Perovskite Quantum Dots with Near Unity Solution and Neat‐Film Photoluminescent Quantum Yield by Novel Spray Synthesis
In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic‐shaped perovskite QDs with a homogeneous size of 14 nm is demonstrate...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 7 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
15.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201705532 |
Cover
Loading…
Abstract | In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic‐shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid‐state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD‐LED (ccQD‐LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W−1, and extraordinary forward‐direction luminescence of 8 500 000 cd m−2. The conceptual ccQD‐OLED hybrid display also successfully demonstrates high‐definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives‐P3 color gamut. These very‐stable, ultra‐bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.
Spray‐synthesized perovskite quantum dots (QDs) show an unprecedented cubic shape, and a stable photoluminescence quantum yield of ≈100% in both solution and the solid‐state neat film. QD‐LED (light emission device) and QD‐OLED (organic light emission display) hybrid devices exhibit an excellent external quantum efficiency of 28.1%, a power efficiency of 121 lm W−1, and successfully demonstrate high‐definition motion pictures. |
---|---|
AbstractList | In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic‐shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid‐state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD‐LED (ccQD‐LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W
−1
, and extraordinary forward‐direction luminescence of 8 500 000 cd m
−2
. The conceptual ccQD‐OLED hybrid display also successfully demonstrates high‐definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives‐P3 color gamut. These very‐stable, ultra‐bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic‐shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid‐state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD‐LED (ccQD‐LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W−1, and extraordinary forward‐direction luminescence of 8 500 000 cd m−2. The conceptual ccQD‐OLED hybrid display also successfully demonstrates high‐definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives‐P3 color gamut. These very‐stable, ultra‐bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. Spray‐synthesized perovskite quantum dots (QDs) show an unprecedented cubic shape, and a stable photoluminescence quantum yield of ≈100% in both solution and the solid‐state neat film. QD‐LED (light emission device) and QD‐OLED (organic light emission display) hybrid devices exhibit an excellent external quantum efficiency of 28.1%, a power efficiency of 121 lm W−1, and successfully demonstrate high‐definition motion pictures. In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W , and extraordinary forward-direction luminescence of 8 500 000 cd m . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield [asymp]100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W-1, and extraordinary forward-direction luminescence of 8 500 000 cd m-2. The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W-1 , and extraordinary forward-direction luminescence of 8 500 000 cd m-2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W-1 , and extraordinary forward-direction luminescence of 8 500 000 cd m-2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. |
Author | Tsao, Cheng‐Si Manikandan, Arumugam Ho, Rong‐Ming Huang, Yu‐Ching Liu, Hsiao‐Yun Chen, Chien‐Yu Wu, Tien‐Lin Dai, Shu‐Wen Hsu, Bo‐Wei Lin, Hao‐Wu Chueh, Yu‐Lun Cheng, Chien‐Hong Wang, Hsiao‐Fang Lee, Chia‐An |
Author_xml | – sequence: 1 givenname: Shu‐Wen surname: Dai fullname: Dai, Shu‐Wen organization: National Tsing Hua University – sequence: 2 givenname: Bo‐Wei surname: Hsu fullname: Hsu, Bo‐Wei organization: National Tsing Hua University – sequence: 3 givenname: Chien‐Yu surname: Chen fullname: Chen, Chien‐Yu organization: National Tsing Hua University – sequence: 4 givenname: Chia‐An surname: Lee fullname: Lee, Chia‐An organization: National Tsing Hua University – sequence: 5 givenname: Hsiao‐Yun surname: Liu fullname: Liu, Hsiao‐Yun organization: National Tsing Hua University – sequence: 6 givenname: Hsiao‐Fang surname: Wang fullname: Wang, Hsiao‐Fang organization: National Tsing Hua University – sequence: 7 givenname: Yu‐Ching surname: Huang fullname: Huang, Yu‐Ching organization: Institute of Nuclear Energy Research – sequence: 8 givenname: Tien‐Lin surname: Wu fullname: Wu, Tien‐Lin organization: National Tsing Hua University – sequence: 9 givenname: Arumugam surname: Manikandan fullname: Manikandan, Arumugam organization: National Tsing Hua University – sequence: 10 givenname: Rong‐Ming surname: Ho fullname: Ho, Rong‐Ming organization: National Tsing Hua University – sequence: 11 givenname: Cheng‐Si surname: Tsao fullname: Tsao, Cheng‐Si organization: National Taiwan University – sequence: 12 givenname: Chien‐Hong surname: Cheng fullname: Cheng, Chien‐Hong organization: National Tsing Hua University – sequence: 13 givenname: Yu‐Lun surname: Chueh fullname: Chueh, Yu‐Lun organization: National Tsing Hua University – sequence: 14 givenname: Hao‐Wu orcidid: 0000-0003-4216-7995 surname: Lin fullname: Lin, Hao‐Wu email: hwlin@mx.nthu.edu.tw organization: National Tsing Hua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29271524$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAURS1URKeFLUtkiQ2bDM92nMTLUUsBqZSi0gUryxO_0bgk9mA7LdnxCXwjX0JGUwapEmJlyT7n-undI3Lgg0dCnjOYMwD-2tjezDmwGqQU_BGZMclZUYKSB2QGSshCVWVzSI5SugEAVUH1hBxyxesJLGfk-yXGcJu-uoz002B8Hnp6GnKidy6v6QWaSK-9yyO9Ct2QXfDUeLu9z79-_DxzXU8v1yFPb73zmFr0eR_zxWFn6XKkF-EWO3q1iWaKGX1eY3LpKXm8Ml3CZ_fnMbk-e_P55F1x_vHt-5PFedGKWvCCK4GlRMGaFWtFaVvTCqZsy9HWJW8kcIkGrFBSlEo0tloyrME2Faxai7ISx-TVLncTw7cBU9a9m-bsOuMxDEkzVStVNYrDhL58gN6EIfppOs0BGNSVaJqJenFPDcserd5E15s46j87nYD5DmhjSCniao8w0NvS9LY0vS9tEsoHQuuy2S47R-O6f2tqp925Dsf_fKIXpx8Wf93fVDyswQ |
CitedBy_id | crossref_primary_10_1002_aelm_201800335 crossref_primary_10_1016_j_dyepig_2018_10_074 crossref_primary_10_3390_inorganics11060230 crossref_primary_10_1039_C8CS00740C crossref_primary_10_1039_D4NR00203B crossref_primary_10_1002_adom_202300873 crossref_primary_10_3390_coatings12040492 crossref_primary_10_1021_acsphotonics_0c00812 crossref_primary_10_1002_msid_1485 crossref_primary_10_1002_adma_202401788 crossref_primary_10_1002_ange_202300971 crossref_primary_10_1016_j_mattod_2023_10_010 crossref_primary_10_1039_C8TC01408F crossref_primary_10_1039_C9TC04484A crossref_primary_10_1002_smll_202400959 crossref_primary_10_1016_j_materresbull_2022_112049 crossref_primary_10_1016_j_nanoen_2018_09_020 crossref_primary_10_1021_acsphotonics_2c00285 crossref_primary_10_1016_j_jiec_2020_03_040 crossref_primary_10_1016_j_mattod_2022_11_009 crossref_primary_10_1016_j_trechm_2021_03_005 crossref_primary_10_1038_s41467_019_10870_1 crossref_primary_10_1016_j_cplett_2020_138192 crossref_primary_10_1039_D1NR05288H crossref_primary_10_1088_1361_6528_ab8c79 crossref_primary_10_1016_j_cej_2022_135991 crossref_primary_10_1088_1361_6528_ac3bf1 crossref_primary_10_1021_acsaem_0c00299 crossref_primary_10_1021_acs_jpclett_4c02546 crossref_primary_10_1364_OSAC_2_001880 crossref_primary_10_1038_s41427_019_0156_4 crossref_primary_10_1002_adma_202105958 crossref_primary_10_1021_acsami_4c08672 crossref_primary_10_1021_acsami_9b04164 crossref_primary_10_1016_j_apmt_2022_101401 crossref_primary_10_1007_s12274_019_2566_6 crossref_primary_10_1002_adfm_202408323 crossref_primary_10_1002_jsid_834 crossref_primary_10_1002_ange_202204371 crossref_primary_10_1002_anie_202300971 crossref_primary_10_3390_nano12060985 crossref_primary_10_1021_acsnano_1c00733 crossref_primary_10_1021_acsami_1c05961 crossref_primary_10_1039_C9TC00348G crossref_primary_10_1016_j_clay_2020_105473 crossref_primary_10_1021_acs_chemmater_0c02543 crossref_primary_10_1063_5_0016377 crossref_primary_10_1002_admt_202100080 crossref_primary_10_1021_acsnano_0c08903 crossref_primary_10_1063_1_5145261 crossref_primary_10_1016_j_ccr_2024_215925 crossref_primary_10_1016_j_cej_2023_145889 crossref_primary_10_1088_2053_1591_aaf3ef crossref_primary_10_1007_s12598_022_02222_8 crossref_primary_10_1039_C9QI00777F crossref_primary_10_1021_acs_jpcc_3c03832 crossref_primary_10_1039_C9TC04978A crossref_primary_10_1039_D0TC02754E crossref_primary_10_1016_j_nantod_2022_101449 crossref_primary_10_1002_adhm_201900859 crossref_primary_10_1039_D0NR04545D crossref_primary_10_1021_acsphotonics_0c00117 crossref_primary_10_1039_D1CE01006A crossref_primary_10_1364_OSAC_2_002413 crossref_primary_10_3390_cryst14070604 crossref_primary_10_1002_adfm_202309589 crossref_primary_10_1039_D1NR07084C crossref_primary_10_1364_OE_476135 crossref_primary_10_1021_acsami_0c19287 crossref_primary_10_1002_anie_202204371 crossref_primary_10_1021_acsanm_4c01734 crossref_primary_10_1039_D1TA05242J crossref_primary_10_1063_5_0126496 crossref_primary_10_1021_acsaem_2c02680 crossref_primary_10_1088_2050_6120_ac9775 crossref_primary_10_1021_acsaelm_0c00179 crossref_primary_10_1002_smtd_201800294 crossref_primary_10_1021_acsenergylett_4c00778 crossref_primary_10_1002_adfm_202300363 crossref_primary_10_1021_acssuschemeng_1c05923 crossref_primary_10_1016_j_pquantelec_2019_100226 crossref_primary_10_1002_smll_202404573 crossref_primary_10_1021_acsami_9b06248 crossref_primary_10_1002_smtd_201800489 crossref_primary_10_1002_admi_201900359 crossref_primary_10_1002_adem_202100424 crossref_primary_10_1039_D3NR01086D crossref_primary_10_1007_s00210_024_03309_y crossref_primary_10_1021_acsphotonics_4c00513 crossref_primary_10_1021_acsami_9b20094 crossref_primary_10_1021_acsanm_0c03019 crossref_primary_10_1021_acs_jpclett_2c00698 |
Cites_doi | 10.1038/nnano.2014.149 10.1002/adma.201603885 10.1002/adma.19970090308 10.1021/acsnano.6b01643 10.1038/nphoton.2013.342 10.1021/acs.chemmater.7b01100 10.1126/science.aad1818 10.1021/ja4109209 10.1126/science.aaa2725 10.1021/acsnano.5b01154 10.1126/science.aaa0472 10.1021/acsnano.6b07617 10.1016/S0021-8502(01)00159-8 10.1002/adma.201600784 10.1021/acsami.5b09084 10.1002/adma.201700579 10.1002/adfm.201601054 10.1021/nn204654h 10.1002/aenm.201700131 10.1021/acsnano.6b01540 10.1016/j.nanoen.2017.05.002 10.1038/s41598-017-00778-5 10.1021/jacs.5b05602 10.1002/adma.201605587 10.1073/pnas.1607471113 10.1002/adma.201403751 10.1002/adma.201601959 10.1039/C5CC09762B 10.1002/adma.201601369 10.1038/ncomms9238 10.1038/nmat4599 10.1126/science.1228604 10.1002/adma.201603157 10.1038/nmat3911 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201705532 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29271524 10_1002_adma_201705532 ADMA201705532 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of Taiwan funderid: 105‐2112‐M‐007‐016‐MY3; 105‐2628‐E‐007‐008‐MY3 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3732-293e45e318f1c34dcac319dc2ed74285025ea0d39534938d6b1e70d860fcde563 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 16:01:20 EDT 2025 Fri Jul 25 04:37:52 EDT 2025 Mon Jul 21 05:41:45 EDT 2025 Tue Jul 01 00:44:38 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Wed Jan 22 16:24:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | hybrid devices quantum yields perovskite quantum dots spray synthesis |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-293e45e318f1c34dcac319dc2ed74285025ea0d39534938d6b1e70d860fcde563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4216-7995 |
PMID | 29271524 |
PQID | 2001076388 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1979968920 proquest_journals_2001076388 pubmed_primary_29271524 crossref_primary_10_1002_adma_201705532 crossref_citationtrail_10_1002_adma_201705532 wiley_primary_10_1002_adma_201705532_ADMA201705532 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 15, 2018 |
PublicationDateYYYYMMDD | 2018-02-15 |
PublicationDate_xml | – month: 02 year: 2018 text: February 15, 2018 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2015; 6 2015; 347 2002; 33 2016; 10 2016; 52 2017; 29 2015; 9 2015; 7 2016; 15 2014; 136 1997; 9 2015; 350 2015; 27 2015; 137 2017; 38 2017; 11 2016; 113 2014; 13 2016; 29 2014; 9 2012; 6 2014; 8 2016; 28 2016; 26 2012; 338 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 Chen Z. (e_1_2_5_5_1) 2016; 29 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 7 start-page: 673 year: 2017 publication-title: Sci. Rep. – volume: 29 start-page: 1603885 year: 2017 publication-title: Adv. Mater. – volume: 350 start-page: 1222 year: 2015 publication-title: Science – volume: 15 start-page: 383 year: 2016 publication-title: Nat. Mater. – volume: 52 start-page: 3887 year: 2016 publication-title: Chem. Commun. – volume: 29 start-page: 1700579 year: 2017 publication-title: Adv. Mater. – volume: 136 start-page: 850 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 347 start-page: 519 year: 2015 publication-title: Science – volume: 29 start-page: 3793 year: 2017 publication-title: Chem. Mater. – volume: 29 start-page: 1605587 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 1657 year: 2012 publication-title: ACS Nano – volume: 9 start-page: 230 year: 1997 publication-title: Adv. Mater. – volume: 27 start-page: 1248 year: 2015 publication-title: Adv. Mater. – volume: 28 start-page: 8718 year: 2016 publication-title: Adv. Mater. – volume: 33 start-page: 369 year: 2002 publication-title: J. Aerosol Sci. – volume: 10 start-page: 5413 year: 2016 publication-title: ACS Nano – volume: 7 start-page: 25007 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 4533 year: 2015 publication-title: ACS Nano – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 347 start-page: 522 year: 2015 publication-title: Science – volume: 29 start-page: 1601959 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 133 year: 2014 publication-title: Nat. Photonics – volume: 6 start-page: 8238 year: 2015 publication-title: Nat. Commun. – volume: 9 start-page: 687 year: 2014 publication-title: Nat. Nanotechnol. – volume: 113 start-page: 11694 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 6623 year: 2016 publication-title: ACS Nano – volume: 28 start-page: 7515 year: 2016 publication-title: Adv. Mater. – volume: 7 start-page: 1700131 year: 2017 publication-title: Adv. Energy Mater. – volume: 137 start-page: 10276 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 51 year: 2017 publication-title: Nano Energy – volume: 11 start-page: 6586 year: 2017 publication-title: ACS Nano – volume: 13 start-page: 476 year: 2014 publication-title: Nat. Mater. – volume: 26 start-page: 4797 year: 2016 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1603157 year: 2016 publication-title: Adv. Mater. – ident: e_1_2_5_7_1 doi: 10.1038/nnano.2014.149 – ident: e_1_2_5_32_1 doi: 10.1002/adma.201603885 – ident: e_1_2_5_33_1 doi: 10.1002/adma.19970090308 – ident: e_1_2_5_17_1 doi: 10.1021/acsnano.6b01643 – ident: e_1_2_5_2_1 doi: 10.1038/nphoton.2013.342 – ident: e_1_2_5_21_1 doi: 10.1021/acs.chemmater.7b01100 – ident: e_1_2_5_6_1 doi: 10.1126/science.aad1818 – ident: e_1_2_5_29_1 doi: 10.1021/ja4109209 – ident: e_1_2_5_30_1 doi: 10.1126/science.aaa2725 – ident: e_1_2_5_19_1 doi: 10.1021/acsnano.5b01154 – ident: e_1_2_5_3_1 doi: 10.1126/science.aaa0472 – ident: e_1_2_5_12_1 doi: 10.1021/acsnano.6b07617 – ident: e_1_2_5_25_1 doi: 10.1016/S0021-8502(01)00159-8 – ident: e_1_2_5_28_1 doi: 10.1002/adma.201600784 – ident: e_1_2_5_24_1 doi: 10.1021/acsami.5b09084 – ident: e_1_2_5_13_1 doi: 10.1002/adma.201700579 – ident: e_1_2_5_20_1 doi: 10.1002/adfm.201601054 – ident: e_1_2_5_31_1 doi: 10.1021/nn204654h – ident: e_1_2_5_34_1 doi: 10.1002/aenm.201700131 – ident: e_1_2_5_27_1 doi: 10.1021/acsnano.6b01540 – ident: e_1_2_5_11_1 doi: 10.1016/j.nanoen.2017.05.002 – ident: e_1_2_5_18_1 doi: 10.1038/s41598-017-00778-5 – ident: e_1_2_5_23_1 doi: 10.1021/jacs.5b05602 – ident: e_1_2_5_10_1 doi: 10.1002/adma.201605587 – ident: e_1_2_5_8_1 doi: 10.1073/pnas.1607471113 – ident: e_1_2_5_4_1 doi: 10.1002/adma.201403751 – ident: e_1_2_5_15_1 doi: 10.1002/adma.201601959 – ident: e_1_2_5_22_1 doi: 10.1039/C5CC09762B – ident: e_1_2_5_9_1 doi: 10.1002/adma.201601369 – ident: e_1_2_5_16_1 doi: 10.1038/ncomms9238 – ident: e_1_2_5_26_1 doi: 10.1038/nmat4599 – ident: e_1_2_5_1_1 doi: 10.1126/science.1228604 – volume: 29 start-page: 1603157 year: 2016 ident: e_1_2_5_5_1 publication-title: Adv. Mater. doi: 10.1002/adma.201603157 – ident: e_1_2_5_14_1 doi: 10.1038/nmat3911 |
SSID | ssj0009606 |
Score | 2.559943 |
Snippet | In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of... In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Color Diodes Energy conversion efficiency hybrid devices Light emission Light emitting diodes Materials science Optoelectronics Organic light emitting diodes perovskite quantum dots Photoluminescence Pictures Quantum dots Quantum efficiency quantum yields Spray pyrolysis spray synthesis Synthesis Thin films |
Title | Perovskite Quantum Dots with Near Unity Solution and Neat‐Film Photoluminescent Quantum Yield by Novel Spray Synthesis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705532 https://www.ncbi.nlm.nih.gov/pubmed/29271524 https://www.proquest.com/docview/2001076388 https://www.proquest.com/docview/1979968920 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hnuDA-xEoyEhInNImfiTOcUVZVUhdlUelcooc2ysqtkm1SapuT_wEfiO_hJlkk3ZBCAluediOY8-MP4_HnwFeSVeIWGjasSzmodTGhplFWXZGzh0OWDL1tMH5YJbsH8l3x-r42i7-nh9idLiRZnT2mhTcFPXuFWmocR1vUEcHI8gIU8AWoaIPV_xRBM87sj2hwiyRemBtjPjuZvbNUek3qLmJXLuhZ3oHzFDpPuLk607bFDv28hc-x__5q7twe41L2aQXpHtww5f34dY1tsIHcHHol9V5Te5e9r7FHmlP2V7V1Ix8uWyGKsMIwa7Y4GpjpnT0vPnx7fv0ZHHKDr9UDVlDCrWnqNCxmM8UR8eKFZtV537BPp4tDRazKhGd1if1Qziavv30Zj9cH9wQWpEKHiKE8FKRd3UeWyGdNRY13VnuHc7EtUKc5U3kRKaEzIR2SRH7NHI6iebWeZWIR7BVVqV_Akxxi5BJOasyIyOdGuEkFmYRJ2IJtgggHDout2tWczpcY5H3fMw8pxbNxxYN4PWY_qzn8_hjyu1BDvK1Xtd0aCfOl9Fm6QBejq9RI2mZxZS-aus8ppXSRGc8CuBxLz_jp3jGU0RMMgDeScFf6pBP9g4m493Tf8n0DG7itaZA81htw1azbP1zxFFN8aLTlZ8pvhTx |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOQCH8g9pCxgJiVPaxD-Jc1yxrBborgq0Epwix_aKim1SbZKqy4lH6DP2SZhJNikLQkhwjGNPHHvG_jwefybkhbAZD7nCE8t85guljZ8Y0GWrxczChCVihwecJ9NofCTefpJdNCGehWn5IXqHG1pGM16jgaNDeu-KNVTbhjio4YPhMApfx2u90TaHH64YpBCgN3R7XPpJJFTH2xiwvfXy6_PSb2BzHbs2k8_oNsm6arcxJ1936yrbNd9-YXT8r_-6QzZX0JQOWl26S665_B659RNh4X1yfuAWxVmJHl_6voZOqU_osKhKiu5cOgWroQhil7TztlGdW0yvLr9fjI7nJ_TgS1HhgIjR9hgY2ov5jKF0NFvSaXHm5vTj6UKDmGUOALU8Lh-Qo9Hrw1djf3V3g294zJkPKMIJiQ7WWWi4sEYbMHZrmLOwGFcSoJbTgeWJ5CLhykZZ6OLAqiiYGetkxB-SjbzI3WNCJTOAmqQ1MtEiULHmVoAwA50NEkzmEb_rudSsiM3xfo152lIysxRbNO1b1CMv-_ynLaXHH3PudIqQrky7xHs7YckMw5byyPP-NRgl7rTo3BV1mYa4WRqphAUeedQqUP8plrAYQJPwCGvU4C91SAfDyaB_2vqXQs_IjfHhZD_dfzN9t01uQrrCuPNQ7pCNalG7JwCrquxpYzg_AGlEGQo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAcypumFDASEqe0iR9Z57hiWZVHV8ujUjlFju2IqttktUkqlhM_ob-xv4SZZJN2QQgJjnHsiWPP2J_H48-EvBA25SFXeGKZZ75Q2vixAV22WmQWJiwxcHjA-WAS7R-Kt0fy6Mop_pYfone4oWU04zUa-Nxme5ekodo2vEENHQyHQfi6iAKFy6_Rx0sCKcTnDdsel34cCdXRNgZsb738-rT0G9Zch67N3DO-TXRX6zbk5GS3rtJd8_0XQsf_-a07ZHMFTOmw1aS75JrL75FbV-gK75NvU7cozkr099IPNXRJfUpHRVVSdObSCdgMRQi7pJ2vjercYnp18eN8fDw7pdOvRYXDIcbaY1hoL-YLBtLRdEknxZmb0U_zhQYxyxzgaXlcPiCH49efX-37q5sbfMMHnPmAIZyQ6F7NQsOFNdqAqVvDnIWluJIAtJwOLI8lFzFXNkpDNwisioLMWCcj_pBs5EXutgiVzABmktbIWAvoYM2tAGEGgCJIMKlH_K7jErOiNcfbNWZJS8jMEmzRpG9Rj7zs889bQo8_5tzp9CBZGXaJt3bCghkGLeWR5_1rMEncZ9G5K-oyCXGrNFIxCzzyqNWf_lMsZgOATMIjrNGCv9QhGY4Ohv3T9r8UekZuTEfj5P2bybvH5CYkKww6D-UO2agWtXsCmKpKnzZm8xMioxfC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+Quantum+Dots+with+Near+Unity+Solution+and+Neat%E2%80%90Film+Photoluminescent+Quantum+Yield+by+Novel+Spray+Synthesis&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Dai%2C+Shu%E2%80%90Wen&rft.au=Hsu%2C+Bo%E2%80%90Wei&rft.au=Chen%2C+Chien%E2%80%90Yu&rft.au=Lee%2C+Chia%E2%80%90An&rft.date=2018-02-15&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=7&rft_id=info:doi/10.1002%2Fadma.201705532&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201705532 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |