One‐Dimensional Covalent Organic Frameworks for the 2e− Oxygen Reduction Reaction
Two‐dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 14; pp. e202218742 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
27.03.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two‐dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e− oxygen reduction reaction (ORR). The use of different four‐connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8‐fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s−1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s−1). This work paves the way for the development of COFs with low dimensions for electrocatalysis.
Electrocatalysis of the oxygen reduction reaction by a 2e− pathway has been achieved using two one‐dimensional covalent organic frameworks (COFs). The imine linkages led to higher activity and selectivity than two‐dimensional COFs, without the need to introduce other heteroatoms. |
---|---|
AbstractList | Two‐dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e− oxygen reduction reaction (ORR). The use of different four‐connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8‐fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s−1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s−1). This work paves the way for the development of COFs with low dimensions for electrocatalysis. Two‐dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e− oxygen reduction reaction (ORR). The use of different four‐connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8‐fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s−1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s−1). This work paves the way for the development of COFs with low dimensions for electrocatalysis. Electrocatalysis of the oxygen reduction reaction by a 2e− pathway has been achieved using two one‐dimensional covalent organic frameworks (COFs). The imine linkages led to higher activity and selectivity than two‐dimensional COFs, without the need to introduce other heteroatoms. Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H O selectivity of 85.8 % and activity, with a TOF value of 0.051 s at 0.2 V, than a 2D COF (72.9 % and 0.032 s ). This work paves the way for the development of COFs with low dimensions for electrocatalysis. Two‐dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e − oxygen reduction reaction (ORR). The use of different four‐connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8‐fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H 2 O 2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s −1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s −1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis. Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e- oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2 O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s-1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s-1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis.Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e- oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2 O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s-1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s-1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis. |
Author | Hu, Jun Cui, Cheng‐Xing Peng, Changjun Liu, Honglai Yang, Shuai Shang, Shuaishuai An, Shuhao Li, Xuewen Xu, Qing Xu, Ting Jiang, Zheng |
Author_xml | – sequence: 1 givenname: Shuhao surname: An fullname: An, Shuhao organization: East China University of Science and Technology – sequence: 2 givenname: Xuewen surname: Li fullname: Li, Xuewen organization: Chinese Academy of Science – sequence: 3 givenname: Shuaishuai surname: Shang fullname: Shang, Shuaishuai organization: East China University of Science and Technology – sequence: 4 givenname: Ting surname: Xu fullname: Xu, Ting organization: East China University of Science and Technology – sequence: 5 givenname: Shuai surname: Yang fullname: Yang, Shuai organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Cheng‐Xing surname: Cui fullname: Cui, Cheng‐Xing organization: Henan Institute of Science and Technology – sequence: 7 givenname: Changjun surname: Peng fullname: Peng, Changjun organization: East China University of Science and Technology – sequence: 8 givenname: Honglai surname: Liu fullname: Liu, Honglai organization: East China University of Science and Technology – sequence: 9 givenname: Qing orcidid: 0000-0002-9066-9837 surname: Xu fullname: Xu, Qing email: xuqing@sari.ac.cn organization: University of Chinese Academy of Sciences – sequence: 10 givenname: Zheng surname: Jiang fullname: Jiang, Zheng email: jiangzheng@sinap.ac.cn organization: Chinese Academy of Science – sequence: 11 givenname: Jun surname: Hu fullname: Hu, Jun email: junhu@ecust.edu.cn organization: East China University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36655733$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtP3DAUha0KVB7ttssqUjdsMvgZO0s0vEZCHQnB2nKSawgkNrUT6Oy6ZFn1J84vwdOBIiFVrHwW33ek67ODNpx3gNAXgicEY7pvXAsTiiklSnL6AW0TQUnOpGQbKXPGcqkE2UI7Md4kXilcfERbrCiEkIxto8u5g-Wv34dtDy623pkum_p704Ebsnm4SvV1dhxMDw8-3MbM-pAN15BRWD7-yeY_F1fgsnNoxnpIckrmb_iENq3pInx-fnfR5fHRxfQ0P5ufzKYHZ3nNJKM5sbWgwGjJbIltpWpuSGmt4IxUDRSSGykrAbRQAkojsQFRcAMNb5oq3WLZLtpb994F_2OEOOi-jTV0nXHgx6ipLCSRpJA0od_eoDd-DOneFaUU4yXGKlFfn6mx6qHRd6HtTVjolw9LAF8DdfAxBrC6bgezunkIpu00wXq1i17tov_tkrTJG-2l-b9CuRYe2g4W79D64Pvs6NV9Ak5uoSI |
CitedBy_id | crossref_primary_10_1002_smll_202308143 crossref_primary_10_1002_cssc_202400558 crossref_primary_10_1039_D4TA03516J crossref_primary_10_3390_molecules29112563 crossref_primary_10_1002_anie_202424449 crossref_primary_10_1002_anie_202313940 crossref_primary_10_1039_D4TA05404K crossref_primary_10_1002_smll_202403775 crossref_primary_10_1039_D3CS00727H crossref_primary_10_1016_j_ensm_2023_103014 crossref_primary_10_1002_anie_202403473 crossref_primary_10_1002_chem_202302997 crossref_primary_10_1016_j_enchem_2024_100121 crossref_primary_10_1016_j_chempr_2023_07_016 crossref_primary_10_1021_acsami_4c11479 crossref_primary_10_20517_energymater_2023_72 crossref_primary_10_1002_ange_202414943 crossref_primary_10_1002_smll_202402082 crossref_primary_10_1002_aenm_202300119 crossref_primary_10_1002_agt2_582 crossref_primary_10_1002_adfm_202310195 crossref_primary_10_1021_acscatal_4c02881 crossref_primary_10_1002_ange_202309820 crossref_primary_10_1016_j_cej_2023_147682 crossref_primary_10_1002_cplu_202400069 crossref_primary_10_1016_j_mtcata_2024_100044 crossref_primary_10_1007_s40843_024_3039_8 crossref_primary_10_1002_ange_202314539 crossref_primary_10_1002_adfm_202401562 crossref_primary_10_1016_j_est_2025_115881 crossref_primary_10_1021_acssuschemeng_4c00789 crossref_primary_10_1002_cctc_202400089 crossref_primary_10_3390_molecules29215071 crossref_primary_10_1002_aenm_202402657 crossref_primary_10_1002_anie_202309820 crossref_primary_10_1002_smll_202400688 crossref_primary_10_1002_anie_202314539 crossref_primary_10_1002_anie_202414943 crossref_primary_10_1002_asia_202400896 crossref_primary_10_1002_ange_202500336 crossref_primary_10_1002_ange_202403473 crossref_primary_10_1016_j_apcatb_2023_123611 crossref_primary_10_1016_j_apcatb_2023_123216 crossref_primary_10_1002_anie_202402911 crossref_primary_10_1021_acscatal_4c01411 crossref_primary_10_1002_ange_202304356 crossref_primary_10_1002_anie_202500336 crossref_primary_10_1016_j_nanoen_2023_109155 crossref_primary_10_1016_j_isci_2024_109553 crossref_primary_10_1002_adma_202402184 crossref_primary_10_1007_s11426_024_2462_4 crossref_primary_10_1002_ange_202402911 crossref_primary_10_1002_ange_202424449 crossref_primary_10_1039_D3CC02082G crossref_primary_10_1002_smll_202404139 crossref_primary_10_1002_ange_202319885 crossref_primary_10_1002_adfm_202406717 crossref_primary_10_1002_ange_202313940 crossref_primary_10_1002_anie_202319885 crossref_primary_10_1021_acs_inorgchem_4c03151 crossref_primary_10_1038_s41467_024_44899_8 crossref_primary_10_1039_D4TA08190K crossref_primary_10_1039_D4TA06789D crossref_primary_10_1016_j_cej_2024_154636 crossref_primary_10_1016_j_mtchem_2024_102439 crossref_primary_10_1002_anie_202304356 crossref_primary_10_1021_acsaenm_4c00344 crossref_primary_10_1039_D4TA04330H |
Cites_doi | 10.1002/smll.202204757 10.1002/anie.202114244 10.1039/D1CC04928C 10.1002/adma.202203139 10.1002/anie.202213268 10.1038/s41557-019-0238-5 10.1002/anie.202212162 10.1002/anie.201905713 10.1039/C9CS00827F 10.1039/D0CS00793E 10.1002/anie.202006925 10.1038/s41467-019-14237-4 10.1038/s41467-020-19858-8 10.1038/s41586-022-04443-4 10.1002/anie.202004796 10.1021/jacs.1c06238 10.1021/jacs.0c02225 10.1002/adma.202104946 10.1038/s41467-020-15281-1 10.1038/s41467-019-10504-6 10.1002/adfm.202101727 10.1021/acsenergylett.9b02756 10.1021/jacs.9b08147 10.1126/science.aan0202 10.1038/s41563-021-01052-w 10.1126/science.1120411 10.1002/ange.201915234 10.1021/jacs.9b03441 10.1002/ange.201905713 10.1021/jacs.9b13971 10.1126/sciadv.abb1110 10.1002/ange.201913091 10.1038/s41557-022-00908-1 10.1002/adma.201606635 10.1002/ange.202114648 10.1039/D0CS01027H 10.1002/anie.202213522 10.1021/acscatal.9b05470 10.1002/ange.202212162 10.1002/anie.201913091 10.1002/ange.202213268 10.1002/anie.201915234 10.1021/jacs.8b07670 10.1021/jacs.9b01226 10.1002/ange.202114244 10.1002/smll.202004933 10.1021/acsenergylett.1c01681 10.1021/jacs.8b10334 10.1002/anie.202114648 10.1002/aenm.201601189 10.1002/ange.202213522 10.1039/D0CS00017E 10.1016/j.chempr.2018.05.003 10.1002/ange.202006925 10.1002/ange.202004796 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202218742 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36655733 10_1002_anie_202218742 ANIE202218742 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shanghai funderid: 20ZR1464000 – fundername: China Postdoctoral Science Foundation funderid: 2019M661408 – fundername: National Natural Science Foundation of China funderid: 21878076, 22008064 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 19160712100 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 19160712100 – fundername: National Natural Science Foundation of China grantid: 21878076, 22008064 – fundername: Natural Science Foundation of Shanghai grantid: 20ZR1464000 – fundername: China Postdoctoral Science Foundation grantid: 2019M661408 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3732-1fc52e3293f90fb8c4a19ff5431bde674a77b5e2685e9a70ae564aed4ddb028f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 00:49:22 EDT 2025 Sun Jul 13 05:27:00 EDT 2025 Mon Jul 21 06:07:50 EDT 2025 Tue Jul 01 01:47:03 EDT 2025 Thu Apr 24 22:52:04 EDT 2025 Wed Jan 22 16:22:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Metal-Free Catalysts Oxygen Reduction Reaction Edge Sites One Dimensional Topology Covalent Organic Frameworks |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-1fc52e3293f90fb8c4a19ff5431bde674a77b5e2685e9a70ae564aed4ddb028f3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9066-9837 |
PMID | 36655733 |
PQID | 2788349008 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2767171672 proquest_journals_2788349008 pubmed_primary_36655733 crossref_citationtrail_10_1002_anie_202218742 crossref_primary_10_1002_anie_202218742 wiley_primary_10_1002_anie_202218742_ANIE202218742 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 27, 2023 |
PublicationDateYYYYMMDD | 2023-03-27 |
PublicationDate_xml | – month: 03 year: 2023 text: March 27, 2023 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 6 2021; 20 2005; 310 2019; 11 2020; 142 2019; 10 2020 2020; 59 132 2017; 29 2020; 11 2023 2023; 62 135 2020; 10 2021; 143 2021; 50 2019; 141 2017; 357 2019 2019; 58 131 2021; 57 2020; 6 2016; 6 2022 2022; 61 134 2020; 5 2021; 31 2018; 4 2021; 17 2022; 34 2020; 49 2022; 14 2022; 604 2022; 18 e_1_2_3_50_1 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_39_2 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_33_2 e_1_2_3_37_1 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_35_2 e_1_2_3_52_2 e_1_2_3_31_3 e_1_2_3_54_2 e_1_2_3_10_2 e_1_2_3_31_2 e_1_2_3_54_1 e_1_2_3_26_2 e_1_2_3_49_2 e_1_2_3_28_1 e_1_2_3_22_2 e_1_2_3_45_2 e_1_2_3_24_2 e_1_2_3_47_2 e_1_2_3_24_3 e_1_2_3_41_2 e_1_2_3_20_2 e_1_2_3_43_2 e_1_2_3_20_3 e_1_2_3_1_1 e_1_2_3_19_2 e_1_2_3_19_3 e_1_2_3_5_2 e_1_2_3_38_2 e_1_2_3_36_3 e_1_2_3_3_2 e_1_2_3_17_2 e_1_2_3_11_2 e_1_2_3_34_2 e_1_2_3_7_3 e_1_2_3_9_1 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_36_2 e_1_2_3_15_1 e_1_2_3_30_2 e_1_2_3_51_2 e_1_2_3_53_3 e_1_2_3_32_1 e_1_2_3_53_2 e_1_2_3_25_3 e_1_2_3_27_1 e_1_2_3_48_3 e_1_2_3_48_2 e_1_2_3_29_2 e_1_2_3_23_2 e_1_2_3_44_2 e_1_2_3_25_2 e_1_2_3_46_2 e_1_2_3_42_1 e_1_2_3_40_2 e_1_2_3_21_1 |
References_xml | – volume: 11 start-page: 587 year: 2019 end-page: 594 publication-title: Nat. Chem. – volume: 18 year: 2022 publication-title: Small – volume: 6 start-page: 3496 year: 2021 end-page: 3502 publication-title: ACS Energy Lett. – volume: 59 132 start-page: 3624 3653 year: 2020 2020 end-page: 3629 3658 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 49 start-page: 708 year: 2020 end-page: 735 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 6128 year: 2020 publication-title: Nat. Commun. – volume: 57 start-page: 12619 year: 2021 end-page: 12622 publication-title: Chem. Commun. – volume: 143 start-page: 18052 year: 2021 end-page: 18060 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 4 start-page: 1696 year: 2018 end-page: 1709 publication-title: Chem – volume: 20 start-page: 1551 year: 2021 end-page: 1558 publication-title: Nat. Mater. – volume: 5 start-page: 1005 year: 2020 end-page: 1012 publication-title: ACS Energy Lett. – volume: 17 year: 2021 publication-title: Small – volume: 310 start-page: 1166 year: 2005 end-page: 1170 publication-title: Science – volume: 11 start-page: 1434 year: 2020 publication-title: Nat. Commun. – volume: 141 start-page: 1227 year: 2019 end-page: 1234 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 4557 4587 year: 2020 2020 end-page: 4563 4593 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 604 start-page: 72 year: 2022 end-page: 79 publication-title: Nature – volume: 59 132 start-page: 13722 13826 year: 2020 2020 end-page: 13733 13837 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 497 year: 2020 publication-title: Nat. Commun. – volume: 357 start-page: 673 year: 2017 end-page: 676 publication-title: Science – volume: 59 132 start-page: 16902 17050 year: 2020 2020 end-page: 16909 17057 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 62 135 year: 2023 2023 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 50 start-page: 1813 year: 2021 end-page: 1845 publication-title: Chem. Soc. Rev. – volume: 142 start-page: 8104 year: 2020 end-page: 8108 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 141 start-page: 1807 year: 2019 end-page: 1822 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 3565 year: 2020 end-page: 3604 publication-title: Chem. Soc. Rev. – volume: 141 start-page: 6623 year: 2019 end-page: 6630 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 2771 year: 2020 end-page: 2776 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 8469 year: 2020 end-page: 8500 publication-title: Chem. Soc. Rev. – volume: 58 131 start-page: 12065 12193 year: 2019 2019 end-page: 12069 12197 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 5623 year: 2020 end-page: 5630 publication-title: ACS Catal. – volume: 141 start-page: 11929 year: 2019 end-page: 11937 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 16 year: 2020 end-page: 20 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2467 year: 2019 publication-title: Nat. Commun. – volume: 14 start-page: 507 year: 2022 end-page: 514 publication-title: Nat. Chem. – ident: e_1_2_3_41_2 doi: 10.1002/smll.202204757 – ident: e_1_2_3_54_1 doi: 10.1002/anie.202114244 – ident: e_1_2_3_40_2 doi: 10.1039/D1CC04928C – ident: e_1_2_3_49_2 doi: 10.1002/adma.202203139 – ident: e_1_2_3_31_2 doi: 10.1002/anie.202213268 – ident: e_1_2_3_5_2 doi: 10.1038/s41557-019-0238-5 – ident: e_1_2_3_48_2 doi: 10.1002/anie.202212162 – ident: e_1_2_3_24_2 doi: 10.1002/anie.201905713 – ident: e_1_2_3_10_2 doi: 10.1039/C9CS00827F – ident: e_1_2_3_26_2 doi: 10.1039/D0CS00793E – ident: e_1_2_3_25_2 doi: 10.1002/anie.202006925 – ident: e_1_2_3_52_2 doi: 10.1038/s41467-019-14237-4 – ident: e_1_2_3_12_2 doi: 10.1038/s41467-020-19858-8 – ident: e_1_2_3_42_1 – ident: e_1_2_3_50_1 – ident: e_1_2_3_8_2 doi: 10.1038/s41586-022-04443-4 – ident: e_1_2_3_7_2 doi: 10.1002/anie.202004796 – ident: e_1_2_3_47_2 doi: 10.1021/jacs.1c06238 – ident: e_1_2_3_39_2 doi: 10.1021/jacs.0c02225 – ident: e_1_2_3_14_2 doi: 10.1002/adma.202104946 – ident: e_1_2_3_27_1 doi: 10.1038/s41467-020-15281-1 – ident: e_1_2_3_22_2 doi: 10.1038/s41467-019-10504-6 – ident: e_1_2_3_35_2 doi: 10.1002/adfm.202101727 – ident: e_1_2_3_44_2 doi: 10.1021/acsenergylett.9b02756 – ident: e_1_2_3_23_2 doi: 10.1021/jacs.9b08147 – ident: e_1_2_3_3_2 doi: 10.1126/science.aan0202 – ident: e_1_2_3_13_2 doi: 10.1038/s41563-021-01052-w – ident: e_1_2_3_2_2 doi: 10.1126/science.1120411 – ident: e_1_2_3_19_3 doi: 10.1002/ange.201915234 – ident: e_1_2_3_17_2 doi: 10.1021/jacs.9b03441 – ident: e_1_2_3_24_3 doi: 10.1002/ange.201905713 – ident: e_1_2_3_29_2 doi: 10.1021/jacs.9b13971 – ident: e_1_2_3_11_2 doi: 10.1126/sciadv.abb1110 – ident: e_1_2_3_32_1 – ident: e_1_2_3_20_3 doi: 10.1002/ange.201913091 – ident: e_1_2_3_21_1 – ident: e_1_2_3_30_2 doi: 10.1038/s41557-022-00908-1 – ident: e_1_2_3_38_2 doi: 10.1002/adma.201606635 – ident: e_1_2_3_1_1 – ident: e_1_2_3_53_3 doi: 10.1002/ange.202114648 – ident: e_1_2_3_15_1 – ident: e_1_2_3_6_2 doi: 10.1039/D0CS01027H – ident: e_1_2_3_36_2 doi: 10.1002/anie.202213522 – ident: e_1_2_3_34_2 doi: 10.1021/acscatal.9b05470 – ident: e_1_2_3_48_3 doi: 10.1002/ange.202212162 – ident: e_1_2_3_20_2 doi: 10.1002/anie.201913091 – ident: e_1_2_3_31_3 doi: 10.1002/ange.202213268 – ident: e_1_2_3_19_2 doi: 10.1002/anie.201915234 – ident: e_1_2_3_16_2 doi: 10.1021/jacs.8b07670 – ident: e_1_2_3_37_1 – ident: e_1_2_3_18_2 doi: 10.1021/jacs.9b01226 – ident: e_1_2_3_54_2 doi: 10.1002/ange.202114244 – ident: e_1_2_3_45_2 doi: 10.1002/smll.202004933 – ident: e_1_2_3_46_2 doi: 10.1021/acsenergylett.1c01681 – ident: e_1_2_3_4_2 doi: 10.1021/jacs.8b10334 – ident: e_1_2_3_53_2 doi: 10.1002/anie.202114648 – ident: e_1_2_3_33_2 doi: 10.1002/aenm.201601189 – ident: e_1_2_3_36_3 doi: 10.1002/ange.202213522 – ident: e_1_2_3_51_2 doi: 10.1039/D0CS00017E – ident: e_1_2_3_28_1 – ident: e_1_2_3_43_2 doi: 10.1016/j.chempr.2018.05.003 – ident: e_1_2_3_9_1 – ident: e_1_2_3_25_3 doi: 10.1002/ange.202006925 – ident: e_1_2_3_7_3 doi: 10.1002/ange.202004796 |
SSID | ssj0028806 |
Score | 2.6196046 |
Snippet | Two‐dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the... Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202218742 |
SubjectTerms | Active sites Catalysis Chemical reduction Covalent Organic Frameworks Edge Sites Electrolytes Hydrogen peroxide Metal-Free Catalysts One Dimensional Topology Oxygen Reduction Reaction Oxygen reduction reactions Selectivity Surface area Surface stability |
Title | One‐Dimensional Covalent Organic Frameworks for the 2e− Oxygen Reduction Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202218742 https://www.ncbi.nlm.nih.gov/pubmed/36655733 https://www.proquest.com/docview/2788349008 https://www.proquest.com/docview/2767171672 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqXugFSstjaUGuVIlT2qyfybFauiqV2koVK_UW-TG5gLIVuytBTxw5VvzE_hJm4k3KFiEkuDmKnTieGftzPPMNY_vRaIgBdycqh5ApQFl4o2Vm8gKGkXLvtSe6Z-fmZKJOr_TVL1H8iR-i_-FGltHO12Tgzs8O70lDKQIb93dCUFY5moTJYYtQ0WXPHyVQOVN4kZQZZaHvWBtzcbjafHVV-g1qriLXdukZP2Gu63TyOPl4sJj7g3DzgM_xf75qkz1e4lJ-lBTpKVuDZos9GnXp4LbZ5KKBu2-37ygbQGLy4KMpqikuWjwFdAY-7jy9ZhyxMEdsyQXcff_BL758RUXll8QTS5qApRRQ8YxNxscfRifZMidDFqSVIhvWQQuQCBLqMq99EZQblnVNEfU-grHKWes1CFNoKJ3NHWijHEQVo0d51PI5W2-mDbxkPNc64ObJQVk6ZUPtVRm8inmIpXS4sg5Y1smkCkvCcsqb8alKVMuiosGq-sEasLd9_etE1fHHmrudiKulyc4qYYtCqhJ1c8D2-ts4yHSC4hqYLqiOscQvZPERL5Jq9K-Sxmgilxww0Qr4L32ojs7fH_dXr_6l0Q7bwLIkjzhhd9n6_PMCXiNEmvs3rRn8BG8bCL8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9lAuUN6BAouExMmts0_7WIVGKbSpVDUSN2sf4wvIQTSRWk499oj4if0lzHhjo4AQEtz82LXXOzOemd2Zbxh7HY2GGNA7UTmETAHSwhstM5MXMIxUe6_d0T2emslMvfugu2hCyoVJ-BD9ghtJRvu_JgGnBem9n6ihlIKNDp4QVFYO_8KbVNa79apOewQpgeyZEoykzKgOfYfbmIu99f7reuk3Y3Pddm2Vz_gu892wU8zJx93lwu-Gr78gOv7Xd22zOyvTlO8nXrrHbkFzn22NuopwD9jspIGbq29vqSBAAvPgozlyKuotnnI6Ax93wV7nHM1hjuYlF3Bz_Z2fXFwir_JTgoolZsCjlFPxkM3GB2ejSbYqy5AFaaXIhnXQAiTaCXWZ174Iyg3Luqakeh_BWOWs9RqEKTSUzuYOtFEOoorRI0Fq-YhtNPMGnjCeax3Qf3JQlk7ZUHtVBq9iHmIpHSrXAcs6olRhhVlOpTM-VQltWVQ0WVU_WQP2pm__OaF1_LHlTkfjaiW155WwRSFView5YK_62zjJtIniGpgvqY2xBDFk8RGPE2_0r5LGaMKXHDDRUvgvY6j2p4cH_dnTf-n0km1Nzo6PqqPD6ftn7DZelxQgJ-wO21h8WcJztJgW_kUrEz8A9dwM2g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIgEXypstBYyExClt1s_kWO121fLYooqVeov8mFxA2YruSsCJI8eqP7G_hHG8CSwIIcEtD9txPJ8948d8A_A8aIXB0-xE5ugziSQLp5XIdF7gMMTYe-2O7pupPpjJlyfq5Ccv_sQP0S-4xZ7Rjtexg5-GevcHaWj0wKb5HecxqhwNwlcllR9xPT7uCaQ4oTP5FwmRxTD0HW1jznfX86-rpd9szXXTtdU9k02wXa3TkZP3O8uF2_FffiF0_J_fugU3V4Yp20tIug1XsLkD10ddPLi7MDtq8PLr-TiGA0hUHmw0J5yS1mLJo9OzSXfU64yRMczIuGQcL79dsKNPnwmp7DgSxUYo0FXyqLgHs8n-u9FBtgrKkHlhBM-GtVccBVkJdZnXrvDSDsu6ji71LqA20hrjFHJdKCytyS0qLS0GGYIjedTiPmw08wYfAsuV8jR7sliWVhpfO1l6J0PuQyksqdYBZJ1MKr9iLI-BMz5UiWuZV7Gxqr6xBvCiT3-auDr-mHK7E3G16rNnFTdFIWRJ4BzAs_41NXLcQrENzpcxjTaRYMhQEQ8SNPpPCa1VZJccAG8F_Jc6VHvTw_3-butfMj2Fa2_Hk-r14fTVI7hBj0VaHNqGjcXHJT4mc2nhnrQ94jvdPguI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%E2%80%90Dimensional+Covalent+Organic+Frameworks+for+the+2e%E2%88%92+Oxygen+Reduction+Reaction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=An%2C+Shuhao&rft.au=Li%2C+Xuewen&rft.au=Shang%2C+Shuaishuai&rft.au=Xu%2C+Ting&rft.date=2023-03-27&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=14&rft_id=info:doi/10.1002%2Fanie.202218742&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |