2D Metal–Organic Frameworks as Competent Electrocatalysts for Water Splitting

Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 15; pp. e2207342 - n/a
Main Authors Wang, Chao‐Peng, Lin, Yu‐Xuan, Cui, Lei, Zhu, Jian, Bu, Xian‐He
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal–organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF‐based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed. Pristine 2D metal–organic frameworks (MOFs) for electrocatalytic water splitting are reviewed to reveal different strategies to improve their catalytic performance. Their intrinsic catalytic properties are detailly analyzed to disclose important roles of inherent MOF active centers, or other in situ derived active phases responsible for the electrocatalysis.
AbstractList Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal–organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF‐based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed. Pristine 2D metal–organic frameworks (MOFs) for electrocatalytic water splitting are reviewed to reveal different strategies to improve their catalytic performance. Their intrinsic catalytic properties are detailly analyzed to disclose important roles of inherent MOF active centers, or other in situ derived active phases responsible for the electrocatalysis.
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Author Bu, Xian‐He
Wang, Chao‐Peng
Zhu, Jian
Cui, Lei
Lin, Yu‐Xuan
Author_xml – sequence: 1
  givenname: Chao‐Peng
  surname: Wang
  fullname: Wang, Chao‐Peng
  organization: Nankai University
– sequence: 2
  givenname: Yu‐Xuan
  surname: Lin
  fullname: Lin, Yu‐Xuan
  organization: Nankai University
– sequence: 3
  givenname: Lei
  surname: Cui
  fullname: Cui, Lei
  organization: Nankai University
– sequence: 4
  givenname: Jian
  orcidid: 0000-0002-7004-0257
  surname: Zhu
  fullname: Zhu, Jian
  email: zj@nankai.edu.cn
  organization: Nankai University
– sequence: 5
  givenname: Xian‐He
  surname: Bu
  fullname: Bu, Xian‐He
  email: buxh@nankai.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36605002$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKQzEQhoNUbL1sXcoBN25aczlNmqXUK1S6UHF5yIkTieac1CRFuvMdfEOfxEi1QkFczUC-bzLMv406rW8BoX2CBwRjehwb5wYUU4oFK-kG6hFOWJ-PqOyseoK7aDvGJ4wZoaXYQl3GOR5mvYem9LS4hqTcx9v7NDyq1uriPKgGXn14joWKxdg3M0jQpuLMgU7Ba5XxRUyxMD4U9ypBKG5mzqZk28ddtGmUi7D3XXfQ3fnZ7fiyP5leXI1PJn3NBKN9Kh-MZFIRQ4ApkSuGIR0aTqEUZZ0famzYiEFdC2y4pqCFqCWlNZgaiGQ76Gg5dxb8yxxiqhobNTinWvDzWFHBiRQSc5zRwzX0yc9Dm7fLlJSS8RHnmTr4puZ1Aw_VLNhGhUX1c6oMDJaADj7GAGaFEFx9ZVF9ZVGtsshCuSZom1Syvk1BWfe3Jpfaq3Ww-OeT6uZ6Mvl1PwHyiJ7K
CitedBy_id crossref_primary_10_1002_smll_202306085
crossref_primary_10_1021_acs_inorgchem_4c00449
crossref_primary_10_1016_j_cej_2023_146553
crossref_primary_10_1002_ifm2_19
crossref_primary_10_1002_smll_202309078
crossref_primary_10_1016_j_apsusc_2023_158652
crossref_primary_10_1016_j_cej_2023_147723
crossref_primary_10_1002_advs_202403197
crossref_primary_10_1002_smll_202408394
crossref_primary_10_1016_j_jcis_2024_02_198
crossref_primary_10_1039_D3NR05348B
crossref_primary_10_1016_j_jcis_2024_08_012
crossref_primary_10_1039_D3CS00727H
crossref_primary_10_1016_j_cej_2024_155194
crossref_primary_10_1016_j_memsci_2024_122920
crossref_primary_10_1016_j_jallcom_2023_170376
crossref_primary_10_1002_aenm_202303281
crossref_primary_10_1039_D3CC06015B
crossref_primary_10_1016_j_molstruc_2023_137147
crossref_primary_10_1016_j_ijhydene_2024_03_312
crossref_primary_10_3390_molecules28073051
crossref_primary_10_1016_j_jcis_2025_137357
crossref_primary_10_1002_cnma_202400649
crossref_primary_10_2174_0115734137274085231214100609
crossref_primary_10_1021_acs_inorgchem_3c04446
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1002_smll_202408227
crossref_primary_10_1016_j_jcis_2024_09_137
crossref_primary_10_1039_D3CS00873H
crossref_primary_10_1021_acsmaterialslett_4c00902
crossref_primary_10_1021_acsaem_4c00170
crossref_primary_10_1002_smll_202305548
crossref_primary_10_1007_s12274_023_5917_2
crossref_primary_10_1016_j_surfin_2024_105609
crossref_primary_10_1039_D4NJ01321B
crossref_primary_10_1021_acsanm_4c07166
crossref_primary_10_1016_j_jcis_2023_10_006
crossref_primary_10_1021_acs_orglett_5c00037
crossref_primary_10_1021_acs_energyfuels_4c01798
crossref_primary_10_1039_D4DT01825G
crossref_primary_10_1021_acs_inorgchem_4c05162
crossref_primary_10_1039_D4SC06574C
crossref_primary_10_1038_s41467_024_51521_4
crossref_primary_10_1021_acs_energyfuels_3c05075
crossref_primary_10_1021_acs_langmuir_3c03558
crossref_primary_10_1021_acssuschemeng_3c06742
crossref_primary_10_1016_j_fuel_2024_134092
crossref_primary_10_1016_j_jece_2025_116076
crossref_primary_10_1016_j_ijhydene_2024_12_458
crossref_primary_10_1039_D4TA01929F
crossref_primary_10_1002_adma_202402184
crossref_primary_10_1002_smll_202306970
crossref_primary_10_1063_5_0179574
crossref_primary_10_1039_D3CY01630G
crossref_primary_10_1016_j_ijhydene_2024_06_208
crossref_primary_10_1016_j_mtphys_2023_101169
crossref_primary_10_1039_D3EE04410F
crossref_primary_10_1039_D3QM00722G
crossref_primary_10_1039_D3QM00423F
crossref_primary_10_1039_D3TA07230D
crossref_primary_10_1021_acs_iecr_3c02907
crossref_primary_10_1007_s40843_023_2768_3
crossref_primary_10_1002_cctc_202301146
crossref_primary_10_1002_jctb_7655
crossref_primary_10_1039_D3QM01002C
crossref_primary_10_1002_smll_202305201
Cites_doi 10.1039/D0NA00257G
10.1039/D0MH01757D
10.1002/ange.201506048
10.1002/adfm.202006317
10.1016/j.electacta.2019.135577
10.1002/anie.202006102
10.1021/acsami.9b04479
10.1039/D0CS00575D
10.1039/C9TA09975A
10.1039/D2SC00308B
10.1021/acsami.7b14523
10.1002/chem.201605337
10.1039/C8CC02871K
10.1039/C7CS00033B
10.1021/jacs.9b12377
10.1016/j.apcatb.2021.120225
10.1002/adma.201808066
10.1021/jacs.7b04829
10.1002/adma.201808167
10.1002/adma.201707234
10.1016/j.nanoen.2017.11.071
10.1039/C8CS00268A
10.1021/acssuschemeng.9b05126
10.1016/j.nanoen.2018.12.018
10.1039/C8NR09680E
10.1002/adfm.201807418
10.1039/C9NR09742B
10.1016/j.nanoen.2019.104371
10.1002/smll.202002426
10.1002/advs.202200307
10.1002/anie.202014556
10.1002/aesr.202000067
10.1021/acs.chemrev.1c00243
10.1002/anie.201813634
10.1021/acsami.7b15969
10.1021/ic0205132
10.1038/s41560-020-00709-1
10.1103/PhysRevB.92.075411
10.1002/smll.201804761
10.1002/aenm.201801065
10.1002/adma.202107072
10.1016/j.joule.2018.12.015
10.1002/advs.202001965
10.1039/C7CS00122C
10.1039/C9CC05087F
10.1039/D0EE03635H
10.1039/C9NR06883J
10.1002/advs.201801029
10.1002/anie.201907600
10.1002/cctc.201000397
10.1002/smtd.201800492
10.1002/adma.201801171
10.1021/acsenergylett.1c01350
10.1021/jacs.6b03125
10.1021/jacs.9b00549
10.1002/adma.201907818
10.1016/S1872-2067(18)63017-7
10.1016/j.mattod.2019.05.021
10.1002/anie.202102632
10.1002/aenm.202100154
10.1002/anie.202104148
10.1002/anie.201902588
10.1002/aenm.201801193
10.1016/j.electacta.2019.03.210
10.1039/D0TA00468E
10.1002/anie.201711376
10.1002/aenm.202003291
10.1021/acsnano.9b08458
10.1021/acscatal.1c01447
10.1021/jacs.8b03604
10.1002/smll.202100129
10.1039/D0TA04016A
10.1021/acsanm.0c00434
10.1002/smll.201906086
10.1002/adfm.202103318
10.1016/j.micromeso.2004.03.034
10.1021/acs.nanolett.9b02729
10.1021/acsami.9b19193
10.1021/acs.chemrev.9b00757
10.1016/j.apcatb.2020.119375
10.1016/j.apcatb.2021.120095
10.1002/anie.201710556
10.1021/acsami.0c03333
10.1002/sstr.202000096
10.1039/C7TA07637A
10.1016/j.apcatb.2022.121586
10.1016/j.ccr.2018.08.023
10.1002/adma.201704303
10.1038/s41563-021-01006-2
10.1002/cssc.201902118
10.1021/acs.chemrev.9b00223
10.1039/C7TA06916B
10.1021/acs.chemrev.9b00248
10.1002/adfm.201801554
10.1002/advs.202000012
10.1039/C9CC07433C
10.1002/aenm.202103383
10.1021/acscatal.1c03260
10.1039/C8CS00324F
10.1002/cssc.202102603
10.1002/anie.201907002
10.1002/cctc.201000126
10.1002/aenm.202100172
10.1016/j.nantod.2013.12.002
10.1002/aenm.202100346
10.1021/acsnano.1c10544
10.1002/aenm.201600423
10.1002/anie.201801029
10.1016/j.joule.2017.08.008
10.1039/D0EE00877J
10.1002/smll.201805511
10.1002/adfm.201910274
10.1002/adma.202006351
10.1126/science.1211934
10.1002/anie.201806194
10.1002/aenm.201800584
10.1002/adma.201807001
10.1021/acssuschemeng.9b01131
10.1002/anie.202116934
10.1002/aenm.202003052
10.1016/j.ccr.2020.213619
10.1002/adma.202007100
10.1021/ja500215j
10.1002/smtd.201800415
10.1038/ncomms15341
10.1016/j.nanoen.2019.104296
10.1016/j.mtchem.2018.12.002
10.1002/anie.201506219
10.1002/adma.201806326
10.1039/C6CS00930A
10.1039/C6EE02265K
10.1039/C9TA00819E
10.1016/j.ccr.2019.213137
10.1002/anie.202009854
10.1002/adma.202006042
10.1021/acs.nanolett.1c00179
10.1021/acsenergylett.9b02625
10.1021/jacs.6b09778
10.1002/adfm.201808367
10.1039/C6EE01786J
10.1002/aenm.201900954
10.1016/j.chempr.2022.03.027
10.1039/C7TA07978H
10.1039/D0CS01191F
10.1016/j.ccr.2021.213946
10.1021/jacs.5b08212
10.1002/adfm.202009779
10.1002/aenm.201900486
10.1039/D0TA03138K
10.1039/C9CS00880B
10.1039/C9TA04554F
10.1038/s41467-019-13051-2
10.1002/smsc.202100015
10.1021/acscatal.0c00989
10.1002/anie.202012971
10.1016/j.ccr.2019.02.033
10.1039/C9TA09397D
10.1021/ja4037516
10.1021/ja512437u
10.1002/adma.202007344
10.1002/smll.201803576
10.1038/s41560-018-0308-8
10.1002/adfm.202008190
10.1002/adfm.202009032
10.1039/C9TA00708C
10.1002/adma.201803234
10.1002/adma.201302781
10.1016/j.jechem.2021.05.029
10.1002/adma.202004747
10.1039/D0CE01527J
10.1002/smll.201805232
10.1126/sciadv.abg2580
10.1002/smtd.202000396
10.1021/acs.accounts.1c00280
10.1002/anie.202008129
10.1126/science.aad4998
10.1016/j.ccr.2021.213915
10.1021/jacs.8b05206
10.1021/acssuschemeng.9b07182
10.1002/smll.201906564
10.1021/acsnano.7b01409
10.1039/D1NR07614K
10.1038/s41560-017-0006-y
10.1039/C8TA11704G
10.1039/C8TA12178H
10.1016/j.jallcom.2022.165823
10.1002/aenm.202003410
10.1016/j.ccr.2020.213488
10.1039/D0EE01856B
10.1021/acscatal.0c02501
10.1021/jacs.9b05869
10.1021/acscentsci.1c00047
10.1038/s41467-019-13052-1
10.1002/smll.202203140
10.1039/C9CS00906J
10.1038/s41467-021-21595-5
10.1002/anie.201803587
10.1016/j.chempr.2018.05.019
10.1002/adma.201901139
10.1002/adma.201900617
10.1016/j.cej.2021.128784
10.1039/C7SC02688A
10.1016/j.chempr.2019.06.016
10.1016/j.mattod.2016.10.003
10.1021/cm900166h
10.1021/acsnano.2c09396
10.1039/D0NR04458J
10.1002/aenm.202003990
10.1038/nenergy.2016.184
10.1039/b815106g
10.1002/adma.201802497
10.1126/science.1067208
10.1021/jacs.5b02688
10.1039/C8TA03128B
10.1002/anie.202101878
10.3390/catal7050149
10.1021/ja5116937
10.1002/advs.201801920
10.1039/C8CC08156E
10.1002/smll.201905779
10.1126/sciadv.aap9252
10.1016/j.jechem.2021.05.030
10.1002/adma.201604437
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202207342
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36605002
10_1002_smll_202207342
SMLL202207342
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: 111 Project
  funderid: B18030
– fundername: Haihe Laboratory of Sustainable Chemical Transformations
  funderid: YYJC202101
– fundername: NSFC
  funderid: 51873088; 52111540268
– fundername: Haihe Laboratory of Sustainable Chemical Transformations
  grantid: YYJC202101
– fundername: NSFC
  grantid: 51873088
– fundername: NSFC
  grantid: 52111540268
– fundername: 111 Project
  grantid: B18030
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3732-29df939a1f1e3a7a1f0e525f62e474b9a1b0f383ebb70f6c2ec77b922befbe193
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 18:28:57 EDT 2025
Fri Jul 25 12:12:50 EDT 2025
Wed Feb 19 02:24:03 EST 2025
Tue Jul 01 02:54:23 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Wed Jan 22 16:20:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords oxygen evolution reaction
electrocatalytic water splitting
2D materials
hydrogen evolution reaction
metal-organic frameworks
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-29df939a1f1e3a7a1f0e525f62e474b9a1b0f383ebb70f6c2ec77b922befbe193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7004-0257
PMID 36605002
PQID 2799936866
PQPubID 1046358
PageCount 46
ParticipantIDs proquest_miscellaneous_2761979060
proquest_journals_2799936866
pubmed_primary_36605002
crossref_primary_10_1002_smll_202207342
crossref_citationtrail_10_1002_smll_202207342
wiley_primary_10_1002_smll_202207342_SMLL202207342
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 11
2019; 10
2019; 12
2019; 15
2020; 16
2019; 19
2020; 14
2020; 13
2020; 12
2020; 10
2013; 8
2018; 44
2014; 136
2018; 47
2021; 439
2018; 6
2018; 8
2018; 39
2018; 5
2018; 4
2015; 137
2022; 34
2019; 29
2018; 30
2020; 334
2010; 2
2003; 42
2019; 7
2021; 428
2018; 29
2018; 28
2019; 4
2019; 3
2019; 6
2019; 5
2019; 31
2015; 127
2020; 142
2022; 919
2020; 424
2020; 32
2021; 50
2011; 3
2017; 139
2016; 6
2021; 54
2016; 1
2020; 31
2020; 30
2021; 414
2022; 8
2022; 9
2019; 48
2022; 12
2022; 13
2022; 14
2022; 15
2020; 279
2021; 60
2018; 10
2022; 16
2016; 9
2022; 18
2018; 14
2017; 5
2017; 7
2017; 8
2017; 1
2021; 21
2017; 2
2013; 25
2021; 20
2017; 3
2021; 23
2020; 120
2019; 55
2020; 60
2019; 57
2017; 46
2019; 58
2020; 59
2022; 65
2021; 121
2017; 355
2020; 406
2017; 9
2020; 8
2020; 7
2020; 5
2020; 4
2021; 31
2020; 3
2004; 73
2020; 2
2021; 33
2018; 377
2020; 49
2021; 8
2021; 7
2017; 20
2011; 334
2021; 6
2018; 140
2009; 21
2015; 92
2002; 295
2017; 23
2019; 388
2019; 307
2017; 29
2021; 1
2019; 141
2022; 315
2016; 55
2021; 14
2021; 12
2021; 11
2022
2022; 61
2017; 11
2021; 17
2017; 10
2021; 293
2013; 135
2020; 68
2021; 296
2016; 138
2018; 54
2009; 38
2018; 57
e_1_2_12_130_1
e_1_2_12_191_1
e_1_2_12_2_1
e_1_2_12_138_1
e_1_2_12_115_1
e_1_2_12_153_1
e_1_2_12_199_1
e_1_2_12_176_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_201_1
e_1_2_12_224_1
e_1_2_12_62_1
e_1_2_12_180_1
e_1_2_12_209_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_142_1
e_1_2_12_165_1
e_1_2_12_188_1
e_1_2_12_96_1
e_1_2_12_139_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_212_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_152_1
e_1_2_12_190_1
e_1_2_12_137_1
e_1_2_12_114_1
e_1_2_12_175_1
e_1_2_12_198_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_202_1
e_1_2_12_40_1
e_1_2_12_141_1
e_1_2_12_149_1
e_1_2_12_126_1
e_1_2_12_164_1
e_1_2_12_103_1
e_1_2_12_187_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_13_1
e_1_2_12_213_1
e_1_2_12_51_1
e_1_2_12_193_1
e_1_2_12_19_1
e_1_2_12_170_1
e_1_2_12_132_1
e_1_2_12_178_1
e_1_2_12_155_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_45_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_203_1
e_1_2_12_60_1
e_1_2_12_182_1
e_1_2_12_121_1
e_1_2_12_144_1
e_1_2_12_167_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_56_1
e_1_2_12_79_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_214_1
e_1_2_12_216_1
e_1_2_12_192_1
e_1_2_12_1_1
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_154_1
e_1_2_12_177_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_204_1
e_1_2_12_181_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_143_1
e_1_2_12_189_1
e_1_2_12_166_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_215_1
e_1_2_12_9_1
e_1_2_12_217_1
e_1_2_12_195_1
e_1_2_12_6_1
e_1_2_12_172_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_157_1
e_1_2_12_134_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_89_1
e_1_2_12_220_1
e_1_2_12_81_1
e_1_2_12_161_1
e_1_2_12_184_1
e_1_2_12_205_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_146_1
e_1_2_12_169_1
e_1_2_12_28_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_92_1
e_1_2_12_171_1
e_1_2_12_194_1
e_1_2_12_218_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_179_1
e_1_2_12_133_1
e_1_2_12_156_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_107_1
e_1_2_12_67_1
e_1_2_12_221_1
e_1_2_12_82_1
e_1_2_12_206_1
e_1_2_12_160_1
e_1_2_12_183_1
e_1_2_12_122_1
e_1_2_12_168_1
e_1_2_12_29_1
e_1_2_12_145_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_78_1
e_1_2_12_7_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_174_1
e_1_2_12_219_1
e_1_2_12_151_1
e_1_2_12_38_1
e_1_2_12_136_1
e_1_2_12_159_1
e_1_2_12_113_1
e_1_2_12_197_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_64_1
e_1_2_12_26_1
e_1_2_12_222_1
e_1_2_12_140_1
e_1_2_12_163_1
e_1_2_12_207_1
e_1_2_12_49_1
e_1_2_12_148_1
e_1_2_12_102_1
e_1_2_12_125_1
e_1_2_12_186_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_75_1
e_1_2_12_37_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_210_1
e_1_2_12_150_1
e_1_2_12_173_1
e_1_2_12_196_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_158_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_80_1
e_1_2_12_200_1
e_1_2_12_223_1
e_1_2_12_185_1
e_1_2_12_208_1
e_1_2_12_162_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_147_1
e_1_2_12_124_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_211_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 4623
  year: 2019
  publication-title: ChemSusChem
– volume: 18
  year: 2022
  publication-title: Small
– volume: 7
  start-page: 7301
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 3820
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 135
  start-page: 8185
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  start-page: 2663
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 72
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 556
  year: 2021
  publication-title: Mater. Horiz.
– volume: 8
  start-page: 8078
  year: 2017
  publication-title: Chem. Sci.
– volume: 406
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 14
  start-page: 1971
  year: 2020
  publication-title: ACS Nano
– volume: 2
  start-page: 821
  year: 2017
  publication-title: Nat. Energy
– volume: 388
  start-page: 79
  year: 2019
  publication-title: Coord. Chem. Rev.
– volume: 65
  start-page: 78
  year: 2022
  publication-title: J Energy Chem
– volume: 3
  start-page: 1159
  year: 2011
  publication-title: ChemCatChem
– volume: 2
  start-page: 2220
  year: 2020
  publication-title: Nanoscale Adv.
– volume: 137
  start-page: 7169
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 3016
  year: 2021
  publication-title: Nano Lett.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 46
  start-page: 3185
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 5074
  year: 2019
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 38
  start-page: 2304
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 4632
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 1964
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 120
  start-page: 1438
  year: 2020
  publication-title: Chem. Rev.
– volume: 46
  start-page: 3242
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 1414
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 12
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 77
  year: 2017
  publication-title: Joule
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 57
  start-page: 7568
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 190
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 20
  start-page: 1240
  year: 2021
  publication-title: Nat. Mater.
– volume: 19
  start-page: 8447
  year: 2019
  publication-title: Nano Lett.
– volume: 138
  start-page: 8336
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 2887
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 58
  start-page: 4227
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 5
  start-page: 2429
  year: 2019
  publication-title: Chem
– volume: 10
  start-page: 5691
  year: 2020
  publication-title: ACS Catal.
– volume: 23
  start-page: 69
  year: 2021
  publication-title: CrystEngComm
– volume: 44
  start-page: 345
  year: 2018
  publication-title: Nano Energy
– volume: 10
  start-page: 5048
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 55
  start-page: 3566
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 445
  year: 2021
  publication-title: ACS Cent. Sci.
– volume: 127
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 46
  start-page: 3134
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 520
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 598
  year: 2013
  publication-title: Nano Today
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 137
  start-page: 118
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 191
  year: 2017
  publication-title: Mater. Today
– volume: 12
  start-page: 1369
  year: 2021
  publication-title: Nat. Commun.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 17
  year: 2021
  publication-title: Small
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 1188
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 2
  year: 2020
  publication-title: Small Struct.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 140
  start-page: 7411
  year: 2018
  publication-title: J. Am. Chem. Soc.
– year: 2022
  publication-title: ACS Nano
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2021
  publication-title: ACS Catal.
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 334
  year: 2020
  publication-title: Electrochim. Acta
– volume: 141
  start-page: 5926
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 5819
  year: 2013
  publication-title: Adv. Mater.
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– volume: 137
  start-page: 1774
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 3447
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 307
  start-page: 275
  year: 2019
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 2166
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 424
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1722
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 9660
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 73
  start-page: 3
  year: 2004
  publication-title: Microporous Mesoporous Mater.
– volume: 60
  start-page: 2
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 834
  year: 2019
  publication-title: Joule
– volume: 39
  start-page: 207
  year: 2018
  publication-title: Chin. J. Catal.
– volume: 60
  start-page: 5612
  year: 2021
  publication-title: Angew.Chem., Int. Ed.
– volume: 136
  start-page: 2930
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 402
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 42
  start-page: 2519
  year: 2003
  publication-title: Inorg. Chem.
– volume: 439
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 6
  start-page: 2838
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 10
  year: 2020
  publication-title: ACS Catal.
– volume: 377
  start-page: 44
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 5
  start-page: 881
  year: 2020
  publication-title: Nat. Energy
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1679
  year: 2022
  publication-title: Nanoscale
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 12
  start-page: 3623
  year: 2020
  publication-title: Nanoscale
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 65
  start-page: 71
  year: 2022
  publication-title: J. Energy Chem.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 54
  start-page: 7873
  year: 2018
  publication-title: Chem. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 47
  start-page: 6267
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 2
  start-page: 724
  year: 2010
  publication-title: ChemCatChem
– volume: 21
  start-page: 1410
  year: 2009
  publication-title: Chem. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 7132
  year: 2021
  publication-title: ACS Catal.
– volume: 120
  start-page: 851
  year: 2020
  publication-title: Chem. Rev.
– volume: 57
  start-page: 1
  year: 2019
  publication-title: Nano Energy
– volume: 10
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 49
  start-page: 9154
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 8143
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 9136
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 355
  start-page: 4998
  year: 2017
  publication-title: Science
– volume: 3
  start-page: 4274
  year: 2020
  publication-title: ACS Appl. Nano Mater.
– volume: 7
  start-page: 149
  year: 2017
  publication-title: Catalysts
– volume: 1
  year: 2021
  publication-title: Small Sci.
– volume: 11
  start-page: 3599
  year: 2019
  publication-title: Nanoscale
– volume: 31
  start-page: 47
  year: 2019
  publication-title: Mater. Today
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 3
  start-page: 9252
  year: 2017
  publication-title: Sci. Adv.
– volume: 296
  year: 2021
  publication-title: Appl Catal B
– volume: 4
  start-page: 115
  year: 2019
  publication-title: Nat. Energy
– volume: 12
  start-page: 67
  year: 2020
  publication-title: Nanoscale
– volume: 60
  start-page: 5612
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 3035
  year: 2022
  publication-title: Chem. Sci.
– volume: 279
  year: 2020
  publication-title: Appl. Catal., B
– volume: 428
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 9743
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 315
  year: 2022
  publication-title: Appl Catal B
– volume: 334
  start-page: 1256
  year: 2011
  publication-title: Science
– volume: 12
  start-page: 34
  year: 2019
  publication-title: Mater Today Chem
– volume: 293
  year: 2021
  publication-title: Appl. Catal., B
– volume: 2
  year: 2020
  publication-title: Adv. Energy Sustainability Res.
– volume: 11
  start-page: 5800
  year: 2017
  publication-title: ACS Nano
– volume: 23
  start-page: 2255
  year: 2017
  publication-title: Chemistry
– volume: 919
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 8
  start-page: 1822
  year: 2022
  publication-title: Chem
– volume: 9
  start-page: 2789
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 2054
  year: 2018
  publication-title: Chem
– volume: 142
  start-page: 4550
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 414
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 54
  start-page: 3083
  year: 2021
  publication-title: Acc. Chem. Res.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 10
  start-page: 1719
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 1888
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 8771
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 295
  start-page: 469
  year: 2002
  publication-title: Science
– volume: 7
  start-page: 2580
  year: 2021
  publication-title: Sci. Adv.
– volume: 16
  start-page: 1759
  year: 2022
  publication-title: ACS Nano
– volume: 13
  start-page: 3185
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 2378
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 58
  start-page: 7051
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 15
  year: 2022
  publication-title: ChemSusChem
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_12_174_1
  doi: 10.1039/D0NA00257G
– ident: e_1_2_12_220_1
  doi: 10.1039/D0MH01757D
– ident: e_1_2_12_35_1
  doi: 10.1002/ange.201506048
– ident: e_1_2_12_67_1
  doi: 10.1002/adfm.202006317
– ident: e_1_2_12_170_1
  doi: 10.1016/j.electacta.2019.135577
– ident: e_1_2_12_107_1
  doi: 10.1002/anie.202006102
– ident: e_1_2_12_181_1
  doi: 10.1021/acsami.9b04479
– ident: e_1_2_12_47_1
  doi: 10.1039/D0CS00575D
– ident: e_1_2_12_149_1
  doi: 10.1039/C9TA09975A
– ident: e_1_2_12_32_1
  doi: 10.1039/D2SC00308B
– ident: e_1_2_12_111_1
  doi: 10.1021/acsami.7b14523
– ident: e_1_2_12_126_1
  doi: 10.1002/chem.201605337
– ident: e_1_2_12_113_1
  doi: 10.1039/C8CC02871K
– ident: e_1_2_12_139_1
  doi: 10.1039/C7CS00033B
– ident: e_1_2_12_148_1
  doi: 10.1021/jacs.9b12377
– ident: e_1_2_12_22_1
  doi: 10.1016/j.apcatb.2021.120225
– ident: e_1_2_12_51_1
  doi: 10.1002/adma.201808066
– ident: e_1_2_12_152_1
  doi: 10.1021/jacs.7b04829
– ident: e_1_2_12_198_1
  doi: 10.1002/adma.201808167
– ident: e_1_2_12_134_1
  doi: 10.1002/adma.201707234
– ident: e_1_2_12_144_1
  doi: 10.1016/j.nanoen.2017.11.071
– ident: e_1_2_12_136_1
  doi: 10.1039/C8CS00268A
– ident: e_1_2_12_223_1
  doi: 10.1021/acssuschemeng.9b05126
– ident: e_1_2_12_222_1
  doi: 10.1016/j.nanoen.2018.12.018
– ident: e_1_2_12_186_1
  doi: 10.1039/C8NR09680E
– ident: e_1_2_12_215_1
  doi: 10.1002/adfm.201807418
– ident: e_1_2_12_155_1
  doi: 10.1039/C9NR09742B
– ident: e_1_2_12_37_1
  doi: 10.1016/j.nanoen.2019.104371
– ident: e_1_2_12_189_1
  doi: 10.1002/smll.202002426
– ident: e_1_2_12_54_1
  doi: 10.1002/advs.202200307
– ident: e_1_2_12_55_1
  doi: 10.1002/anie.202014556
– ident: e_1_2_12_94_1
  doi: 10.1002/aesr.202000067
– ident: e_1_2_12_142_1
  doi: 10.1021/acs.chemrev.1c00243
– ident: e_1_2_12_146_1
  doi: 10.1002/anie.201813634
– ident: e_1_2_12_125_1
  doi: 10.1021/acsami.7b15969
– ident: e_1_2_12_217_1
  doi: 10.1021/ic0205132
– ident: e_1_2_12_101_1
  doi: 10.1038/s41560-020-00709-1
– ident: e_1_2_12_178_1
  doi: 10.1103/PhysRevB.92.075411
– ident: e_1_2_12_213_1
  doi: 10.1002/smll.201804761
– ident: e_1_2_12_92_1
  doi: 10.1002/aenm.201801065
– ident: e_1_2_12_39_1
  doi: 10.1002/adma.202107072
– ident: e_1_2_12_147_1
  doi: 10.1016/j.joule.2018.12.015
– ident: e_1_2_12_71_1
  doi: 10.1002/advs.202001965
– ident: e_1_2_12_114_1
  doi: 10.1039/C7CS00122C
– ident: e_1_2_12_69_1
  doi: 10.1039/C9CC05087F
– ident: e_1_2_12_4_1
  doi: 10.1039/D0EE03635H
– ident: e_1_2_12_207_1
  doi: 10.1039/C9NR06883J
– ident: e_1_2_12_141_1
  doi: 10.1002/advs.201801029
– ident: e_1_2_12_91_1
  doi: 10.1002/anie.201907600
– ident: e_1_2_12_61_1
  doi: 10.1002/cctc.201000397
– ident: e_1_2_12_23_1
  doi: 10.1002/smtd.201800492
– ident: e_1_2_12_183_1
  doi: 10.1002/adma.201801171
– ident: e_1_2_12_89_1
  doi: 10.1021/acsenergylett.1c01350
– ident: e_1_2_12_87_1
  doi: 10.1021/jacs.6b03125
– ident: e_1_2_12_201_1
  doi: 10.1021/jacs.9b00549
– ident: e_1_2_12_49_1
  doi: 10.1002/adma.201907818
– ident: e_1_2_12_138_1
  doi: 10.1016/S1872-2067(18)63017-7
– ident: e_1_2_12_28_1
  doi: 10.1016/j.mattod.2019.05.021
– ident: e_1_2_12_104_1
  doi: 10.1002/anie.202102632
– ident: e_1_2_12_72_1
  doi: 10.1002/aenm.202100154
– ident: e_1_2_12_193_1
  doi: 10.1002/anie.202104148
– ident: e_1_2_12_145_1
  doi: 10.1002/anie.201902588
– ident: e_1_2_12_27_1
  doi: 10.1002/aenm.201801193
– ident: e_1_2_12_95_1
  doi: 10.1016/j.electacta.2019.03.210
– ident: e_1_2_12_160_1
  doi: 10.1039/D0TA00468E
– ident: e_1_2_12_84_1
  doi: 10.1002/anie.201711376
– ident: e_1_2_12_26_1
  doi: 10.1002/aenm.202003291
– ident: e_1_2_12_168_1
  doi: 10.1021/acsnano.9b08458
– ident: e_1_2_12_102_1
  doi: 10.1021/acscatal.1c01447
– ident: e_1_2_12_30_1
  doi: 10.1021/jacs.8b03604
– ident: e_1_2_12_56_1
  doi: 10.1002/smll.202100129
– ident: e_1_2_12_41_1
  doi: 10.1039/D0TA04016A
– ident: e_1_2_12_64_1
  doi: 10.1021/acsanm.0c00434
– ident: e_1_2_12_106_1
  doi: 10.1002/smll.201906086
– ident: e_1_2_12_191_1
  doi: 10.1002/adfm.202103318
– ident: e_1_2_12_74_1
  doi: 10.1016/j.micromeso.2004.03.034
– ident: e_1_2_12_166_1
  doi: 10.1021/acs.nanolett.9b02729
– ident: e_1_2_12_66_1
  doi: 10.1021/acsami.9b19193
– ident: e_1_2_12_153_1
  doi: 10.1021/acs.chemrev.9b00757
– ident: e_1_2_12_209_1
  doi: 10.1016/j.apcatb.2020.119375
– ident: e_1_2_12_157_1
  doi: 10.1016/j.apcatb.2021.120095
– ident: e_1_2_12_165_1
  doi: 10.1002/anie.201710556
– ident: e_1_2_12_90_1
  doi: 10.1021/acsami.0c03333
– ident: e_1_2_12_45_1
  doi: 10.1002/sstr.202000096
– ident: e_1_2_12_185_1
  doi: 10.1039/C7TA07637A
– ident: e_1_2_12_33_1
  doi: 10.1016/j.apcatb.2022.121586
– ident: e_1_2_12_131_1
  doi: 10.1016/j.ccr.2018.08.023
– ident: e_1_2_12_81_1
  doi: 10.1002/adma.201704303
– ident: e_1_2_12_205_1
  doi: 10.1038/s41563-021-01006-2
– ident: e_1_2_12_187_1
  doi: 10.1002/cssc.201902118
– ident: e_1_2_12_7_1
  doi: 10.1021/acs.chemrev.9b00223
– ident: e_1_2_12_137_1
  doi: 10.1039/C7TA06916B
– ident: e_1_2_12_52_1
  doi: 10.1021/acs.chemrev.9b00248
– ident: e_1_2_12_103_1
  doi: 10.1002/adfm.201801554
– ident: e_1_2_12_110_1
  doi: 10.1002/advs.202000012
– ident: e_1_2_12_216_1
  doi: 10.1039/C9CC07433C
– ident: e_1_2_12_58_1
  doi: 10.1002/aenm.202103383
– ident: e_1_2_12_70_1
  doi: 10.1021/acscatal.1c03260
– ident: e_1_2_12_177_1
  doi: 10.1039/C8CS00324F
– ident: e_1_2_12_31_1
  doi: 10.1002/cssc.202102603
– ident: e_1_2_12_12_1
  doi: 10.1002/anie.201907002
– ident: e_1_2_12_60_1
  doi: 10.1002/cctc.201000126
– ident: e_1_2_12_9_1
  doi: 10.1002/aenm.202100172
– ident: e_1_2_12_62_1
  doi: 10.1016/j.nantod.2013.12.002
– ident: e_1_2_12_63_1
  doi: 10.1002/aenm.202100346
– ident: e_1_2_12_119_1
  doi: 10.1021/acsnano.1c10544
– ident: e_1_2_12_124_1
  doi: 10.1002/aenm.201600423
– ident: e_1_2_12_154_1
  doi: 10.1002/anie.201801029
– ident: e_1_2_12_11_1
  doi: 10.1016/j.joule.2017.08.008
– ident: e_1_2_12_175_1
  doi: 10.1039/D0EE00877J
– ident: e_1_2_12_184_1
  doi: 10.1002/smll.201805511
– ident: e_1_2_12_59_1
  doi: 10.1002/adfm.201910274
– ident: e_1_2_12_190_1
  doi: 10.1002/adma.202006351
– ident: e_1_2_12_164_1
  doi: 10.1126/science.1211934
– ident: e_1_2_12_162_1
  doi: 10.1002/anie.201806194
– ident: e_1_2_12_208_1
  doi: 10.1002/aenm.201800584
– ident: e_1_2_12_53_1
  doi: 10.1002/adma.201807001
– ident: e_1_2_12_83_1
  doi: 10.1021/acssuschemeng.9b01131
– ident: e_1_2_12_143_1
  doi: 10.1002/anie.202116934
– ident: e_1_2_12_194_1
  doi: 10.1002/aenm.202003052
– ident: e_1_2_12_204_1
  doi: 10.1016/j.ccr.2020.213619
– ident: e_1_2_12_5_1
  doi: 10.1002/adma.202007100
– ident: e_1_2_12_112_1
  doi: 10.1021/ja500215j
– ident: e_1_2_12_17_1
  doi: 10.1002/smtd.201800415
– ident: e_1_2_12_99_1
  doi: 10.1038/ncomms15341
– ident: e_1_2_12_212_1
  doi: 10.1016/j.nanoen.2019.104296
– ident: e_1_2_12_76_1
  doi: 10.1016/j.mtchem.2018.12.002
– ident: e_1_2_12_18_1
  doi: 10.1002/anie.201506219
– ident: e_1_2_12_196_1
  doi: 10.1002/adma.201806326
– ident: e_1_2_12_10_1
  doi: 10.1039/C6CS00930A
– ident: e_1_2_12_163_1
  doi: 10.1039/C6EE02265K
– ident: e_1_2_12_214_1
  doi: 10.1039/C9TA00819E
– ident: e_1_2_12_80_1
  doi: 10.1016/j.ccr.2019.213137
– ident: e_1_2_12_48_1
  doi: 10.1002/anie.202009854
– ident: e_1_2_12_40_1
  doi: 10.1002/adma.202006042
– ident: e_1_2_12_21_1
  doi: 10.1021/acs.nanolett.1c00179
– ident: e_1_2_12_15_1
  doi: 10.1021/acsenergylett.9b02625
– ident: e_1_2_12_203_1
  doi: 10.1021/jacs.6b09778
– ident: e_1_2_12_199_1
  doi: 10.1002/adfm.201808367
– ident: e_1_2_12_182_1
  doi: 10.1039/C6EE01786J
– ident: e_1_2_12_57_1
  doi: 10.1002/aenm.201900954
– ident: e_1_2_12_109_1
  doi: 10.1016/j.chempr.2022.03.027
– ident: e_1_2_12_128_1
  doi: 10.1039/C7TA07978H
– ident: e_1_2_12_197_1
  doi: 10.1039/D0CS01191F
– ident: e_1_2_12_20_1
  doi: 10.1016/j.ccr.2021.213946
– ident: e_1_2_12_29_1
  doi: 10.1021/jacs.5b08212
– ident: e_1_2_12_44_1
  doi: 10.1002/adfm.202009779
– ident: e_1_2_12_150_1
  doi: 10.1002/aenm.201900486
– ident: e_1_2_12_79_1
  doi: 10.1039/D0TA03138K
– ident: e_1_2_12_16_1
  doi: 10.1039/C9CS00880B
– ident: e_1_2_12_210_1
  doi: 10.1039/C9TA04554F
– ident: e_1_2_12_218_1
  doi: 10.1038/s41467-019-13051-2
– ident: e_1_2_12_42_1
  doi: 10.1002/smsc.202100015
– ident: e_1_2_12_156_1
  doi: 10.1021/acscatal.0c00989
– ident: e_1_2_12_123_1
  doi: 10.1002/anie.202012971
– ident: e_1_2_12_133_1
  doi: 10.1016/j.ccr.2019.02.033
– ident: e_1_2_12_151_1
  doi: 10.1039/C9TA09397D
– ident: e_1_2_12_116_1
  doi: 10.1021/ja4037516
– ident: e_1_2_12_118_1
  doi: 10.1021/ja512437u
– ident: e_1_2_12_211_1
  doi: 10.1002/adma.202007344
– ident: e_1_2_12_180_1
  doi: 10.1002/smll.201803576
– ident: e_1_2_12_206_1
  doi: 10.1038/s41560-018-0308-8
– ident: e_1_2_12_98_1
  doi: 10.1002/adfm.202008190
– ident: e_1_2_12_6_1
  doi: 10.1002/adfm.202009032
– ident: e_1_2_12_96_1
  doi: 10.1039/C9TA00708C
– ident: e_1_2_12_161_1
  doi: 10.1002/adma.201803234
– ident: e_1_2_12_159_1
  doi: 10.1002/adma.201302781
– ident: e_1_2_12_167_1
  doi: 10.1016/j.jechem.2021.05.029
– ident: e_1_2_12_8_1
  doi: 10.1002/adma.202004747
– ident: e_1_2_12_65_1
  doi: 10.1039/D0CE01527J
– ident: e_1_2_12_122_1
  doi: 10.1002/smll.201805232
– ident: e_1_2_12_2_1
  doi: 10.1126/sciadv.abg2580
– ident: e_1_2_12_121_1
  doi: 10.1002/smtd.202000396
– ident: e_1_2_12_82_1
  doi: 10.1021/acs.accounts.1c00280
– ident: e_1_2_12_172_1
  doi: 10.1002/anie.202008129
– ident: e_1_2_12_3_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_12_117_1
  doi: 10.1016/j.ccr.2021.213915
– ident: e_1_2_12_68_1
  doi: 10.1021/jacs.8b05206
– ident: e_1_2_12_171_1
  doi: 10.1021/acssuschemeng.9b07182
– ident: e_1_2_12_224_1
  doi: 10.1002/smll.201906564
– ident: e_1_2_12_179_1
  doi: 10.1021/acsnano.7b01409
– ident: e_1_2_12_195_1
  doi: 10.1039/D1NR07614K
– ident: e_1_2_12_1_1
  doi: 10.1038/s41560-017-0006-y
– ident: e_1_2_12_13_1
  doi: 10.1039/C8TA11704G
– ident: e_1_2_12_158_1
  doi: 10.1039/C8TA12178H
– ident: e_1_2_12_78_1
  doi: 10.1016/j.jallcom.2022.165823
– ident: e_1_2_12_25_1
  doi: 10.1002/aenm.202003410
– ident: e_1_2_12_173_1
  doi: 10.1016/j.ccr.2020.213488
– ident: e_1_2_12_50_1
  doi: 10.1039/D0EE01856B
– ident: e_1_2_12_188_1
  doi: 10.1021/acscatal.0c02501
– ident: e_1_2_12_176_1
  doi: 10.1021/jacs.9b05869
– ident: e_1_2_12_108_1
  doi: 10.1021/acscentsci.1c00047
– ident: e_1_2_12_219_1
  doi: 10.1038/s41467-019-13052-1
– ident: e_1_2_12_115_1
  doi: 10.1002/anie.202006102
– ident: e_1_2_12_120_1
  doi: 10.1002/smll.202203140
– ident: e_1_2_12_19_1
  doi: 10.1039/C9CS00906J
– ident: e_1_2_12_38_1
  doi: 10.1038/s41467-021-21595-5
– ident: e_1_2_12_86_1
  doi: 10.1002/anie.201803587
– ident: e_1_2_12_97_1
  doi: 10.1016/j.chempr.2018.05.019
– ident: e_1_2_12_105_1
  doi: 10.1002/adma.201901139
– ident: e_1_2_12_77_1
  doi: 10.1002/adma.201900617
– ident: e_1_2_12_192_1
  doi: 10.1016/j.cej.2021.128784
– ident: e_1_2_12_127_1
  doi: 10.1039/C7SC02688A
– ident: e_1_2_12_130_1
  doi: 10.1016/j.chempr.2019.06.016
– ident: e_1_2_12_14_1
  doi: 10.1016/j.mattod.2016.10.003
– ident: e_1_2_12_93_1
  doi: 10.1021/cm900166h
– ident: e_1_2_12_200_1
  doi: 10.1021/acsnano.2c09396
– ident: e_1_2_12_43_1
  doi: 10.1039/D0NR04458J
– ident: e_1_2_12_132_1
  doi: 10.1002/aenm.202003990
– ident: e_1_2_12_36_1
  doi: 10.1038/nenergy.2016.184
– ident: e_1_2_12_75_1
  doi: 10.1039/b815106g
– ident: e_1_2_12_135_1
  doi: 10.1002/adma.201802497
– ident: e_1_2_12_73_1
  doi: 10.1126/science.1067208
– ident: e_1_2_12_88_1
  doi: 10.1021/jacs.5b02688
– ident: e_1_2_12_140_1
  doi: 10.1039/C8TA03128B
– ident: e_1_2_12_100_1
  doi: 10.1002/anie.202101878
– ident: e_1_2_12_221_1
  doi: 10.3390/catal7050149
– ident: e_1_2_12_34_1
  doi: 10.1021/ja5116937
– ident: e_1_2_12_85_1
  doi: 10.1002/advs.201801920
– ident: e_1_2_12_129_1
  doi: 10.1039/C8CC08156E
– ident: e_1_2_12_46_1
  doi: 10.1002/smll.201905779
– ident: e_1_2_12_24_1
  doi: 10.1126/sciadv.aap9252
– ident: e_1_2_12_169_1
  doi: 10.1016/j.jechem.2021.05.030
– ident: e_1_2_12_202_1
  doi: 10.1002/adma.201604437
SSID ssj0031247
Score 2.6469812
SecondaryResourceType review_article
Snippet Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2207342
SubjectTerms 2D materials
Clean energy
Electrocatalysts
electrocatalytic water splitting
Electrolysis
hydrogen evolution reaction
Hydrogen evolution reactions
Metal-organic frameworks
Nanotechnology
oxygen evolution reaction
Oxygen evolution reactions
Reaction kinetics
Substrates
Thickness
Two dimensional materials
Water splitting
Title 2D Metal–Organic Frameworks as Competent Electrocatalysts for Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202207342
https://www.ncbi.nlm.nih.gov/pubmed/36605002
https://www.proquest.com/docview/2799936866
https://www.proquest.com/docview/2761979060
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hTuXQX9qmhcqVKnEyOJPE3hwrYIUqFqRSVG6R7diX0qUi2QOc-g68IU_ScZykbKuqEpyiKLbs2DOeb-zxNwAfRDTMyF3hPSd8a7lBJbhPpcXaFPVEhNvIsyN5cJp_OivO7tzij_wQ44Zb0IxuvQ4Krk2z85s0tPl-Ho4OEElI87AIh4CtgIo-j_xRGRmvLrsK2SweiLcG1kaBO8vVl63SX1BzGbl2pmf6BPTQ6Rhx8m170Zpte_0Hn-ND_uopPO5xKfsYBekZrLj5c1i7w1b4Ao5xj80cgfXbnzfxCqdl0yG2q2G6Ybs9CG_Zfsyu020OXTVtwwgbs6-Eay_ZCcHeLth6HU6n-192D3ifj4HbTGXIsax9mZU69anLtKKncAUWXqLLVW7ogxGePF5njBKe5tpZpUyJaJw3jpDiS1idX8zda2AkBrZOa2EnaHNaZ4ye6NKUEstUO3KQE-DDfFS2JysPOTPOq0izjFUYqGocqAS2xvI_Ik3HP0tuDNNb9eraVKgIJ2dyImUC78fPpGjh9ETP3cUilCFfU5VCigReRbEYm8okeYXUVgLYTe5_-lCdzA4Px7c396n0Fh6FxPcxhmgDVtvLhdskeNSad50K_AJ0jAdm
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5V7aFwAFr-AqW4EhInt84ksTdH1Ha1LbtFoq3gFsWOfaFsUZM9wKnv0DfskzCOk8CCEBKcosS27Ngezzf2-BuAVyIoZuQ2c44TvjVcoxLcxdJgpbNqJPxt5NmJnJynxx-z3pvQ34UJ_BDDhpuXjHa99gLuN6T3frCG1p8v_NkBIs3SlFbhNR_W29PnH7wfGKQSUl9tfBXSWtxTb_W8jQL3lssv66XfwOYydm2Vz_g-6L7Zwefk0-6i0bvm2y-Mjv_1Xw_gXgdN2ZswlzZgxc434e5PhIUP4R0esJklvH57fRNucRo27t27albWbL_D4Q07DAF22v2hr3VTM4LH7ANB2yt2Ssi39bd-BOfjw7P9Ce9CMnCTqAQ55pXLk7yMXWyTUtFT2AwzJ9GmKtWUoIUjo9dqrYSj4bZGKZ0jauu0JbD4GFbnl3P7FBjNBFPFlTAjNCktNboclbnOJeZxaclGjoD3A1KYjq_ch824KALTMha-o4qhoyJ4PeT_Epg6_phzqx_fopPYukBFUDmRIykj2BmSSdb8AUo5t5cLn4fMTZULKSJ4EubFUFUiyTCkuiLAdnT_0obidDadDm_P_qXQS1ifnM2mxfTo5O1zuEPfk-BStAWrzdXCviC01OjtVh6-A-ohC4I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hIiE48E8JFDASEie3ziSx10fU7arAbkGUit6i2LEvlG3VZA9w4h14Q56EcZyELgghwSlKbMuOZ8bz-e8bgGciOmbkrvCeE7613KAS3KfSYm2KeiLCbeTFgdw_yl8dF8cXbvFHfohxwS1YRjdeBwM_q_3OT9LQ5tNJ2DpAJCXNaRC-nEuhQ_CG6buRQCoj79WFVyGnxQPz1kDbKHBnvfy6W_oNa65D1873zG5ANbQ6Hjn5uL1qzbb98guh4__81k243gNT9iJq0i245Ja34doFusI78AanbOEIrX__-i3e4bRsNhzualjVsN0ehbdsL4bX6VaHPjdtwwgcsw8EbM_ZIeHe7rT1XTia7b3f3ed9QAZuM5UhR117nekq9anLKkVP4QosvESXq9xQghGeprzOGCU8CdtZpYxGNM4bR1DxHmwsT5fuPjDSA1untbATtDkNNKaaVNpoiTqtHM2QE-CDPErbs5WHoBknZeRZxjJ0VDl2VALPx_xnkafjjzm3BvGWvb02JSoCypmcSJnA0zGZLC1sn1RLd7oKeWiyqbSQIoHNqBZjVZmkaSHVlQB2wv1LG8rDxXw-vj34l0JP4Mrb6aycvzx4_RCu0ucsnifago32fOUeEVRqzePOGn4Au2AKMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+Metal%E2%80%93Organic+Frameworks+as+Competent+Electrocatalysts+for+Water+Splitting&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Chao%E2%80%90Peng&rft.au=Lin%2C+Yu%E2%80%90Xuan&rft.au=Cui%2C+Lei&rft.au=Zhu%2C+Jian&rft.date=2023-04-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=15&rft_id=info:doi/10.1002%2Fsmll.202207342&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202207342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon