE04410F crossref_primary_10_1039_D3QM00722G crossref_primary_10_1039_D3QM00423F crossref_primary_10_1039_D3TA07230D crossref_primary_10_1021_acs_iecr_3c02907 crossref_primary_10_1007_s40843_023_2768_3 crossref_primary_10_1002_cctc_202301146 crossref_primary_10_1002_jctb_7655 crossref_primary_10_1039_D3QM01002C crossref_primary_10_1002_smll_202305201 |
Cites_doi | 10.1039/D0NA00257G 10.1039/D0MH01757D 10.1002/ange.201506048 10.1002/adfm.202006317 10.1016/j.electacta.2019.135577 10.1002/anie.202006102 10.1021/acsami.9b04479 10.1039/D0CS00575D 10.1039/C9TA09975A 10.1039/D2SC00308B 10.1021/acsami.7b14523 10.1002/chem.201605337 10.1039/C8CC02871K 10.1039/C7CS00033B 10.1021/jacs.9b12377 10.1016/j.apcatb.2021.120225 10.1002/adma.201808066 10.1021/jacs.7b04829 10.1002/adma.201808167 10.1002/adma.201707234 10.1016/j.nanoen.2017.11.071 10.1039/C8CS00268A 10.1021/acssuschemeng.9b05126 10.1016/j.nanoen.2018.12.018 10.1039/C8NR09680E 10.1002/adfm.201807418 10.1039/C9NR09742B 10.1016/j.nanoen.2019.104371 10.1002/smll.202002426 10.1002/advs.202200307 10.1002/anie.202014556 10.1002/aesr.202000067 10.1021/acs.chemrev.1c00243 10.1002/anie.201813634 10.1021/acsami.7b15969 10.1021/ic0205132 10.1038/s41560-020-00709-1 10.1103/PhysRevB.92.075411 10.1002/smll.201804761 10.1002/aenm.201801065 10.1002/adma.202107072 10.1016/j.joule.2018.12.015 10.1002/advs.202001965 10.1039/C7CS00122C 10.1039/C9CC05087F 10.1039/D0EE03635H 10.1039/C9NR06883J 10.1002/advs.201801029 10.1002/anie.201907600 10.1002/cctc.201000397 10.1002/smtd.201800492 10.1002/adma.201801171 10.1021/acsenergylett.1c01350 10.1021/jacs.6b03125 10.1021/jacs.9b00549 10.1002/adma.201907818 10.1016/S1872-2067(18)63017-7 10.1016/j.mattod.2019.05.021 10.1002/anie.202102632 10.1002/aenm.202100154 10.1002/anie.202104148 10.1002/anie.201902588 10.1002/aenm.201801193 10.1016/j.electacta.2019.03.210 10.1039/D0TA00468E 10.1002/anie.201711376 10.1002/aenm.202003291 10.1021/acsnano.9b08458 10.1021/acscatal.1c01447 10.1021/jacs.8b03604 10.1002/smll.202100129 10.1039/D0TA04016A 10.1021/acsanm.0c00434 10.1002/smll.201906086 10.1002/adfm.202103318 10.1016/j.micromeso.2004.03.034 10.1021/acs.nanolett.9b02729 10.1021/acsami.9b19193 10.1021/acs.chemrev.9b00757 10.1016/j.apcatb.2020.119375 10.1016/j.apcatb.2021.120095 10.1002/anie.201710556 10.1021/acsami.0c03333 10.1002/sstr.202000096 10.1039/C7TA07637A 10.1016/j.apcatb.2022.121586 10.1016/j.ccr.2018.08.023 10.1002/adma.201704303 10.1038/s41563-021-01006-2 10.1002/cssc.201902118 10.1021/acs.chemrev.9b00223 10.1039/C7TA06916B 10.1021/acs.chemrev.9b00248 10.1002/adfm.201801554 10.1002/advs.202000012 10.1039/C9CC07433C 10.1002/aenm.202103383 10.1021/acscatal.1c03260 10.1039/C8CS00324F 10.1002/cssc.202102603 10.1002/anie.201907002 10.1002/cctc.201000126 10.1002/aenm.202100172 10.1016/j.nantod.2013.12.002 10.1002/aenm.202100346 10.1021/acsnano.1c10544 10.1002/aenm.201600423 10.1002/anie.201801029 10.1016/j.joule.2017.08.008 10.1039/D0EE00877J 10.1002/smll.201805511 10.1002/adfm.201910274 10.1002/adma.202006351 10.1126/science.1211934 10.1002/anie.201806194 10.1002/aenm.201800584 10.1002/adma.201807001 10.1021/acssuschemeng.9b01131 10.1002/anie.202116934 10.1002/aenm.202003052 10.1016/j.ccr.2020.213619 10.1002/adma.202007100 10.1021/ja500215j 10.1002/smtd.201800415 10.1038/ncomms15341 10.1016/j.nanoen.2019.104296 10.1016/j.mtchem.2018.12.002 10.1002/anie.201506219 10.1002/adma.201806326 10.1039/C6CS00930A 10.1039/C6EE02265K 10.1039/C9TA00819E 10.1016/j.ccr.2019.213137 10.1002/anie.202009854 10.1002/adma.202006042 10.1021/acs.nanolett.1c00179 10.1021/acsenergylett.9b02625 10.1021/jacs.6b09778 10.1002/adfm.201808367 10.1039/C6EE01786J 10.1002/aenm.201900954 10.1016/j.chempr.2022.03.027 10.1039/C7TA07978H 10.1039/D0CS01191F 10.1016/j.ccr.2021.213946 10.1021/jacs.5b08212 10.1002/adfm.202009779 10.1002/aenm.201900486 10.1039/D0TA03138K 10.1039/C9CS00880B 10.1039/C9TA04554F 10.1038/s41467-019-13051-2 10.1002/smsc.202100015 10.1021/acscatal.0c00989 10.1002/anie.202012971 10.1016/j.ccr.2019.02.033 10.1039/C9TA09397D 10.1021/ja4037516 10.1021/ja512437u 10.1002/adma.202007344 10.1002/smll.201803576 10.1038/s41560-018-0308-8 10.1002/adfm.202008190 10.1002/adfm.202009032 10.1039/C9TA00708C 10.1002/adma.201803234 10.1002/adma.201302781 10.1016/j.jechem.2021.05.029 10.1002/adma.202004747 10.1039/D0CE01527J 10.1002/smll.201805232 10.1126/sciadv.abg2580 10.1002/smtd.202000396 10.1021/acs.accounts.1c00280 10.1002/anie.202008129 10.1126/science.aad4998 10.1016/j.ccr.2021.213915 10.1021/jacs.8b05206 10.1021/acssuschemeng.9b07182 10.1002/smll.201906564 10.1021/acsnano.7b01409 10.1039/D1NR07614K 10.1038/s41560-017-0006-y 10.1039/C8TA11704G 10.1039/C8TA12178H 10.1016/j.jallcom.2022.165823 10.1002/aenm.202003410 10.1016/j.ccr.2020.213488 10.1039/D0EE01856B 10.1021/acscatal.0c02501 10.1021/jacs.9b05869 10.1021/acscentsci.1c00047 10.1038/s41467-019-13052-1 10.1002/smll.202203140 10.1039/C9CS00906J 10.1038/s41467-021-21595-5 10.1002/anie.201803587 10.1016/j.chempr.2018.05.019 10.1002/adma.201901139 10.1002/adma.201900617 10.1016/j.cej.2021.128784 10.1039/C7SC02688A 10.1016/j.chempr.2019.06.016 10.1016/j.mattod.2016.10.003 10.1021/cm900166h 10.1021/acsnano.2c09396 10.1039/D0NR04458J 10.1002/aenm.202003990 10.1038/nenergy.2016.184 10.1039/b815106g 10.1002/adma.201802497 10.1126/science.1067208 10.1021/jacs.5b02688 10.1039/C8TA03128B 10.1002/anie.202101878 10.3390/catal7050149 10.1021/ja5116937 10.1002/advs.201801920 10.1039/C8CC08156E 10.1002/smll.201905779 10.1126/sciadv.aap9252 10.1016/j.jechem.2021.05.030 10.1002/adma.201604437 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202207342 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36605002 10_1002_smll_202207342 SMLL202207342 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: 111 Project funderid: B18030 – fundername: Haihe Laboratory of Sustainable Chemical Transformations funderid: YYJC202101 – fundername: NSFC funderid: 51873088; 52111540268 – fundername: Haihe Laboratory of Sustainable Chemical Transformations grantid: YYJC202101 – fundername: NSFC grantid: 51873088 – fundername: NSFC grantid: 52111540268 – fundername: 111 Project grantid: B18030 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3732-29df939a1f1e3a7a1f0e525f62e474b9a1b0f383ebb70f6c2ec77b922befbe193 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 18:28:57 EDT 2025 Fri Jul 25 12:12:50 EDT 2025 Wed Feb 19 02:24:03 EST 2025 Tue Jul 01 02:54:23 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Wed Jan 22 16:20:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | oxygen evolution reaction electrocatalytic water splitting 2D materials hydrogen evolution reaction metal-organic frameworks |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-29df939a1f1e3a7a1f0e525f62e474b9a1b0f383ebb70f6c2ec77b922befbe193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7004-0257 |
PMID | 36605002 |
PQID | 2799936866 |
PQPubID | 1046358 |
PageCount | 46 |
ParticipantIDs | proquest_miscellaneous_2761979060 proquest_journals_2799936866 pubmed_primary_36605002 crossref_primary_10_1002_smll_202207342 crossref_citationtrail_10_1002_smll_202207342 wiley_primary_10_1002_smll_202207342_SMLL202207342 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 11 2019; 10 2019; 12 2019; 15 2020; 16 2019; 19 2020; 14 2020; 13 2020; 12 2020; 10 2013; 8 2018; 44 2014; 136 2018; 47 2021; 439 2018; 6 2018; 8 2018; 39 2018; 5 2018; 4 2015; 137 2022; 34 2019; 29 2018; 30 2020; 334 2010; 2 2003; 42 2019; 7 2021; 428 2018; 29 2018; 28 2019; 4 2019; 3 2019; 6 2019; 5 2019; 31 2015; 127 2020; 142 2022; 919 2020; 424 2020; 32 2021; 50 2011; 3 2017; 139 2016; 6 2021; 54 2016; 1 2020; 31 2020; 30 2021; 414 2022; 8 2022; 9 2019; 48 2022; 12 2022; 13 2022; 14 2022; 15 2020; 279 2021; 60 2018; 10 2022; 16 2016; 9 2022; 18 2018; 14 2017; 5 2017; 7 2017; 8 2017; 1 2021; 21 2017; 2 2013; 25 2021; 20 2017; 3 2021; 23 2020; 120 2019; 55 2020; 60 2019; 57 2017; 46 2019; 58 2020; 59 2022; 65 2021; 121 2017; 355 2020; 406 2017; 9 2020; 8 2020; 7 2020; 5 2020; 4 2021; 31 2020; 3 2004; 73 2020; 2 2021; 33 2018; 377 2020; 49 2021; 8 2021; 7 2017; 20 2011; 334 2021; 6 2018; 140 2009; 21 2015; 92 2002; 295 2017; 23 2019; 388 2019; 307 2017; 29 2021; 1 2019; 141 2022; 315 2016; 55 2021; 14 2021; 12 2021; 11 2022 2022; 61 2017; 11 2021; 17 2017; 10 2021; 293 2013; 135 2020; 68 2021; 296 2016; 138 2018; 54 2009; 38 2018; 57 e_1_2_12_130_1 e_1_2_12_191_1 e_1_2_12_2_1 e_1_2_12_138_1 e_1_2_12_115_1 e_1_2_12_153_1 e_1_2_12_199_1 e_1_2_12_176_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_201_1 e_1_2_12_224_1 e_1_2_12_62_1 e_1_2_12_180_1 e_1_2_12_209_1 e_1_2_12_104_1 e_1_2_12_127_1 e_1_2_12_142_1 e_1_2_12_165_1 e_1_2_12_188_1 e_1_2_12_96_1 e_1_2_12_139_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_212_1 e_1_2_12_50_1 e_1_2_12_3_1 e_1_2_12_152_1 e_1_2_12_190_1 e_1_2_12_137_1 e_1_2_12_114_1 e_1_2_12_175_1 e_1_2_12_198_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_202_1 e_1_2_12_40_1 e_1_2_12_141_1 e_1_2_12_149_1 e_1_2_12_126_1 e_1_2_12_164_1 e_1_2_12_103_1 e_1_2_12_187_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_13_1 e_1_2_12_213_1 e_1_2_12_51_1 e_1_2_12_193_1 e_1_2_12_19_1 e_1_2_12_170_1 e_1_2_12_132_1 e_1_2_12_178_1 e_1_2_12_155_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_1 e_1_2_12_45_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_203_1 e_1_2_12_60_1 e_1_2_12_182_1 e_1_2_12_121_1 e_1_2_12_144_1 e_1_2_12_167_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_56_1 e_1_2_12_79_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_214_1 e_1_2_12_216_1 e_1_2_12_192_1 e_1_2_12_1_1 e_1_2_12_116_1 e_1_2_12_131_1 e_1_2_12_154_1 e_1_2_12_177_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_204_1 e_1_2_12_181_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_143_1 e_1_2_12_189_1 e_1_2_12_166_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_215_1 e_1_2_12_9_1 e_1_2_12_217_1 e_1_2_12_195_1 e_1_2_12_6_1 e_1_2_12_172_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_157_1 e_1_2_12_134_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_89_1 e_1_2_12_220_1 e_1_2_12_81_1 e_1_2_12_161_1 e_1_2_12_184_1 e_1_2_12_205_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_146_1 e_1_2_12_169_1 e_1_2_12_28_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_92_1 e_1_2_12_171_1 e_1_2_12_194_1 e_1_2_12_218_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_179_1 e_1_2_12_133_1 e_1_2_12_156_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_107_1 e_1_2_12_67_1 e_1_2_12_221_1 e_1_2_12_82_1 e_1_2_12_206_1 e_1_2_12_160_1 e_1_2_12_183_1 e_1_2_12_122_1 e_1_2_12_168_1 e_1_2_12_29_1 e_1_2_12_145_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_78_1 e_1_2_12_7_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_174_1 e_1_2_12_219_1 e_1_2_12_151_1 e_1_2_12_38_1 e_1_2_12_136_1 e_1_2_12_159_1 e_1_2_12_113_1 e_1_2_12_197_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_64_1 e_1_2_12_26_1 e_1_2_12_222_1 e_1_2_12_140_1 e_1_2_12_163_1 e_1_2_12_207_1 e_1_2_12_49_1 e_1_2_12_148_1 e_1_2_12_102_1 e_1_2_12_125_1 e_1_2_12_186_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_75_1 e_1_2_12_37_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_210_1 e_1_2_12_150_1 e_1_2_12_173_1 e_1_2_12_196_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_135_1 e_1_2_12_158_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_80_1 e_1_2_12_200_1 e_1_2_12_223_1 e_1_2_12_185_1 e_1_2_12_208_1 e_1_2_12_162_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_147_1 e_1_2_12_124_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_211_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 12 start-page: 4623 year: 2019 publication-title: ChemSusChem – volume: 18 year: 2022 publication-title: Small – volume: 7 start-page: 7301 year: 2019 publication-title: J. Mater. Chem. A – volume: 8 start-page: 3820 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 135 start-page: 8185 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 50 start-page: 2663 year: 2021 publication-title: Chem. Soc. Rev. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 72 year: 2019 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 556 year: 2021 publication-title: Mater. Horiz. – volume: 8 start-page: 8078 year: 2017 publication-title: Chem. Sci. – volume: 406 year: 2020 publication-title: Coord. Chem. Rev. – volume: 14 year: 2018 publication-title: Small – volume: 14 start-page: 1971 year: 2020 publication-title: ACS Nano – volume: 2 start-page: 821 year: 2017 publication-title: Nat. Energy – volume: 388 start-page: 79 year: 2019 publication-title: Coord. Chem. Rev. – volume: 65 start-page: 78 year: 2022 publication-title: J Energy Chem – volume: 3 start-page: 1159 year: 2011 publication-title: ChemCatChem – volume: 2 start-page: 2220 year: 2020 publication-title: Nanoscale Adv. – volume: 137 start-page: 7169 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 3016 year: 2021 publication-title: Nano Lett. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 46 start-page: 3185 year: 2017 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 5074 year: 2019 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 38 start-page: 2304 year: 2009 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 4632 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 1964 year: 2019 publication-title: J. Mater. Chem. A – volume: 120 start-page: 1438 year: 2020 publication-title: Chem. Rev. – volume: 46 start-page: 3242 year: 2017 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 1414 year: 2020 publication-title: Chem. Soc. Rev. – volume: 12 year: 2021 publication-title: Adv. Energy Mater. – volume: 1 start-page: 77 year: 2017 publication-title: Joule – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 57 start-page: 7568 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 190 year: 2020 publication-title: J. Mater. Chem. A – volume: 20 start-page: 1240 year: 2021 publication-title: Nat. Mater. – volume: 19 start-page: 8447 year: 2019 publication-title: Nano Lett. – volume: 138 start-page: 8336 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 2887 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2018 publication-title: Adv. Funct. Mater. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 58 start-page: 4227 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 5 start-page: 2429 year: 2019 publication-title: Chem – volume: 10 start-page: 5691 year: 2020 publication-title: ACS Catal. – volume: 23 start-page: 69 year: 2021 publication-title: CrystEngComm – volume: 44 start-page: 345 year: 2018 publication-title: Nano Energy – volume: 10 start-page: 5048 year: 2019 publication-title: Nat. Commun. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 55 start-page: 3566 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 445 year: 2021 publication-title: ACS Cent. Sci. – volume: 127 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 46 start-page: 3134 year: 2017 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 520 year: 2020 publication-title: ACS Energy Lett. – volume: 8 start-page: 598 year: 2013 publication-title: Nano Today – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 137 start-page: 118 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 191 year: 2017 publication-title: Mater. Today – volume: 12 start-page: 1369 year: 2021 publication-title: Nat. Commun. – volume: 12 year: 2020 publication-title: Nanoscale – volume: 17 year: 2021 publication-title: Small – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 1188 year: 2018 publication-title: J. Mater. Chem. A – volume: 2 year: 2020 publication-title: Small Struct. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 140 start-page: 7411 year: 2018 publication-title: J. Am. Chem. Soc. – year: 2022 publication-title: ACS Nano – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2021 publication-title: ACS Catal. – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 334 year: 2020 publication-title: Electrochim. Acta – volume: 141 start-page: 5926 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 5819 year: 2013 publication-title: Adv. Mater. – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 137 start-page: 1774 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 3447 year: 2020 publication-title: Energy Environ. Sci. – volume: 307 start-page: 275 year: 2019 publication-title: Electrochim. Acta – volume: 6 start-page: 2166 year: 2018 publication-title: J. Mater. Chem. A – volume: 424 year: 2020 publication-title: Coord. Chem. Rev. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1722 year: 2021 publication-title: Energy Environ. Sci. – volume: 57 start-page: 9660 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 73 start-page: 3 year: 2004 publication-title: Microporous Mesoporous Mater. – volume: 60 start-page: 2 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 834 year: 2019 publication-title: Joule – volume: 39 start-page: 207 year: 2018 publication-title: Chin. J. Catal. – volume: 60 start-page: 5612 year: 2021 publication-title: Angew.Chem., Int. Ed. – volume: 136 start-page: 2930 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 402 year: 2017 publication-title: Energy Environ. Sci. – volume: 42 start-page: 2519 year: 2003 publication-title: Inorg. Chem. – volume: 439 year: 2021 publication-title: Coord. Chem. Rev. – volume: 6 start-page: 2838 year: 2021 publication-title: ACS Energy Lett. – volume: 10 year: 2020 publication-title: ACS Catal. – volume: 377 start-page: 44 year: 2018 publication-title: Coord. Chem. Rev. – volume: 5 start-page: 881 year: 2020 publication-title: Nat. Energy – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 14 start-page: 1679 year: 2022 publication-title: Nanoscale – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 12 start-page: 3623 year: 2020 publication-title: Nanoscale – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 65 start-page: 71 year: 2022 publication-title: J. Energy Chem. – volume: 16 year: 2020 publication-title: Small – volume: 54 start-page: 7873 year: 2018 publication-title: Chem. Commun. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 47 start-page: 6267 year: 2018 publication-title: Chem. Soc. Rev. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 2 start-page: 724 year: 2010 publication-title: ChemCatChem – volume: 21 start-page: 1410 year: 2009 publication-title: Chem. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 7132 year: 2021 publication-title: ACS Catal. – volume: 120 start-page: 851 year: 2020 publication-title: Chem. Rev. – volume: 57 start-page: 1 year: 2019 publication-title: Nano Energy – volume: 10 year: 2019 publication-title: Adv. Energy Mater. – volume: 49 start-page: 9154 year: 2020 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 8143 year: 2020 publication-title: J. Mater. Chem. A – volume: 139 start-page: 9136 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 355 start-page: 4998 year: 2017 publication-title: Science – volume: 3 start-page: 4274 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 7 start-page: 149 year: 2017 publication-title: Catalysts – volume: 1 year: 2021 publication-title: Small Sci. – volume: 11 start-page: 3599 year: 2019 publication-title: Nanoscale – volume: 31 start-page: 47 year: 2019 publication-title: Mater. Today – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 9252 year: 2017 publication-title: Sci. Adv. – volume: 296 year: 2021 publication-title: Appl Catal B – volume: 4 start-page: 115 year: 2019 publication-title: Nat. Energy – volume: 12 start-page: 67 year: 2020 publication-title: Nanoscale – volume: 60 start-page: 5612 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 3035 year: 2022 publication-title: Chem. Sci. – volume: 279 year: 2020 publication-title: Appl. Catal., B – volume: 428 year: 2021 publication-title: Coord. Chem. Rev. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 9743 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 315 year: 2022 publication-title: Appl Catal B – volume: 334 start-page: 1256 year: 2011 publication-title: Science – volume: 12 start-page: 34 year: 2019 publication-title: Mater Today Chem – volume: 293 year: 2021 publication-title: Appl. Catal., B – volume: 2 year: 2020 publication-title: Adv. Energy Sustainability Res. – volume: 11 start-page: 5800 year: 2017 publication-title: ACS Nano – volume: 23 start-page: 2255 year: 2017 publication-title: Chemistry – volume: 919 year: 2022 publication-title: J. Alloys Compd. – volume: 15 year: 2019 publication-title: Small – volume: 8 start-page: 1822 year: 2022 publication-title: Chem – volume: 9 start-page: 2789 year: 2016 publication-title: Energy Environ. Sci. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 2054 year: 2018 publication-title: Chem – volume: 142 start-page: 4550 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 3 year: 2019 publication-title: Small Methods – volume: 414 year: 2021 publication-title: Chem. Eng. J. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 54 start-page: 3083 year: 2021 publication-title: Acc. Chem. Res. – volume: 68 year: 2020 publication-title: Nano Energy – volume: 4 year: 2020 publication-title: Small Methods – volume: 10 start-page: 1719 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 1888 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 8771 year: 2019 publication-title: J. Mater. Chem. A – volume: 295 start-page: 469 year: 2002 publication-title: Science – volume: 7 start-page: 2580 year: 2021 publication-title: Sci. Adv. – volume: 16 start-page: 1759 year: 2022 publication-title: ACS Nano – volume: 13 start-page: 3185 year: 2020 publication-title: Energy Environ. Sci. – volume: 49 start-page: 2378 year: 2020 publication-title: Chem. Soc. Rev. – volume: 58 start-page: 7051 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 7 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 15 year: 2022 publication-title: ChemSusChem – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_12_174_1 doi: 10.1039/D0NA00257G – ident: e_1_2_12_220_1 doi: 10.1039/D0MH01757D – ident: e_1_2_12_35_1 doi: 10.1002/ange.201506048 – ident: e_1_2_12_67_1 doi: 10.1002/adfm.202006317 – ident: e_1_2_12_170_1 doi: 10.1016/j.electacta.2019.135577 – ident: e_1_2_12_107_1 doi: 10.1002/anie.202006102 – ident: e_1_2_12_181_1 doi: 10.1021/acsami.9b04479 – ident: e_1_2_12_47_1 doi: 10.1039/D0CS00575D – ident: e_1_2_12_149_1 doi: 10.1039/C9TA09975A – ident: e_1_2_12_32_1 doi: 10.1039/D2SC00308B – ident: e_1_2_12_111_1 doi: 10.1021/acsami.7b14523 – ident: e_1_2_12_126_1 doi: 10.1002/chem.201605337 – ident: e_1_2_12_113_1 doi: 10.1039/C8CC02871K – ident: e_1_2_12_139_1 doi: 10.1039/C7CS00033B – ident: e_1_2_12_148_1 doi: 10.1021/jacs.9b12377 – ident: e_1_2_12_22_1 doi: 10.1016/j.apcatb.2021.120225 – ident: e_1_2_12_51_1 doi: 10.1002/adma.201808066 – ident: e_1_2_12_152_1 doi: 10.1021/jacs.7b04829 – ident: e_1_2_12_198_1 doi: 10.1002/adma.201808167 – ident: e_1_2_12_134_1 doi: 10.1002/adma.201707234 – ident: e_1_2_12_144_1 doi: 10.1016/j.nanoen.2017.11.071 – ident: e_1_2_12_136_1 doi: 10.1039/C8CS00268A – ident: e_1_2_12_223_1 doi: 10.1021/acssuschemeng.9b05126 – ident: e_1_2_12_222_1 doi: 10.1016/j.nanoen.2018.12.018 – ident: e_1_2_12_186_1 doi: 10.1039/C8NR09680E – ident: e_1_2_12_215_1 doi: 10.1002/adfm.201807418 – ident: e_1_2_12_155_1 doi: 10.1039/C9NR09742B – ident: e_1_2_12_37_1 doi: 10.1016/j.nanoen.2019.104371 – ident: e_1_2_12_189_1 doi: 10.1002/smll.202002426 – ident: e_1_2_12_54_1 doi: 10.1002/advs.202200307 – ident: e_1_2_12_55_1 doi: 10.1002/anie.202014556 – ident: e_1_2_12_94_1 doi: 10.1002/aesr.202000067 – ident: e_1_2_12_142_1 doi: 10.1021/acs.chemrev.1c00243 – ident: e_1_2_12_146_1 doi: 10.1002/anie.201813634 – ident: e_1_2_12_125_1 doi: 10.1021/acsami.7b15969 – ident: e_1_2_12_217_1 doi: 10.1021/ic0205132 – ident: e_1_2_12_101_1 doi: 10.1038/s41560-020-00709-1 – ident: e_1_2_12_178_1 doi: 10.1103/PhysRevB.92.075411 – ident: e_1_2_12_213_1 doi: 10.1002/smll.201804761 – ident: e_1_2_12_92_1 doi: 10.1002/aenm.201801065 – ident: e_1_2_12_39_1 doi: 10.1002/adma.202107072 – ident: e_1_2_12_147_1 doi: 10.1016/j.joule.2018.12.015 – ident: e_1_2_12_71_1 doi: 10.1002/advs.202001965 – ident: e_1_2_12_114_1 doi: 10.1039/C7CS00122C – ident: e_1_2_12_69_1 doi: 10.1039/C9CC05087F – ident: e_1_2_12_4_1 doi: 10.1039/D0EE03635H – ident: e_1_2_12_207_1 doi: 10.1039/C9NR06883J – ident: e_1_2_12_141_1 doi: 10.1002/advs.201801029 – ident: e_1_2_12_91_1 doi: 10.1002/anie.201907600 – ident: e_1_2_12_61_1 doi: 10.1002/cctc.201000397 – ident: e_1_2_12_23_1 doi: 10.1002/smtd.201800492 – ident: e_1_2_12_183_1 doi: 10.1002/adma.201801171 – ident: e_1_2_12_89_1 doi: 10.1021/acsenergylett.1c01350 – ident: e_1_2_12_87_1 doi: 10.1021/jacs.6b03125 – ident: e_1_2_12_201_1 doi: 10.1021/jacs.9b00549 – ident: e_1_2_12_49_1 doi: 10.1002/adma.201907818 – ident: e_1_2_12_138_1 doi: 10.1016/S1872-2067(18)63017-7 – ident: e_1_2_12_28_1 doi: 10.1016/j.mattod.2019.05.021 – ident: e_1_2_12_104_1 doi: 10.1002/anie.202102632 – ident: e_1_2_12_72_1 doi: 10.1002/aenm.202100154 – ident: e_1_2_12_193_1 doi: 10.1002/anie.202104148 – ident: e_1_2_12_145_1 doi: 10.1002/anie.201902588 – ident: e_1_2_12_27_1 doi: 10.1002/aenm.201801193 – ident: e_1_2_12_95_1 doi: 10.1016/j.electacta.2019.03.210 – ident: e_1_2_12_160_1 doi: 10.1039/D0TA00468E – ident: e_1_2_12_84_1 doi: 10.1002/anie.201711376 – ident: e_1_2_12_26_1 doi: 10.1002/aenm.202003291 – ident: e_1_2_12_168_1 doi: 10.1021/acsnano.9b08458 – ident: e_1_2_12_102_1 doi: 10.1021/acscatal.1c01447 – ident: e_1_2_12_30_1 doi: 10.1021/jacs.8b03604 – ident: e_1_2_12_56_1 doi: 10.1002/smll.202100129 – ident: e_1_2_12_41_1 doi: 10.1039/D0TA04016A – ident: e_1_2_12_64_1 doi: 10.1021/acsanm.0c00434 – ident: e_1_2_12_106_1 doi: 10.1002/smll.201906086 – ident: e_1_2_12_191_1 doi: 10.1002/adfm.202103318 – ident: e_1_2_12_74_1 doi: 10.1016/j.micromeso.2004.03.034 – ident: e_1_2_12_166_1 doi: 10.1021/acs.nanolett.9b02729 – ident: e_1_2_12_66_1 doi: 10.1021/acsami.9b19193 – ident: e_1_2_12_153_1 doi: 10.1021/acs.chemrev.9b00757 – ident: e_1_2_12_209_1 doi: 10.1016/j.apcatb.2020.119375 – ident: e_1_2_12_157_1 doi: 10.1016/j.apcatb.2021.120095 – ident: e_1_2_12_165_1 doi: 10.1002/anie.201710556 – ident: e_1_2_12_90_1 doi: 10.1021/acsami.0c03333 – ident: e_1_2_12_45_1 doi: 10.1002/sstr.202000096 – ident: e_1_2_12_185_1 doi: 10.1039/C7TA07637A – ident: e_1_2_12_33_1 doi: 10.1016/j.apcatb.2022.121586 – ident: e_1_2_12_131_1 doi: 10.1016/j.ccr.2018.08.023 – ident: e_1_2_12_81_1 doi: 10.1002/adma.201704303 – ident: e_1_2_12_205_1 doi: 10.1038/s41563-021-01006-2 – ident: e_1_2_12_187_1 doi: 10.1002/cssc.201902118 – ident: e_1_2_12_7_1 doi: 10.1021/acs.chemrev.9b00223 – ident: e_1_2_12_137_1 doi: 10.1039/C7TA06916B – ident: e_1_2_12_52_1 doi: 10.1021/acs.chemrev.9b00248 – ident: e_1_2_12_103_1 doi: 10.1002/adfm.201801554 – ident: e_1_2_12_110_1 doi: 10.1002/advs.202000012 – ident: e_1_2_12_216_1 doi: 10.1039/C9CC07433C – ident: e_1_2_12_58_1 doi: 10.1002/aenm.202103383 – ident: e_1_2_12_70_1 doi: 10.1021/acscatal.1c03260 – ident: e_1_2_12_177_1 doi: 10.1039/C8CS00324F – ident: e_1_2_12_31_1 doi: 10.1002/cssc.202102603 – ident: e_1_2_12_12_1 doi: 10.1002/anie.201907002 – ident: e_1_2_12_60_1 doi: 10.1002/cctc.201000126 – ident: e_1_2_12_9_1 doi: 10.1002/aenm.202100172 – ident: e_1_2_12_62_1 doi: 10.1016/j.nantod.2013.12.002 – ident: e_1_2_12_63_1 doi: 10.1002/aenm.202100346 – ident: e_1_2_12_119_1 doi: 10.1021/acsnano.1c10544 – ident: e_1_2_12_124_1 doi: 10.1002/aenm.201600423 – ident: e_1_2_12_154_1 doi: 10.1002/anie.201801029 – ident: e_1_2_12_11_1 doi: 10.1016/j.joule.2017.08.008 – ident: e_1_2_12_175_1 doi: 10.1039/D0EE00877J – ident: e_1_2_12_184_1 doi: 10.1002/smll.201805511 – ident: e_1_2_12_59_1 doi: 10.1002/adfm.201910274 – ident: e_1_2_12_190_1 doi: 10.1002/adma.202006351 – ident: e_1_2_12_164_1 doi: 10.1126/science.1211934 – ident: e_1_2_12_162_1 doi: 10.1002/anie.201806194 – ident: e_1_2_12_208_1 doi: 10.1002/aenm.201800584 – ident: e_1_2_12_53_1 doi: 10.1002/adma.201807001 – ident: e_1_2_12_83_1 doi: 10.1021/acssuschemeng.9b01131 – ident: e_1_2_12_143_1 doi: 10.1002/anie.202116934 – ident: e_1_2_12_194_1 doi: 10.1002/aenm.202003052 – ident: e_1_2_12_204_1 doi: 10.1016/j.ccr.2020.213619 – ident: e_1_2_12_5_1 doi: 10.1002/adma.202007100 – ident: e_1_2_12_112_1 doi: 10.1021/ja500215j – ident: e_1_2_12_17_1 doi: 10.1002/smtd.201800415 – ident: e_1_2_12_99_1 doi: 10.1038/ncomms15341 – ident: e_1_2_12_212_1 doi: 10.1016/j.nanoen.2019.104296 – ident: e_1_2_12_76_1 doi: 10.1016/j.mtchem.2018.12.002 – ident: e_1_2_12_18_1 doi: 10.1002/anie.201506219 – ident: e_1_2_12_196_1 doi: 10.1002/adma.201806326 – ident: e_1_2_12_10_1 doi: 10.1039/C6CS00930A – ident: e_1_2_12_163_1 doi: 10.1039/C6EE02265K – ident: e_1_2_12_214_1 doi: 10.1039/C9TA00819E – ident: e_1_2_12_80_1 doi: 10.1016/j.ccr.2019.213137 – ident: e_1_2_12_48_1 doi: 10.1002/anie.202009854 – ident: e_1_2_12_40_1 doi: 10.1002/adma.202006042 – ident: e_1_2_12_21_1 doi: 10.1021/acs.nanolett.1c00179 – ident: e_1_2_12_15_1 doi: 10.1021/acsenergylett.9b02625 – ident: e_1_2_12_203_1 doi: 10.1021/jacs.6b09778 – ident: e_1_2_12_199_1 doi: 10.1002/adfm.201808367 – ident: e_1_2_12_182_1 doi: 10.1039/C6EE01786J – ident: e_1_2_12_57_1 doi: 10.1002/aenm.201900954 – ident: e_1_2_12_109_1 doi: 10.1016/j.chempr.2022.03.027 – ident: e_1_2_12_128_1 doi: 10.1039/C7TA07978H – ident: e_1_2_12_197_1 doi: 10.1039/D0CS01191F – ident: e_1_2_12_20_1 doi: 10.1016/j.ccr.2021.213946 – ident: e_1_2_12_29_1 doi: 10.1021/jacs.5b08212 – ident: e_1_2_12_44_1 doi: 10.1002/adfm.202009779 – ident: e_1_2_12_150_1 doi: 10.1002/aenm.201900486 – ident: e_1_2_12_79_1 doi: 10.1039/D0TA03138K – ident: e_1_2_12_16_1 doi: 10.1039/C9CS00880B – ident: e_1_2_12_210_1 doi: 10.1039/C9TA04554F – ident: e_1_2_12_218_1 doi: 10.1038/s41467-019-13051-2 – ident: e_1_2_12_42_1 doi: 10.1002/smsc.202100015 – ident: e_1_2_12_156_1 doi: 10.1021/acscatal.0c00989 – ident: e_1_2_12_123_1 doi: 10.1002/anie.202012971 – ident: e_1_2_12_133_1 doi: 10.1016/j.ccr.2019.02.033 – ident: e_1_2_12_151_1 doi: 10.1039/C9TA09397D – ident: e_1_2_12_116_1 doi: 10.1021/ja4037516 – ident: e_1_2_12_118_1 doi: 10.1021/ja512437u – ident: e_1_2_12_211_1 doi: 10.1002/adma.202007344 – ident: e_1_2_12_180_1 doi: 10.1002/smll.201803576 – ident: e_1_2_12_206_1 doi: 10.1038/s41560-018-0308-8 – ident: e_1_2_12_98_1 doi: 10.1002/adfm.202008190 – ident: e_1_2_12_6_1 doi: 10.1002/adfm.202009032 – ident: e_1_2_12_96_1 doi: 10.1039/C9TA00708C – ident: e_1_2_12_161_1 doi: 10.1002/adma.201803234 – ident: e_1_2_12_159_1 doi: 10.1002/adma.201302781 – ident: e_1_2_12_167_1 doi: 10.1016/j.jechem.2021.05.029 – ident: e_1_2_12_8_1 doi: 10.1002/adma.202004747 – ident: e_1_2_12_65_1 doi: 10.1039/D0CE01527J – ident: e_1_2_12_122_1 doi: 10.1002/smll.201805232 – ident: e_1_2_12_2_1 doi: 10.1126/sciadv.abg2580 – ident: e_1_2_12_121_1 doi: 10.1002/smtd.202000396 – ident: e_1_2_12_82_1 doi: 10.1021/acs.accounts.1c00280 – ident: e_1_2_12_172_1 doi: 10.1002/anie.202008129 – ident: e_1_2_12_3_1 doi: 10.1126/science.aad4998 – ident: e_1_2_12_117_1 doi: 10.1016/j.ccr.2021.213915 – ident: e_1_2_12_68_1 doi: 10.1021/jacs.8b05206 – ident: e_1_2_12_171_1 doi: 10.1021/acssuschemeng.9b07182 – ident: e_1_2_12_224_1 doi: 10.1002/smll.201906564 – ident: e_1_2_12_179_1 doi: 10.1021/acsnano.7b01409 – ident: e_1_2_12_195_1 doi: 10.1039/D1NR07614K – ident: e_1_2_12_1_1 doi: 10.1038/s41560-017-0006-y – ident: e_1_2_12_13_1 doi: 10.1039/C8TA11704G – ident: e_1_2_12_158_1 doi: 10.1039/C8TA12178H – ident: e_1_2_12_78_1 doi: 10.1016/j.jallcom.2022.165823 – ident: e_1_2_12_25_1 doi: 10.1002/aenm.202003410 – ident: e_1_2_12_173_1 doi: 10.1016/j.ccr.2020.213488 – ident: e_1_2_12_50_1 doi: 10.1039/D0EE01856B – ident: e_1_2_12_188_1 doi: 10.1021/acscatal.0c02501 – ident: e_1_2_12_176_1 doi: 10.1021/jacs.9b05869 – ident: e_1_2_12_108_1 doi: 10.1021/acscentsci.1c00047 – ident: e_1_2_12_219_1 doi: 10.1038/s41467-019-13052-1 – ident: e_1_2_12_115_1 doi: 10.1002/anie.202006102 – ident: e_1_2_12_120_1 doi: 10.1002/smll.202203140 – ident: e_1_2_12_19_1 doi: 10.1039/C9CS00906J – ident: e_1_2_12_38_1 doi: 10.1038/s41467-021-21595-5 – ident: e_1_2_12_86_1 doi: 10.1002/anie.201803587 – ident: e_1_2_12_97_1 doi: 10.1016/j.chempr.2018.05.019 – ident: e_1_2_12_105_1 doi: 10.1002/adma.201901139 – ident: e_1_2_12_77_1 doi: 10.1002/adma.201900617 – ident: e_1_2_12_192_1 doi: 10.1016/j.cej.2021.128784 – ident: e_1_2_12_127_1 doi: 10.1039/C7SC02688A – ident: e_1_2_12_130_1 doi: 10.1016/j.chempr.2019.06.016 – ident: e_1_2_12_14_1 doi: 10.1016/j.mattod.2016.10.003 – ident: e_1_2_12_93_1 doi: 10.1021/cm900166h – ident: e_1_2_12_200_1 doi: 10.1021/acsnano.2c09396 – ident: e_1_2_12_43_1 doi: 10.1039/D0NR04458J – ident: e_1_2_12_132_1 doi: 10.1002/aenm.202003990 – ident: e_1_2_12_36_1 doi: 10.1038/nenergy.2016.184 – ident: e_1_2_12_75_1 doi: 10.1039/b815106g – ident: e_1_2_12_135_1 doi: 10.1002/adma.201802497 – ident: e_1_2_12_73_1 doi: 10.1126/science.1067208 – ident: e_1_2_12_88_1 doi: 10.1021/jacs.5b02688 – ident: e_1_2_12_140_1 doi: 10.1039/C8TA03128B – ident: e_1_2_12_100_1 doi: 10.1002/anie.202101878 – ident: e_1_2_12_221_1 doi: 10.3390/catal7050149 – ident: e_1_2_12_34_1 doi: 10.1021/ja5116937 – ident: e_1_2_12_85_1 doi: 10.1002/advs.201801920 – ident: e_1_2_12_129_1 doi: 10.1039/C8CC08156E – ident: e_1_2_12_46_1 doi: 10.1002/smll.201905779 – ident: e_1_2_12_24_1 doi: 10.1126/sciadv.aap9252 – ident: e_1_2_12_169_1 doi: 10.1016/j.jechem.2021.05.030 – ident: e_1_2_12_202_1 doi: 10.1002/adma.201604437 |
SSID | ssj0031247 |
Score | 2.6469812 |
SecondaryResourceType | review_article |
Snippet | Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2207342 |
SubjectTerms | 2D materials Clean energy Electrocatalysts electrocatalytic water splitting Electrolysis hydrogen evolution reaction Hydrogen evolution reactions Metal-organic frameworks Nanotechnology oxygen evolution reaction Oxygen evolution reactions Reaction kinetics Substrates Thickness Two dimensional materials Water splitting |
Title | 2D Metal–Organic Frameworks as Competent Electrocatalysts for Water Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202207342 https://www.ncbi.nlm.nih.gov/pubmed/36605002 https://www.proquest.com/docview/2799936866 https://www.proquest.com/docview/2761979060 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hTuXQX9qmhcqVKnEyOJPE3hwrYIUqFqRSVG6R7diX0qUi2QOc-g68IU_ScZykbKuqEpyiKLbs2DOeb-zxNwAfRDTMyF3hPSd8a7lBJbhPpcXaFPVEhNvIsyN5cJp_OivO7tzij_wQ44Zb0IxuvQ4Krk2z85s0tPl-Ho4OEElI87AIh4CtgIo-j_xRGRmvLrsK2SweiLcG1kaBO8vVl63SX1BzGbl2pmf6BPTQ6Rhx8m170Zpte_0Hn-ND_uopPO5xKfsYBekZrLj5c1i7w1b4Ao5xj80cgfXbnzfxCqdl0yG2q2G6Ybs9CG_Zfsyu020OXTVtwwgbs6-Eay_ZCcHeLth6HU6n-192D3ifj4HbTGXIsax9mZU69anLtKKncAUWXqLLVW7ogxGePF5njBKe5tpZpUyJaJw3jpDiS1idX8zda2AkBrZOa2EnaHNaZ4ye6NKUEstUO3KQE-DDfFS2JysPOTPOq0izjFUYqGocqAS2xvI_Ik3HP0tuDNNb9eraVKgIJ2dyImUC78fPpGjh9ETP3cUilCFfU5VCigReRbEYm8okeYXUVgLYTe5_-lCdzA4Px7c396n0Fh6FxPcxhmgDVtvLhdskeNSad50K_AJ0jAdm |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5V7aFwAFr-AqW4EhInt84ksTdH1Ha1LbtFoq3gFsWOfaFsUZM9wKnv0DfskzCOk8CCEBKcosS27Ngezzf2-BuAVyIoZuQ2c44TvjVcoxLcxdJgpbNqJPxt5NmJnJynxx-z3pvQ34UJ_BDDhpuXjHa99gLuN6T3frCG1p8v_NkBIs3SlFbhNR_W29PnH7wfGKQSUl9tfBXSWtxTb_W8jQL3lssv66XfwOYydm2Vz_g-6L7Zwefk0-6i0bvm2y-Mjv_1Xw_gXgdN2ZswlzZgxc434e5PhIUP4R0esJklvH57fRNucRo27t27albWbL_D4Q07DAF22v2hr3VTM4LH7ANB2yt2Ssi39bd-BOfjw7P9Ce9CMnCTqAQ55pXLk7yMXWyTUtFT2AwzJ9GmKtWUoIUjo9dqrYSj4bZGKZ0jauu0JbD4GFbnl3P7FBjNBFPFlTAjNCktNboclbnOJeZxaclGjoD3A1KYjq_ch824KALTMha-o4qhoyJ4PeT_Epg6_phzqx_fopPYukBFUDmRIykj2BmSSdb8AUo5t5cLn4fMTZULKSJ4EubFUFUiyTCkuiLAdnT_0obidDadDm_P_qXQS1ifnM2mxfTo5O1zuEPfk-BStAWrzdXCviC01OjtVh6-A-ohC4I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hIiE48E8JFDASEie3ziSx10fU7arAbkGUit6i2LEvlG3VZA9w4h14Q56EcZyELgghwSlKbMuOZ8bz-e8bgGciOmbkrvCeE7613KAS3KfSYm2KeiLCbeTFgdw_yl8dF8cXbvFHfohxwS1YRjdeBwM_q_3OT9LQ5tNJ2DpAJCXNaRC-nEuhQ_CG6buRQCoj79WFVyGnxQPz1kDbKHBnvfy6W_oNa65D1873zG5ANbQ6Hjn5uL1qzbb98guh4__81k243gNT9iJq0i245Ja34doFusI78AanbOEIrX__-i3e4bRsNhzualjVsN0ehbdsL4bX6VaHPjdtwwgcsw8EbM_ZIeHe7rT1XTia7b3f3ed9QAZuM5UhR117nekq9anLKkVP4QosvESXq9xQghGeprzOGCU8CdtZpYxGNM4bR1DxHmwsT5fuPjDSA1untbATtDkNNKaaVNpoiTqtHM2QE-CDPErbs5WHoBknZeRZxjJ0VDl2VALPx_xnkafjjzm3BvGWvb02JSoCypmcSJnA0zGZLC1sn1RLd7oKeWiyqbSQIoHNqBZjVZmkaSHVlQB2wv1LG8rDxXw-vj34l0JP4Mrb6aycvzx4_RCu0ucsnifago32fOUeEVRqzePOGn4Au2AKMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+Metal%E2%80%93Organic+Frameworks+as+Competent+Electrocatalysts+for+Water+Splitting&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Chao%E2%80%90Peng&rft.au=Lin%2C+Yu%E2%80%90Xuan&rft.au=Cui%2C+Lei&rft.au=Zhu%2C+Jian&rft.date=2023-04-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=15&rft_id=info:doi/10.1002%2Fsmll.202207342&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202207342 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |