Perovskite Quantum Dots with Near Unity Solution and Neat‐Film Photoluminescent Quantum Yield by Novel Spray Synthesis

In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic‐shaped perovskite QDs with a homogeneous size of 14 nm is demonstrate...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 7
Main Authors Dai, Shu‐Wen, Hsu, Bo‐Wei, Chen, Chien‐Yu, Lee, Chia‐An, Liu, Hsiao‐Yun, Wang, Hsiao‐Fang, Huang, Yu‐Ching, Wu, Tien‐Lin, Manikandan, Arumugam, Ho, Rong‐Ming, Tsao, Cheng‐Si, Cheng, Chien‐Hong, Chueh, Yu‐Lun, Lin, Hao‐Wu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 15.02.2018
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201705532

Cover

Loading…
Abstract In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic‐shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid‐state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD‐LED (ccQD‐LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W−1, and extraordinary forward‐direction luminescence of 8 500 000 cd m−2. The conceptual ccQD‐OLED hybrid display also successfully demonstrates high‐definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives‐P3 color gamut. These very‐stable, ultra‐bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. Spray‐synthesized perovskite quantum dots (QDs) show an unprecedented cubic shape, and a stable photoluminescence quantum yield of ≈100% in both solution and the solid‐state neat film. QD‐LED (light emission device) and QD‐OLED (organic light emission display) hybrid devices exhibit an excellent external quantum efficiency of 28.1%, a power efficiency of 121 lm W−1, and successfully demonstrate high‐definition motion pictures.
AbstractList In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic‐shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid‐state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD‐LED (ccQD‐LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W −1 , and extraordinary forward‐direction luminescence of 8 500 000 cd m −2 . The conceptual ccQD‐OLED hybrid display also successfully demonstrates high‐definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives‐P3 color gamut. These very‐stable, ultra‐bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.
In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic‐shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid‐state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD‐LED (ccQD‐LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W−1, and extraordinary forward‐direction luminescence of 8 500 000 cd m−2. The conceptual ccQD‐OLED hybrid display also successfully demonstrates high‐definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives‐P3 color gamut. These very‐stable, ultra‐bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. Spray‐synthesized perovskite quantum dots (QDs) show an unprecedented cubic shape, and a stable photoluminescence quantum yield of ≈100% in both solution and the solid‐state neat film. QD‐LED (light emission device) and QD‐OLED (organic light emission display) hybrid devices exhibit an excellent external quantum efficiency of 28.1%, a power efficiency of 121 lm W−1, and successfully demonstrate high‐definition motion pictures.
In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W , and extraordinary forward-direction luminescence of 8 500 000 cd m . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.
In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield [asymp]100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W-1, and extraordinary forward-direction luminescence of 8 500 000 cd m-2. The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.
In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W-1 , and extraordinary forward-direction luminescence of 8 500 000 cd m-2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W-1 , and extraordinary forward-direction luminescence of 8 500 000 cd m-2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.
Author Tsao, Cheng‐Si
Manikandan, Arumugam
Ho, Rong‐Ming
Huang, Yu‐Ching
Liu, Hsiao‐Yun
Chen, Chien‐Yu
Wu, Tien‐Lin
Dai, Shu‐Wen
Hsu, Bo‐Wei
Lin, Hao‐Wu
Chueh, Yu‐Lun
Cheng, Chien‐Hong
Wang, Hsiao‐Fang
Lee, Chia‐An
Author_xml – sequence: 1
  givenname: Shu‐Wen
  surname: Dai
  fullname: Dai, Shu‐Wen
  organization: National Tsing Hua University
– sequence: 2
  givenname: Bo‐Wei
  surname: Hsu
  fullname: Hsu, Bo‐Wei
  organization: National Tsing Hua University
– sequence: 3
  givenname: Chien‐Yu
  surname: Chen
  fullname: Chen, Chien‐Yu
  organization: National Tsing Hua University
– sequence: 4
  givenname: Chia‐An
  surname: Lee
  fullname: Lee, Chia‐An
  organization: National Tsing Hua University
– sequence: 5
  givenname: Hsiao‐Yun
  surname: Liu
  fullname: Liu, Hsiao‐Yun
  organization: National Tsing Hua University
– sequence: 6
  givenname: Hsiao‐Fang
  surname: Wang
  fullname: Wang, Hsiao‐Fang
  organization: National Tsing Hua University
– sequence: 7
  givenname: Yu‐Ching
  surname: Huang
  fullname: Huang, Yu‐Ching
  organization: Institute of Nuclear Energy Research
– sequence: 8
  givenname: Tien‐Lin
  surname: Wu
  fullname: Wu, Tien‐Lin
  organization: National Tsing Hua University
– sequence: 9
  givenname: Arumugam
  surname: Manikandan
  fullname: Manikandan, Arumugam
  organization: National Tsing Hua University
– sequence: 10
  givenname: Rong‐Ming
  surname: Ho
  fullname: Ho, Rong‐Ming
  organization: National Tsing Hua University
– sequence: 11
  givenname: Cheng‐Si
  surname: Tsao
  fullname: Tsao, Cheng‐Si
  organization: National Taiwan University
– sequence: 12
  givenname: Chien‐Hong
  surname: Cheng
  fullname: Cheng, Chien‐Hong
  organization: National Tsing Hua University
– sequence: 13
  givenname: Yu‐Lun
  surname: Chueh
  fullname: Chueh, Yu‐Lun
  organization: National Tsing Hua University
– sequence: 14
  givenname: Hao‐Wu
  orcidid: 0000-0003-4216-7995
  surname: Lin
  fullname: Lin, Hao‐Wu
  email: hwlin@mx.nthu.edu.tw
  organization: National Tsing Hua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29271524$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKeFLUtkiQ2bDM92nMTLUUsBqZSi0gUryxO_0bgk9mA7LdnxCXwjX0JGUwapEmJlyT7n-undI3Lgg0dCnjOYMwD-2tjezDmwGqQU_BGZMclZUYKSB2QGSshCVWVzSI5SugEAVUH1hBxyxesJLGfk-yXGcJu-uoz002B8Hnp6GnKidy6v6QWaSK-9yyO9Ct2QXfDUeLu9z79-_DxzXU8v1yFPb73zmFr0eR_zxWFn6XKkF-EWO3q1iWaKGX1eY3LpKXm8Ml3CZ_fnMbk-e_P55F1x_vHt-5PFedGKWvCCK4GlRMGaFWtFaVvTCqZsy9HWJW8kcIkGrFBSlEo0tloyrME2Faxai7ISx-TVLncTw7cBU9a9m-bsOuMxDEkzVStVNYrDhL58gN6EIfppOs0BGNSVaJqJenFPDcserd5E15s46j87nYD5DmhjSCniao8w0NvS9LY0vS9tEsoHQuuy2S47R-O6f2tqp925Dsf_fKIXpx8Wf93fVDyswQ
CitedBy_id crossref_primary_10_1002_aelm_201800335
crossref_primary_10_1016_j_dyepig_2018_10_074
crossref_primary_10_3390_inorganics11060230
crossref_primary_10_1039_C8CS00740C
crossref_primary_10_1039_D4NR00203B
crossref_primary_10_1002_adom_202300873
crossref_primary_10_3390_coatings12040492
crossref_primary_10_1021_acsphotonics_0c00812
crossref_primary_10_1002_msid_1485
crossref_primary_10_1002_adma_202401788
crossref_primary_10_1002_ange_202300971
crossref_primary_10_1016_j_mattod_2023_10_010
crossref_primary_10_1039_C8TC01408F
crossref_primary_10_1039_C9TC04484A
crossref_primary_10_1002_smll_202400959
crossref_primary_10_1016_j_materresbull_2022_112049
crossref_primary_10_1016_j_nanoen_2018_09_020
crossref_primary_10_1021_acsphotonics_2c00285
crossref_primary_10_1016_j_jiec_2020_03_040
crossref_primary_10_1016_j_mattod_2022_11_009
crossref_primary_10_1016_j_trechm_2021_03_005
crossref_primary_10_1038_s41467_019_10870_1
crossref_primary_10_1016_j_cplett_2020_138192
crossref_primary_10_1039_D1NR05288H
crossref_primary_10_1088_1361_6528_ab8c79
crossref_primary_10_1016_j_cej_2022_135991
crossref_primary_10_1088_1361_6528_ac3bf1
crossref_primary_10_1021_acsaem_0c00299
crossref_primary_10_1021_acs_jpclett_4c02546
crossref_primary_10_1364_OSAC_2_001880
crossref_primary_10_1038_s41427_019_0156_4
crossref_primary_10_1002_adma_202105958
crossref_primary_10_1021_acsami_4c08672
crossref_primary_10_1021_acsami_9b04164
crossref_primary_10_1016_j_apmt_2022_101401
crossref_primary_10_1007_s12274_019_2566_6
crossref_primary_10_1002_adfm_202408323
crossref_primary_10_1002_jsid_834
crossref_primary_10_1002_ange_202204371
crossref_primary_10_1002_anie_202300971
crossref_primary_10_3390_nano12060985
crossref_primary_10_1021_acsnano_1c00733
crossref_primary_10_1021_acsami_1c05961
crossref_primary_10_1039_C9TC00348G
crossref_primary_10_1016_j_clay_2020_105473
crossref_primary_10_1021_acs_chemmater_0c02543
crossref_primary_10_1063_5_0016377
crossref_primary_10_1002_admt_202100080
crossref_primary_10_1021_acsnano_0c08903
crossref_primary_10_1063_1_5145261
crossref_primary_10_1016_j_ccr_2024_215925
crossref_primary_10_1016_j_cej_2023_145889
crossref_primary_10_1088_2053_1591_aaf3ef
crossref_primary_10_1007_s12598_022_02222_8
crossref_primary_10_1039_C9QI00777F
crossref_primary_10_1021_acs_jpcc_3c03832
crossref_primary_10_1039_C9TC04978A
crossref_primary_10_1039_D0TC02754E
crossref_primary_10_1016_j_nantod_2022_101449
crossref_primary_10_1002_adhm_201900859
crossref_primary_10_1039_D0NR04545D
crossref_primary_10_1021_acsphotonics_0c00117
crossref_primary_10_1039_D1CE01006A
crossref_primary_10_1364_OSAC_2_002413
crossref_primary_10_3390_cryst14070604
crossref_primary_10_1002_adfm_202309589
crossref_primary_10_1039_D1NR07084C
crossref_primary_10_1364_OE_476135
crossref_primary_10_1021_acsami_0c19287
crossref_primary_10_1002_anie_202204371
crossref_primary_10_1021_acsanm_4c01734
crossref_primary_10_1039_D1TA05242J
crossref_primary_10_1063_5_0126496
crossref_primary_10_1021_acsaem_2c02680
crossref_primary_10_1088_2050_6120_ac9775
crossref_primary_10_1021_acsaelm_0c00179
crossref_primary_10_1002_smtd_201800294
crossref_primary_10_1021_acsenergylett_4c00778
crossref_primary_10_1002_adfm_202300363
crossref_primary_10_1021_acssuschemeng_1c05923
crossref_primary_10_1016_j_pquantelec_2019_100226
crossref_primary_10_1002_smll_202404573
crossref_primary_10_1021_acsami_9b06248
crossref_primary_10_1002_smtd_201800489
crossref_primary_10_1002_admi_201900359
crossref_primary_10_1002_adem_202100424
crossref_primary_10_1039_D3NR01086D
crossref_primary_10_1007_s00210_024_03309_y
crossref_primary_10_1021_acsphotonics_4c00513
crossref_primary_10_1021_acsami_9b20094
crossref_primary_10_1021_acsanm_0c03019
crossref_primary_10_1021_acs_jpclett_2c00698
Cites_doi 10.1038/nnano.2014.149
10.1002/adma.201603885
10.1002/adma.19970090308
10.1021/acsnano.6b01643
10.1038/nphoton.2013.342
10.1021/acs.chemmater.7b01100
10.1126/science.aad1818
10.1021/ja4109209
10.1126/science.aaa2725
10.1021/acsnano.5b01154
10.1126/science.aaa0472
10.1021/acsnano.6b07617
10.1016/S0021-8502(01)00159-8
10.1002/adma.201600784
10.1021/acsami.5b09084
10.1002/adma.201700579
10.1002/adfm.201601054
10.1021/nn204654h
10.1002/aenm.201700131
10.1021/acsnano.6b01540
10.1016/j.nanoen.2017.05.002
10.1038/s41598-017-00778-5
10.1021/jacs.5b05602
10.1002/adma.201605587
10.1073/pnas.1607471113
10.1002/adma.201403751
10.1002/adma.201601959
10.1039/C5CC09762B
10.1002/adma.201601369
10.1038/ncomms9238
10.1038/nmat4599
10.1126/science.1228604
10.1002/adma.201603157
10.1038/nmat3911
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201705532
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29271524
10_1002_adma_201705532
ADMA201705532
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of Taiwan
  funderid: 105‐2112‐M‐007‐016‐MY3; 105‐2628‐E‐007‐008‐MY3
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3732-293e45e318f1c34dcac319dc2ed74285025ea0d39534938d6b1e70d860fcde563
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 16:01:20 EDT 2025
Fri Jul 25 04:37:52 EDT 2025
Mon Jul 21 05:41:45 EDT 2025
Tue Jul 01 00:44:38 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Jan 22 16:24:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords hybrid devices
quantum yields
perovskite quantum dots
spray synthesis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-293e45e318f1c34dcac319dc2ed74285025ea0d39534938d6b1e70d860fcde563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4216-7995
PMID 29271524
PQID 2001076388
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_1979968920
proquest_journals_2001076388
pubmed_primary_29271524
crossref_primary_10_1002_adma_201705532
crossref_citationtrail_10_1002_adma_201705532
wiley_primary_10_1002_adma_201705532_ADMA201705532
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 15, 2018
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: February 15, 2018
  day: 15
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2015; 6
2015; 347
2002; 33
2016; 10
2016; 52
2017; 29
2015; 9
2015; 7
2016; 15
2014; 136
1997; 9
2015; 350
2015; 27
2015; 137
2017; 38
2017; 11
2016; 113
2014; 13
2016; 29
2014; 9
2012; 6
2014; 8
2016; 28
2016; 26
2012; 338
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
Chen Z. (e_1_2_5_5_1) 2016; 29
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 7
  start-page: 673
  year: 2017
  publication-title: Sci. Rep.
– volume: 29
  start-page: 1603885
  year: 2017
  publication-title: Adv. Mater.
– volume: 350
  start-page: 1222
  year: 2015
  publication-title: Science
– volume: 15
  start-page: 383
  year: 2016
  publication-title: Nat. Mater.
– volume: 52
  start-page: 3887
  year: 2016
  publication-title: Chem. Commun.
– volume: 29
  start-page: 1700579
  year: 2017
  publication-title: Adv. Mater.
– volume: 136
  start-page: 850
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 347
  start-page: 519
  year: 2015
  publication-title: Science
– volume: 29
  start-page: 3793
  year: 2017
  publication-title: Chem. Mater.
– volume: 29
  start-page: 1605587
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1657
  year: 2012
  publication-title: ACS Nano
– volume: 9
  start-page: 230
  year: 1997
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1248
  year: 2015
  publication-title: Adv. Mater.
– volume: 28
  start-page: 8718
  year: 2016
  publication-title: Adv. Mater.
– volume: 33
  start-page: 369
  year: 2002
  publication-title: J. Aerosol Sci.
– volume: 10
  start-page: 5413
  year: 2016
  publication-title: ACS Nano
– volume: 7
  start-page: 25007
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 4533
  year: 2015
  publication-title: ACS Nano
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 347
  start-page: 522
  year: 2015
  publication-title: Science
– volume: 29
  start-page: 1601959
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 133
  year: 2014
  publication-title: Nat. Photonics
– volume: 6
  start-page: 8238
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  start-page: 687
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 113
  start-page: 11694
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 6623
  year: 2016
  publication-title: ACS Nano
– volume: 28
  start-page: 7515
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1700131
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 10276
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 51
  year: 2017
  publication-title: Nano Energy
– volume: 11
  start-page: 6586
  year: 2017
  publication-title: ACS Nano
– volume: 13
  start-page: 476
  year: 2014
  publication-title: Nat. Mater.
– volume: 26
  start-page: 4797
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1603157
  year: 2016
  publication-title: Adv. Mater.
– ident: e_1_2_5_7_1
  doi: 10.1038/nnano.2014.149
– ident: e_1_2_5_32_1
  doi: 10.1002/adma.201603885
– ident: e_1_2_5_33_1
  doi: 10.1002/adma.19970090308
– ident: e_1_2_5_17_1
  doi: 10.1021/acsnano.6b01643
– ident: e_1_2_5_2_1
  doi: 10.1038/nphoton.2013.342
– ident: e_1_2_5_21_1
  doi: 10.1021/acs.chemmater.7b01100
– ident: e_1_2_5_6_1
  doi: 10.1126/science.aad1818
– ident: e_1_2_5_29_1
  doi: 10.1021/ja4109209
– ident: e_1_2_5_30_1
  doi: 10.1126/science.aaa2725
– ident: e_1_2_5_19_1
  doi: 10.1021/acsnano.5b01154
– ident: e_1_2_5_3_1
  doi: 10.1126/science.aaa0472
– ident: e_1_2_5_12_1
  doi: 10.1021/acsnano.6b07617
– ident: e_1_2_5_25_1
  doi: 10.1016/S0021-8502(01)00159-8
– ident: e_1_2_5_28_1
  doi: 10.1002/adma.201600784
– ident: e_1_2_5_24_1
  doi: 10.1021/acsami.5b09084
– ident: e_1_2_5_13_1
  doi: 10.1002/adma.201700579
– ident: e_1_2_5_20_1
  doi: 10.1002/adfm.201601054
– ident: e_1_2_5_31_1
  doi: 10.1021/nn204654h
– ident: e_1_2_5_34_1
  doi: 10.1002/aenm.201700131
– ident: e_1_2_5_27_1
  doi: 10.1021/acsnano.6b01540
– ident: e_1_2_5_11_1
  doi: 10.1016/j.nanoen.2017.05.002
– ident: e_1_2_5_18_1
  doi: 10.1038/s41598-017-00778-5
– ident: e_1_2_5_23_1
  doi: 10.1021/jacs.5b05602
– ident: e_1_2_5_10_1
  doi: 10.1002/adma.201605587
– ident: e_1_2_5_8_1
  doi: 10.1073/pnas.1607471113
– ident: e_1_2_5_4_1
  doi: 10.1002/adma.201403751
– ident: e_1_2_5_15_1
  doi: 10.1002/adma.201601959
– ident: e_1_2_5_22_1
  doi: 10.1039/C5CC09762B
– ident: e_1_2_5_9_1
  doi: 10.1002/adma.201601369
– ident: e_1_2_5_16_1
  doi: 10.1038/ncomms9238
– ident: e_1_2_5_26_1
  doi: 10.1038/nmat4599
– ident: e_1_2_5_1_1
  doi: 10.1126/science.1228604
– volume: 29
  start-page: 1603157
  year: 2016
  ident: e_1_2_5_5_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603157
– ident: e_1_2_5_14_1
  doi: 10.1038/nmat3911
SSID ssj0009606
Score 2.559943
Snippet In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of...
In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Color
Diodes
Energy conversion efficiency
hybrid devices
Light emission
Light emitting diodes
Materials science
Optoelectronics
Organic light emitting diodes
perovskite quantum dots
Photoluminescence
Pictures
Quantum dots
Quantum efficiency
quantum yields
Spray pyrolysis
spray synthesis
Synthesis
Thin films
Title Perovskite Quantum Dots with Near Unity Solution and Neat‐Film Photoluminescent Quantum Yield by Novel Spray Synthesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705532
https://www.ncbi.nlm.nih.gov/pubmed/29271524
https://www.proquest.com/docview/2001076388
https://www.proquest.com/docview/1979968920
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hnuDA-xEoyEhInNImfiTOcUVZVUhdlUelcooc2ysqtkm1SapuT_wEfiO_hJlkk3ZBCAluediOY8-MP4_HnwFeSVeIWGjasSzmodTGhplFWXZGzh0OWDL1tMH5YJbsH8l3x-r42i7-nh9idLiRZnT2mhTcFPXuFWmocR1vUEcHI8gIU8AWoaIPV_xRBM87sj2hwiyRemBtjPjuZvbNUek3qLmJXLuhZ3oHzFDpPuLk607bFDv28hc-x__5q7twe41L2aQXpHtww5f34dY1tsIHcHHol9V5Te5e9r7FHmlP2V7V1Ix8uWyGKsMIwa7Y4GpjpnT0vPnx7fv0ZHHKDr9UDVlDCrWnqNCxmM8UR8eKFZtV537BPp4tDRazKhGd1if1Qziavv30Zj9cH9wQWpEKHiKE8FKRd3UeWyGdNRY13VnuHc7EtUKc5U3kRKaEzIR2SRH7NHI6iebWeZWIR7BVVqV_Akxxi5BJOasyIyOdGuEkFmYRJ2IJtgggHDout2tWczpcY5H3fMw8pxbNxxYN4PWY_qzn8_hjyu1BDvK1Xtd0aCfOl9Fm6QBejq9RI2mZxZS-aus8ppXSRGc8CuBxLz_jp3jGU0RMMgDeScFf6pBP9g4m493Tf8n0DG7itaZA81htw1azbP1zxFFN8aLTlZ8pvhTx
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOQCH8g9pCxgJiVPaxD-Jc1yxrBborgq0Epwix_aKim1SbZKqy4lH6DP2SZhJNikLQkhwjGNPHHvG_jwefybkhbAZD7nCE8t85guljZ8Y0GWrxczChCVihwecJ9NofCTefpJdNCGehWn5IXqHG1pGM16jgaNDeu-KNVTbhjio4YPhMApfx2u90TaHH64YpBCgN3R7XPpJJFTH2xiwvfXy6_PSb2BzHbs2k8_oNsm6arcxJ1936yrbNd9-YXT8r_-6QzZX0JQOWl26S665_B659RNh4X1yfuAWxVmJHl_6voZOqU_osKhKiu5cOgWroQhil7TztlGdW0yvLr9fjI7nJ_TgS1HhgIjR9hgY2ov5jKF0NFvSaXHm5vTj6UKDmGUOALU8Lh-Qo9Hrw1djf3V3g294zJkPKMIJiQ7WWWi4sEYbMHZrmLOwGFcSoJbTgeWJ5CLhykZZ6OLAqiiYGetkxB-SjbzI3WNCJTOAmqQ1MtEiULHmVoAwA50NEkzmEb_rudSsiM3xfo152lIysxRbNO1b1CMv-_ynLaXHH3PudIqQrky7xHs7YckMw5byyPP-NRgl7rTo3BV1mYa4WRqphAUeedQqUP8plrAYQJPwCGvU4C91SAfDyaB_2vqXQs_IjfHhZD_dfzN9t01uQrrCuPNQ7pCNalG7JwCrquxpYzg_AGlEGQo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAcypumFDASEqe0iR9Z57hiWZVHV8ujUjlFju2IqttktUkqlhM_ob-xv4SZZJN2QQgJjnHsiWPP2J_H48-EvBA25SFXeGKZZ75Q2vixAV22WmQWJiwxcHjA-WAS7R-Kt0fy6Mop_pYfone4oWU04zUa-Nxme5ekodo2vEENHQyHQfi6iAKFy6_Rx0sCKcTnDdsel34cCdXRNgZsb738-rT0G9Zch67N3DO-TXRX6zbk5GS3rtJd8_0XQsf_-a07ZHMFTOmw1aS75JrL75FbV-gK75NvU7cozkr099IPNXRJfUpHRVVSdObSCdgMRQi7pJ2vjercYnp18eN8fDw7pdOvRYXDIcbaY1hoL-YLBtLRdEknxZmb0U_zhQYxyxzgaXlcPiCH49efX-37q5sbfMMHnPmAIZyQ6F7NQsOFNdqAqVvDnIWluJIAtJwOLI8lFzFXNkpDNwisioLMWCcj_pBs5EXutgiVzABmktbIWAvoYM2tAGEGgCJIMKlH_K7jErOiNcfbNWZJS8jMEmzRpG9Rj7zs889bQo8_5tzp9CBZGXaJt3bCghkGLeWR5_1rMEncZ9G5K-oyCXGrNFIxCzzyqNWf_lMsZgOATMIjrNGCv9QhGY4Ohv3T9r8UekZuTEfj5P2bybvH5CYkKww6D-UO2agWtXsCmKpKnzZm8xMioxfC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+Quantum+Dots+with+Near+Unity+Solution+and+Neat%E2%80%90Film+Photoluminescent+Quantum+Yield+by+Novel+Spray+Synthesis&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Dai%2C+Shu%E2%80%90Wen&rft.au=Hsu%2C+Bo%E2%80%90Wei&rft.au=Chen%2C+Chien%E2%80%90Yu&rft.au=Lee%2C+Chia%E2%80%90An&rft.date=2018-02-15&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=7&rft_id=info:doi/10.1002%2Fadma.201705532&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201705532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon