Quantification of the Dynamic Interface Evolution in High‐Efficiency Working Li‐Metal Batteries

Lithium (Li) metal has been considered a promising anode for next‐generation high‐energy‐density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, a...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 13; pp. e202115602 - n/a
Main Authors Ding, Jun‐Fan, Xu, Rui, Ma, Xia‐Xia, Xiao, Ye, Yao, Yu‐Xing, Yan, Chong, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 21.03.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal has been considered a promising anode for next‐generation high‐energy‐density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li0 and SEI Li+ because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion‐derived SEI chemistry with a low amount of film‐forming additive. An optimal polymeric film enabler of 1,3‐dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li+/dead Li0 growth rates, thus achieving enhanced Li cycling reversibility. The fundamental interplay among Li dynamic loss behavior, electrolyte composition, and the structure of the solid electrolyte interphase (SEI) layer was quantitatively elucidated. The actual dominant form in inactive Li loss is determined by the relative growth rates of dead Li0 and SEI Li+ as the anode interface undergoes processive evolution during cycling. The mechanistic studies shed fresh light on the interfacial dynamics of the Li‐metal anode.
AbstractList Lithium (Li) metal has been considered a promising anode for next‐generation high‐energy‐density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li0 and SEI Li+ because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion‐derived SEI chemistry with a low amount of film‐forming additive. An optimal polymeric film enabler of 1,3‐dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li+/dead Li0 growth rates, thus achieving enhanced Li cycling reversibility. The fundamental interplay among Li dynamic loss behavior, electrolyte composition, and the structure of the solid electrolyte interphase (SEI) layer was quantitatively elucidated. The actual dominant form in inactive Li loss is determined by the relative growth rates of dead Li0 and SEI Li+ as the anode interface undergoes processive evolution during cycling. The mechanistic studies shed fresh light on the interfacial dynamics of the Li‐metal anode.
Lithium (Li) metal has been considered a promising anode for next-generation high-energy-density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li and SEI Li because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion-derived SEI chemistry with a low amount of film-forming additive. An optimal polymeric film enabler of 1,3-dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li /dead Li growth rates, thus achieving enhanced Li cycling reversibility.
Lithium (Li) metal has been considered a promising anode for next‐generation high‐energy‐density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li 0 and SEI Li + because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion‐derived SEI chemistry with a low amount of film‐forming additive. An optimal polymeric film enabler of 1,3‐dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li + /dead Li 0 growth rates, thus achieving enhanced Li cycling reversibility.
Lithium (Li) metal has been considered a promising anode for next-generation high-energy-density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li0 and SEI Li+ because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion-derived SEI chemistry with a low amount of film-forming additive. An optimal polymeric film enabler of 1,3-dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li+ /dead Li0 growth rates, thus achieving enhanced Li cycling reversibility.Lithium (Li) metal has been considered a promising anode for next-generation high-energy-density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li0 and SEI Li+ because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion-derived SEI chemistry with a low amount of film-forming additive. An optimal polymeric film enabler of 1,3-dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li+ /dead Li0 growth rates, thus achieving enhanced Li cycling reversibility.
Lithium (Li) metal has been considered a promising anode for next‐generation high‐energy‐density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li0 and SEI Li+ because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion‐derived SEI chemistry with a low amount of film‐forming additive. An optimal polymeric film enabler of 1,3‐dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li+/dead Li0 growth rates, thus achieving enhanced Li cycling reversibility.
Author Huang, Jia‐Qi
Xu, Rui
Xiao, Ye
Yao, Yu‐Xing
Ma, Xia‐Xia
Ding, Jun‐Fan
Yan, Chong
Author_xml – sequence: 1
  givenname: Jun‐Fan
  orcidid: 0000-0002-9042-0193
  surname: Ding
  fullname: Ding, Jun‐Fan
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Rui
  orcidid: 0000-0001-6439-8706
  surname: Xu
  fullname: Xu, Rui
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Xia‐Xia
  surname: Ma
  fullname: Ma, Xia‐Xia
  organization: Tsinghua University
– sequence: 4
  givenname: Ye
  orcidid: 0000-0001-9118-8931
  surname: Xiao
  fullname: Xiao, Ye
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Yu‐Xing
  orcidid: 0000-0001-6350-1206
  surname: Yao
  fullname: Yao, Yu‐Xing
  organization: Tsinghua University
– sequence: 6
  givenname: Chong
  orcidid: 0000-0001-9521-4981
  surname: Yan
  fullname: Yan, Chong
  organization: Tsinghua University
– sequence: 7
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34951089$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rVDEUhoO02A_dupSAGzd3mo97c3OXtY52YFQExWVIMidt6p2kTXKV2fkT_I39JU07rUJBXJ3D4XkOh_MeoJ0QAyD0gpIZJYQd6eBhxgijtBOEPUH7tGO04X3Pd2rfct70sqN76CDni8pLScRTtMfboaNEDvvIfp50KN55q4uPAUeHyzngt5ug197iRSiQnLaA5z_iON0hPuBTf3Z-_ev33FXPQ7Ab_C2m7z6c4aWv8w9Q9Ijf6FJlD_kZ2nV6zPD8vh6ir-_mX05Om-Wn94uT42Vjec9Zw6Qw0hJnVoa1mkhKjKRG9A7oCjraWspb0g49M8QIYxh3AozmbqUH6wz0_BC93u69TPFqglzU2mcL46gDxCkrJmjL2MBoV9FXj9CLOKVQr6sUlz0hQpBKvbynJrOGlbpMfq3TRj28rwLtFrAp5pzAKevL3SNL0n5UlKjblNRtSupPSlWbPdIeNv9TGLbCTz_C5j-0Ov64mP91bwD1WaZ2
CitedBy_id crossref_primary_10_1039_D3TA08019F
crossref_primary_10_1016_j_ensm_2023_103096
crossref_primary_10_1021_jacs_1c13213
crossref_primary_10_1016_j_ensm_2024_103258
crossref_primary_10_1021_acsnano_4c13280
crossref_primary_10_1007_s40820_023_01205_3
crossref_primary_10_1039_D2SE00587E
crossref_primary_10_1016_j_jechem_2022_06_010
crossref_primary_10_1021_acsami_2c01716
crossref_primary_10_1039_D2CP04787J
crossref_primary_10_1002_aenm_202300959
crossref_primary_10_1016_j_ensm_2023_01_037
crossref_primary_10_1002_adfm_202404495
crossref_primary_10_1039_D3TA01715J
crossref_primary_10_1002_anie_202218229
crossref_primary_10_1002_smll_202412259
crossref_primary_10_3389_fenrg_2022_945003
crossref_primary_10_1016_j_jcis_2023_03_191
crossref_primary_10_1016_j_xcrp_2023_101379
crossref_primary_10_1021_acs_iecr_3c02202
crossref_primary_10_1016_j_jpowsour_2025_236495
crossref_primary_10_1002_ange_202205697
crossref_primary_10_1039_D2SE01529C
crossref_primary_10_1039_D2TA08703K
crossref_primary_10_1002_aenm_202303726
crossref_primary_10_1002_cphc_202300835
crossref_primary_10_1021_acsami_2c11380
crossref_primary_10_1016_j_ensm_2022_06_003
crossref_primary_10_1016_j_jechem_2023_08_007
crossref_primary_10_1016_j_est_2024_112363
crossref_primary_10_1039_D3EE03073C
crossref_primary_10_1016_j_cej_2022_140144
crossref_primary_10_1021_acsnano_4c14459
crossref_primary_10_1039_D3MH00403A
crossref_primary_10_1002_aenm_202302565
crossref_primary_10_1002_aenm_202304502
crossref_primary_10_1016_j_jcis_2022_07_142
crossref_primary_10_1002_chem_202302773
crossref_primary_10_1007_s42864_023_00231_3
crossref_primary_10_1016_j_xcrp_2023_101324
crossref_primary_10_1039_D2QM00481J
crossref_primary_10_1002_smll_202305055
crossref_primary_10_1002_anie_202205697
crossref_primary_10_1021_acsenergylett_2c02240
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1007_s12274_023_5761_4
crossref_primary_10_1016_j_nxmate_2024_100468
crossref_primary_10_1021_acsnano_2c11300
crossref_primary_10_1002_smll_202206616
crossref_primary_10_1016_j_ensm_2023_01_016
crossref_primary_10_1002_adma_202210826
crossref_primary_10_1002_aenm_202203770
crossref_primary_10_1016_j_carbon_2022_12_034
crossref_primary_10_1002_aenm_202303189
crossref_primary_10_1021_acssuschemeng_4c03560
crossref_primary_10_1002_aenm_202402609
crossref_primary_10_1016_j_jechem_2023_01_063
crossref_primary_10_1016_j_cej_2023_148105
crossref_primary_10_1021_acs_iecr_4c01846
crossref_primary_10_1016_j_electacta_2024_145394
crossref_primary_10_1039_D4EE04282D
crossref_primary_10_1039_D4TA05871B
crossref_primary_10_1002_smll_202407395
crossref_primary_10_1007_s40843_022_2154_8
crossref_primary_10_1002_aenm_202204305
crossref_primary_10_1002_smll_202401100
crossref_primary_10_1002_ange_202218229
crossref_primary_10_1016_j_jcis_2024_10_127
crossref_primary_10_1002_inf2_12402
crossref_primary_10_1021_acsami_2c12497
crossref_primary_10_1007_s11426_022_1323_8
crossref_primary_10_1016_j_ensm_2022_11_021
crossref_primary_10_1016_j_mtener_2023_101272
crossref_primary_10_1016_j_cej_2023_148021
crossref_primary_10_1016_j_est_2023_109279
crossref_primary_10_1016_j_jechem_2022_09_040
crossref_primary_10_1002_aenm_202304321
crossref_primary_10_1039_D2NR07194K
crossref_primary_10_1021_acsami_2c14637
Cites_doi 10.1016/j.scib.2021.05.002
10.34133/2021/1205324
10.1038/s41560-020-0640-7
10.1021/acs.chemmater.5b01627
10.1002/anie.202016240
10.1002/smsc.202100058
10.1039/D1EE00531F
10.1021/acsami.1c08944
10.1126/sciadv.aau5655
10.1021/jacs.1c06794
10.1016/j.joule.2018.05.002
10.1002/sus2.4
10.1039/C3EE40795K
10.1002/adma.201706102
10.1002/nano.202000003
10.1016/j.jechem.2020.11.016
10.1021/acs.nanolett.0c01400
10.1002/inf2.12000
10.1002/anie.202013271
10.1002/ange.202016240
10.1002/aenm.201902116
10.1021/jacs.8b03408
10.1021/acsenergylett.8b00935
10.1002/ange.202013271
10.1039/C9CS00728H
10.1021/acsenergylett.9b00539
10.1002/adfm.202102128
10.1073/pnas.2020357118
10.1038/s41557-018-0203-8
10.1039/C6EE01674J
10.1021/la501368y
10.1002/adma.202100404
10.1039/C8EE01286E
10.1016/j.joule.2018.08.004
10.1016/j.matt.2019.05.016
10.1038/s41586-019-1481-z
10.1038/s41557-019-0304-z
10.1038/s41565-019-0618-4
10.1021/acs.nanolett.8b04906
10.1021/acsenergylett.0c00859
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202115602
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 34951089
10_1002_anie_202115602
ANIE202115602
Genre article
Journal Article
GrantInformation_xml – fundername: ShanXi Science and Technology Department
  funderid: 20191102003
– fundername: Natural Science Foundation of Beijing Municipality
  funderid: JQ20004
– fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2021YFB2400300
– fundername: Natural Science Foundation of Beijing Municipality
  grantid: JQ20004
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2021YFB2400300
– fundername: ShanXi Science and Technology Department
  grantid: 20191102003
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3732-286b8c0fbdb24a0810b81b67fe1de514c13404972b0b6bb23f6eba3fda9cfbe73
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 08:41:00 EDT 2025
Fri Jul 25 10:29:44 EDT 2025
Thu Apr 03 07:09:04 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Tue Jul 01 01:18:14 EDT 2025
Wed Jun 11 08:25:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Solid Electrolyte Interphase
Inactive Li Growth
Li Metal Batteries
Dynamic Interface Evolution
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-286b8c0fbdb24a0810b81b67fe1de514c13404972b0b6bb23f6eba3fda9cfbe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9118-8931
0000-0001-7394-9186
0000-0002-9042-0193
0000-0001-6439-8706
0000-0001-9521-4981
0000-0001-6350-1206
PMID 34951089
PQID 2638700660
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2614229215
proquest_journals_2638700660
pubmed_primary_34951089
crossref_citationtrail_10_1002_anie_202115602
crossref_primary_10_1002_anie_202115602
wiley_primary_10_1002_anie_202115602_ANIE202115602
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 21, 2022
PublicationDateYYYYMMDD 2022-03-21
PublicationDate_xml – month: 03
  year: 2022
  text: March 21, 2022
  day: 21
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2019; 4
2021; 21
2018; 140
2019; 5
2021; 66
2020; 20
2019; 11
2019; 1
2019; 19
2020; 15
2021; 143
2021; 1
2021; 14
2021; 13
2020; 5
2021; 59
2018; 3
2021; 31
2018; 2
2015; 27
2020; 1
2021; 33
2021; 118
2020; 49
2021 2021; 60 133
2018; 30
2014; 30
2018; 11
2014; 7
2016; 9
2021; 2021
2019; 572
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_1_1
e_1_2_7_41_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_28_1
e_1_2_7_49_2
Xie M. (e_1_2_7_50_2) 2021; 21
e_1_2_7_52_2
e_1_2_7_25_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_1
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_44_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_51_1
e_1_2_7_24_3
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_34_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_2
References_xml – volume: 1
  start-page: 38
  year: 2021
  end-page: 50
  publication-title: SusMat
– volume: 3
  start-page: 2059
  year: 2018
  end-page: 2067
  publication-title: ACS Energy Lett.
– volume: 20
  start-page: 4029
  year: 2020
  end-page: 4037
  publication-title: Nano Lett.
– volume: 21
  year: 2021
  publication-title: Mater. Today
– volume: 5
  start-page: 534
  year: 2020
  end-page: 542
  publication-title: Nat. Energy
– volume: 1
  year: 2021
  publication-title: Small Sci.
– volume: 14
  start-page: 4177
  year: 2021
  end-page: 4202
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 7414
  year: 2014
  end-page: 7424
  publication-title: Langmuir
– volume: 143
  start-page: 13929
  year: 2021
  end-page: 13936
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 317
  year: 2019
  end-page: 344
  publication-title: Matter
– volume: 1
  start-page: 94
  year: 2020
  end-page: 110
  publication-title: Nano Select
– volume: 2021
  year: 2021
  publication-title: Energy Mater. Adv.
– volume: 11
  start-page: 382
  year: 2019
  end-page: 389
  publication-title: Nat. Chem.
– volume: 140
  start-page: 9854
  year: 2018
  end-page: 9867
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 1326
  year: 2019
  end-page: 1335
  publication-title: Nano Lett.
– volume: 13
  start-page: 35750
  year: 2021
  end-page: 35758
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1548
  year: 2018
  end-page: 1558
  publication-title: Joule
– volume: 4
  start-page: 1271
  year: 2019
  end-page: 1278
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 2306
  year: 2018
  end-page: 2309
  publication-title: Energy Environ. Sci.
– volume: 59
  start-page: 306
  year: 2021
  end-page: 319
  publication-title: J. Energy Chem.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 27
  start-page: 5531
  year: 2015
  end-page: 5542
  publication-title: Chem. Mater.
– volume: 7
  start-page: 513
  year: 2014
  end-page: 537
  publication-title: Energy Environ. Sci.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 572
  start-page: 511
  year: 2019
  end-page: 515
  publication-title: Nature
– volume: 60 133
  start-page: 4215 4261
  year: 2021 2021
  end-page: 4220 4266
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 11
  start-page: 789
  year: 2019
  end-page: 796
  publication-title: Nat. Chem.
– volume: 60 133
  start-page: 11359 11460
  year: 2021 2021
  end-page: 11369 11470
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 66
  start-page: 1754
  year: 2021
  end-page: 1763
  publication-title: Sci. Bull.
– volume: 9
  start-page: 3221
  year: 2016
  end-page: 3229
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 6
  year: 2019
  end-page: 32
  publication-title: InfoMat
– volume: 5
  start-page: 2045
  year: 2020
  end-page: 2051
  publication-title: ACS Energy Lett.
– volume: 49
  start-page: 3806
  year: 2020
  end-page: 3833
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 224
  year: 2020
  end-page: 230
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 2167
  year: 2018
  end-page: 2177
  publication-title: Joule
– ident: e_1_2_7_52_2
  doi: 10.1016/j.scib.2021.05.002
– ident: e_1_2_7_9_2
  doi: 10.34133/2021/1205324
– ident: e_1_2_7_14_2
  doi: 10.1038/s41560-020-0640-7
– ident: e_1_2_7_47_2
  doi: 10.1021/acs.chemmater.5b01627
– ident: e_1_2_7_24_2
  doi: 10.1002/anie.202016240
– ident: e_1_2_7_51_1
– ident: e_1_2_7_18_2
  doi: 10.1002/smsc.202100058
– ident: e_1_2_7_25_1
– ident: e_1_2_7_8_2
  doi: 10.1039/D1EE00531F
– ident: e_1_2_7_17_2
  doi: 10.1021/acsami.1c08944
– ident: e_1_2_7_22_2
  doi: 10.1126/sciadv.aau5655
– ident: e_1_2_7_12_2
  doi: 10.1021/jacs.1c06794
– ident: e_1_2_7_33_2
  doi: 10.1016/j.joule.2018.05.002
– ident: e_1_2_7_2_2
  doi: 10.1002/sus2.4
– ident: e_1_2_7_4_1
– ident: e_1_2_7_6_2
  doi: 10.1039/C3EE40795K
– ident: e_1_2_7_34_2
  doi: 10.1002/adma.201706102
– ident: e_1_2_7_5_2
  doi: 10.1002/nano.202000003
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jechem.2020.11.016
– ident: e_1_2_7_27_2
  doi: 10.1021/acs.nanolett.0c01400
– ident: e_1_2_7_3_2
  doi: 10.1002/inf2.12000
– ident: e_1_2_7_10_1
– ident: e_1_2_7_16_1
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.202013271
– ident: e_1_2_7_24_3
  doi: 10.1002/ange.202016240
– ident: e_1_2_7_44_2
  doi: 10.1002/aenm.201902116
– ident: e_1_2_7_13_1
– ident: e_1_2_7_21_1
– ident: e_1_2_7_48_2
  doi: 10.1021/jacs.8b03408
– ident: e_1_2_7_32_1
– ident: e_1_2_7_46_1
– ident: e_1_2_7_43_1
– ident: e_1_2_7_29_2
  doi: 10.1021/acsenergylett.8b00935
– volume: 21
  year: 2021
  ident: e_1_2_7_50_2
  publication-title: Mater. Today
– ident: e_1_2_7_37_1
– ident: e_1_2_7_19_2
  doi: 10.1002/ange.202013271
– ident: e_1_2_7_11_2
  doi: 10.1039/C9CS00728H
– ident: e_1_2_7_26_2
  doi: 10.1021/acsenergylett.9b00539
– ident: e_1_2_7_30_2
  doi: 10.1002/adfm.202102128
– ident: e_1_2_7_40_1
– ident: e_1_2_7_28_1
– ident: e_1_2_7_31_2
  doi: 10.1073/pnas.2020357118
– ident: e_1_2_7_15_2
  doi: 10.1038/s41557-018-0203-8
– ident: e_1_2_7_45_2
  doi: 10.1039/C6EE01674J
– ident: e_1_2_7_1_1
– ident: e_1_2_7_49_2
  doi: 10.1021/la501368y
– ident: e_1_2_7_7_1
– ident: e_1_2_7_53_2
  doi: 10.1002/adma.202100404
– ident: e_1_2_7_54_1
  doi: 10.1039/C8EE01286E
– ident: e_1_2_7_41_2
  doi: 10.1016/j.joule.2018.08.004
– ident: e_1_2_7_38_2
  doi: 10.1016/j.matt.2019.05.016
– ident: e_1_2_7_36_1
  doi: 10.1038/s41586-019-1481-z
– ident: e_1_2_7_39_2
  doi: 10.1038/s41557-019-0304-z
– ident: e_1_2_7_42_2
  doi: 10.1038/s41565-019-0618-4
– ident: e_1_2_7_23_2
  doi: 10.1021/acs.nanolett.8b04906
– ident: e_1_2_7_35_1
  doi: 10.1021/acsenergylett.0c00859
SSID ssj0028806
Score 2.6443753
Snippet Lithium (Li) metal has been considered a promising anode for next‐generation high‐energy‐density batteries. However, the low reversibility and intricate Li...
Lithium (Li) metal has been considered a promising anode for next-generation high-energy-density batteries. However, the low reversibility and intricate Li...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202115602
SubjectTerms Cycles
Dynamic Interface Evolution
Electrolytes
Evolution
Growth rate
Inactive Li Growth
Li Metal Batteries
Lithium
Lithium batteries
Metals
Multilayers
Polymer films
Solid Electrolyte Interphase
Solid electrolytes
Title Quantification of the Dynamic Interface Evolution in High‐Efficiency Working Li‐Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202115602
https://www.ncbi.nlm.nih.gov/pubmed/34951089
https://www.proquest.com/docview/2638700660
https://www.proquest.com/docview/2614229215
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VXOillJafFKhcqVJPhqydtZMjgkW0apFagcQt8jiOhEBZVHZ76KmPwDPyJMzESdqlqirBMYmtOJ6x_c1k5huA93mo85H3RvrCeJlVykn0XsmA1o1zVTA7JEdbnJjjs-zT-fj8jyz-yA8xONx4ZbT7NS9whzd7v0lDOQOb7DsyYOjQ5k2YA7YYFX0b-KMUKWdML9JachX6nrUxVXuL3RdPpb-g5iJybY-eoxVw_aBjxMnl7nyGu_7nAz7Hp3zVS3jR4VKxHxVpFZ6F5hUsH_Tl4F6D_zp3MbColaWY1oKwoziMFe1F61msnQ9i8qPTZnHRCA4juft1O2mJKjjLU3TeefH5gu5_CYT9ReT4JJN9Dc6OJqcHx7Kr0CC9tprzug3mPq2xQpU5QhcpEgw2tg6jKhAU8yOdkQliFaZoEJWuTUCn68oVvsZg9TosNdMmbILIKjd2KrWF02TjVRqNSS2OHeHTYL3DBGQvodJ39OVcReOqjMTLquSpK4epS-DD0P46Enf8s-V2L_CyW8A3paJ9yTIeSxN4NzymKef_Ka4J0zm3YQdaQaApgY2oKMOrdMbQNS8SUK24_zOGcv_k42S4evOYTlvwXHFqRqqlGm3D0uz7POwQYJrh23ZR3AM1YQ5m
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8CBYwE4uQ2a2ft5MCh6m61S7crgVqpt2A7jrQCsojdBZUTj8Cr8Co8Ak_CTJwELQghIfXAMYmTOPaM_c1k5huAx6kv055zirtMOZ4UwnDrnODeatNPRUbskBRtMVWjk-T5af90A762uTCBH6JzuJFm1Os1KTg5pHd_soZSCjYaeGjB4K4tmrjKQ3_2Ea22xbPxAKf4iRAHw-P9EW8KC3AntaR0ZGVTF5e2sCIxuCnGFtGb0qXvFR4RhOvJBJGzFja2ylohS-WtkWVhMldaryU-9wJcpDLiRNc_eNkxVglUh5DQJCWnuvctT2Qsdtf7u74P_gZu17FyvdkdXIFv7TCFGJfXO6ul3XGffmGQ_K_G8SpcbqA32wu6cg02fHUdtvbbinc3wL1YmRA7VYsrm5cM4TEbnFXm7cyx2nlaGufZ8EOjsGxWMYqU-f75y7Dm4qBEVtb8gGCTGZ4_8mjesEBjOvOLm3ByLt94CzareeXvAEsK0zci1pmRaMYW0ioVa9s3CMG9dsZGwFuRyF3D0E6FQt7kgVta5DRVeTdVETzt2r8L3CR_bLndSljerFGLXODSqwlyxhE86i7jkNMvI1P5-YrakI8wQ1wYwe0gmd2rZELoPM0iELV8_aUP-d50POyO7v7LTQ9ha3R8NMkn4-nhPbgkKBMlllz0tmFz-X7l7yM-XNoHtUYyeHXeovsDpOxuHw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8CBYwE4uTWa2ft5MCh6u6qS8sKEJV6C7ZjSysgW7G7oHLiEXiUvkpfgSdhHCdBC0JISD1wTOIkjj3j-caZ-QbgceZ81rNWUptLS9OSa2qs5dQZpfsZzwM7ZIi2mMjdg_T5Yf9wDU7aXJjID9FtuAXNqNfroOBHpd_6SRoaMrDRv0MHBo02b8Iq99zxZ3Ta5s_GA5zhJ5yPhm92dmlTV4BaoUTIRpYms8yb0vBUo01kBsGbVN71SocAwvZEisBZccOMNIYLL53Rwpc6t944JfC55-B8KlkeikUMXneEVRy1IeYzCUFD2fuWJpLxrdX-rprB37DtKlSubd3oCpy2oxRDXN5tLhdm0375hUDyfxrGq3C5Ad5kO2rKNVhz1XW4uNPWu7sB9tVSx8ipWljJzBMEx2RwXOkPU0vqrVOvrSPDT426kmlFQpzM96_fhjUTR0hjJc3vB7I_xfMvHDo3JJKYTt38JhycyTfegvVqVrk7QNJS9zVnKtcCndhSGCmZMn2NANwpq00CtJWIwjb87KFMyPsiMkvzIkxV0U1VAk-79keRmeSPLTdaASuaFWpecFx4VQCcLIFH3WUc8vDDSFdutgxtwg5hjqgwgdtRMLtXiTRg8yxPgNfi9Zc-FNuT8bA7uvsvNz2ECy8Ho2J_PNm7B5d4SENhgvLeBqwvPi7dfQSHC_Og1kcCb89acn8A1xZszg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+the+Dynamic+Interface+Evolution+in+High%E2%80%90Efficiency+Working+Li%E2%80%90Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jun%E2%80%90Fan+Ding&rft.au=Xu%2C+Rui&rft.au=Xia%E2%80%90Xia+Ma&rft.au=Ye%2C+Xiao&rft.date=2022-03-21&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=13&rft_id=info:doi/10.1002%2Fanie.202115602&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon