Quantification of the Dynamic Interface Evolution in High‐Efficiency Working Li‐Metal Batteries
Lithium (Li) metal has been considered a promising anode for next‐generation high‐energy‐density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, a...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 13; pp. e202115602 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
21.03.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal has been considered a promising anode for next‐generation high‐energy‐density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li0 and SEI Li+ because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion‐derived SEI chemistry with a low amount of film‐forming additive. An optimal polymeric film enabler of 1,3‐dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li+/dead Li0 growth rates, thus achieving enhanced Li cycling reversibility.
The fundamental interplay among Li dynamic loss behavior, electrolyte composition, and the structure of the solid electrolyte interphase (SEI) layer was quantitatively elucidated. The actual dominant form in inactive Li loss is determined by the relative growth rates of dead Li0 and SEI Li+ as the anode interface undergoes processive evolution during cycling. The mechanistic studies shed fresh light on the interfacial dynamics of the Li‐metal anode. |
---|---|
AbstractList | Lithium (Li) metal has been considered a promising anode for next‐generation high‐energy‐density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li0 and SEI Li+ because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion‐derived SEI chemistry with a low amount of film‐forming additive. An optimal polymeric film enabler of 1,3‐dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li+/dead Li0 growth rates, thus achieving enhanced Li cycling reversibility.
The fundamental interplay among Li dynamic loss behavior, electrolyte composition, and the structure of the solid electrolyte interphase (SEI) layer was quantitatively elucidated. The actual dominant form in inactive Li loss is determined by the relative growth rates of dead Li0 and SEI Li+ as the anode interface undergoes processive evolution during cycling. The mechanistic studies shed fresh light on the interfacial dynamics of the Li‐metal anode. Lithium (Li) metal has been considered a promising anode for next-generation high-energy-density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li and SEI Li because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion-derived SEI chemistry with a low amount of film-forming additive. An optimal polymeric film enabler of 1,3-dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li /dead Li growth rates, thus achieving enhanced Li cycling reversibility. Lithium (Li) metal has been considered a promising anode for next‐generation high‐energy‐density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li 0 and SEI Li + because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion‐derived SEI chemistry with a low amount of film‐forming additive. An optimal polymeric film enabler of 1,3‐dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li + /dead Li 0 growth rates, thus achieving enhanced Li cycling reversibility. Lithium (Li) metal has been considered a promising anode for next-generation high-energy-density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li0 and SEI Li+ because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion-derived SEI chemistry with a low amount of film-forming additive. An optimal polymeric film enabler of 1,3-dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li+ /dead Li0 growth rates, thus achieving enhanced Li cycling reversibility.Lithium (Li) metal has been considered a promising anode for next-generation high-energy-density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li0 and SEI Li+ because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion-derived SEI chemistry with a low amount of film-forming additive. An optimal polymeric film enabler of 1,3-dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li+ /dead Li0 growth rates, thus achieving enhanced Li cycling reversibility. Lithium (Li) metal has been considered a promising anode for next‐generation high‐energy‐density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li0 and SEI Li+ because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion‐derived SEI chemistry with a low amount of film‐forming additive. An optimal polymeric film enabler of 1,3‐dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li+/dead Li0 growth rates, thus achieving enhanced Li cycling reversibility. |
Author | Huang, Jia‐Qi Xu, Rui Xiao, Ye Yao, Yu‐Xing Ma, Xia‐Xia Ding, Jun‐Fan Yan, Chong |
Author_xml | – sequence: 1 givenname: Jun‐Fan orcidid: 0000-0002-9042-0193 surname: Ding fullname: Ding, Jun‐Fan organization: Beijing Institute of Technology – sequence: 2 givenname: Rui orcidid: 0000-0001-6439-8706 surname: Xu fullname: Xu, Rui organization: Beijing Institute of Technology – sequence: 3 givenname: Xia‐Xia surname: Ma fullname: Ma, Xia‐Xia organization: Tsinghua University – sequence: 4 givenname: Ye orcidid: 0000-0001-9118-8931 surname: Xiao fullname: Xiao, Ye organization: Beijing Institute of Technology – sequence: 5 givenname: Yu‐Xing orcidid: 0000-0001-6350-1206 surname: Yao fullname: Yao, Yu‐Xing organization: Tsinghua University – sequence: 6 givenname: Chong orcidid: 0000-0001-9521-4981 surname: Yan fullname: Yan, Chong organization: Tsinghua University – sequence: 7 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34951089$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rVDEUhoO02A_dupSAGzd3mo97c3OXtY52YFQExWVIMidt6p2kTXKV2fkT_I39JU07rUJBXJ3D4XkOh_MeoJ0QAyD0gpIZJYQd6eBhxgijtBOEPUH7tGO04X3Pd2rfct70sqN76CDni8pLScRTtMfboaNEDvvIfp50KN55q4uPAUeHyzngt5ug197iRSiQnLaA5z_iON0hPuBTf3Z-_ev33FXPQ7Ab_C2m7z6c4aWv8w9Q9Ijf6FJlD_kZ2nV6zPD8vh6ir-_mX05Om-Wn94uT42Vjec9Zw6Qw0hJnVoa1mkhKjKRG9A7oCjraWspb0g49M8QIYxh3AozmbqUH6wz0_BC93u69TPFqglzU2mcL46gDxCkrJmjL2MBoV9FXj9CLOKVQr6sUlz0hQpBKvbynJrOGlbpMfq3TRj28rwLtFrAp5pzAKevL3SNL0n5UlKjblNRtSupPSlWbPdIeNv9TGLbCTz_C5j-0Ov64mP91bwD1WaZ2 |
CitedBy_id | crossref_primary_10_1039_D3TA08019F crossref_primary_10_1016_j_ensm_2023_103096 crossref_primary_10_1021_jacs_1c13213 crossref_primary_10_1016_j_ensm_2024_103258 crossref_primary_10_1021_acsnano_4c13280 crossref_primary_10_1007_s40820_023_01205_3 crossref_primary_10_1039_D2SE00587E crossref_primary_10_1016_j_jechem_2022_06_010 crossref_primary_10_1021_acsami_2c01716 crossref_primary_10_1039_D2CP04787J crossref_primary_10_1002_aenm_202300959 crossref_primary_10_1016_j_ensm_2023_01_037 crossref_primary_10_1002_adfm_202404495 crossref_primary_10_1039_D3TA01715J crossref_primary_10_1002_anie_202218229 crossref_primary_10_1002_smll_202412259 crossref_primary_10_3389_fenrg_2022_945003 crossref_primary_10_1016_j_jcis_2023_03_191 crossref_primary_10_1016_j_xcrp_2023_101379 crossref_primary_10_1021_acs_iecr_3c02202 crossref_primary_10_1016_j_jpowsour_2025_236495 crossref_primary_10_1002_ange_202205697 crossref_primary_10_1039_D2SE01529C crossref_primary_10_1039_D2TA08703K crossref_primary_10_1002_aenm_202303726 crossref_primary_10_1002_cphc_202300835 crossref_primary_10_1021_acsami_2c11380 crossref_primary_10_1016_j_ensm_2022_06_003 crossref_primary_10_1016_j_jechem_2023_08_007 crossref_primary_10_1016_j_est_2024_112363 crossref_primary_10_1039_D3EE03073C crossref_primary_10_1016_j_cej_2022_140144 crossref_primary_10_1021_acsnano_4c14459 crossref_primary_10_1039_D3MH00403A crossref_primary_10_1002_aenm_202302565 crossref_primary_10_1002_aenm_202304502 crossref_primary_10_1016_j_jcis_2022_07_142 crossref_primary_10_1002_chem_202302773 crossref_primary_10_1007_s42864_023_00231_3 crossref_primary_10_1016_j_xcrp_2023_101324 crossref_primary_10_1039_D2QM00481J crossref_primary_10_1002_smll_202305055 crossref_primary_10_1002_anie_202205697 crossref_primary_10_1021_acsenergylett_2c02240 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1007_s12274_023_5761_4 crossref_primary_10_1016_j_nxmate_2024_100468 crossref_primary_10_1021_acsnano_2c11300 crossref_primary_10_1002_smll_202206616 crossref_primary_10_1016_j_ensm_2023_01_016 crossref_primary_10_1002_adma_202210826 crossref_primary_10_1002_aenm_202203770 crossref_primary_10_1016_j_carbon_2022_12_034 crossref_primary_10_1002_aenm_202303189 crossref_primary_10_1021_acssuschemeng_4c03560 crossref_primary_10_1002_aenm_202402609 crossref_primary_10_1016_j_jechem_2023_01_063 crossref_primary_10_1016_j_cej_2023_148105 crossref_primary_10_1021_acs_iecr_4c01846 crossref_primary_10_1016_j_electacta_2024_145394 crossref_primary_10_1039_D4EE04282D crossref_primary_10_1039_D4TA05871B crossref_primary_10_1002_smll_202407395 crossref_primary_10_1007_s40843_022_2154_8 crossref_primary_10_1002_aenm_202204305 crossref_primary_10_1002_smll_202401100 crossref_primary_10_1002_ange_202218229 crossref_primary_10_1016_j_jcis_2024_10_127 crossref_primary_10_1002_inf2_12402 crossref_primary_10_1021_acsami_2c12497 crossref_primary_10_1007_s11426_022_1323_8 crossref_primary_10_1016_j_ensm_2022_11_021 crossref_primary_10_1016_j_mtener_2023_101272 crossref_primary_10_1016_j_cej_2023_148021 crossref_primary_10_1016_j_est_2023_109279 crossref_primary_10_1016_j_jechem_2022_09_040 crossref_primary_10_1002_aenm_202304321 crossref_primary_10_1039_D2NR07194K crossref_primary_10_1021_acsami_2c14637 |
Cites_doi | 10.1016/j.scib.2021.05.002 10.34133/2021/1205324 10.1038/s41560-020-0640-7 10.1021/acs.chemmater.5b01627 10.1002/anie.202016240 10.1002/smsc.202100058 10.1039/D1EE00531F 10.1021/acsami.1c08944 10.1126/sciadv.aau5655 10.1021/jacs.1c06794 10.1016/j.joule.2018.05.002 10.1002/sus2.4 10.1039/C3EE40795K 10.1002/adma.201706102 10.1002/nano.202000003 10.1016/j.jechem.2020.11.016 10.1021/acs.nanolett.0c01400 10.1002/inf2.12000 10.1002/anie.202013271 10.1002/ange.202016240 10.1002/aenm.201902116 10.1021/jacs.8b03408 10.1021/acsenergylett.8b00935 10.1002/ange.202013271 10.1039/C9CS00728H 10.1021/acsenergylett.9b00539 10.1002/adfm.202102128 10.1073/pnas.2020357118 10.1038/s41557-018-0203-8 10.1039/C6EE01674J 10.1021/la501368y 10.1002/adma.202100404 10.1039/C8EE01286E 10.1016/j.joule.2018.08.004 10.1016/j.matt.2019.05.016 10.1038/s41586-019-1481-z 10.1038/s41557-019-0304-z 10.1038/s41565-019-0618-4 10.1021/acs.nanolett.8b04906 10.1021/acsenergylett.0c00859 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202115602 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 34951089 10_1002_anie_202115602 ANIE202115602 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: ShanXi Science and Technology Department funderid: 20191102003 – fundername: Natural Science Foundation of Beijing Municipality funderid: JQ20004 – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2021YFB2400300 – fundername: Natural Science Foundation of Beijing Municipality grantid: JQ20004 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2021YFB2400300 – fundername: ShanXi Science and Technology Department grantid: 20191102003 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3732-286b8c0fbdb24a0810b81b67fe1de514c13404972b0b6bb23f6eba3fda9cfbe73 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 08:41:00 EDT 2025 Fri Jul 25 10:29:44 EDT 2025 Thu Apr 03 07:09:04 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Tue Jul 01 01:18:14 EDT 2025 Wed Jun 11 08:25:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Solid Electrolyte Interphase Inactive Li Growth Li Metal Batteries Dynamic Interface Evolution |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-286b8c0fbdb24a0810b81b67fe1de514c13404972b0b6bb23f6eba3fda9cfbe73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9118-8931 0000-0001-7394-9186 0000-0002-9042-0193 0000-0001-6439-8706 0000-0001-9521-4981 0000-0001-6350-1206 |
PMID | 34951089 |
PQID | 2638700660 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2614229215 proquest_journals_2638700660 pubmed_primary_34951089 crossref_citationtrail_10_1002_anie_202115602 crossref_primary_10_1002_anie_202115602 wiley_primary_10_1002_anie_202115602_ANIE202115602 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 21, 2022 |
PublicationDateYYYYMMDD | 2022-03-21 |
PublicationDate_xml | – month: 03 year: 2022 text: March 21, 2022 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2019; 4 2021; 21 2018; 140 2019; 5 2021; 66 2020; 20 2019; 11 2019; 1 2019; 19 2020; 15 2021; 143 2021; 1 2021; 14 2021; 13 2020; 5 2021; 59 2018; 3 2021; 31 2018; 2 2015; 27 2020; 1 2021; 33 2021; 118 2020; 49 2021 2021; 60 133 2018; 30 2014; 30 2018; 11 2014; 7 2016; 9 2021; 2021 2019; 572 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_1_1 e_1_2_7_41_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_28_1 e_1_2_7_49_2 Xie M. (e_1_2_7_50_2) 2021; 21 e_1_2_7_52_2 e_1_2_7_25_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_1 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_44_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_51_1 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_34_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_2 |
References_xml | – volume: 1 start-page: 38 year: 2021 end-page: 50 publication-title: SusMat – volume: 3 start-page: 2059 year: 2018 end-page: 2067 publication-title: ACS Energy Lett. – volume: 20 start-page: 4029 year: 2020 end-page: 4037 publication-title: Nano Lett. – volume: 21 year: 2021 publication-title: Mater. Today – volume: 5 start-page: 534 year: 2020 end-page: 542 publication-title: Nat. Energy – volume: 1 year: 2021 publication-title: Small Sci. – volume: 14 start-page: 4177 year: 2021 end-page: 4202 publication-title: Energy Environ. Sci. – volume: 30 start-page: 7414 year: 2014 end-page: 7424 publication-title: Langmuir – volume: 143 start-page: 13929 year: 2021 end-page: 13936 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 317 year: 2019 end-page: 344 publication-title: Matter – volume: 1 start-page: 94 year: 2020 end-page: 110 publication-title: Nano Select – volume: 2021 year: 2021 publication-title: Energy Mater. Adv. – volume: 11 start-page: 382 year: 2019 end-page: 389 publication-title: Nat. Chem. – volume: 140 start-page: 9854 year: 2018 end-page: 9867 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 1326 year: 2019 end-page: 1335 publication-title: Nano Lett. – volume: 13 start-page: 35750 year: 2021 end-page: 35758 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 2 start-page: 1548 year: 2018 end-page: 1558 publication-title: Joule – volume: 4 start-page: 1271 year: 2019 end-page: 1278 publication-title: ACS Energy Lett. – volume: 11 start-page: 2306 year: 2018 end-page: 2309 publication-title: Energy Environ. Sci. – volume: 59 start-page: 306 year: 2021 end-page: 319 publication-title: J. Energy Chem. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 27 start-page: 5531 year: 2015 end-page: 5542 publication-title: Chem. Mater. – volume: 7 start-page: 513 year: 2014 end-page: 537 publication-title: Energy Environ. Sci. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. USA – volume: 572 start-page: 511 year: 2019 end-page: 515 publication-title: Nature – volume: 60 133 start-page: 4215 4261 year: 2021 2021 end-page: 4220 4266 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 11 start-page: 789 year: 2019 end-page: 796 publication-title: Nat. Chem. – volume: 60 133 start-page: 11359 11460 year: 2021 2021 end-page: 11369 11470 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 66 start-page: 1754 year: 2021 end-page: 1763 publication-title: Sci. Bull. – volume: 9 start-page: 3221 year: 2016 end-page: 3229 publication-title: Energy Environ. Sci. – volume: 1 start-page: 6 year: 2019 end-page: 32 publication-title: InfoMat – volume: 5 start-page: 2045 year: 2020 end-page: 2051 publication-title: ACS Energy Lett. – volume: 49 start-page: 3806 year: 2020 end-page: 3833 publication-title: Chem. Soc. Rev. – volume: 15 start-page: 224 year: 2020 end-page: 230 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 2167 year: 2018 end-page: 2177 publication-title: Joule – ident: e_1_2_7_52_2 doi: 10.1016/j.scib.2021.05.002 – ident: e_1_2_7_9_2 doi: 10.34133/2021/1205324 – ident: e_1_2_7_14_2 doi: 10.1038/s41560-020-0640-7 – ident: e_1_2_7_47_2 doi: 10.1021/acs.chemmater.5b01627 – ident: e_1_2_7_24_2 doi: 10.1002/anie.202016240 – ident: e_1_2_7_51_1 – ident: e_1_2_7_18_2 doi: 10.1002/smsc.202100058 – ident: e_1_2_7_25_1 – ident: e_1_2_7_8_2 doi: 10.1039/D1EE00531F – ident: e_1_2_7_17_2 doi: 10.1021/acsami.1c08944 – ident: e_1_2_7_22_2 doi: 10.1126/sciadv.aau5655 – ident: e_1_2_7_12_2 doi: 10.1021/jacs.1c06794 – ident: e_1_2_7_33_2 doi: 10.1016/j.joule.2018.05.002 – ident: e_1_2_7_2_2 doi: 10.1002/sus2.4 – ident: e_1_2_7_4_1 – ident: e_1_2_7_6_2 doi: 10.1039/C3EE40795K – ident: e_1_2_7_34_2 doi: 10.1002/adma.201706102 – ident: e_1_2_7_5_2 doi: 10.1002/nano.202000003 – ident: e_1_2_7_20_1 doi: 10.1016/j.jechem.2020.11.016 – ident: e_1_2_7_27_2 doi: 10.1021/acs.nanolett.0c01400 – ident: e_1_2_7_3_2 doi: 10.1002/inf2.12000 – ident: e_1_2_7_10_1 – ident: e_1_2_7_16_1 – ident: e_1_2_7_19_1 doi: 10.1002/anie.202013271 – ident: e_1_2_7_24_3 doi: 10.1002/ange.202016240 – ident: e_1_2_7_44_2 doi: 10.1002/aenm.201902116 – ident: e_1_2_7_13_1 – ident: e_1_2_7_21_1 – ident: e_1_2_7_48_2 doi: 10.1021/jacs.8b03408 – ident: e_1_2_7_32_1 – ident: e_1_2_7_46_1 – ident: e_1_2_7_43_1 – ident: e_1_2_7_29_2 doi: 10.1021/acsenergylett.8b00935 – volume: 21 year: 2021 ident: e_1_2_7_50_2 publication-title: Mater. Today – ident: e_1_2_7_37_1 – ident: e_1_2_7_19_2 doi: 10.1002/ange.202013271 – ident: e_1_2_7_11_2 doi: 10.1039/C9CS00728H – ident: e_1_2_7_26_2 doi: 10.1021/acsenergylett.9b00539 – ident: e_1_2_7_30_2 doi: 10.1002/adfm.202102128 – ident: e_1_2_7_40_1 – ident: e_1_2_7_28_1 – ident: e_1_2_7_31_2 doi: 10.1073/pnas.2020357118 – ident: e_1_2_7_15_2 doi: 10.1038/s41557-018-0203-8 – ident: e_1_2_7_45_2 doi: 10.1039/C6EE01674J – ident: e_1_2_7_1_1 – ident: e_1_2_7_49_2 doi: 10.1021/la501368y – ident: e_1_2_7_7_1 – ident: e_1_2_7_53_2 doi: 10.1002/adma.202100404 – ident: e_1_2_7_54_1 doi: 10.1039/C8EE01286E – ident: e_1_2_7_41_2 doi: 10.1016/j.joule.2018.08.004 – ident: e_1_2_7_38_2 doi: 10.1016/j.matt.2019.05.016 – ident: e_1_2_7_36_1 doi: 10.1038/s41586-019-1481-z – ident: e_1_2_7_39_2 doi: 10.1038/s41557-019-0304-z – ident: e_1_2_7_42_2 doi: 10.1038/s41565-019-0618-4 – ident: e_1_2_7_23_2 doi: 10.1021/acs.nanolett.8b04906 – ident: e_1_2_7_35_1 doi: 10.1021/acsenergylett.0c00859 |
SSID | ssj0028806 |
Score | 2.6443753 |
Snippet | Lithium (Li) metal has been considered a promising anode for next‐generation high‐energy‐density batteries. However, the low reversibility and intricate Li... Lithium (Li) metal has been considered a promising anode for next-generation high-energy-density batteries. However, the low reversibility and intricate Li... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202115602 |
SubjectTerms | Cycles Dynamic Interface Evolution Electrolytes Evolution Growth rate Inactive Li Growth Li Metal Batteries Lithium Lithium batteries Metals Multilayers Polymer films Solid Electrolyte Interphase Solid electrolytes |
Title | Quantification of the Dynamic Interface Evolution in High‐Efficiency Working Li‐Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202115602 https://www.ncbi.nlm.nih.gov/pubmed/34951089 https://www.proquest.com/docview/2638700660 https://www.proquest.com/docview/2614229215 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VXOillJafFKhcqVJPhqydtZMjgkW0apFagcQt8jiOhEBZVHZ76KmPwDPyJMzESdqlqirBMYmtOJ6x_c1k5huA93mo85H3RvrCeJlVykn0XsmA1o1zVTA7JEdbnJjjs-zT-fj8jyz-yA8xONx4ZbT7NS9whzd7v0lDOQOb7DsyYOjQ5k2YA7YYFX0b-KMUKWdML9JachX6nrUxVXuL3RdPpb-g5iJybY-eoxVw_aBjxMnl7nyGu_7nAz7Hp3zVS3jR4VKxHxVpFZ6F5hUsH_Tl4F6D_zp3MbColaWY1oKwoziMFe1F61msnQ9i8qPTZnHRCA4juft1O2mJKjjLU3TeefH5gu5_CYT9ReT4JJN9Dc6OJqcHx7Kr0CC9tprzug3mPq2xQpU5QhcpEgw2tg6jKhAU8yOdkQliFaZoEJWuTUCn68oVvsZg9TosNdMmbILIKjd2KrWF02TjVRqNSS2OHeHTYL3DBGQvodJ39OVcReOqjMTLquSpK4epS-DD0P46Enf8s-V2L_CyW8A3paJ9yTIeSxN4NzymKef_Ka4J0zm3YQdaQaApgY2oKMOrdMbQNS8SUK24_zOGcv_k42S4evOYTlvwXHFqRqqlGm3D0uz7POwQYJrh23ZR3AM1YQ5m |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8CBYwE4uQ2a2ft5MCh6m61S7crgVqpt2A7jrQCsojdBZUTj8Cr8Co8Ak_CTJwELQghIfXAMYmTOPaM_c1k5huAx6kv055zirtMOZ4UwnDrnODeatNPRUbskBRtMVWjk-T5af90A762uTCBH6JzuJFm1Os1KTg5pHd_soZSCjYaeGjB4K4tmrjKQ3_2Ea22xbPxAKf4iRAHw-P9EW8KC3AntaR0ZGVTF5e2sCIxuCnGFtGb0qXvFR4RhOvJBJGzFja2ylohS-WtkWVhMldaryU-9wJcpDLiRNc_eNkxVglUh5DQJCWnuvctT2Qsdtf7u74P_gZu17FyvdkdXIFv7TCFGJfXO6ul3XGffmGQ_K_G8SpcbqA32wu6cg02fHUdtvbbinc3wL1YmRA7VYsrm5cM4TEbnFXm7cyx2nlaGufZ8EOjsGxWMYqU-f75y7Dm4qBEVtb8gGCTGZ4_8mjesEBjOvOLm3ByLt94CzareeXvAEsK0zci1pmRaMYW0ioVa9s3CMG9dsZGwFuRyF3D0E6FQt7kgVta5DRVeTdVETzt2r8L3CR_bLndSljerFGLXODSqwlyxhE86i7jkNMvI1P5-YrakI8wQ1wYwe0gmd2rZELoPM0iELV8_aUP-d50POyO7v7LTQ9ha3R8NMkn4-nhPbgkKBMlllz0tmFz-X7l7yM-XNoHtUYyeHXeovsDpOxuHw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8CBYwE4uTWa2ft5MCh6u6qS8sKEJV6C7ZjSysgW7G7oHLiEXiUvkpfgSdhHCdBC0JISD1wTOIkjj3j-caZ-QbgceZ81rNWUptLS9OSa2qs5dQZpfsZzwM7ZIi2mMjdg_T5Yf9wDU7aXJjID9FtuAXNqNfroOBHpd_6SRoaMrDRv0MHBo02b8Iq99zxZ3Ta5s_GA5zhJ5yPhm92dmlTV4BaoUTIRpYms8yb0vBUo01kBsGbVN71SocAwvZEisBZccOMNIYLL53Rwpc6t944JfC55-B8KlkeikUMXneEVRy1IeYzCUFD2fuWJpLxrdX-rprB37DtKlSubd3oCpy2oxRDXN5tLhdm0375hUDyfxrGq3C5Ad5kO2rKNVhz1XW4uNPWu7sB9tVSx8ipWljJzBMEx2RwXOkPU0vqrVOvrSPDT426kmlFQpzM96_fhjUTR0hjJc3vB7I_xfMvHDo3JJKYTt38JhycyTfegvVqVrk7QNJS9zVnKtcCndhSGCmZMn2NANwpq00CtJWIwjb87KFMyPsiMkvzIkxV0U1VAk-79keRmeSPLTdaASuaFWpecFx4VQCcLIFH3WUc8vDDSFdutgxtwg5hjqgwgdtRMLtXiTRg8yxPgNfi9Zc-FNuT8bA7uvsvNz2ECy8Ho2J_PNm7B5d4SENhgvLeBqwvPi7dfQSHC_Og1kcCb89acn8A1xZszg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+the+Dynamic+Interface+Evolution+in+High%E2%80%90Efficiency+Working+Li%E2%80%90Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jun%E2%80%90Fan+Ding&rft.au=Xu%2C+Rui&rft.au=Xia%E2%80%90Xia+Ma&rft.au=Ye%2C+Xiao&rft.date=2022-03-21&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=13&rft_id=info:doi/10.1002%2Fanie.202115602&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |