Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination
An unprecedented highly enantioselective Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N‐unprotected unnatural α‐amino acid derivatives bearing a broad range of aryl or alkyl α‐substituents. T...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 25; pp. e202202552 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
20.06.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An unprecedented highly enantioselective Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N‐unprotected unnatural α‐amino acid derivatives bearing a broad range of aryl or alkyl α‐substituents. This protocol features easily accessible substrates, good functional‐group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N‐unprotected unnatural α‐amino acid derivatives containing an additional stereogenic center at the β‐position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N‐unprotected unnatural α‐amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method.
An unprecedented Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been achieved. This protocol provides an efficient and practical way for the synthesis of diverse enantioenriched α‐aryl‐ or alkyl‐substituted N‐unprotected unnatural α‐amino acids and N‐unprotected β‐branched α‐amino acids. Further follow‐up transformations enable access to drug intermediates, peptides, and organocatalysts/ligands. |
---|---|
AbstractList | An unprecedented highly enantioselective Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N‐unprotected unnatural α‐amino acid derivatives bearing a broad range of aryl or alkyl α‐substituents. This protocol features easily accessible substrates, good functional‐group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N‐unprotected unnatural α‐amino acid derivatives containing an additional stereogenic center at the β‐position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N‐unprotected unnatural α‐amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method. An unprecedented highly enantioselective Ru-catalyzed direct asymmetric reductive amination of α-keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N-unprotected unnatural α-amino acid derivatives bearing a broad range of aryl or alkyl α-substituents. This protocol features easily accessible substrates, good functional-group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N-unprotected unnatural α-amino acid derivatives containing an additional stereogenic center at the β-position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N-unprotected unnatural α-amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method.An unprecedented highly enantioselective Ru-catalyzed direct asymmetric reductive amination of α-keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N-unprotected unnatural α-amino acid derivatives bearing a broad range of aryl or alkyl α-substituents. This protocol features easily accessible substrates, good functional-group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N-unprotected unnatural α-amino acid derivatives containing an additional stereogenic center at the β-position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N-unprotected unnatural α-amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method. An unprecedented highly enantioselective Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N‐unprotected unnatural α‐amino acid derivatives bearing a broad range of aryl or alkyl α‐substituents. This protocol features easily accessible substrates, good functional‐group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N‐unprotected unnatural α‐amino acid derivatives containing an additional stereogenic center at the β‐position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N‐unprotected unnatural α‐amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method.In memory of Professor Robert H. Grubbs An unprecedented highly enantioselective Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N‐unprotected unnatural α‐amino acid derivatives bearing a broad range of aryl or alkyl α‐substituents. This protocol features easily accessible substrates, good functional‐group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N‐unprotected unnatural α‐amino acid derivatives containing an additional stereogenic center at the β‐position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N‐unprotected unnatural α‐amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method. An unprecedented Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been achieved. This protocol provides an efficient and practical way for the synthesis of diverse enantioenriched α‐aryl‐ or alkyl‐substituted N‐unprotected unnatural α‐amino acids and N‐unprotected β‐branched α‐amino acids. Further follow‐up transformations enable access to drug intermediates, peptides, and organocatalysts/ligands. An unprecedented highly enantioselective Ru-catalyzed direct asymmetric reductive amination of alpha-keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N-unprotected unnatural a-amino acid derivatives bearing a broad range of aryl or alkyl a-substituents. This protocol features easily accessible substrates, good functional-group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N-unprotected unnatural alpha-amino acid derivatives containing an additional stereogenic center at the beta-position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N-unprotected unnatural alpha-amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method. |
ArticleNumber | 202202552 |
Author | Xu, Lei Hu, Le'an Zhang, Xumu Yin, Qin Wang, Yuan‐Zheng |
Author_xml | – sequence: 1 givenname: Le'an surname: Hu fullname: Hu, Le'an organization: Southern University of Science and Technology – sequence: 2 givenname: Yuan‐Zheng surname: Wang fullname: Wang, Yuan‐Zheng organization: Southern University of Science and Technology – sequence: 3 givenname: Lei surname: Xu fullname: Xu, Lei organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Qin orcidid: 0000-0003-3534-3786 surname: Yin fullname: Yin, Qin email: qin.yin@siat.ac.cn organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Xumu orcidid: 0000-0001-5700-0608 surname: Zhang fullname: Zhang, Xumu email: zhangxm@sustech.edu.cn organization: Southern University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35332974$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1qFDEYhoNUbLt66qEEPCnIrvmZmcweDtvVFkqF6h4P2cw3NmUmqUmmMh55CZ56Gd6IF-GV-K27rlAQhYEJ5HneJC_fMTlw3gEhTzmbccbES-0szAQT-OW5eECOeC74VColD3CdSTlVZc4PyXGMN8iXJSsekUOZSynmKjsiX8_s--tupEunXbI-Qgcm2Tugb0eXriHaSH1LL398_rJyt8En3IWGrpzTaQi6o9-_4VbVW-dpZWxDTyHYO71JiHQ90qsBQ5wdeqQWOulu_IT6qQ2YQ6s49j2kYA29gmbYnrvJQt-7x-Rhq7sIT3b_CVm9Wr5bnE0v3rw-X1QXUyOVFFNujGk1F-tGzxnPGqG1KkvgqhWmgIaLrMkMZ6bBYhQDEFLqvNWtkDlTrGFyQk62ufi8DwPEVPc2Gug67cAPsRZFljEhC6x0Qp7fQ2_8EBzeDimVKVlwrHxCnu2oYd1DU98G2-sw1r9LR-DFFvgIa99GY8EZ2GOMMVVypsQcV4wjXf4_vbDpV3kLP7iE6myrmuBjDNDuNc7qzfjUm_Gp9-ODQnZPMLvAFLTt_q7Nd1e0HYz_OKSuLs-Xf9yf5pPdcg |
CitedBy_id | crossref_primary_10_1002_advs_202403437 crossref_primary_10_1002_ange_202208411 crossref_primary_10_1039_D4QI02520B crossref_primary_10_1002_ange_202303868 crossref_primary_10_1021_acs_orglett_3c00272 crossref_primary_10_1002_adma_202418233 crossref_primary_10_1021_acs_joc_3c00457 crossref_primary_10_1021_acs_orglett_3c04378 crossref_primary_10_1002_anie_202208411 crossref_primary_10_1021_jacs_4c14200 crossref_primary_10_1002_adsc_202300213 crossref_primary_10_1002_ange_202306726 crossref_primary_10_1002_anie_202303868 crossref_primary_10_1002_anie_202306726 crossref_primary_10_1021_acs_oprd_3c00152 crossref_primary_10_1021_acs_orglett_3c01734 crossref_primary_10_1002_cjoc_202400338 crossref_primary_10_1021_acs_orglett_3c03529 crossref_primary_10_1021_acs_orglett_3c03925 crossref_primary_10_1002_ejoc_202300035 crossref_primary_10_1002_chir_70000 crossref_primary_10_1055_s_0041_1737625 crossref_primary_10_1021_acs_oprd_3c00088 crossref_primary_10_1055_a_2002_5733 |
Cites_doi | 10.1021/ar300051u 10.1039/C9CS00921C 10.1002/ange.201915459 10.1021/acs.orglett.1c00848 10.1021/cr020049i 10.1021/acscatal.0c01212 10.1039/B703488C 10.1021/acscatal.7b02686 10.1002/adsc.201400328 10.1021/jacs.1c03903 10.1039/C4CS00507D 10.1002/anie.201107601 10.1002/ange.201611181 10.1021/jo026856z 10.1021/ja203138q 10.1021/cr020020e 10.1021/jacs.7b10496 10.1038/nature08484 10.1039/C7CS00253J 10.1002/ange.202105656 10.1021/cr050580o 10.1002/ange.201806893 10.1039/C9CS00286C 10.1002/anie.201601025 10.1021/ja905143m 10.1002/anie.202012861 10.1002/anie.201812647 10.1002/anie.200352503 10.6023/cjoc202000036 10.1039/p19890000279 10.1016/j.ejmech.2021.113448 10.1021/cr200057t 10.1002/ange.202112671 10.1002/ange.202012909 10.1002/ange.202016589 10.1007/128_2013_484 10.1007/978-1-61779-331-8 10.1002/anie.201809719 10.1039/D1CC06601C 10.1055/s-0040-1705939 10.1021/ja9021683 10.1002/anie.201611181 10.1002/anie.202012909 10.1021/jacs.0c10415 10.1055/s-0035-1561648 10.1021/acs.chemrev.7b00064 10.1002/anie.202105656 10.1002/anie.201806893 10.1002/anie.201915459 10.1002/9783527804498 10.1002/anie.201809930 10.1002/ange.202012861 10.1002/ange.200352503 10.1039/D1QO00300C 10.1021/jacs.6b03930 10.1002/ange.201107601 10.1021/ja406484v 10.1021/ja049499d 10.1021/acs.jmedchem.6b00319 10.1021/acs.chemrev.0c00248 10.1021/acs.chemrev.1c00496 10.1002/anie.202016589 10.1002/ange.201809719 10.1126/science.1249198 10.1021/acs.orglett.0c00669 10.1002/ange.201809930 10.1002/ejoc.202000750 10.1177/1756283X14528269 10.1021/jacs.8b03509 10.1021/acs.oprd.1c00208 10.1021/acs.chemrev.6b00731 10.1021/acscatal.1c02805 10.1021/acs.accounts.5b00028 10.1039/c3cs35496b 10.1021/cr068377w 10.1002/anie.202112671 10.1002/ange.201601025 10.1038/s41586-021-03990-6 10.1021/ja00141a039 10.1002/ange.201812647 10.1021/jacs.7b12898 10.1021/jo020690k 10.1021/acscatal.1c04208 10.1038/s41467-021-25449-y 10.1039/c4cs00507d 10.1039/c9cs00921c 10.1039/d1cc06601c 10.1039/c7cs00253j 10.1039/b703488c 10.1039/d1qo00300c 10.1007/978-1-61779-331-8_26 10.1039/c9cs00286c |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM 1KN AHQBO BLEPL DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202202552 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 35332974 000781072900001 10_1002_anie_202202552 ANIE202202552 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22071097;21991113 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2021B1515020062 – fundername: Guangdong Provincial Key Laboratory of Catalysis grantid: 2020B121201002 – fundername: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 22071097; 21991113 – fundername: Shenzhen Science and Technology Innovation Committee grantid: JCYJ20190809142013478 – fundername: National Natural Science Foundation of China grantid: 22071097;21991113 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3732-1cccfa12bda9014d2aa788e17f2c6ed124d4c10cd15270ee233a5faf235070d03 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 33 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000781072900001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 12:09:57 EDT 2025 Fri Jul 25 11:50:22 EDT 2025 Wed Feb 19 02:26:41 EST 2025 Fri Aug 29 16:07:59 EDT 2025 Wed Jul 09 18:31:02 EDT 2025 Tue Jul 01 05:01:23 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Wed Jan 22 16:24:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | BRONSTED ACID BIOMIMETIC TRANSAMINATION HYDROGEN COOPERATIVE CATALYSIS AMMONIA ESTERS PROGRESS ALKYL-ARYL KETONES N-Unprotected Amino Acids Ruthenium α-Keto Amides Amino Acids Reductive Amination |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3732-1cccfa12bda9014d2aa788e17f2c6ed124d4c10cd15270ee233a5faf235070d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3534-3786 0000-0001-5700-0608 |
PMID | 35332974 |
PQID | 2674736114 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2644023677 pubmed_primary_35332974 webofscience_primary_000781072900001 crossref_primary_10_1002_anie_202202552 crossref_citationtrail_10_1002_anie_202202552 proquest_journals_2674736114 wiley_primary_10_1002_anie_202202552_ANIE202202552 webofscience_primary_000781072900001CitationCount |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 20, 2022 |
PublicationDateYYYYMMDD | 2022-06-20 |
PublicationDate_xml | – month: 06 year: 2022 text: June 20, 2022 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2021; 25 2017; 7 2007; 107 2004; 126 2021; 23 2020; 120 2020 2020; 59 132 2020; 10 2011; 111 2017; 117 2018; 47 2022; 122 2015; 48 2021; 598 2018 2018; 57 130 2012 2012; 51 124 2015; 44 2020; 49 2007; 9 2014; 7 2016; 48 1989 2021; 8 2018; 140 2012 2011 2020; 142 2020; 40 2013; 42 2009 2013; 343 1995; 117 2003 2003; 42 115 2021; 143 2009; 131 2017 2017; 56 129 2021; 220 2016; 59 2014; 356 2011; 133 2019 2019; 58 131 2021; 53 2016 2016; 55 128 2021; 12 2021; 11 2020 2003; 68 2021 2021; 60 133 2019 2022; 58 2013; 135 2016 2016; 138 2020; 22 2009; 461 2003; 103 2012; 45 2014; 343 e_1_2_7_3_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_83_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_64_1 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_11_2 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_49_3 e_1_2_7_90_1 e_1_2_7_71_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_23_1 e_1_2_7_52_3 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_56_3 e_1_2_7_79_1 e_1_2_7_37_2 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_16_2 e_1_2_7_82_1 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_12_2 e_1_2_7_86_1 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_2 e_1_2_7_48_3 e_1_2_7_29_2 e_1_2_7_70_3 e_1_2_7_51_1 e_1_2_7_70_2 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_74_1 e_1_2_7_32_2 e_1_2_7_55_2 e_1_2_7_20_1 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_59_2 Brückner H. (e_1_2_7_5_2) 2011 Hughes A. B. (e_1_2_7_9_2) 2009 e_1_2_7_17_1 e_1_2_7_81_2 e_1_2_7_62_3 e_1_2_7_1_1 e_1_2_7_62_2 e_1_2_7_13_1 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_66_2 e_1_2_7_89_1 e_1_2_7_47_2 e_1_2_7_47_3 e_1_2_7_28_2 e_1_2_7_73_1 e_1_2_7_92_2 e_1_2_7_25_3 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_31_1 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_77_3 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_18_1 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_1 e_1_2_7_42_2 e_1_2_7_84_2 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_88_2 e_1_2_7_69_1 e_1_2_7_88_3 e_1_2_7_27_2 Soloshonok V. A. (e_1_2_7_2_2) 2009 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_30_3 e_1_2_7_72_3 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_34_1 e_1_2_7_57_3 e_1_2_7_57_2 e_1_2_7_38_2 Hu, L. (000781072900001.56) 2020; 132 Zhou, SL (WOS:000344546600024) 2014; 356 Chi, YX (WOS:000182825000057) 2003; 68 Xue, YP (WOS:000425374900012) 2018; 47 Slabu, I (WOS:000417230500028) 2017; 7 Eftekhari-Sis, B (WOS:000404806000015) 2017; 117 Li, F. (000781072900001.77) 2021; 133 Morisaki, K (WOS:000543663800035) 2020; 10 Steinhuebel, D (WOS:000269379200023) 2009; 131 Lou, YZ (WOS:000447371500037) 2018; 57 Reeves (000781072900001.69) 2012; 124 Tedeschi, G (WOS:000303131400026) 2012; 794 Lou, Y. (000781072900001.54) 2018; 130 Zhang, SY (WOS:000323241200069) 2013; 135 Wang, J (WOS:000296685200007) 2011; 111 He, J (WOS:000332728500029) 2014; 343 Hao, W (WOS:000693621800035) 2021; 11 (000781072900001.82) 2019 Wang, C (WOS:000356813000008) 2014; 343 Blaskovich, MAT (WOS:000390735500001) 2016; 59 Davie, EAC (WOS:000251583300011) 2007; 107 Gillingham, D (WOS:000319527400006) 2013; 42 Jin, LM (WOS:000599506900042) 2020; 142 Matador, E. (000781072900001.85) 2021; 133 Xie, Y (WOS:000351606600002) 2015; 44 Yao (000781072900001.21) 2021; 133 Li, CQ (WOS:000266484700037) 2009; 131 Hyslop, JF (WOS:000446826200016) 2018; 57 Hughes (000781072900001.7) 2009 Ghosh, T (WOS:000546651400001) 2020; 2020 Irrgang, T (WOS:000571431700009) 2020; 120 Kadyrov, R (WOS:000186816400010) 2003; 42 Nájera, C (WOS:000250970400004) 2007; 107 Che, C. (000781072900001.27) 2021; 133 Bhat, V (WOS:000396185400014) 2017; 117 Saghyan, A. S. (000781072900001.9) 2016 Bruckner, H. (000781072900001.4) 2011 Liu, YE (WOS:000382513300004) 2016; 138 Shi, YJ (WOS:000729562500001) 2022; 58 Faraggi, TM (WOS:000687904600021) 2021; 25 Reeves, JT (WOS:000299736300019) 2012; 51 Shen, PX (WOS:000434101100008) 2018; 140 BURK, MJ (WOS:A1995RU81800039) 1995; 117 Yao, PY (WOS:000626563700001) 2021; 60 Roff, GJ (WOS:000220637100024) 2004; 126 Gao, Z. (000781072900001.62) 2021; 133 Xiao, X (WOS:000294591300006) 2011; 133 Cai, WQ (WOS:000738605600001) 2021; 12 Ponra, S (WOS:000582050400002) 2021; 53 Zhou, H. (000781072900001.42) 2017; 129 Hyslop, J. F. (000781072900001.19) 2018; 130 Yamada, M (WOS:000649477300026) 2021; 23 Soloshonok, V.A. (000781072900001.1) 2009 Chen, Y (WOS:000462680700020) 2019; 58 MATSUDA, Y (WOS:A1989T390400011) 1989 Li, FZ (WOS:000668520900001) 2021; 60 Hu, LA (WOS:000514492100001) 2020; 59 Huang, HZ (WOS:000374564300035) 2016; 55 Matador, E (WOS:000590562100001) 2021; 60 Acosta, A (WOS:000340506400003) 2014; 7 Tian, YY (WOS:000639267300001) 2021; 8 Huang, H. (000781072900001.72) 2016; 128 Zhao, XH (WOS:000455818400045) 2019; 58 Yang, ZP (WOS:000664300200017) 2021; 143 Cabré, A (WOS:000767137000006) 2022; 122 Yin, Q (WOS:000570357800001) 2020; 49 Chen, Y. (000781072900001.44) 2019; 131 Tan, XF (WOS:000425475300011) 2018; 140 Reshi, NUD (WOS:000726635700008) 2021; 11 Huang, HZ (WOS:000560811400048) 2020; 40 Tang, WJ (WOS:000184821500013) 2003; 103 Constable, DJC (WOS:000246802600012) 2007; 9 Zhang, L (WOS:000353429400010) 2015; 48 Zuend, SJ (WOS:000270817700044) 2009; 461 Zhou, H (WOS:000395183600031) 2017; 56 Che, C (WOS:000604579600001) 2021; 60 Echeverria, PG (WOS:000382509100002) 2016; 48 Kadyrov, R. (000781072900001.49) 2003; 115 Zhao, X. (000781072900001.46) 2019; 131 Han, JL (WOS:000659148800002) 2021; 220 Gao, ZF (WOS:000718898300001) 2021; 60 Shi, YJ (WOS:000526335800040) 2020; 22 Kadyrov, R (WOS:000182825000043) 2003; 68 Gallardo-Donaire, J (WOS:000422813300064) 2018; 140 Kaptein, SJF (WOS:000704947000004) 2021; 598 Murugesan, K (WOS:000570357800007) 2020; 49 Zhu, SF (WOS:000307696500018) 2012; 45 Maruoka, K (WOS:000184821500012) 2003; 103 |
References_xml | – year: 2011 – year: 2009 – volume: 59 132 start-page: 5321 5359 year: 2020 2020 end-page: 5325 5363 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 12135 year: 2013 end-page: 12141 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 4528 year: 2017 end-page: 4561 publication-title: Chem. Rev. – volume: 120 start-page: 9583 year: 2020 end-page: 9674 publication-title: Chem. Rev. – volume: 60 133 start-page: 4698 4748 year: 2021 2021 end-page: 4704 4754 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 167 year: 2014 end-page: 175 publication-title: Ther. Adv. Gastroenterol. – volume: 51 124 start-page: 1400 1429 year: 2012 2012 end-page: 1404 1433 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 6545 year: 2018 end-page: 6549 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 2024 year: 2018 end-page: 2027 publication-title: J. Am. Chem. Soc. – volume: 220 year: 2021 publication-title: Eur. J. Med. Chem. – volume: 117 start-page: 9375 year: 1995 end-page: 9376 publication-title: J. Am. Chem. Soc. – volume: 107 start-page: 5759 year: 2007 end-page: 5812 publication-title: Chem. Rev. – volume: 11 start-page: 13809 year: 2021 end-page: 13837 publication-title: ACS Catal. – volume: 40 start-page: 1802 year: 2020 end-page: 1803 publication-title: Chin. J. Org. Chem. – volume: 111 start-page: 6947 year: 2011 end-page: 6983 publication-title: Chem. Rev. – volume: 343 start-page: 261 year: 2013 end-page: 282 publication-title: Top. Curr. Chem. – volume: 22 start-page: 2707 year: 2020 end-page: 2713 publication-title: Org. Lett. – volume: 142 start-page: 20828 year: 2020 end-page: 20836 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 3809 3849 year: 2019 2019 end-page: 3813 3853 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 103 start-page: 3029 year: 2003 end-page: 3070 publication-title: Chem. Rev. – volume: 48 start-page: 2523 year: 2016 end-page: 2539 publication-title: Synthesis – volume: 461 start-page: 968 year: 2009 end-page: 970 publication-title: Nature – volume: 11 start-page: 11040 year: 2021 end-page: 11048 publication-title: ACS Catal. – volume: 49 start-page: 6273 year: 2020 end-page: 6328 publication-title: Chem. Soc. Rev. – volume: 68 start-page: 4120 year: 2003 end-page: 4122 publication-title: J. Org. Chem. – volume: 44 start-page: 1740 year: 2015 end-page: 1748 publication-title: Chem. Soc. Rev. – volume: 58 131 start-page: 292 298 year: 2019 2019 end-page: 296 302 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 131 start-page: 6967 year: 2009 end-page: 6969 publication-title: J. Am. Chem. Soc. – year: 2019 – volume: 10 start-page: 6924 year: 2020 end-page: 6951 publication-title: ACS Catal. – start-page: 4796 year: 2020 end-page: 4800 publication-title: Eur. J. Org. Chem. – volume: 9 start-page: 411 year: 2007 end-page: 420 publication-title: Green Chem. – volume: 57 130 start-page: 13821 14017 year: 2018 2018 end-page: 13824 14020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 42 115 start-page: 5472 5630 year: 2003 2003 end-page: 5474 5632 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 68 start-page: 4067 year: 2003 end-page: 4070 publication-title: J. Org. Chem. – volume: 60 133 start-page: 5096 5156 year: 2021 2021 end-page: 5101 5161 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 193 year: 2021 end-page: 214 publication-title: Synthesis – volume: 59 start-page: 10807 year: 2016 end-page: 10836 publication-title: J. Med. Chem. – volume: 117 start-page: 8326 year: 2017 end-page: 8419 publication-title: Chem. Rev. – volume: 107 start-page: 4584 year: 2007 end-page: 4671 publication-title: Chem. Rev. – volume: 45 start-page: 1365 year: 2012 end-page: 1377 publication-title: Acc. Chem. Res. – start-page: 279 year: 1989 end-page: 281 publication-title: J. Chem. Soc. Perkin Trans. 1 – volume: 23 start-page: 3364 year: 2021 end-page: 3367 publication-title: Org. Lett. – year: 2016 – volume: 126 start-page: 4098 year: 2004 end-page: 4099 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 5309 5395 year: 2016 2016 end-page: 5312 5398 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 103 start-page: 3013 year: 2003 end-page: 3028 publication-title: Chem. Rev. – volume: 60 133 start-page: 17680 17821 year: 2021 2021 end-page: 17685 17826 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 10730 year: 2016 end-page: 10733 publication-title: J. Am. Chem. Soc. – volume: 343 start-page: 1216 year: 2014 end-page: 1220 publication-title: Science – year: 2012 – volume: 60 133 start-page: 8717 8799 year: 2021 2021 end-page: 8721 8803 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 2328 year: 2021 end-page: 2342 publication-title: Org. Chem. Front. – volume: 25 start-page: 1966 year: 2021 end-page: 1973 publication-title: Org. Process Res. Dev. – volume: 131 start-page: 11316 year: 2009 end-page: 11317 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 27307 27513 year: 2021 2021 end-page: 27311 27517 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 14193 14389 year: 2018 2018 end-page: 14197 14393 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 42 start-page: 4918 year: 2013 end-page: 4931 publication-title: Chem. Soc. Rev. – volume: 143 start-page: 8614 year: 2021 end-page: 8618 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 2725 2769 year: 2017 2017 end-page: 2729 2773 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 122 start-page: 269 year: 2022 end-page: 339 publication-title: Chem. Rev. – volume: 12 start-page: 5174 year: 2021 publication-title: Nat. Commun. – volume: 49 start-page: 6141 year: 2020 end-page: 6153 publication-title: Chem. Soc. Rev. – volume: 356 start-page: 3451 year: 2014 end-page: 3455 publication-title: Adv. Synth. Catal. – volume: 140 start-page: 355 year: 2018 end-page: 361 publication-title: J. Am. Chem. Soc. – volume: 598 start-page: 504 year: 2021 end-page: 509 publication-title: Nature – volume: 48 start-page: 986 year: 2015 end-page: 997 publication-title: Acc. Chem. Res. – volume: 133 start-page: 12914 year: 2011 end-page: 12917 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 8263 year: 2017 end-page: 8284 publication-title: ACS Catal. – volume: 47 start-page: 1516 year: 2018 end-page: 1561 publication-title: Chem. Soc. Rev. – volume: 58 start-page: 513 year: 2022 end-page: 516 publication-title: Chem. Commun. – ident: e_1_2_7_21_2 doi: 10.1021/ar300051u – ident: e_1_2_7_33_2 doi: 10.1039/C9CS00921C – ident: e_1_2_7_57_3 doi: 10.1002/ange.201915459 – ident: e_1_2_7_61_2 doi: 10.1021/acs.orglett.1c00848 – ident: e_1_2_7_15_2 doi: 10.1021/cr020049i – ident: e_1_2_7_90_1 – ident: e_1_2_7_32_2 doi: 10.1021/acscatal.0c01212 – ident: e_1_2_7_74_1 – ident: e_1_2_7_50_1 doi: 10.1039/B703488C – ident: e_1_2_7_66_2 doi: 10.1021/acscatal.7b02686 – ident: e_1_2_7_46_2 doi: 10.1002/adsc.201400328 – ident: e_1_2_7_29_2 doi: 10.1021/jacs.1c03903 – ident: e_1_2_7_35_2 doi: 10.1039/C4CS00507D – ident: e_1_2_7_39_1 – ident: e_1_2_7_70_2 doi: 10.1002/anie.201107601 – ident: e_1_2_7_47_3 doi: 10.1002/ange.201611181 – ident: e_1_2_7_71_2 doi: 10.1021/jo026856z – ident: e_1_2_7_36_2 doi: 10.1021/ja203138q – ident: e_1_2_7_10_1 – ident: e_1_2_7_19_1 doi: 10.1021/cr020020e – ident: e_1_2_7_54_2 doi: 10.1021/jacs.7b10496 – ident: e_1_2_7_87_2 doi: 10.1038/nature08484 – ident: e_1_2_7_67_2 doi: 10.1039/C7CS00253J – ident: e_1_2_7_77_3 doi: 10.1002/ange.202105656 – ident: e_1_2_7_11_2 doi: 10.1021/cr050580o – ident: e_1_2_7_24_3 doi: 10.1002/ange.201806893 – ident: e_1_2_7_41_2 doi: 10.1039/C9CS00286C – ident: e_1_2_7_72_2 doi: 10.1002/anie.201601025 – ident: e_1_2_7_53_2 doi: 10.1021/ja905143m – ident: e_1_2_7_14_1 – ident: e_1_2_7_88_2 doi: 10.1002/anie.202012861 – ident: e_1_2_7_48_2 doi: 10.1002/anie.201812647 – ident: e_1_2_7_52_2 doi: 10.1002/anie.200352503 – ident: e_1_2_7_58_2 doi: 10.6023/cjoc202000036 – ident: e_1_2_7_68_1 doi: 10.1039/p19890000279 – ident: e_1_2_7_73_1 doi: 10.1016/j.ejmech.2021.113448 – ident: e_1_2_7_13_1 doi: 10.1021/cr200057t – ident: e_1_2_7_62_3 doi: 10.1002/ange.202112671 – ident: e_1_2_7_30_3 doi: 10.1002/ange.202012909 – ident: e_1_2_7_25_3 doi: 10.1002/ange.202016589 – ident: e_1_2_7_40_2 doi: 10.1007/128_2013_484 – ident: e_1_2_7_3_2 doi: 10.1007/978-1-61779-331-8 – ident: e_1_2_7_83_1 – ident: e_1_2_7_86_1 – ident: e_1_2_7_56_2 doi: 10.1002/anie.201809719 – ident: e_1_2_7_85_2 – ident: e_1_2_7_63_2 doi: 10.1039/D1CC06601C – ident: e_1_2_7_16_2 doi: 10.1055/s-0040-1705939 – ident: e_1_2_7_45_2 doi: 10.1021/ja9021683 – ident: e_1_2_7_23_1 – ident: e_1_2_7_47_2 doi: 10.1002/anie.201611181 – ident: e_1_2_7_30_2 doi: 10.1002/anie.202012909 – ident: e_1_2_7_34_1 – ident: e_1_2_7_79_1 – ident: e_1_2_7_20_1 – ident: e_1_2_7_28_2 doi: 10.1021/jacs.0c10415 – ident: e_1_2_7_51_1 – ident: e_1_2_7_80_2 doi: 10.1055/s-0035-1561648 – ident: e_1_2_7_82_1 – ident: e_1_2_7_18_1 doi: 10.1021/acs.chemrev.7b00064 – ident: e_1_2_7_77_2 doi: 10.1002/anie.202105656 – ident: e_1_2_7_24_2 doi: 10.1002/anie.201806893 – volume-title: Asymmetric Synthesis and Application of α-Amino Acids year: 2009 ident: e_1_2_7_2_2 – ident: e_1_2_7_57_2 doi: 10.1002/anie.201915459 – ident: e_1_2_7_12_2 doi: 10.1002/9783527804498 – ident: e_1_2_7_49_2 doi: 10.1002/anie.201809930 – ident: e_1_2_7_88_3 doi: 10.1002/ange.202012861 – ident: e_1_2_7_52_3 doi: 10.1002/ange.200352503 – ident: e_1_2_7_43_2 doi: 10.1039/D1QO00300C – ident: e_1_2_7_37_2 doi: 10.1021/jacs.6b03930 – volume-title: D-Amino Acids in Chemistry, Life Sciences, and Biotechnology year: 2011 ident: e_1_2_7_5_2 – ident: e_1_2_7_70_3 doi: 10.1002/ange.201107601 – ident: e_1_2_7_78_2 doi: 10.1021/ja406484v – ident: e_1_2_7_65_1 – ident: e_1_2_7_76_2 doi: 10.1021/ja049499d – ident: e_1_2_7_4_2 doi: 10.1021/acs.jmedchem.6b00319 – ident: e_1_2_7_42_2 doi: 10.1021/acs.chemrev.0c00248 – ident: e_1_2_7_17_1 doi: 10.1021/acs.chemrev.1c00496 – ident: e_1_2_7_25_2 doi: 10.1002/anie.202016589 – ident: e_1_2_7_56_3 doi: 10.1002/ange.201809719 – ident: e_1_2_7_26_2 doi: 10.1126/science.1249198 – ident: e_1_2_7_59_2 doi: 10.1021/acs.orglett.0c00669 – ident: e_1_2_7_49_3 doi: 10.1002/ange.201809930 – ident: e_1_2_7_60_2 doi: 10.1002/ejoc.202000750 – ident: e_1_2_7_84_2 doi: 10.1177/1756283X14528269 – ident: e_1_2_7_91_2 doi: 10.1021/jacs.8b03509 – ident: e_1_2_7_27_2 doi: 10.1021/acs.oprd.1c00208 – ident: e_1_2_7_81_2 doi: 10.1021/acs.chemrev.6b00731 – ident: e_1_2_7_92_2 doi: 10.1021/acscatal.1c02805 – ident: e_1_2_7_89_1 doi: 10.1021/acs.accounts.5b00028 – ident: e_1_2_7_1_1 – ident: e_1_2_7_7_1 – volume-title: Amino Acids, Peptides and Proteins in Organic Chemistry year: 2009 ident: e_1_2_7_9_2 – ident: e_1_2_7_22_2 doi: 10.1039/c3cs35496b – ident: e_1_2_7_8_2 doi: 10.1021/cr068377w – ident: e_1_2_7_62_2 doi: 10.1002/anie.202112671 – ident: e_1_2_7_72_3 doi: 10.1002/ange.201601025 – ident: e_1_2_7_6_1 doi: 10.1038/s41586-021-03990-6 – ident: e_1_2_7_69_1 – ident: e_1_2_7_75_2 doi: 10.1021/ja00141a039 – ident: e_1_2_7_48_3 doi: 10.1002/ange.201812647 – ident: e_1_2_7_55_2 doi: 10.1021/jacs.7b12898 – ident: e_1_2_7_64_1 doi: 10.1021/jo020690k – ident: e_1_2_7_44_2 doi: 10.1021/acscatal.1c04208 – ident: e_1_2_7_31_1 – ident: e_1_2_7_38_2 doi: 10.1038/s41467-021-25449-y – volume: 68 start-page: 4067 year: 2003 ident: WOS:000182825000043 article-title: The first highly enantioselective homogeneously catalyzed asymmetric reductive amination:: Synthesis of α-N-benzylamino acids publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo020690k – volume: 22 start-page: 2707 year: 2020 ident: WOS:000526335800040 article-title: Direct Synthesis of Chiral NH Lactams via Ru-Catalyzed Asymmetric Reductive Amination/Cyclization Cascade of Keto Acids/Esters publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.0c00669 – volume: 131 start-page: 6967 year: 2009 ident: WOS:000266484700037 article-title: Metal-Bronsted Acid Cooperative Catalysis for Asymmetric Reductive Amination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja9021683 – volume: 138 start-page: 10730 year: 2016 ident: WOS:000382513300004 article-title: Enzyme-Inspired Axially Chiral Pyridoxamines Armed with a Cooperative Lateral Amine Chain for Enantioselective Biomimetic Transamination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b03930 – volume: 60 start-page: 17680 year: 2021 ident: WOS:000668520900001 article-title: Stereoselective Synthesis of β-Branched Aromatic α-Amino Acids by Biocatalytic Dynamic Kinetic Resolution** publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202105656 – volume: 44 start-page: 1740 year: 2015 ident: WOS:000351606600002 article-title: Progress in asymmetric biomimetic transamination of carbonyl compounds publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c4cs00507d – volume: 68 start-page: 4120 year: 2003 ident: WOS:000182825000057 article-title: Highly enantioselective reductive amination of simple aryl ketones catalyzed by Ir-f-Binaphane in the presence of titanium(IV) isopropoxide and iodine publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo026856z – volume: 60 start-page: 5096 year: 2021 ident: WOS:000590562100001 article-title: Enantio- and Diastereoselective Nucleophilic Addition of N-tert-Butylhydrazones to Isoquinolinium Ions through Anion-Binding Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202012861 – volume: 598 start-page: 504 year: 2021 ident: WOS:000704947000004 article-title: A pan-serotype dengue virus inhibitor targeting the NS3-NS4B interaction publication-title: NATURE doi: 10.1038/s41586-021-03990-6 – volume: 7 start-page: 167 year: 2014 ident: WOS:000340506400003 article-title: Elobixibat and its potential role in chronic idiopathic constipation publication-title: THERAPEUTIC ADVANCES IN GASTROENTEROLOGY doi: 10.1177/1756283X14528269 – volume: 11 start-page: 11040 year: 2021 ident: WOS:000693621800035 article-title: Probing Catalyst Speciation in Pd-MPAAM-Catalyzed Enantioselective C(sp3)-H Arylation: Catalyst Improvement via Destabilization of Off-Cycle Species publication-title: ACS CATALYSIS doi: 10.1021/acscatal.1c02805 – volume: 48 start-page: 2523 year: 2016 ident: WOS:000382509100002 article-title: Recent Developments in Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones and Imines through Dynamic Kinetic Resolution publication-title: SYNTHESIS-STUTTGART doi: 10.1055/s-0035-1561648 – volume: 140 start-page: 355 year: 2018 ident: WOS:000422813300064 article-title: Direct Asymmetric Ruthenium-Catalyzed Reductive Amination of Alkyl-Aryl Ketones with Ammonia and Hydrogen publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b10496 – volume: 45 start-page: 1365 year: 2012 ident: WOS:000307696500018 article-title: Transition-Metal-Catalyzed Enantioselective Heteroatom-Hydrogen Bond Insertion Reactions publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar300051u – volume: 128 start-page: 5395 year: 2016 ident: 000781072900001.72 publication-title: Angew. Chem – volume: 7 start-page: 8263 year: 2017 ident: WOS:000417230500028 article-title: Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts publication-title: ACS CATALYSIS doi: 10.1021/acscatal.7b02686 – year: 2009 ident: 000781072900001.7 publication-title: Amino Acids, Peptides and Proteins in Organic Chemistry – volume: 2020 start-page: 4796 year: 2020 ident: WOS:000546651400001 article-title: Ruthenium Catalyzed Direct Asymmetric Reductive Amination of Simple Aliphatic Ketones Using Ammonium Iodide and Hydrogen publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ejoc.202000750 – volume: 107 start-page: 4584 year: 2007 ident: WOS:000250970400004 article-title: Catalytic asymmetric synthesis of α-amino acids publication-title: CHEMICAL REVIEWS doi: 10.1021/cr050580o – volume: 48 start-page: 986 year: 2015 ident: WOS:000353429400010 article-title: Pushing the Limits of Aminocatalysis: Enantioselective Transformations of α-Branched β-Ketocarbonyls and Vinyl Ketones by Chiral Primary Amines publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.5b00028 – volume: 129 start-page: 2769 year: 2017 ident: 000781072900001.42 publication-title: Angew. Chem – volume: 131 start-page: 298 year: 2019 ident: 000781072900001.46 publication-title: Angew. Chem – volume: 49 start-page: 6141 year: 2020 ident: WOS:000570357800001 article-title: Direct catalytic asymmetric synthesis of α-chiral primary amines publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c9cs00921c – volume: 343 start-page: 1216 year: 2014 ident: WOS:000332728500029 article-title: Ligand-Controlled C(sp3)-H Arylation and Olefination in Synthesis of Unnatural Chiral α-Amino Acids publication-title: SCIENCE doi: 10.1126/science.1249198 – volume: 122 start-page: 269 year: 2022 ident: WOS:000767137000006 article-title: Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.1c00496 – volume: 356 start-page: 3451 year: 2014 ident: WOS:000344546600024 article-title: Cooperative Catalysis with Iron and a Chiral Bronsted Acid for Asymmetric Reductive Amination of Ketones publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.201400328 – volume: 25 start-page: 1966 year: 2021 ident: WOS:000687904600021 article-title: Synthesis of Enantiopure Unnatural Amino Acids by Metallaphotoredox Catalysis publication-title: ORGANIC PROCESS RESEARCH & DEVELOPMENT doi: 10.1021/acs.oprd.1c00208 – volume: 57 start-page: 13821 year: 2018 ident: WOS:000446826200016 article-title: Biocatalytic Synthesis of Chiral N-Functionalized Amino Acids publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201806893 – volume: 117 start-page: 8326 year: 2017 ident: WOS:000404806000015 article-title: α-Imino Esters in Organic Synthesis: Recent Advances publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00064 – volume: 42 start-page: 5472 year: 2003 ident: WOS:000186816400010 article-title: Highly enantioselective hydrogen-transfer reductive amination: Catalytic asymmetric synthesis of primary amines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200352503 – volume: 60 start-page: 27307 year: 2021 ident: WOS:000718898300001 article-title: An Iridium Catalytic System Compatible with Inorganic and Organic Nitrogen Sources for Dual Asymmetric Reductive Amination Reactions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202112671 – volume: 135 start-page: 12135 year: 2013 ident: WOS:000323241200069 article-title: Stereoselective Synthesis of β-Alkylated α-Amino Acids via Palladium-Catalyzed Alkylation of Unactivated Methylene C(sp3)-H Bonds with Primary Alkyl Halides publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja406484v – volume: 133 start-page: 4748 year: 2021 ident: 000781072900001.27 publication-title: Angew. Chem – volume: 115 start-page: 5630 year: 2003 ident: 000781072900001.49 publication-title: Angew. Chem – volume: 11 start-page: 13809 year: 2021 ident: WOS:000726635700008 article-title: Recent Progress in Transition-Metal-Catalyzed Asymmetric Reductive Amination publication-title: ACS CATALYSIS doi: 10.1021/acscatal.1c04208 – volume: 133 start-page: 5156 year: 2021 ident: 000781072900001.85 publication-title: Angew. Chem – volume: 58 start-page: 513 year: 2022 ident: WOS:000729562500001 article-title: Direct asymmetric reductive amination of α-keto acetals: a platform for synthesizing diverse α-functionalized amines publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d1cc06601c – volume: 131 start-page: 3849 year: 2019 ident: 000781072900001.44 publication-title: Angew. Chem – volume: 117 start-page: 4528 year: 2017 ident: WOS:000396185400014 article-title: Advances in Stereoconvergent Catalysis from 2005 to 2015: Transition-Metal-Mediated Stereoablative Reactions, Dynamic Kinetic Resolutions, and Dynamic Kinetic Asymmetric Transformations publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00731 – volume: 59 start-page: 5321 year: 2020 ident: WOS:000514492100001 article-title: Ruthenium-Catalyzed Direct Asymmetric Reductive Amination of Diaryl and Sterically Hindered Ketones with Ammonium Salts and H2 publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201915459 – volume: 103 start-page: 3013 year: 2003 ident: WOS:000184821500012 article-title: Enantioselective amino acid synthesis by chiral phase-transfer catalysis publication-title: CHEMICAL REVIEWS doi: 10.1021/cr020020e – year: 2011 ident: 000781072900001.4 publication-title: D-Amino Acids in Chemistry, Life Sciences, and Biotechnology – volume: 133 start-page: 12914 year: 2011 ident: WOS:000294591300006 article-title: Organocatalytic Asymmetric Biomimetic Transamination: From α-Keto Esters to Optically Active α-Amino Acid Derivatives publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja203138q – volume: 140 start-page: 6545 year: 2018 ident: WOS:000434101100008 article-title: Pd(II)-Catalyzed Enantioselective C(sp3)-H Arylation of Free Carboxylic Acids publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b03509 – volume: 143 start-page: 8614 year: 2021 ident: WOS:000664300200017 article-title: Asymmetric Synthesis of Protected Unnatural α-Amino Acids via Enantioconvergent Nickel-Catalyzed Cross-Coupling publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c03903 – volume: 60 start-page: 8717 year: 2021 ident: WOS:000626563700001 article-title: Asymmetric Synthesis of N-Substituted α-Amino Esters from α-Ketoesters via Imine Reductase-Catalyzed Reductive Amination publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202016589 – volume: 47 start-page: 1516 year: 2018 ident: WOS:000425374900012 article-title: Enzymatic asymmetric synthesis of chiral amino acids publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c7cs00253j – year: 2019 ident: 000781072900001.82 publication-title: PCT Int. Appl. – volume: 132 start-page: 5359 year: 2020 ident: 000781072900001.56 publication-title: Angew. Chem – volume: 107 start-page: 5759 year: 2007 ident: WOS:000251583300011 article-title: Asymmetric catalysis mediated by synthetic peptides publication-title: CHEMICAL REVIEWS doi: 10.1021/cr068377w – volume: 133 start-page: 27513 year: 2021 ident: 000781072900001.62 publication-title: Angew. Chem – volume: 58 start-page: 292 year: 2019 ident: WOS:000455818400045 article-title: Asymmetric Stepwise Reductive Amination of Sulfonamides, Sulfamates, and a Phosphinamide by Nickel Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201809930 – volume: 131 start-page: 11316 year: 2009 ident: WOS:000269379200023 article-title: Direct Asymmetric Reductive Amination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja905143m – volume: 58 start-page: 3809 year: 2019 ident: WOS:000462680700020 article-title: Rapid Construction of Structurally Diverse Quinolizidines, Indolizidines, and Their Analogues via Ruthenium-Catalyzed Asymmetric Cascade Hydrogenation/Reductive Amination publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201812647 – volume: 140 start-page: 2024 year: 2018 ident: WOS:000425475300011 article-title: Asymmetric Synthesis of Chiral Primary Amines by Ruthenium-Catalyzed Direct Reductive Amination of Alkyl Aryl Ketones with Ammonium Salts and Molecular H2 publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b12898 – volume: 51 start-page: 1400 year: 2012 ident: WOS:000299736300019 article-title: Direct Titanium-Mediated Conversion of Ketones into Enamides with Ammonia and Acetic Anhydride publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201107601 – volume: 130 start-page: 14017 year: 2018 ident: 000781072900001.19 publication-title: Angew. Chem – volume: 55 start-page: 5309 year: 2016 ident: WOS:000374564300035 article-title: Direct Asymmetric Reductive Amination for the Synthesis of Chiral -Arylamines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201601025 – volume: 120 start-page: 9583 year: 2020 ident: WOS:000571431700009 article-title: Transition-Metal-Catalyzed Reductive Amination Employing Hydrogen publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.0c00248 – volume: 42 start-page: 4918 year: 2013 ident: WOS:000319527400006 article-title: Catalytic X-H insertion reactions based on carbenoids publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c3cs35496b – volume: 126 start-page: 4098 year: 2004 ident: WOS:000220637100024 article-title: A versatile chemo-enzymatic route to enantiomerically pure β-branched α-amino acids publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja049499d – volume: 53 start-page: 193 year: 2021 ident: WOS:000582050400002 article-title: Recent Developments in Transition-Metal-Catalyzed Asymmetric Hydrogenation of Enamides publication-title: SYNTHESIS-STUTTGART doi: 10.1055/s-0040-1705939 – volume: 103 start-page: 3029 year: 2003 ident: WOS:000184821500013 article-title: New chiral phosphorus ligands for enantioselective hydrogenation publication-title: CHEMICAL REVIEWS doi: 10.1021/cr020049i – volume: 9 start-page: 411 year: 2007 ident: WOS:000246802600012 article-title: Key green chemistry research areas - a perspective from pharmaceutical manufacturers publication-title: GREEN CHEMISTRY doi: 10.1039/b703488c – volume: 142 start-page: 20828 year: 2020 ident: WOS:000599506900042 article-title: Enantioselective Intermolecular Radical C-H Amination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c10415 – volume: 220 start-page: ARTN 113448 year: 2021 ident: WOS:000659148800002 article-title: Tailor-made amino acids in the design of small-molecule blockbuster drugs publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1016/j.ejmech.2021.113448 – volume: 10 start-page: 6924 year: 2020 ident: WOS:000543663800035 article-title: Recent Progress on Catalytic Addition Reactions to N-Unsubstituted Imines publication-title: ACS CATALYSIS doi: 10.1021/acscatal.0c01212 – volume: 117 start-page: 9375 year: 1995 ident: WOS:A1995RU81800039 article-title: ASYMMETRIC CATALYTIC SYNTHESIS OF BETA-BRANCHED AMINO-ACIDS VIA HIGHLY ENANTIOSELECTIVE HYDROGENATION REACTIONS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 343 start-page: 261 year: 2014 ident: WOS:000356813000008 article-title: Asymmetric Reductive Amination publication-title: STEREOSELECTIVE FORMATION OF AMINES doi: 10.1007/128_2013_484 – volume: 57 start-page: 14193 year: 2018 ident: WOS:000447371500037 article-title: Dynamic Kinetic Asymmetric Reductive Amination: Synthesis of Chiral Primary β-Amino Lactams publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201809719 – volume: 12 start-page: ARTN 5174 year: 2021 ident: WOS:000738605600001 article-title: Asymmetric biomimetic transamination of α-keto amides to peptides publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-021-25449-y – volume: 461 start-page: 968 year: 2009 ident: WOS:000270817700044 article-title: Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids publication-title: NATURE doi: 10.1038/nature08484 – volume: 133 start-page: 17821 year: 2021 ident: 000781072900001.77 publication-title: Angew. Chem – volume: 111 start-page: 6947 year: 2011 ident: WOS:000296685200007 article-title: Asymmetric Strecker Reactions publication-title: CHEMICAL REVIEWS doi: 10.1021/cr200057t – volume: 8 start-page: 2328 year: 2021 ident: WOS:000639267300001 article-title: Recent advances on transition-metal-catalysed asymmetric reductive amination publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/d1qo00300c – volume: 133 start-page: 8799 year: 2021 ident: 000781072900001.21 publication-title: Angew. Chem – year: 2009 ident: 000781072900001.1 publication-title: Asymmetric Synthesis and Application of -Amino Acids – volume: 60 start-page: 4698 year: 2021 ident: WOS:000604579600001 article-title: Visible-Light-Enabled Enantioconvergent Synthesis of α-Amino Acid Derivatives via Synergistic Bronsted Acid/Photoredox Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202012909 – volume: 794 start-page: 381 year: 2012 ident: WOS:000303131400026 article-title: Assays of D-Amino Acid Oxidases publication-title: UNNATURAL AMINO ACIDS: METHODS AND PROTOCOLS doi: 10.1007/978-1-61779-331-8_26 – volume: 59 start-page: 10807 year: 2016 ident: WOS:000390735500001 article-title: Unusual Amino Acids in Medicinal Chemistry publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/acs.jmedchem.6b00319 – year: 2016 ident: 000781072900001.9 publication-title: Asymmetric Synthesis of NonProteinogenic Amino Acids – volume: 124 start-page: 1429 year: 2012 ident: 000781072900001.69 publication-title: Angew. Chem – volume: 23 start-page: 3364 year: 2021 ident: WOS:000649477300026 article-title: Highly Enantioselective Direct Asymmetric Reductive Amination of 2-Acetyl-6-Substituted Pyridines publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.1c00848 – volume: 56 start-page: 2725 year: 2017 ident: WOS:000395183600031 article-title: One-Pot N-Deprotection and Catalytic Intramolecular Asymmetric Reductive Amination for the Synthesis of Tetrahydroisoquinolines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201611181 – start-page: 279 year: 1989 ident: WOS:A1989T390400011 article-title: PREPARATION OF ALPHA-(N-TRIMETHYLSILYL)IMINO ESTERS AND THEIR USE IN THE SYNTHESIS OF ALPHA-AMINO ESTERS AND 2-ALKOXYCARBONYLIMIDAZOL-4(2H)-ONES publication-title: JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1 – volume: 130 start-page: 14389 year: 2018 ident: 000781072900001.54 publication-title: Angew. Chem – volume: 49 start-page: 6273 year: 2020 ident: WOS:000570357800007 article-title: Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c9cs00286c – volume: 40 start-page: 1802 year: 2020 ident: WOS:000560811400048 article-title: Ruthenium-Catalyzed Direct Asymmetric Reductive Amination for the Synthesis of Chiral Diarylmethylamines and Sterically Hindered Amines publication-title: CHINESE JOURNAL OF ORGANIC CHEMISTRY doi: 10.6023/cjoc202000036 |
SSID | ssj0028806 |
Score | 2.5312197 |
Snippet | An unprecedented highly enantioselective Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been disclosed,... An unprecedented highly enantioselective Ru-catalyzed direct asymmetric reductive amination of alpha-keto amides with ammonium salts has been disclosed,... An unprecedented highly enantioselective Ru-catalyzed direct asymmetric reductive amination of α-keto amides with ammonium salts has been disclosed,... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202202552 |
SubjectTerms | Amides Amination Amino Acids Ammonium Ammonium salts Asymmetry Chemistry Chemistry, Multidisciplinary Enantiomers Intermediates N-Unprotected Amino Acids Peptides Physical Sciences Reductive Amination Ruthenium Salts Science & Technology Substrates α-Keto Amides |
Title | Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202202552 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000781072900001 https://www.ncbi.nlm.nih.gov/pubmed/35332974 https://www.proquest.com/docview/2674736114 https://www.proquest.com/docview/2644023677 |
Volume | 61 |
WOS | 000781072900001 |
WOSCitedRecordID | wos000781072900001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hXuDC_0-gICNV4pQ2trPJcoyWrQoSeyis1Fvk2I4U0XUQ2a2UnvoIXHkMXoSH4EmYcX7oFiEQ3BJ5nMjJzPgbe_wNwF6UaKkLw0OeGtpmjNCkjE1Dbl9GamJQowo6nPx2kRwt4zcnk5NLp_g7fohxwY0sw_trMnBVNAc_SUPpBDbGd0IQKiYnTAlbhIqOR_4ogcrZHS-SMqQq9ANrYyQOtrtvz0q_QM0rs9I2kPUz0eEtUMMYugSUD_ubdbGvz6_QO_7PIG_DzR6msqzTqztwzbq7cH02VIe7B18oQeS0ZXNKpKnqxpfTQc_J3rUOMWVTNawu2eL7xeel67kgrGFL54lE8cnfvmJTtqpczTJdGfYKLeHMk5A3rGiZT7x31WaFUjNaYWrPsXvnn1nWtKsVVQLT7JiYZ_176Vley-7D8nD-fnYU9mUeQi1TKUKutS4VF4VRtKdrhFIYl1uelkIn1iAAMbHmkTZUgTeyVkipJqUqhUQsG5lIPoAdVzv7CJi0iVTJtLTE6zdVUyUVOgFVIM7RIlaTAMLhN-e650CnUhynecfeLHL64Pn4wQN4Mcp_7Ng_fiu5O2hN3nuBJhcJBmsywZAzgOdjM_4o2pRRztYbkoljYvFP0wAedto2vkoiFhcY8AWwd1n9xnYP8Dhxv_tNmgD434jN-oET6cE6AOH17w_Dy7PF6_l49_hfOj2BG3RNaXYi2oWd9aeNfYqAbl0880b7A3pkRkA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8CBYxUxCltYmeT5cBhtbvVLm33ULpSb8GxHWlFN0FkF5SeeASuPEZfhAOPwJMw4_zAFiEQUg8cE0-cxJ7xzNgz3wBseaESKtG-60eajhk9FCltItc3zz3Z0chRCSUnH0zC0TR4edw5XoOzJhemwodoN9xIMux6TQJOG9I7P1BDKQUbHTzOySzmdVzlnik_oNdWvBgPcIqfcr47POqP3LqwgKtEJLjrK6VS6fNESzpF1FxK9ASNH6VchUajytOB8j2lqearZwwXQnZSmXKB1pOnPYH9XoLLVEac4PoHhy1iFUdxqBKahHCp7n2DE-nxndXvXdWDvxi35_Tgqulsdd_uNfjajFoV8vJme7lIttXpOUDJ_2pYr8PV2hJnvUp0bsCayW7CRr8pgHcLPlMMzEnJhhQrNMsLWzEIlQN7VWZoNhezguUpm3z7-Gma1XAXRrNpZrFSsecvZ9jUm8-ynPXUTLMBCvt7i7NesKRkNrcgmy3nSNWnTbTyFB-vVBDrFeV8TsXOFDskcF37XurLCtJtmF7IyNyB9SzPzD1gwoRCht3UEHRhV3alkLjOyQRNOcUD2XHAbfgqVjXMO1UbOYkrgGoe0wTH7QQ78Kylf1sBnPyWcrNh07he6IqYh-iPihC9ageetM04UXTuJDOTL4kmCKhQQRQ5cLdi7_ZVAt0Njj6tA1s_83vbbm1Yn-Dt7TmUA_7fkPXrHydch4UD3DL8H34v7k3Gw_bq_r889Bg2RkcH-_H-eLL3AK7QfYoq5N4mrC_eLc1DtF8XySO7YjB4fdGy9B0YHqSR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8CBYxUxCltYmeT7YHDan_UpbBChZV6C47tSBHdbEV2QemJR-DKW8CLIPEKPAkzzg9sEQIh9cAx8cRJ7BnPjD3zDcCmFyqhEu27fqTpmNFDkdImcn2z48mORo5KKDn52STcnQZPDjoHa_CpyYWp8CHaDTeSDLtek4Af6XT7B2goZWCjf8c5WcW8DqvcM-U7dNqKx-MBzvBDzkfDl_1dt64r4CoRCe76SqlU-jzRkg4RNZcSHUHjRylXodGo8XSgfE9pKvnqGcOFkJ1Uplyg8eRpT2C_Z-BsEHo7VCxisN8CVnGUhiqfSQiXyt43MJEe31793lU1-Itte0INrlrOVvWNLsHXZtCqiJfXW8tFsqWOT-BJ_k-jehku1nY461WCcwXWTH4Vzveb8nfX4CNFwByWbEiRQtm8sPWCUDWwF2WORnORFWyessm39x-meQ12YTSb5hYpFXv-8hmberMsn7OeyjQboKi_tSjrBUtKZjML8mw5Q6o-baGVx_h4pYBYryhnMyp1ptg-Qeva91JfVoyuw_RURuYGrOfz3NwCJkwoZNhNDQEXdmVXComrnEzQkFM8kB0H3IatYlWDvFOtkcO4gqfmMU1w3E6wA49a-qMK3uS3lBsNl8b1MlfEPERvVIToUzvwoG3GiaJTJ5mb-ZJogoDKFESRAzcr7m5fJdDZ4OjROrD5M7u37daC9Qnc3p5COeD_DVm__nFCdVg4wC2__-H34t5kPGyvbv_LQ_fh3PPBKH46nuzdgQt0m0IKubcB64s3S3MXjddFcs-uFwxenbYofQd9taNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Enantioselective+Synthesis+of+N-Unprotected+Unnatural+%CE%B1-Amino+Acid+Derivatives+by+Ruthenium-Catalyzed+Direct+Asymmetric+Reductive+Amination&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Hu%2C+Le%27an&rft.au=Wang%2C+Yuan-Zheng&rft.au=Xu%2C+Lei&rft.au=Yin%2C+Qin&rft.date=2022-06-20&rft.eissn=1521-3773&rft.volume=61&rft.issue=25&rft.spage=e202202552&rft_id=info:doi/10.1002%2Fanie.202202552&rft_id=info%3Apmid%2F35332974&rft.externalDocID=35332974 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |