One‐Dimensional Covalent Organic Frameworks for the 2e− Oxygen Reduction Reaction

Two‐dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 14; pp. e202218742 - n/a
Main Authors An, Shuhao, Li, Xuewen, Shang, Shuaishuai, Xu, Ting, Yang, Shuai, Cui, Cheng‐Xing, Peng, Changjun, Liu, Honglai, Xu, Qing, Jiang, Zheng, Hu, Jun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 27.03.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two‐dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e− oxygen reduction reaction (ORR). The use of different four‐connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8‐fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s−1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s−1). This work paves the way for the development of COFs with low dimensions for electrocatalysis. Electrocatalysis of the oxygen reduction reaction by a 2e− pathway has been achieved using two one‐dimensional covalent organic frameworks (COFs). The imine linkages led to higher activity and selectivity than two‐dimensional COFs, without the need to introduce other heteroatoms.
AbstractList Two‐dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e− oxygen reduction reaction (ORR). The use of different four‐connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8‐fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s−1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s−1). This work paves the way for the development of COFs with low dimensions for electrocatalysis.
Two‐dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e− oxygen reduction reaction (ORR). The use of different four‐connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8‐fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s−1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s−1). This work paves the way for the development of COFs with low dimensions for electrocatalysis. Electrocatalysis of the oxygen reduction reaction by a 2e− pathway has been achieved using two one‐dimensional covalent organic frameworks (COFs). The imine linkages led to higher activity and selectivity than two‐dimensional COFs, without the need to introduce other heteroatoms.
Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H O selectivity of 85.8 % and activity, with a TOF value of 0.051 s at 0.2 V, than a 2D COF (72.9 % and 0.032 s ). This work paves the way for the development of COFs with low dimensions for electrocatalysis.
Two‐dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e − oxygen reduction reaction (ORR). The use of different four‐connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8‐fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H 2 O 2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s −1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s −1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis.
Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e- oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2 O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s-1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s-1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis.Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e- oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2 O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s-1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s-1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis.
Author Hu, Jun
Cui, Cheng‐Xing
Peng, Changjun
Liu, Honglai
Yang, Shuai
Shang, Shuaishuai
An, Shuhao
Li, Xuewen
Xu, Qing
Xu, Ting
Jiang, Zheng
Author_xml – sequence: 1
  givenname: Shuhao
  surname: An
  fullname: An, Shuhao
  organization: East China University of Science and Technology
– sequence: 2
  givenname: Xuewen
  surname: Li
  fullname: Li, Xuewen
  organization: Chinese Academy of Science
– sequence: 3
  givenname: Shuaishuai
  surname: Shang
  fullname: Shang, Shuaishuai
  organization: East China University of Science and Technology
– sequence: 4
  givenname: Ting
  surname: Xu
  fullname: Xu, Ting
  organization: East China University of Science and Technology
– sequence: 5
  givenname: Shuai
  surname: Yang
  fullname: Yang, Shuai
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Cheng‐Xing
  surname: Cui
  fullname: Cui, Cheng‐Xing
  organization: Henan Institute of Science and Technology
– sequence: 7
  givenname: Changjun
  surname: Peng
  fullname: Peng, Changjun
  organization: East China University of Science and Technology
– sequence: 8
  givenname: Honglai
  surname: Liu
  fullname: Liu, Honglai
  organization: East China University of Science and Technology
– sequence: 9
  givenname: Qing
  orcidid: 0000-0002-9066-9837
  surname: Xu
  fullname: Xu, Qing
  email: xuqing@sari.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 10
  givenname: Zheng
  surname: Jiang
  fullname: Jiang, Zheng
  email: jiangzheng@sinap.ac.cn
  organization: Chinese Academy of Science
– sequence: 11
  givenname: Jun
  surname: Hu
  fullname: Hu, Jun
  email: junhu@ecust.edu.cn
  organization: East China University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36655733$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtP3DAUha0KVB7ttssqUjdsMvgZO0s0vEZCHQnB2nKSawgkNrUT6Oy6ZFn1J84vwdOBIiFVrHwW33ek67ODNpx3gNAXgicEY7pvXAsTiiklSnL6AW0TQUnOpGQbKXPGcqkE2UI7Md4kXilcfERbrCiEkIxto8u5g-Wv34dtDy623pkum_p704Ebsnm4SvV1dhxMDw8-3MbM-pAN15BRWD7-yeY_F1fgsnNoxnpIckrmb_iENq3pInx-fnfR5fHRxfQ0P5ufzKYHZ3nNJKM5sbWgwGjJbIltpWpuSGmt4IxUDRSSGykrAbRQAkojsQFRcAMNb5oq3WLZLtpb994F_2OEOOi-jTV0nXHgx6ipLCSRpJA0od_eoDd-DOneFaUU4yXGKlFfn6mx6qHRd6HtTVjolw9LAF8DdfAxBrC6bgezunkIpu00wXq1i17tov_tkrTJG-2l-b9CuRYe2g4W79D64Pvs6NV9Ak5uoSI
CitedBy_id crossref_primary_10_1002_smll_202308143
crossref_primary_10_1002_cssc_202400558
crossref_primary_10_1039_D4TA03516J
crossref_primary_10_3390_molecules29112563
crossref_primary_10_1002_anie_202424449
crossref_primary_10_1002_anie_202313940
crossref_primary_10_1039_D4TA05404K
crossref_primary_10_1002_smll_202403775
crossref_primary_10_1039_D3CS00727H
crossref_primary_10_1016_j_ensm_2023_103014
crossref_primary_10_1002_anie_202403473
crossref_primary_10_1002_chem_202302997
crossref_primary_10_1016_j_enchem_2024_100121
crossref_primary_10_1016_j_chempr_2023_07_016
crossref_primary_10_1021_acsami_4c11479
crossref_primary_10_20517_energymater_2023_72
crossref_primary_10_1002_ange_202414943
crossref_primary_10_1002_smll_202402082
crossref_primary_10_1002_aenm_202300119
crossref_primary_10_1002_agt2_582
crossref_primary_10_1002_adfm_202310195
crossref_primary_10_1021_acscatal_4c02881
crossref_primary_10_1002_ange_202309820
crossref_primary_10_1016_j_cej_2023_147682
crossref_primary_10_1002_cplu_202400069
crossref_primary_10_1016_j_mtcata_2024_100044
crossref_primary_10_1007_s40843_024_3039_8
crossref_primary_10_1002_ange_202314539
crossref_primary_10_1002_adfm_202401562
crossref_primary_10_1016_j_est_2025_115881
crossref_primary_10_1021_acssuschemeng_4c00789
crossref_primary_10_1002_cctc_202400089
crossref_primary_10_3390_molecules29215071
crossref_primary_10_1002_aenm_202402657
crossref_primary_10_1002_anie_202309820
crossref_primary_10_1002_smll_202400688
crossref_primary_10_1002_anie_202314539
crossref_primary_10_1002_anie_202414943
crossref_primary_10_1002_asia_202400896
crossref_primary_10_1002_ange_202500336
crossref_primary_10_1002_ange_202403473
crossref_primary_10_1016_j_apcatb_2023_123611
crossref_primary_10_1016_j_apcatb_2023_123216
crossref_primary_10_1002_anie_202402911
crossref_primary_10_1021_acscatal_4c01411
crossref_primary_10_1002_ange_202304356
crossref_primary_10_1002_anie_202500336
crossref_primary_10_1016_j_nanoen_2023_109155
crossref_primary_10_1016_j_isci_2024_109553
crossref_primary_10_1002_adma_202402184
crossref_primary_10_1007_s11426_024_2462_4
crossref_primary_10_1002_ange_202402911
crossref_primary_10_1002_ange_202424449
crossref_primary_10_1039_D3CC02082G
crossref_primary_10_1002_smll_202404139
crossref_primary_10_1002_ange_202319885
crossref_primary_10_1002_adfm_202406717
crossref_primary_10_1002_ange_202313940
crossref_primary_10_1002_anie_202319885
crossref_primary_10_1021_acs_inorgchem_4c03151
crossref_primary_10_1038_s41467_024_44899_8
crossref_primary_10_1039_D4TA08190K
crossref_primary_10_1039_D4TA06789D
crossref_primary_10_1016_j_cej_2024_154636
crossref_primary_10_1016_j_mtchem_2024_102439
crossref_primary_10_1002_anie_202304356
crossref_primary_10_1021_acsaenm_4c00344
crossref_primary_10_1039_D4TA04330H
Cites_doi 10.1002/smll.202204757
10.1002/anie.202114244
10.1039/D1CC04928C
10.1002/adma.202203139
10.1002/anie.202213268
10.1038/s41557-019-0238-5
10.1002/anie.202212162
10.1002/anie.201905713
10.1039/C9CS00827F
10.1039/D0CS00793E
10.1002/anie.202006925
10.1038/s41467-019-14237-4
10.1038/s41467-020-19858-8
10.1038/s41586-022-04443-4
10.1002/anie.202004796
10.1021/jacs.1c06238
10.1021/jacs.0c02225
10.1002/adma.202104946
10.1038/s41467-020-15281-1
10.1038/s41467-019-10504-6
10.1002/adfm.202101727
10.1021/acsenergylett.9b02756
10.1021/jacs.9b08147
10.1126/science.aan0202
10.1038/s41563-021-01052-w
10.1126/science.1120411
10.1002/ange.201915234
10.1021/jacs.9b03441
10.1002/ange.201905713
10.1021/jacs.9b13971
10.1126/sciadv.abb1110
10.1002/ange.201913091
10.1038/s41557-022-00908-1
10.1002/adma.201606635
10.1002/ange.202114648
10.1039/D0CS01027H
10.1002/anie.202213522
10.1021/acscatal.9b05470
10.1002/ange.202212162
10.1002/anie.201913091
10.1002/ange.202213268
10.1002/anie.201915234
10.1021/jacs.8b07670
10.1021/jacs.9b01226
10.1002/ange.202114244
10.1002/smll.202004933
10.1021/acsenergylett.1c01681
10.1021/jacs.8b10334
10.1002/anie.202114648
10.1002/aenm.201601189
10.1002/ange.202213522
10.1039/D0CS00017E
10.1016/j.chempr.2018.05.003
10.1002/ange.202006925
10.1002/ange.202004796
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202218742
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36655733
10_1002_anie_202218742
ANIE202218742
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shanghai
  funderid: 20ZR1464000
– fundername: China Postdoctoral Science Foundation
  funderid: 2019M661408
– fundername: National Natural Science Foundation of China
  funderid: 21878076, 22008064
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 19160712100
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 19160712100
– fundername: National Natural Science Foundation of China
  grantid: 21878076, 22008064
– fundername: Natural Science Foundation of Shanghai
  grantid: 20ZR1464000
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M661408
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3732-1fc52e3293f90fb8c4a19ff5431bde674a77b5e2685e9a70ae564aed4ddb028f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 00:49:22 EDT 2025
Sun Jul 13 05:27:00 EDT 2025
Mon Jul 21 06:07:50 EDT 2025
Tue Jul 01 01:47:03 EDT 2025
Thu Apr 24 22:52:04 EDT 2025
Wed Jan 22 16:22:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Metal-Free Catalysts
Oxygen Reduction Reaction
Edge Sites
One Dimensional Topology
Covalent Organic Frameworks
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-1fc52e3293f90fb8c4a19ff5431bde674a77b5e2685e9a70ae564aed4ddb028f3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9066-9837
PMID 36655733
PQID 2788349008
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2767171672
proquest_journals_2788349008
pubmed_primary_36655733
crossref_citationtrail_10_1002_anie_202218742
crossref_primary_10_1002_anie_202218742
wiley_primary_10_1002_anie_202218742_ANIE202218742
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 27, 2023
PublicationDateYYYYMMDD 2023-03-27
PublicationDate_xml – month: 03
  year: 2023
  text: March 27, 2023
  day: 27
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 6
2021; 20
2005; 310
2019; 11
2020; 142
2019; 10
2020 2020; 59 132
2017; 29
2020; 11
2023 2023; 62 135
2020; 10
2021; 143
2021; 50
2019; 141
2017; 357
2019 2019; 58 131
2021; 57
2020; 6
2016; 6
2022 2022; 61 134
2020; 5
2021; 31
2018; 4
2021; 17
2022; 34
2020; 49
2022; 14
2022; 604
2022; 18
e_1_2_3_50_1
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_39_2
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_33_2
e_1_2_3_37_1
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_35_2
e_1_2_3_52_2
e_1_2_3_31_3
e_1_2_3_54_2
e_1_2_3_10_2
e_1_2_3_31_2
e_1_2_3_54_1
e_1_2_3_26_2
e_1_2_3_49_2
e_1_2_3_28_1
e_1_2_3_22_2
e_1_2_3_45_2
e_1_2_3_24_2
e_1_2_3_47_2
e_1_2_3_24_3
e_1_2_3_41_2
e_1_2_3_20_2
e_1_2_3_43_2
e_1_2_3_20_3
e_1_2_3_1_1
e_1_2_3_19_2
e_1_2_3_19_3
e_1_2_3_5_2
e_1_2_3_38_2
e_1_2_3_36_3
e_1_2_3_3_2
e_1_2_3_17_2
e_1_2_3_11_2
e_1_2_3_34_2
e_1_2_3_7_3
e_1_2_3_9_1
e_1_2_3_7_2
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_15_1
e_1_2_3_30_2
e_1_2_3_51_2
e_1_2_3_53_3
e_1_2_3_32_1
e_1_2_3_53_2
e_1_2_3_25_3
e_1_2_3_27_1
e_1_2_3_48_3
e_1_2_3_48_2
e_1_2_3_29_2
e_1_2_3_23_2
e_1_2_3_44_2
e_1_2_3_25_2
e_1_2_3_46_2
e_1_2_3_42_1
e_1_2_3_40_2
e_1_2_3_21_1
References_xml – volume: 11
  start-page: 587
  year: 2019
  end-page: 594
  publication-title: Nat. Chem.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 6
  start-page: 3496
  year: 2021
  end-page: 3502
  publication-title: ACS Energy Lett.
– volume: 59 132
  start-page: 3624 3653
  year: 2020 2020
  end-page: 3629 3658
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 49
  start-page: 708
  year: 2020
  end-page: 735
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 6128
  year: 2020
  publication-title: Nat. Commun.
– volume: 57
  start-page: 12619
  year: 2021
  end-page: 12622
  publication-title: Chem. Commun.
– volume: 143
  start-page: 18052
  year: 2021
  end-page: 18060
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 4
  start-page: 1696
  year: 2018
  end-page: 1709
  publication-title: Chem
– volume: 20
  start-page: 1551
  year: 2021
  end-page: 1558
  publication-title: Nat. Mater.
– volume: 5
  start-page: 1005
  year: 2020
  end-page: 1012
  publication-title: ACS Energy Lett.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  publication-title: Science
– volume: 11
  start-page: 1434
  year: 2020
  publication-title: Nat. Commun.
– volume: 141
  start-page: 1227
  year: 2019
  end-page: 1234
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 4557 4587
  year: 2020 2020
  end-page: 4563 4593
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 604
  start-page: 72
  year: 2022
  end-page: 79
  publication-title: Nature
– volume: 59 132
  start-page: 13722 13826
  year: 2020 2020
  end-page: 13733 13837
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 497
  year: 2020
  publication-title: Nat. Commun.
– volume: 357
  start-page: 673
  year: 2017
  end-page: 676
  publication-title: Science
– volume: 59 132
  start-page: 16902 17050
  year: 2020 2020
  end-page: 16909 17057
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 62 135
  year: 2023 2023
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 50
  start-page: 1813
  year: 2021
  end-page: 1845
  publication-title: Chem. Soc. Rev.
– volume: 142
  start-page: 8104
  year: 2020
  end-page: 8108
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 141
  start-page: 1807
  year: 2019
  end-page: 1822
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 3565
  year: 2020
  end-page: 3604
  publication-title: Chem. Soc. Rev.
– volume: 141
  start-page: 6623
  year: 2019
  end-page: 6630
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 2771
  year: 2020
  end-page: 2776
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 8469
  year: 2020
  end-page: 8500
  publication-title: Chem. Soc. Rev.
– volume: 58 131
  start-page: 12065 12193
  year: 2019 2019
  end-page: 12069 12197
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 5623
  year: 2020
  end-page: 5630
  publication-title: ACS Catal.
– volume: 141
  start-page: 11929
  year: 2019
  end-page: 11937
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 16
  year: 2020
  end-page: 20
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2467
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 507
  year: 2022
  end-page: 514
  publication-title: Nat. Chem.
– ident: e_1_2_3_41_2
  doi: 10.1002/smll.202204757
– ident: e_1_2_3_54_1
  doi: 10.1002/anie.202114244
– ident: e_1_2_3_40_2
  doi: 10.1039/D1CC04928C
– ident: e_1_2_3_49_2
  doi: 10.1002/adma.202203139
– ident: e_1_2_3_31_2
  doi: 10.1002/anie.202213268
– ident: e_1_2_3_5_2
  doi: 10.1038/s41557-019-0238-5
– ident: e_1_2_3_48_2
  doi: 10.1002/anie.202212162
– ident: e_1_2_3_24_2
  doi: 10.1002/anie.201905713
– ident: e_1_2_3_10_2
  doi: 10.1039/C9CS00827F
– ident: e_1_2_3_26_2
  doi: 10.1039/D0CS00793E
– ident: e_1_2_3_25_2
  doi: 10.1002/anie.202006925
– ident: e_1_2_3_52_2
  doi: 10.1038/s41467-019-14237-4
– ident: e_1_2_3_12_2
  doi: 10.1038/s41467-020-19858-8
– ident: e_1_2_3_42_1
– ident: e_1_2_3_50_1
– ident: e_1_2_3_8_2
  doi: 10.1038/s41586-022-04443-4
– ident: e_1_2_3_7_2
  doi: 10.1002/anie.202004796
– ident: e_1_2_3_47_2
  doi: 10.1021/jacs.1c06238
– ident: e_1_2_3_39_2
  doi: 10.1021/jacs.0c02225
– ident: e_1_2_3_14_2
  doi: 10.1002/adma.202104946
– ident: e_1_2_3_27_1
  doi: 10.1038/s41467-020-15281-1
– ident: e_1_2_3_22_2
  doi: 10.1038/s41467-019-10504-6
– ident: e_1_2_3_35_2
  doi: 10.1002/adfm.202101727
– ident: e_1_2_3_44_2
  doi: 10.1021/acsenergylett.9b02756
– ident: e_1_2_3_23_2
  doi: 10.1021/jacs.9b08147
– ident: e_1_2_3_3_2
  doi: 10.1126/science.aan0202
– ident: e_1_2_3_13_2
  doi: 10.1038/s41563-021-01052-w
– ident: e_1_2_3_2_2
  doi: 10.1126/science.1120411
– ident: e_1_2_3_19_3
  doi: 10.1002/ange.201915234
– ident: e_1_2_3_17_2
  doi: 10.1021/jacs.9b03441
– ident: e_1_2_3_24_3
  doi: 10.1002/ange.201905713
– ident: e_1_2_3_29_2
  doi: 10.1021/jacs.9b13971
– ident: e_1_2_3_11_2
  doi: 10.1126/sciadv.abb1110
– ident: e_1_2_3_32_1
– ident: e_1_2_3_20_3
  doi: 10.1002/ange.201913091
– ident: e_1_2_3_21_1
– ident: e_1_2_3_30_2
  doi: 10.1038/s41557-022-00908-1
– ident: e_1_2_3_38_2
  doi: 10.1002/adma.201606635
– ident: e_1_2_3_1_1
– ident: e_1_2_3_53_3
  doi: 10.1002/ange.202114648
– ident: e_1_2_3_15_1
– ident: e_1_2_3_6_2
  doi: 10.1039/D0CS01027H
– ident: e_1_2_3_36_2
  doi: 10.1002/anie.202213522
– ident: e_1_2_3_34_2
  doi: 10.1021/acscatal.9b05470
– ident: e_1_2_3_48_3
  doi: 10.1002/ange.202212162
– ident: e_1_2_3_20_2
  doi: 10.1002/anie.201913091
– ident: e_1_2_3_31_3
  doi: 10.1002/ange.202213268
– ident: e_1_2_3_19_2
  doi: 10.1002/anie.201915234
– ident: e_1_2_3_16_2
  doi: 10.1021/jacs.8b07670
– ident: e_1_2_3_37_1
– ident: e_1_2_3_18_2
  doi: 10.1021/jacs.9b01226
– ident: e_1_2_3_54_2
  doi: 10.1002/ange.202114244
– ident: e_1_2_3_45_2
  doi: 10.1002/smll.202004933
– ident: e_1_2_3_46_2
  doi: 10.1021/acsenergylett.1c01681
– ident: e_1_2_3_4_2
  doi: 10.1021/jacs.8b10334
– ident: e_1_2_3_53_2
  doi: 10.1002/anie.202114648
– ident: e_1_2_3_33_2
  doi: 10.1002/aenm.201601189
– ident: e_1_2_3_36_3
  doi: 10.1002/ange.202213522
– ident: e_1_2_3_51_2
  doi: 10.1039/D0CS00017E
– ident: e_1_2_3_28_1
– ident: e_1_2_3_43_2
  doi: 10.1016/j.chempr.2018.05.003
– ident: e_1_2_3_9_1
– ident: e_1_2_3_25_3
  doi: 10.1002/ange.202006925
– ident: e_1_2_3_7_3
  doi: 10.1002/ange.202004796
SSID ssj0028806
Score 2.6196046
Snippet Two‐dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the...
Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202218742
SubjectTerms Active sites
Catalysis
Chemical reduction
Covalent Organic Frameworks
Edge Sites
Electrolytes
Hydrogen peroxide
Metal-Free Catalysts
One Dimensional Topology
Oxygen Reduction Reaction
Oxygen reduction reactions
Selectivity
Surface area
Surface stability
Title One‐Dimensional Covalent Organic Frameworks for the 2e− Oxygen Reduction Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202218742
https://www.ncbi.nlm.nih.gov/pubmed/36655733
https://www.proquest.com/docview/2788349008
https://www.proquest.com/docview/2767171672
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqXugFSstjaUGuVIlT2qyfybFauiqV2koVK_UW-TG5gLIVuytBTxw5VvzE_hJm4k3KFiEkuDmKnTieGftzPPMNY_vRaIgBdycqh5ApQFl4o2Vm8gKGkXLvtSe6Z-fmZKJOr_TVL1H8iR-i_-FGltHO12Tgzs8O70lDKQIb93dCUFY5moTJYYtQ0WXPHyVQOVN4kZQZZaHvWBtzcbjafHVV-g1qriLXdukZP2Gu63TyOPl4sJj7g3DzgM_xf75qkz1e4lJ-lBTpKVuDZos9GnXp4LbZ5KKBu2-37ygbQGLy4KMpqikuWjwFdAY-7jy9ZhyxMEdsyQXcff_BL758RUXll8QTS5qApRRQ8YxNxscfRifZMidDFqSVIhvWQQuQCBLqMq99EZQblnVNEfU-grHKWes1CFNoKJ3NHWijHEQVo0d51PI5W2-mDbxkPNc64ObJQVk6ZUPtVRm8inmIpXS4sg5Y1smkCkvCcsqb8alKVMuiosGq-sEasLd9_etE1fHHmrudiKulyc4qYYtCqhJ1c8D2-ts4yHSC4hqYLqiOscQvZPERL5Jq9K-Sxmgilxww0Qr4L32ojs7fH_dXr_6l0Q7bwLIkjzhhd9n6_PMCXiNEmvs3rRn8BG8bCL8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9lAuUN6BAouExMmts0_7WIVGKbSpVDUSN2sf4wvIQTSRWk499oj4if0lzHhjo4AQEtz82LXXOzOemd2Zbxh7HY2GGNA7UTmETAHSwhstM5MXMIxUe6_d0T2emslMvfugu2hCyoVJ-BD9ghtJRvu_JgGnBem9n6ihlIKNDp4QVFYO_8KbVNa79apOewQpgeyZEoykzKgOfYfbmIu99f7reuk3Y3Pddm2Vz_gu892wU8zJx93lwu-Gr78gOv7Xd22zOyvTlO8nXrrHbkFzn22NuopwD9jspIGbq29vqSBAAvPgozlyKuotnnI6Ax93wV7nHM1hjuYlF3Bz_Z2fXFwir_JTgoolZsCjlFPxkM3GB2ejSbYqy5AFaaXIhnXQAiTaCXWZ174Iyg3Luqakeh_BWOWs9RqEKTSUzuYOtFEOoorRI0Fq-YhtNPMGnjCeax3Qf3JQlk7ZUHtVBq9iHmIpHSrXAcs6olRhhVlOpTM-VQltWVQ0WVU_WQP2pm__OaF1_LHlTkfjaiW155WwRSFView5YK_62zjJtIniGpgvqY2xBDFk8RGPE2_0r5LGaMKXHDDRUvgvY6j2p4cH_dnTf-n0km1Nzo6PqqPD6ftn7DZelxQgJ-wO21h8WcJztJgW_kUrEz8A9dwM2g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIgEXypstBYyExClt1s_kWO121fLYooqVeov8mFxA2YruSsCJI8eqP7G_hHG8CSwIIcEtD9txPJ8948d8A_A8aIXB0-xE5ugziSQLp5XIdF7gMMTYe-2O7pupPpjJlyfq5Ccv_sQP0S-4xZ7Rjtexg5-GevcHaWj0wKb5HecxqhwNwlcllR9xPT7uCaQ4oTP5FwmRxTD0HW1jznfX86-rpd9szXXTtdU9k02wXa3TkZP3O8uF2_FffiF0_J_fugU3V4Yp20tIug1XsLkD10ddPLi7MDtq8PLr-TiGA0hUHmw0J5yS1mLJo9OzSXfU64yRMczIuGQcL79dsKNPnwmp7DgSxUYo0FXyqLgHs8n-u9FBtgrKkHlhBM-GtVccBVkJdZnXrvDSDsu6ji71LqA20hrjFHJdKCytyS0qLS0GGYIjedTiPmw08wYfAsuV8jR7sliWVhpfO1l6J0PuQyksqdYBZJ1MKr9iLI-BMz5UiWuZV7Gxqr6xBvCiT3-auDr-mHK7E3G16rNnFTdFIWRJ4BzAs_41NXLcQrENzpcxjTaRYMhQEQ8SNPpPCa1VZJccAG8F_Jc6VHvTw_3-butfMj2Fa2_Hk-r14fTVI7hBj0VaHNqGjcXHJT4mc2nhnrQ94jvdPguI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%E2%80%90Dimensional+Covalent+Organic+Frameworks+for+the+2e%E2%88%92+Oxygen+Reduction+Reaction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=An%2C+Shuhao&rft.au=Li%2C+Xuewen&rft.au=Shang%2C+Shuaishuai&rft.au=Xu%2C+Ting&rft.date=2023-03-27&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=14&rft_id=info:doi/10.1002%2Fanie.202218742&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon