Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination

An unprecedented highly enantioselective Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N‐unprotected unnatural α‐amino acid derivatives bearing a broad range of aryl or alkyl α‐substituents. T...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 25; pp. e202202552 - n/a
Main Authors Hu, Le'an, Wang, Yuan‐Zheng, Xu, Lei, Yin, Qin, Zhang, Xumu
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 20.06.2022
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An unprecedented highly enantioselective Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N‐unprotected unnatural α‐amino acid derivatives bearing a broad range of aryl or alkyl α‐substituents. This protocol features easily accessible substrates, good functional‐group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N‐unprotected unnatural α‐amino acid derivatives containing an additional stereogenic center at the β‐position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N‐unprotected unnatural α‐amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method. An unprecedented Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been achieved. This protocol provides an efficient and practical way for the synthesis of diverse enantioenriched α‐aryl‐ or alkyl‐substituted N‐unprotected unnatural α‐amino acids and N‐unprotected β‐branched α‐amino acids. Further follow‐up transformations enable access to drug intermediates, peptides, and organocatalysts/ligands.
AbstractList An unprecedented highly enantioselective Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N‐unprotected unnatural α‐amino acid derivatives bearing a broad range of aryl or alkyl α‐substituents. This protocol features easily accessible substrates, good functional‐group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N‐unprotected unnatural α‐amino acid derivatives containing an additional stereogenic center at the β‐position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N‐unprotected unnatural α‐amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method.
An unprecedented highly enantioselective Ru-catalyzed direct asymmetric reductive amination of α-keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N-unprotected unnatural α-amino acid derivatives bearing a broad range of aryl or alkyl α-substituents. This protocol features easily accessible substrates, good functional-group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N-unprotected unnatural α-amino acid derivatives containing an additional stereogenic center at the β-position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N-unprotected unnatural α-amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method.An unprecedented highly enantioselective Ru-catalyzed direct asymmetric reductive amination of α-keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N-unprotected unnatural α-amino acid derivatives bearing a broad range of aryl or alkyl α-substituents. This protocol features easily accessible substrates, good functional-group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N-unprotected unnatural α-amino acid derivatives containing an additional stereogenic center at the β-position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N-unprotected unnatural α-amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method.
An unprecedented highly enantioselective Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N‐unprotected unnatural α‐amino acid derivatives bearing a broad range of aryl or alkyl α‐substituents. This protocol features easily accessible substrates, good functional‐group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N‐unprotected unnatural α‐amino acid derivatives containing an additional stereogenic center at the β‐position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N‐unprotected unnatural α‐amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method.In memory of Professor Robert H. Grubbs
An unprecedented highly enantioselective Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N‐unprotected unnatural α‐amino acid derivatives bearing a broad range of aryl or alkyl α‐substituents. This protocol features easily accessible substrates, good functional‐group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N‐unprotected unnatural α‐amino acid derivatives containing an additional stereogenic center at the β‐position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N‐unprotected unnatural α‐amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method. An unprecedented Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been achieved. This protocol provides an efficient and practical way for the synthesis of diverse enantioenriched α‐aryl‐ or alkyl‐substituted N‐unprotected unnatural α‐amino acids and N‐unprotected β‐branched α‐amino acids. Further follow‐up transformations enable access to drug intermediates, peptides, and organocatalysts/ligands.
An unprecedented highly enantioselective Ru-catalyzed direct asymmetric reductive amination of alpha-keto amides with ammonium salts has been disclosed, efficiently offering valuable enantioenriched N-unprotected unnatural a-amino acid derivatives bearing a broad range of aryl or alkyl a-substituents. This protocol features easily accessible substrates, good functional-group tolerance and excellent enantiocontrol, making it a good complementary approach to the known methods. Moreover, this method is also applicable to the preparation of N-unprotected unnatural alpha-amino acid derivatives containing an additional stereogenic center at the beta-position through a dynamic kinetic resolution (DKR) process. Convenient transformations of the obtained products into chiral N-unprotected unnatural alpha-amino acids, drug intermediates, peptides, and organocatalysts/ligands further showcase the utility of this method.
ArticleNumber 202202552
Author Xu, Lei
Hu, Le'an
Zhang, Xumu
Yin, Qin
Wang, Yuan‐Zheng
Author_xml – sequence: 1
  givenname: Le'an
  surname: Hu
  fullname: Hu, Le'an
  organization: Southern University of Science and Technology
– sequence: 2
  givenname: Yuan‐Zheng
  surname: Wang
  fullname: Wang, Yuan‐Zheng
  organization: Southern University of Science and Technology
– sequence: 3
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Qin
  orcidid: 0000-0003-3534-3786
  surname: Yin
  fullname: Yin, Qin
  email: qin.yin@siat.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Xumu
  orcidid: 0000-0001-5700-0608
  surname: Zhang
  fullname: Zhang, Xumu
  email: zhangxm@sustech.edu.cn
  organization: Southern University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35332974$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1qFDEYhoNUbLt66qEEPCnIrvmZmcweDtvVFkqF6h4P2cw3NmUmqUmmMh55CZ56Gd6IF-GV-K27rlAQhYEJ5HneJC_fMTlw3gEhTzmbccbES-0szAQT-OW5eECOeC74VColD3CdSTlVZc4PyXGMN8iXJSsekUOZSynmKjsiX8_s--tupEunXbI-Qgcm2Tugb0eXriHaSH1LL398_rJyt8En3IWGrpzTaQi6o9-_4VbVW-dpZWxDTyHYO71JiHQ90qsBQ5wdeqQWOulu_IT6qQ2YQ6s49j2kYA29gmbYnrvJQt-7x-Rhq7sIT3b_CVm9Wr5bnE0v3rw-X1QXUyOVFFNujGk1F-tGzxnPGqG1KkvgqhWmgIaLrMkMZ6bBYhQDEFLqvNWtkDlTrGFyQk62ufi8DwPEVPc2Gug67cAPsRZFljEhC6x0Qp7fQ2_8EBzeDimVKVlwrHxCnu2oYd1DU98G2-sw1r9LR-DFFvgIa99GY8EZ2GOMMVVypsQcV4wjXf4_vbDpV3kLP7iE6myrmuBjDNDuNc7qzfjUm_Gp9-ODQnZPMLvAFLTt_q7Nd1e0HYz_OKSuLs-Xf9yf5pPdcg
CitedBy_id crossref_primary_10_1002_advs_202403437
crossref_primary_10_1002_ange_202208411
crossref_primary_10_1039_D4QI02520B
crossref_primary_10_1002_ange_202303868
crossref_primary_10_1021_acs_orglett_3c00272
crossref_primary_10_1002_adma_202418233
crossref_primary_10_1021_acs_joc_3c00457
crossref_primary_10_1021_acs_orglett_3c04378
crossref_primary_10_1002_anie_202208411
crossref_primary_10_1021_jacs_4c14200
crossref_primary_10_1002_adsc_202300213
crossref_primary_10_1002_ange_202306726
crossref_primary_10_1002_anie_202303868
crossref_primary_10_1002_anie_202306726
crossref_primary_10_1021_acs_oprd_3c00152
crossref_primary_10_1021_acs_orglett_3c01734
crossref_primary_10_1002_cjoc_202400338
crossref_primary_10_1021_acs_orglett_3c03529
crossref_primary_10_1021_acs_orglett_3c03925
crossref_primary_10_1002_ejoc_202300035
crossref_primary_10_1002_chir_70000
crossref_primary_10_1055_s_0041_1737625
crossref_primary_10_1021_acs_oprd_3c00088
crossref_primary_10_1055_a_2002_5733
Cites_doi 10.1021/ar300051u
10.1039/C9CS00921C
10.1002/ange.201915459
10.1021/acs.orglett.1c00848
10.1021/cr020049i
10.1021/acscatal.0c01212
10.1039/B703488C
10.1021/acscatal.7b02686
10.1002/adsc.201400328
10.1021/jacs.1c03903
10.1039/C4CS00507D
10.1002/anie.201107601
10.1002/ange.201611181
10.1021/jo026856z
10.1021/ja203138q
10.1021/cr020020e
10.1021/jacs.7b10496
10.1038/nature08484
10.1039/C7CS00253J
10.1002/ange.202105656
10.1021/cr050580o
10.1002/ange.201806893
10.1039/C9CS00286C
10.1002/anie.201601025
10.1021/ja905143m
10.1002/anie.202012861
10.1002/anie.201812647
10.1002/anie.200352503
10.6023/cjoc202000036
10.1039/p19890000279
10.1016/j.ejmech.2021.113448
10.1021/cr200057t
10.1002/ange.202112671
10.1002/ange.202012909
10.1002/ange.202016589
10.1007/128_2013_484
10.1007/978-1-61779-331-8
10.1002/anie.201809719
10.1039/D1CC06601C
10.1055/s-0040-1705939
10.1021/ja9021683
10.1002/anie.201611181
10.1002/anie.202012909
10.1021/jacs.0c10415
10.1055/s-0035-1561648
10.1021/acs.chemrev.7b00064
10.1002/anie.202105656
10.1002/anie.201806893
10.1002/anie.201915459
10.1002/9783527804498
10.1002/anie.201809930
10.1002/ange.202012861
10.1002/ange.200352503
10.1039/D1QO00300C
10.1021/jacs.6b03930
10.1002/ange.201107601
10.1021/ja406484v
10.1021/ja049499d
10.1021/acs.jmedchem.6b00319
10.1021/acs.chemrev.0c00248
10.1021/acs.chemrev.1c00496
10.1002/anie.202016589
10.1002/ange.201809719
10.1126/science.1249198
10.1021/acs.orglett.0c00669
10.1002/ange.201809930
10.1002/ejoc.202000750
10.1177/1756283X14528269
10.1021/jacs.8b03509
10.1021/acs.oprd.1c00208
10.1021/acs.chemrev.6b00731
10.1021/acscatal.1c02805
10.1021/acs.accounts.5b00028
10.1039/c3cs35496b
10.1021/cr068377w
10.1002/anie.202112671
10.1002/ange.201601025
10.1038/s41586-021-03990-6
10.1021/ja00141a039
10.1002/ange.201812647
10.1021/jacs.7b12898
10.1021/jo020690k
10.1021/acscatal.1c04208
10.1038/s41467-021-25449-y
10.1039/c4cs00507d
10.1039/c9cs00921c
10.1039/d1cc06601c
10.1039/c7cs00253j
10.1039/b703488c
10.1039/d1qo00300c
10.1007/978-1-61779-331-8_26
10.1039/c9cs00286c
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
1KN
AHQBO
BLEPL
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202202552
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
ProQuest Health & Medical Complete (Alumni)

Web of Science
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 35332974
000781072900001
10_1002_anie_202202552
ANIE202202552
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22071097;21991113
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021B1515020062
– fundername: Guangdong Provincial Key Laboratory of Catalysis
  grantid: 2020B121201002
– fundername: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 22071097; 21991113
– fundername: Shenzhen Science and Technology Innovation Committee
  grantid: JCYJ20190809142013478
– fundername: National Natural Science Foundation of China
  grantid: 22071097;21991113
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3732-1cccfa12bda9014d2aa788e17f2c6ed124d4c10cd15270ee233a5faf235070d03
IEDL.DBID DR2
ISICitedReferencesCount 33
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000781072900001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 12:09:57 EDT 2025
Fri Jul 25 11:50:22 EDT 2025
Wed Feb 19 02:26:41 EST 2025
Fri Aug 29 16:07:59 EDT 2025
Wed Jul 09 18:31:02 EDT 2025
Tue Jul 01 05:01:23 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Wed Jan 22 16:24:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords BRONSTED ACID
BIOMIMETIC TRANSAMINATION
HYDROGEN
COOPERATIVE CATALYSIS
AMMONIA
ESTERS
PROGRESS
ALKYL-ARYL KETONES
N-Unprotected Amino Acids
Ruthenium
α-Keto Amides
Amino Acids
Reductive Amination
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3732-1cccfa12bda9014d2aa788e17f2c6ed124d4c10cd15270ee233a5faf235070d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3534-3786
0000-0001-5700-0608
PMID 35332974
PQID 2674736114
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2644023677
pubmed_primary_35332974
webofscience_primary_000781072900001
crossref_primary_10_1002_anie_202202552
crossref_citationtrail_10_1002_anie_202202552
proquest_journals_2674736114
wiley_primary_10_1002_anie_202202552_ANIE202202552
webofscience_primary_000781072900001CitationCount
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 20, 2022
PublicationDateYYYYMMDD 2022-06-20
PublicationDate_xml – month: 06
  year: 2022
  text: June 20, 2022
  day: 20
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2021; 25
2017; 7
2007; 107
2004; 126
2021; 23
2020; 120
2020 2020; 59 132
2020; 10
2011; 111
2017; 117
2018; 47
2022; 122
2015; 48
2021; 598
2018 2018; 57 130
2012 2012; 51 124
2015; 44
2020; 49
2007; 9
2014; 7
2016; 48
1989
2021; 8
2018; 140
2012
2011
2020; 142
2020; 40
2013; 42
2009
2013; 343
1995; 117
2003 2003; 42 115
2021; 143
2009; 131
2017 2017; 56 129
2021; 220
2016; 59
2014; 356
2011; 133
2019 2019; 58 131
2021; 53
2016 2016; 55 128
2021; 12
2021; 11
2020
2003; 68
2021 2021; 60 133
2019
2022; 58
2013; 135
2016
2016; 138
2020; 22
2009; 461
2003; 103
2012; 45
2014; 343
e_1_2_7_3_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_83_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_64_1
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_11_2
e_1_2_7_68_1
e_1_2_7_45_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_49_3
e_1_2_7_90_1
e_1_2_7_71_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_23_1
e_1_2_7_52_3
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_56_3
e_1_2_7_79_1
e_1_2_7_37_2
e_1_2_7_4_2
e_1_2_7_8_2
e_1_2_7_16_2
e_1_2_7_82_1
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_12_2
e_1_2_7_86_1
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_48_2
e_1_2_7_48_3
e_1_2_7_29_2
e_1_2_7_70_3
e_1_2_7_51_1
e_1_2_7_70_2
e_1_2_7_24_3
e_1_2_7_24_2
e_1_2_7_74_1
e_1_2_7_32_2
e_1_2_7_55_2
e_1_2_7_20_1
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_59_2
Brückner H. (e_1_2_7_5_2) 2011
Hughes A. B. (e_1_2_7_9_2) 2009
e_1_2_7_17_1
e_1_2_7_81_2
e_1_2_7_62_3
e_1_2_7_1_1
e_1_2_7_62_2
e_1_2_7_13_1
e_1_2_7_43_2
e_1_2_7_85_2
e_1_2_7_66_2
e_1_2_7_89_1
e_1_2_7_47_2
e_1_2_7_47_3
e_1_2_7_28_2
e_1_2_7_73_1
e_1_2_7_92_2
e_1_2_7_25_3
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_31_1
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_77_3
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_18_1
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_14_1
e_1_2_7_42_2
e_1_2_7_84_2
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_2
e_1_2_7_88_2
e_1_2_7_69_1
e_1_2_7_88_3
e_1_2_7_27_2
Soloshonok V. A. (e_1_2_7_2_2) 2009
e_1_2_7_72_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_30_3
e_1_2_7_72_3
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_34_1
e_1_2_7_57_3
e_1_2_7_57_2
e_1_2_7_38_2
Hu, L. (000781072900001.56) 2020; 132
Zhou, SL (WOS:000344546600024) 2014; 356
Chi, YX (WOS:000182825000057) 2003; 68
Xue, YP (WOS:000425374900012) 2018; 47
Slabu, I (WOS:000417230500028) 2017; 7
Eftekhari-Sis, B (WOS:000404806000015) 2017; 117
Li, F. (000781072900001.77) 2021; 133
Morisaki, K (WOS:000543663800035) 2020; 10
Steinhuebel, D (WOS:000269379200023) 2009; 131
Lou, YZ (WOS:000447371500037) 2018; 57
Reeves (000781072900001.69) 2012; 124
Tedeschi, G (WOS:000303131400026) 2012; 794
Lou, Y. (000781072900001.54) 2018; 130
Zhang, SY (WOS:000323241200069) 2013; 135
Wang, J (WOS:000296685200007) 2011; 111
He, J (WOS:000332728500029) 2014; 343
Hao, W (WOS:000693621800035) 2021; 11
(000781072900001.82) 2019
Wang, C (WOS:000356813000008) 2014; 343
Blaskovich, MAT (WOS:000390735500001) 2016; 59
Davie, EAC (WOS:000251583300011) 2007; 107
Gillingham, D (WOS:000319527400006) 2013; 42
Jin, LM (WOS:000599506900042) 2020; 142
Matador, E. (000781072900001.85) 2021; 133
Xie, Y (WOS:000351606600002) 2015; 44
Yao (000781072900001.21) 2021; 133
Li, CQ (WOS:000266484700037) 2009; 131
Hyslop, JF (WOS:000446826200016) 2018; 57
Hughes (000781072900001.7) 2009
Ghosh, T (WOS:000546651400001) 2020; 2020
Irrgang, T (WOS:000571431700009) 2020; 120
Kadyrov, R (WOS:000186816400010) 2003; 42
Nájera, C (WOS:000250970400004) 2007; 107
Che, C. (000781072900001.27) 2021; 133
Bhat, V (WOS:000396185400014) 2017; 117
Saghyan, A. S. (000781072900001.9) 2016
Bruckner, H. (000781072900001.4) 2011
Liu, YE (WOS:000382513300004) 2016; 138
Shi, YJ (WOS:000729562500001) 2022; 58
Faraggi, TM (WOS:000687904600021) 2021; 25
Reeves, JT (WOS:000299736300019) 2012; 51
Shen, PX (WOS:000434101100008) 2018; 140
BURK, MJ (WOS:A1995RU81800039) 1995; 117
Yao, PY (WOS:000626563700001) 2021; 60
Roff, GJ (WOS:000220637100024) 2004; 126
Gao, Z. (000781072900001.62) 2021; 133
Xiao, X (WOS:000294591300006) 2011; 133
Cai, WQ (WOS:000738605600001) 2021; 12
Ponra, S (WOS:000582050400002) 2021; 53
Zhou, H. (000781072900001.42) 2017; 129
Hyslop, J. F. (000781072900001.19) 2018; 130
Yamada, M (WOS:000649477300026) 2021; 23
Soloshonok, V.A. (000781072900001.1) 2009
Chen, Y (WOS:000462680700020) 2019; 58
MATSUDA, Y (WOS:A1989T390400011) 1989
Li, FZ (WOS:000668520900001) 2021; 60
Hu, LA (WOS:000514492100001) 2020; 59
Huang, HZ (WOS:000374564300035) 2016; 55
Matador, E (WOS:000590562100001) 2021; 60
Acosta, A (WOS:000340506400003) 2014; 7
Tian, YY (WOS:000639267300001) 2021; 8
Huang, H. (000781072900001.72) 2016; 128
Zhao, XH (WOS:000455818400045) 2019; 58
Yang, ZP (WOS:000664300200017) 2021; 143
Cabré, A (WOS:000767137000006) 2022; 122
Yin, Q (WOS:000570357800001) 2020; 49
Chen, Y. (000781072900001.44) 2019; 131
Tan, XF (WOS:000425475300011) 2018; 140
Reshi, NUD (WOS:000726635700008) 2021; 11
Huang, HZ (WOS:000560811400048) 2020; 40
Tang, WJ (WOS:000184821500013) 2003; 103
Constable, DJC (WOS:000246802600012) 2007; 9
Zhang, L (WOS:000353429400010) 2015; 48
Zuend, SJ (WOS:000270817700044) 2009; 461
Zhou, H (WOS:000395183600031) 2017; 56
Che, C (WOS:000604579600001) 2021; 60
Echeverria, PG (WOS:000382509100002) 2016; 48
Kadyrov, R. (000781072900001.49) 2003; 115
Zhao, X. (000781072900001.46) 2019; 131
Han, JL (WOS:000659148800002) 2021; 220
Gao, ZF (WOS:000718898300001) 2021; 60
Shi, YJ (WOS:000526335800040) 2020; 22
Kadyrov, R (WOS:000182825000043) 2003; 68
Gallardo-Donaire, J (WOS:000422813300064) 2018; 140
Kaptein, SJF (WOS:000704947000004) 2021; 598
Murugesan, K (WOS:000570357800007) 2020; 49
Zhu, SF (WOS:000307696500018) 2012; 45
Maruoka, K (WOS:000184821500012) 2003; 103
References_xml – year: 2011
– year: 2009
– volume: 59 132
  start-page: 5321 5359
  year: 2020 2020
  end-page: 5325 5363
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 12135
  year: 2013
  end-page: 12141
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 4528
  year: 2017
  end-page: 4561
  publication-title: Chem. Rev.
– volume: 120
  start-page: 9583
  year: 2020
  end-page: 9674
  publication-title: Chem. Rev.
– volume: 60 133
  start-page: 4698 4748
  year: 2021 2021
  end-page: 4704 4754
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 167
  year: 2014
  end-page: 175
  publication-title: Ther. Adv. Gastroenterol.
– volume: 51 124
  start-page: 1400 1429
  year: 2012 2012
  end-page: 1404 1433
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 6545
  year: 2018
  end-page: 6549
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 2024
  year: 2018
  end-page: 2027
  publication-title: J. Am. Chem. Soc.
– volume: 220
  year: 2021
  publication-title: Eur. J. Med. Chem.
– volume: 117
  start-page: 9375
  year: 1995
  end-page: 9376
  publication-title: J. Am. Chem. Soc.
– volume: 107
  start-page: 5759
  year: 2007
  end-page: 5812
  publication-title: Chem. Rev.
– volume: 11
  start-page: 13809
  year: 2021
  end-page: 13837
  publication-title: ACS Catal.
– volume: 40
  start-page: 1802
  year: 2020
  end-page: 1803
  publication-title: Chin. J. Org. Chem.
– volume: 111
  start-page: 6947
  year: 2011
  end-page: 6983
  publication-title: Chem. Rev.
– volume: 343
  start-page: 261
  year: 2013
  end-page: 282
  publication-title: Top. Curr. Chem.
– volume: 22
  start-page: 2707
  year: 2020
  end-page: 2713
  publication-title: Org. Lett.
– volume: 142
  start-page: 20828
  year: 2020
  end-page: 20836
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 3809 3849
  year: 2019 2019
  end-page: 3813 3853
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 103
  start-page: 3029
  year: 2003
  end-page: 3070
  publication-title: Chem. Rev.
– volume: 48
  start-page: 2523
  year: 2016
  end-page: 2539
  publication-title: Synthesis
– volume: 461
  start-page: 968
  year: 2009
  end-page: 970
  publication-title: Nature
– volume: 11
  start-page: 11040
  year: 2021
  end-page: 11048
  publication-title: ACS Catal.
– volume: 49
  start-page: 6273
  year: 2020
  end-page: 6328
  publication-title: Chem. Soc. Rev.
– volume: 68
  start-page: 4120
  year: 2003
  end-page: 4122
  publication-title: J. Org. Chem.
– volume: 44
  start-page: 1740
  year: 2015
  end-page: 1748
  publication-title: Chem. Soc. Rev.
– volume: 58 131
  start-page: 292 298
  year: 2019 2019
  end-page: 296 302
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 131
  start-page: 6967
  year: 2009
  end-page: 6969
  publication-title: J. Am. Chem. Soc.
– year: 2019
– volume: 10
  start-page: 6924
  year: 2020
  end-page: 6951
  publication-title: ACS Catal.
– start-page: 4796
  year: 2020
  end-page: 4800
  publication-title: Eur. J. Org. Chem.
– volume: 9
  start-page: 411
  year: 2007
  end-page: 420
  publication-title: Green Chem.
– volume: 57 130
  start-page: 13821 14017
  year: 2018 2018
  end-page: 13824 14020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 42 115
  start-page: 5472 5630
  year: 2003 2003
  end-page: 5474 5632
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 68
  start-page: 4067
  year: 2003
  end-page: 4070
  publication-title: J. Org. Chem.
– volume: 60 133
  start-page: 5096 5156
  year: 2021 2021
  end-page: 5101 5161
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 193
  year: 2021
  end-page: 214
  publication-title: Synthesis
– volume: 59
  start-page: 10807
  year: 2016
  end-page: 10836
  publication-title: J. Med. Chem.
– volume: 117
  start-page: 8326
  year: 2017
  end-page: 8419
  publication-title: Chem. Rev.
– volume: 107
  start-page: 4584
  year: 2007
  end-page: 4671
  publication-title: Chem. Rev.
– volume: 45
  start-page: 1365
  year: 2012
  end-page: 1377
  publication-title: Acc. Chem. Res.
– start-page: 279
  year: 1989
  end-page: 281
  publication-title: J. Chem. Soc. Perkin Trans. 1
– volume: 23
  start-page: 3364
  year: 2021
  end-page: 3367
  publication-title: Org. Lett.
– year: 2016
– volume: 126
  start-page: 4098
  year: 2004
  end-page: 4099
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 5309 5395
  year: 2016 2016
  end-page: 5312 5398
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 103
  start-page: 3013
  year: 2003
  end-page: 3028
  publication-title: Chem. Rev.
– volume: 60 133
  start-page: 17680 17821
  year: 2021 2021
  end-page: 17685 17826
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 10730
  year: 2016
  end-page: 10733
  publication-title: J. Am. Chem. Soc.
– volume: 343
  start-page: 1216
  year: 2014
  end-page: 1220
  publication-title: Science
– year: 2012
– volume: 60 133
  start-page: 8717 8799
  year: 2021 2021
  end-page: 8721 8803
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 2328
  year: 2021
  end-page: 2342
  publication-title: Org. Chem. Front.
– volume: 25
  start-page: 1966
  year: 2021
  end-page: 1973
  publication-title: Org. Process Res. Dev.
– volume: 131
  start-page: 11316
  year: 2009
  end-page: 11317
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 27307 27513
  year: 2021 2021
  end-page: 27311 27517
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 14193 14389
  year: 2018 2018
  end-page: 14197 14393
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 42
  start-page: 4918
  year: 2013
  end-page: 4931
  publication-title: Chem. Soc. Rev.
– volume: 143
  start-page: 8614
  year: 2021
  end-page: 8618
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 2725 2769
  year: 2017 2017
  end-page: 2729 2773
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 122
  start-page: 269
  year: 2022
  end-page: 339
  publication-title: Chem. Rev.
– volume: 12
  start-page: 5174
  year: 2021
  publication-title: Nat. Commun.
– volume: 49
  start-page: 6141
  year: 2020
  end-page: 6153
  publication-title: Chem. Soc. Rev.
– volume: 356
  start-page: 3451
  year: 2014
  end-page: 3455
  publication-title: Adv. Synth. Catal.
– volume: 140
  start-page: 355
  year: 2018
  end-page: 361
  publication-title: J. Am. Chem. Soc.
– volume: 598
  start-page: 504
  year: 2021
  end-page: 509
  publication-title: Nature
– volume: 48
  start-page: 986
  year: 2015
  end-page: 997
  publication-title: Acc. Chem. Res.
– volume: 133
  start-page: 12914
  year: 2011
  end-page: 12917
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 8263
  year: 2017
  end-page: 8284
  publication-title: ACS Catal.
– volume: 47
  start-page: 1516
  year: 2018
  end-page: 1561
  publication-title: Chem. Soc. Rev.
– volume: 58
  start-page: 513
  year: 2022
  end-page: 516
  publication-title: Chem. Commun.
– ident: e_1_2_7_21_2
  doi: 10.1021/ar300051u
– ident: e_1_2_7_33_2
  doi: 10.1039/C9CS00921C
– ident: e_1_2_7_57_3
  doi: 10.1002/ange.201915459
– ident: e_1_2_7_61_2
  doi: 10.1021/acs.orglett.1c00848
– ident: e_1_2_7_15_2
  doi: 10.1021/cr020049i
– ident: e_1_2_7_90_1
– ident: e_1_2_7_32_2
  doi: 10.1021/acscatal.0c01212
– ident: e_1_2_7_74_1
– ident: e_1_2_7_50_1
  doi: 10.1039/B703488C
– ident: e_1_2_7_66_2
  doi: 10.1021/acscatal.7b02686
– ident: e_1_2_7_46_2
  doi: 10.1002/adsc.201400328
– ident: e_1_2_7_29_2
  doi: 10.1021/jacs.1c03903
– ident: e_1_2_7_35_2
  doi: 10.1039/C4CS00507D
– ident: e_1_2_7_39_1
– ident: e_1_2_7_70_2
  doi: 10.1002/anie.201107601
– ident: e_1_2_7_47_3
  doi: 10.1002/ange.201611181
– ident: e_1_2_7_71_2
  doi: 10.1021/jo026856z
– ident: e_1_2_7_36_2
  doi: 10.1021/ja203138q
– ident: e_1_2_7_10_1
– ident: e_1_2_7_19_1
  doi: 10.1021/cr020020e
– ident: e_1_2_7_54_2
  doi: 10.1021/jacs.7b10496
– ident: e_1_2_7_87_2
  doi: 10.1038/nature08484
– ident: e_1_2_7_67_2
  doi: 10.1039/C7CS00253J
– ident: e_1_2_7_77_3
  doi: 10.1002/ange.202105656
– ident: e_1_2_7_11_2
  doi: 10.1021/cr050580o
– ident: e_1_2_7_24_3
  doi: 10.1002/ange.201806893
– ident: e_1_2_7_41_2
  doi: 10.1039/C9CS00286C
– ident: e_1_2_7_72_2
  doi: 10.1002/anie.201601025
– ident: e_1_2_7_53_2
  doi: 10.1021/ja905143m
– ident: e_1_2_7_14_1
– ident: e_1_2_7_88_2
  doi: 10.1002/anie.202012861
– ident: e_1_2_7_48_2
  doi: 10.1002/anie.201812647
– ident: e_1_2_7_52_2
  doi: 10.1002/anie.200352503
– ident: e_1_2_7_58_2
  doi: 10.6023/cjoc202000036
– ident: e_1_2_7_68_1
  doi: 10.1039/p19890000279
– ident: e_1_2_7_73_1
  doi: 10.1016/j.ejmech.2021.113448
– ident: e_1_2_7_13_1
  doi: 10.1021/cr200057t
– ident: e_1_2_7_62_3
  doi: 10.1002/ange.202112671
– ident: e_1_2_7_30_3
  doi: 10.1002/ange.202012909
– ident: e_1_2_7_25_3
  doi: 10.1002/ange.202016589
– ident: e_1_2_7_40_2
  doi: 10.1007/128_2013_484
– ident: e_1_2_7_3_2
  doi: 10.1007/978-1-61779-331-8
– ident: e_1_2_7_83_1
– ident: e_1_2_7_86_1
– ident: e_1_2_7_56_2
  doi: 10.1002/anie.201809719
– ident: e_1_2_7_85_2
– ident: e_1_2_7_63_2
  doi: 10.1039/D1CC06601C
– ident: e_1_2_7_16_2
  doi: 10.1055/s-0040-1705939
– ident: e_1_2_7_45_2
  doi: 10.1021/ja9021683
– ident: e_1_2_7_23_1
– ident: e_1_2_7_47_2
  doi: 10.1002/anie.201611181
– ident: e_1_2_7_30_2
  doi: 10.1002/anie.202012909
– ident: e_1_2_7_34_1
– ident: e_1_2_7_79_1
– ident: e_1_2_7_20_1
– ident: e_1_2_7_28_2
  doi: 10.1021/jacs.0c10415
– ident: e_1_2_7_51_1
– ident: e_1_2_7_80_2
  doi: 10.1055/s-0035-1561648
– ident: e_1_2_7_82_1
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.chemrev.7b00064
– ident: e_1_2_7_77_2
  doi: 10.1002/anie.202105656
– ident: e_1_2_7_24_2
  doi: 10.1002/anie.201806893
– volume-title: Asymmetric Synthesis and Application of α-Amino Acids
  year: 2009
  ident: e_1_2_7_2_2
– ident: e_1_2_7_57_2
  doi: 10.1002/anie.201915459
– ident: e_1_2_7_12_2
  doi: 10.1002/9783527804498
– ident: e_1_2_7_49_2
  doi: 10.1002/anie.201809930
– ident: e_1_2_7_88_3
  doi: 10.1002/ange.202012861
– ident: e_1_2_7_52_3
  doi: 10.1002/ange.200352503
– ident: e_1_2_7_43_2
  doi: 10.1039/D1QO00300C
– ident: e_1_2_7_37_2
  doi: 10.1021/jacs.6b03930
– volume-title: D-Amino Acids in Chemistry, Life Sciences, and Biotechnology
  year: 2011
  ident: e_1_2_7_5_2
– ident: e_1_2_7_70_3
  doi: 10.1002/ange.201107601
– ident: e_1_2_7_78_2
  doi: 10.1021/ja406484v
– ident: e_1_2_7_65_1
– ident: e_1_2_7_76_2
  doi: 10.1021/ja049499d
– ident: e_1_2_7_4_2
  doi: 10.1021/acs.jmedchem.6b00319
– ident: e_1_2_7_42_2
  doi: 10.1021/acs.chemrev.0c00248
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.chemrev.1c00496
– ident: e_1_2_7_25_2
  doi: 10.1002/anie.202016589
– ident: e_1_2_7_56_3
  doi: 10.1002/ange.201809719
– ident: e_1_2_7_26_2
  doi: 10.1126/science.1249198
– ident: e_1_2_7_59_2
  doi: 10.1021/acs.orglett.0c00669
– ident: e_1_2_7_49_3
  doi: 10.1002/ange.201809930
– ident: e_1_2_7_60_2
  doi: 10.1002/ejoc.202000750
– ident: e_1_2_7_84_2
  doi: 10.1177/1756283X14528269
– ident: e_1_2_7_91_2
  doi: 10.1021/jacs.8b03509
– ident: e_1_2_7_27_2
  doi: 10.1021/acs.oprd.1c00208
– ident: e_1_2_7_81_2
  doi: 10.1021/acs.chemrev.6b00731
– ident: e_1_2_7_92_2
  doi: 10.1021/acscatal.1c02805
– ident: e_1_2_7_89_1
  doi: 10.1021/acs.accounts.5b00028
– ident: e_1_2_7_1_1
– ident: e_1_2_7_7_1
– volume-title: Amino Acids, Peptides and Proteins in Organic Chemistry
  year: 2009
  ident: e_1_2_7_9_2
– ident: e_1_2_7_22_2
  doi: 10.1039/c3cs35496b
– ident: e_1_2_7_8_2
  doi: 10.1021/cr068377w
– ident: e_1_2_7_62_2
  doi: 10.1002/anie.202112671
– ident: e_1_2_7_72_3
  doi: 10.1002/ange.201601025
– ident: e_1_2_7_6_1
  doi: 10.1038/s41586-021-03990-6
– ident: e_1_2_7_69_1
– ident: e_1_2_7_75_2
  doi: 10.1021/ja00141a039
– ident: e_1_2_7_48_3
  doi: 10.1002/ange.201812647
– ident: e_1_2_7_55_2
  doi: 10.1021/jacs.7b12898
– ident: e_1_2_7_64_1
  doi: 10.1021/jo020690k
– ident: e_1_2_7_44_2
  doi: 10.1021/acscatal.1c04208
– ident: e_1_2_7_31_1
– ident: e_1_2_7_38_2
  doi: 10.1038/s41467-021-25449-y
– volume: 68
  start-page: 4067
  year: 2003
  ident: WOS:000182825000043
  article-title: The first highly enantioselective homogeneously catalyzed asymmetric reductive amination:: Synthesis of α-N-benzylamino acids
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo020690k
– volume: 22
  start-page: 2707
  year: 2020
  ident: WOS:000526335800040
  article-title: Direct Synthesis of Chiral NH Lactams via Ru-Catalyzed Asymmetric Reductive Amination/Cyclization Cascade of Keto Acids/Esters
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.0c00669
– volume: 131
  start-page: 6967
  year: 2009
  ident: WOS:000266484700037
  article-title: Metal-Bronsted Acid Cooperative Catalysis for Asymmetric Reductive Amination
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja9021683
– volume: 138
  start-page: 10730
  year: 2016
  ident: WOS:000382513300004
  article-title: Enzyme-Inspired Axially Chiral Pyridoxamines Armed with a Cooperative Lateral Amine Chain for Enantioselective Biomimetic Transamination
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b03930
– volume: 60
  start-page: 17680
  year: 2021
  ident: WOS:000668520900001
  article-title: Stereoselective Synthesis of β-Branched Aromatic α-Amino Acids by Biocatalytic Dynamic Kinetic Resolution**
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202105656
– volume: 44
  start-page: 1740
  year: 2015
  ident: WOS:000351606600002
  article-title: Progress in asymmetric biomimetic transamination of carbonyl compounds
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c4cs00507d
– volume: 68
  start-page: 4120
  year: 2003
  ident: WOS:000182825000057
  article-title: Highly enantioselective reductive amination of simple aryl ketones catalyzed by Ir-f-Binaphane in the presence of titanium(IV) isopropoxide and iodine
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo026856z
– volume: 60
  start-page: 5096
  year: 2021
  ident: WOS:000590562100001
  article-title: Enantio- and Diastereoselective Nucleophilic Addition of N-tert-Butylhydrazones to Isoquinolinium Ions through Anion-Binding Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202012861
– volume: 598
  start-page: 504
  year: 2021
  ident: WOS:000704947000004
  article-title: A pan-serotype dengue virus inhibitor targeting the NS3-NS4B interaction
  publication-title: NATURE
  doi: 10.1038/s41586-021-03990-6
– volume: 7
  start-page: 167
  year: 2014
  ident: WOS:000340506400003
  article-title: Elobixibat and its potential role in chronic idiopathic constipation
  publication-title: THERAPEUTIC ADVANCES IN GASTROENTEROLOGY
  doi: 10.1177/1756283X14528269
– volume: 11
  start-page: 11040
  year: 2021
  ident: WOS:000693621800035
  article-title: Probing Catalyst Speciation in Pd-MPAAM-Catalyzed Enantioselective C(sp3)-H Arylation: Catalyst Improvement via Destabilization of Off-Cycle Species
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.1c02805
– volume: 48
  start-page: 2523
  year: 2016
  ident: WOS:000382509100002
  article-title: Recent Developments in Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones and Imines through Dynamic Kinetic Resolution
  publication-title: SYNTHESIS-STUTTGART
  doi: 10.1055/s-0035-1561648
– volume: 140
  start-page: 355
  year: 2018
  ident: WOS:000422813300064
  article-title: Direct Asymmetric Ruthenium-Catalyzed Reductive Amination of Alkyl-Aryl Ketones with Ammonia and Hydrogen
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b10496
– volume: 45
  start-page: 1365
  year: 2012
  ident: WOS:000307696500018
  article-title: Transition-Metal-Catalyzed Enantioselective Heteroatom-Hydrogen Bond Insertion Reactions
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar300051u
– volume: 128
  start-page: 5395
  year: 2016
  ident: 000781072900001.72
  publication-title: Angew. Chem
– volume: 7
  start-page: 8263
  year: 2017
  ident: WOS:000417230500028
  article-title: Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.7b02686
– year: 2009
  ident: 000781072900001.7
  publication-title: Amino Acids, Peptides and Proteins in Organic Chemistry
– volume: 2020
  start-page: 4796
  year: 2020
  ident: WOS:000546651400001
  article-title: Ruthenium Catalyzed Direct Asymmetric Reductive Amination of Simple Aliphatic Ketones Using Ammonium Iodide and Hydrogen
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ejoc.202000750
– volume: 107
  start-page: 4584
  year: 2007
  ident: WOS:000250970400004
  article-title: Catalytic asymmetric synthesis of α-amino acids
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr050580o
– volume: 48
  start-page: 986
  year: 2015
  ident: WOS:000353429400010
  article-title: Pushing the Limits of Aminocatalysis: Enantioselective Transformations of α-Branched β-Ketocarbonyls and Vinyl Ketones by Chiral Primary Amines
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.5b00028
– volume: 129
  start-page: 2769
  year: 2017
  ident: 000781072900001.42
  publication-title: Angew. Chem
– volume: 131
  start-page: 298
  year: 2019
  ident: 000781072900001.46
  publication-title: Angew. Chem
– volume: 49
  start-page: 6141
  year: 2020
  ident: WOS:000570357800001
  article-title: Direct catalytic asymmetric synthesis of α-chiral primary amines
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c9cs00921c
– volume: 343
  start-page: 1216
  year: 2014
  ident: WOS:000332728500029
  article-title: Ligand-Controlled C(sp3)-H Arylation and Olefination in Synthesis of Unnatural Chiral α-Amino Acids
  publication-title: SCIENCE
  doi: 10.1126/science.1249198
– volume: 122
  start-page: 269
  year: 2022
  ident: WOS:000767137000006
  article-title: Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.1c00496
– volume: 356
  start-page: 3451
  year: 2014
  ident: WOS:000344546600024
  article-title: Cooperative Catalysis with Iron and a Chiral Bronsted Acid for Asymmetric Reductive Amination of Ketones
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.201400328
– volume: 25
  start-page: 1966
  year: 2021
  ident: WOS:000687904600021
  article-title: Synthesis of Enantiopure Unnatural Amino Acids by Metallaphotoredox Catalysis
  publication-title: ORGANIC PROCESS RESEARCH & DEVELOPMENT
  doi: 10.1021/acs.oprd.1c00208
– volume: 57
  start-page: 13821
  year: 2018
  ident: WOS:000446826200016
  article-title: Biocatalytic Synthesis of Chiral N-Functionalized Amino Acids
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201806893
– volume: 117
  start-page: 8326
  year: 2017
  ident: WOS:000404806000015
  article-title: α-Imino Esters in Organic Synthesis: Recent Advances
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00064
– volume: 42
  start-page: 5472
  year: 2003
  ident: WOS:000186816400010
  article-title: Highly enantioselective hydrogen-transfer reductive amination: Catalytic asymmetric synthesis of primary amines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200352503
– volume: 60
  start-page: 27307
  year: 2021
  ident: WOS:000718898300001
  article-title: An Iridium Catalytic System Compatible with Inorganic and Organic Nitrogen Sources for Dual Asymmetric Reductive Amination Reactions
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202112671
– volume: 135
  start-page: 12135
  year: 2013
  ident: WOS:000323241200069
  article-title: Stereoselective Synthesis of β-Alkylated α-Amino Acids via Palladium-Catalyzed Alkylation of Unactivated Methylene C(sp3)-H Bonds with Primary Alkyl Halides
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja406484v
– volume: 133
  start-page: 4748
  year: 2021
  ident: 000781072900001.27
  publication-title: Angew. Chem
– volume: 115
  start-page: 5630
  year: 2003
  ident: 000781072900001.49
  publication-title: Angew. Chem
– volume: 11
  start-page: 13809
  year: 2021
  ident: WOS:000726635700008
  article-title: Recent Progress in Transition-Metal-Catalyzed Asymmetric Reductive Amination
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.1c04208
– volume: 133
  start-page: 5156
  year: 2021
  ident: 000781072900001.85
  publication-title: Angew. Chem
– volume: 58
  start-page: 513
  year: 2022
  ident: WOS:000729562500001
  article-title: Direct asymmetric reductive amination of α-keto acetals: a platform for synthesizing diverse α-functionalized amines
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/d1cc06601c
– volume: 131
  start-page: 3849
  year: 2019
  ident: 000781072900001.44
  publication-title: Angew. Chem
– volume: 117
  start-page: 4528
  year: 2017
  ident: WOS:000396185400014
  article-title: Advances in Stereoconvergent Catalysis from 2005 to 2015: Transition-Metal-Mediated Stereoablative Reactions, Dynamic Kinetic Resolutions, and Dynamic Kinetic Asymmetric Transformations
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.6b00731
– volume: 59
  start-page: 5321
  year: 2020
  ident: WOS:000514492100001
  article-title: Ruthenium-Catalyzed Direct Asymmetric Reductive Amination of Diaryl and Sterically Hindered Ketones with Ammonium Salts and H2
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201915459
– volume: 103
  start-page: 3013
  year: 2003
  ident: WOS:000184821500012
  article-title: Enantioselective amino acid synthesis by chiral phase-transfer catalysis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr020020e
– year: 2011
  ident: 000781072900001.4
  publication-title: D-Amino Acids in Chemistry, Life Sciences, and Biotechnology
– volume: 133
  start-page: 12914
  year: 2011
  ident: WOS:000294591300006
  article-title: Organocatalytic Asymmetric Biomimetic Transamination: From α-Keto Esters to Optically Active α-Amino Acid Derivatives
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja203138q
– volume: 140
  start-page: 6545
  year: 2018
  ident: WOS:000434101100008
  article-title: Pd(II)-Catalyzed Enantioselective C(sp3)-H Arylation of Free Carboxylic Acids
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b03509
– volume: 143
  start-page: 8614
  year: 2021
  ident: WOS:000664300200017
  article-title: Asymmetric Synthesis of Protected Unnatural α-Amino Acids via Enantioconvergent Nickel-Catalyzed Cross-Coupling
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c03903
– volume: 60
  start-page: 8717
  year: 2021
  ident: WOS:000626563700001
  article-title: Asymmetric Synthesis of N-Substituted α-Amino Esters from α-Ketoesters via Imine Reductase-Catalyzed Reductive Amination
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202016589
– volume: 47
  start-page: 1516
  year: 2018
  ident: WOS:000425374900012
  article-title: Enzymatic asymmetric synthesis of chiral amino acids
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c7cs00253j
– year: 2019
  ident: 000781072900001.82
  publication-title: PCT Int. Appl.
– volume: 132
  start-page: 5359
  year: 2020
  ident: 000781072900001.56
  publication-title: Angew. Chem
– volume: 107
  start-page: 5759
  year: 2007
  ident: WOS:000251583300011
  article-title: Asymmetric catalysis mediated by synthetic peptides
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr068377w
– volume: 133
  start-page: 27513
  year: 2021
  ident: 000781072900001.62
  publication-title: Angew. Chem
– volume: 58
  start-page: 292
  year: 2019
  ident: WOS:000455818400045
  article-title: Asymmetric Stepwise Reductive Amination of Sulfonamides, Sulfamates, and a Phosphinamide by Nickel Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201809930
– volume: 131
  start-page: 11316
  year: 2009
  ident: WOS:000269379200023
  article-title: Direct Asymmetric Reductive Amination
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja905143m
– volume: 58
  start-page: 3809
  year: 2019
  ident: WOS:000462680700020
  article-title: Rapid Construction of Structurally Diverse Quinolizidines, Indolizidines, and Their Analogues via Ruthenium-Catalyzed Asymmetric Cascade Hydrogenation/Reductive Amination
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201812647
– volume: 140
  start-page: 2024
  year: 2018
  ident: WOS:000425475300011
  article-title: Asymmetric Synthesis of Chiral Primary Amines by Ruthenium-Catalyzed Direct Reductive Amination of Alkyl Aryl Ketones with Ammonium Salts and Molecular H2
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b12898
– volume: 51
  start-page: 1400
  year: 2012
  ident: WOS:000299736300019
  article-title: Direct Titanium-Mediated Conversion of Ketones into Enamides with Ammonia and Acetic Anhydride
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201107601
– volume: 130
  start-page: 14017
  year: 2018
  ident: 000781072900001.19
  publication-title: Angew. Chem
– volume: 55
  start-page: 5309
  year: 2016
  ident: WOS:000374564300035
  article-title: Direct Asymmetric Reductive Amination for the Synthesis of Chiral -Arylamines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201601025
– volume: 120
  start-page: 9583
  year: 2020
  ident: WOS:000571431700009
  article-title: Transition-Metal-Catalyzed Reductive Amination Employing Hydrogen
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.0c00248
– volume: 42
  start-page: 4918
  year: 2013
  ident: WOS:000319527400006
  article-title: Catalytic X-H insertion reactions based on carbenoids
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c3cs35496b
– volume: 126
  start-page: 4098
  year: 2004
  ident: WOS:000220637100024
  article-title: A versatile chemo-enzymatic route to enantiomerically pure β-branched α-amino acids
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja049499d
– volume: 53
  start-page: 193
  year: 2021
  ident: WOS:000582050400002
  article-title: Recent Developments in Transition-Metal-Catalyzed Asymmetric Hydrogenation of Enamides
  publication-title: SYNTHESIS-STUTTGART
  doi: 10.1055/s-0040-1705939
– volume: 103
  start-page: 3029
  year: 2003
  ident: WOS:000184821500013
  article-title: New chiral phosphorus ligands for enantioselective hydrogenation
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr020049i
– volume: 9
  start-page: 411
  year: 2007
  ident: WOS:000246802600012
  article-title: Key green chemistry research areas - a perspective from pharmaceutical manufacturers
  publication-title: GREEN CHEMISTRY
  doi: 10.1039/b703488c
– volume: 142
  start-page: 20828
  year: 2020
  ident: WOS:000599506900042
  article-title: Enantioselective Intermolecular Radical C-H Amination
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c10415
– volume: 220
  start-page: ARTN 113448
  year: 2021
  ident: WOS:000659148800002
  article-title: Tailor-made amino acids in the design of small-molecule blockbuster drugs
  publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1016/j.ejmech.2021.113448
– volume: 10
  start-page: 6924
  year: 2020
  ident: WOS:000543663800035
  article-title: Recent Progress on Catalytic Addition Reactions to N-Unsubstituted Imines
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.0c01212
– volume: 117
  start-page: 9375
  year: 1995
  ident: WOS:A1995RU81800039
  article-title: ASYMMETRIC CATALYTIC SYNTHESIS OF BETA-BRANCHED AMINO-ACIDS VIA HIGHLY ENANTIOSELECTIVE HYDROGENATION REACTIONS
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 343
  start-page: 261
  year: 2014
  ident: WOS:000356813000008
  article-title: Asymmetric Reductive Amination
  publication-title: STEREOSELECTIVE FORMATION OF AMINES
  doi: 10.1007/128_2013_484
– volume: 57
  start-page: 14193
  year: 2018
  ident: WOS:000447371500037
  article-title: Dynamic Kinetic Asymmetric Reductive Amination: Synthesis of Chiral Primary β-Amino Lactams
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201809719
– volume: 12
  start-page: ARTN 5174
  year: 2021
  ident: WOS:000738605600001
  article-title: Asymmetric biomimetic transamination of α-keto amides to peptides
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-021-25449-y
– volume: 461
  start-page: 968
  year: 2009
  ident: WOS:000270817700044
  article-title: Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids
  publication-title: NATURE
  doi: 10.1038/nature08484
– volume: 133
  start-page: 17821
  year: 2021
  ident: 000781072900001.77
  publication-title: Angew. Chem
– volume: 111
  start-page: 6947
  year: 2011
  ident: WOS:000296685200007
  article-title: Asymmetric Strecker Reactions
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr200057t
– volume: 8
  start-page: 2328
  year: 2021
  ident: WOS:000639267300001
  article-title: Recent advances on transition-metal-catalysed asymmetric reductive amination
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/d1qo00300c
– volume: 133
  start-page: 8799
  year: 2021
  ident: 000781072900001.21
  publication-title: Angew. Chem
– year: 2009
  ident: 000781072900001.1
  publication-title: Asymmetric Synthesis and Application of -Amino Acids
– volume: 60
  start-page: 4698
  year: 2021
  ident: WOS:000604579600001
  article-title: Visible-Light-Enabled Enantioconvergent Synthesis of α-Amino Acid Derivatives via Synergistic Bronsted Acid/Photoredox Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202012909
– volume: 794
  start-page: 381
  year: 2012
  ident: WOS:000303131400026
  article-title: Assays of D-Amino Acid Oxidases
  publication-title: UNNATURAL AMINO ACIDS: METHODS AND PROTOCOLS
  doi: 10.1007/978-1-61779-331-8_26
– volume: 59
  start-page: 10807
  year: 2016
  ident: WOS:000390735500001
  article-title: Unusual Amino Acids in Medicinal Chemistry
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/acs.jmedchem.6b00319
– year: 2016
  ident: 000781072900001.9
  publication-title: Asymmetric Synthesis of NonProteinogenic Amino Acids
– volume: 124
  start-page: 1429
  year: 2012
  ident: 000781072900001.69
  publication-title: Angew. Chem
– volume: 23
  start-page: 3364
  year: 2021
  ident: WOS:000649477300026
  article-title: Highly Enantioselective Direct Asymmetric Reductive Amination of 2-Acetyl-6-Substituted Pyridines
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.1c00848
– volume: 56
  start-page: 2725
  year: 2017
  ident: WOS:000395183600031
  article-title: One-Pot N-Deprotection and Catalytic Intramolecular Asymmetric Reductive Amination for the Synthesis of Tetrahydroisoquinolines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201611181
– start-page: 279
  year: 1989
  ident: WOS:A1989T390400011
  article-title: PREPARATION OF ALPHA-(N-TRIMETHYLSILYL)IMINO ESTERS AND THEIR USE IN THE SYNTHESIS OF ALPHA-AMINO ESTERS AND 2-ALKOXYCARBONYLIMIDAZOL-4(2H)-ONES
  publication-title: JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1
– volume: 130
  start-page: 14389
  year: 2018
  ident: 000781072900001.54
  publication-title: Angew. Chem
– volume: 49
  start-page: 6273
  year: 2020
  ident: WOS:000570357800007
  article-title: Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c9cs00286c
– volume: 40
  start-page: 1802
  year: 2020
  ident: WOS:000560811400048
  article-title: Ruthenium-Catalyzed Direct Asymmetric Reductive Amination for the Synthesis of Chiral Diarylmethylamines and Sterically Hindered Amines
  publication-title: CHINESE JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.6023/cjoc202000036
SSID ssj0028806
Score 2.5312197
Snippet An unprecedented highly enantioselective Ru‐catalyzed direct asymmetric reductive amination of α‐keto amides with ammonium salts has been disclosed,...
An unprecedented highly enantioselective Ru-catalyzed direct asymmetric reductive amination of alpha-keto amides with ammonium salts has been disclosed,...
An unprecedented highly enantioselective Ru-catalyzed direct asymmetric reductive amination of α-keto amides with ammonium salts has been disclosed,...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202202552
SubjectTerms Amides
Amination
Amino Acids
Ammonium
Ammonium salts
Asymmetry
Chemistry
Chemistry, Multidisciplinary
Enantiomers
Intermediates
N-Unprotected Amino Acids
Peptides
Physical Sciences
Reductive Amination
Ruthenium
Salts
Science & Technology
Substrates
α-Keto Amides
Title Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202202552
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000781072900001
https://www.ncbi.nlm.nih.gov/pubmed/35332974
https://www.proquest.com/docview/2674736114
https://www.proquest.com/docview/2644023677
Volume 61
WOS 000781072900001
WOSCitedRecordID wos000781072900001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hXuDC_0-gICNV4pQ2trPJcoyWrQoSeyis1Fvk2I4U0XUQ2a2UnvoIXHkMXoSH4EmYcX7oFiEQ3BJ5nMjJzPgbe_wNwF6UaKkLw0OeGtpmjNCkjE1Dbl9GamJQowo6nPx2kRwt4zcnk5NLp_g7fohxwY0sw_trMnBVNAc_SUPpBDbGd0IQKiYnTAlbhIqOR_4ogcrZHS-SMqQq9ANrYyQOtrtvz0q_QM0rs9I2kPUz0eEtUMMYugSUD_ubdbGvz6_QO_7PIG_DzR6msqzTqztwzbq7cH02VIe7B18oQeS0ZXNKpKnqxpfTQc_J3rUOMWVTNawu2eL7xeel67kgrGFL54lE8cnfvmJTtqpczTJdGfYKLeHMk5A3rGiZT7x31WaFUjNaYWrPsXvnn1nWtKsVVQLT7JiYZ_176Vley-7D8nD-fnYU9mUeQi1TKUKutS4VF4VRtKdrhFIYl1uelkIn1iAAMbHmkTZUgTeyVkipJqUqhUQsG5lIPoAdVzv7CJi0iVTJtLTE6zdVUyUVOgFVIM7RIlaTAMLhN-e650CnUhynecfeLHL64Pn4wQN4Mcp_7Ng_fiu5O2hN3nuBJhcJBmsywZAzgOdjM_4o2pRRztYbkoljYvFP0wAedto2vkoiFhcY8AWwd1n9xnYP8Dhxv_tNmgD434jN-oET6cE6AOH17w_Dy7PF6_l49_hfOj2BG3RNaXYi2oWd9aeNfYqAbl0880b7A3pkRkA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8CBYxUxCltYmeT5cBhtbvVLm33ULpSb8GxHWlFN0FkF5SeeASuPEZfhAOPwJMw4_zAFiEQUg8cE0-cxJ7xzNgz3wBseaESKtG-60eajhk9FCltItc3zz3Z0chRCSUnH0zC0TR4edw5XoOzJhemwodoN9xIMux6TQJOG9I7P1BDKQUbHTzOySzmdVzlnik_oNdWvBgPcIqfcr47POqP3LqwgKtEJLjrK6VS6fNESzpF1FxK9ASNH6VchUajytOB8j2lqearZwwXQnZSmXKB1pOnPYH9XoLLVEac4PoHhy1iFUdxqBKahHCp7n2DE-nxndXvXdWDvxi35_Tgqulsdd_uNfjajFoV8vJme7lIttXpOUDJ_2pYr8PV2hJnvUp0bsCayW7CRr8pgHcLPlMMzEnJhhQrNMsLWzEIlQN7VWZoNhezguUpm3z7-Gma1XAXRrNpZrFSsecvZ9jUm8-ynPXUTLMBCvt7i7NesKRkNrcgmy3nSNWnTbTyFB-vVBDrFeV8TsXOFDskcF37XurLCtJtmF7IyNyB9SzPzD1gwoRCht3UEHRhV3alkLjOyQRNOcUD2XHAbfgqVjXMO1UbOYkrgGoe0wTH7QQ78Kylf1sBnPyWcrNh07he6IqYh-iPihC9ageetM04UXTuJDOTL4kmCKhQQRQ5cLdi7_ZVAt0Njj6tA1s_83vbbm1Yn-Dt7TmUA_7fkPXrHydch4UD3DL8H34v7k3Gw_bq_r889Bg2RkcH-_H-eLL3AK7QfYoq5N4mrC_eLc1DtF8XySO7YjB4fdGy9B0YHqSR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8CBYxUxCltYmeT7YHDan_UpbBChZV6C47tSBHdbEV2QemJR-DKW8CLIPEKPAkzzg9sEQIh9cAx8cRJ7BnPjD3zDcCmFyqhEu27fqTpmNFDkdImcn2z48mORo5KKDn52STcnQZPDjoHa_CpyYWp8CHaDTeSDLtek4Af6XT7B2goZWCjf8c5WcW8DqvcM-U7dNqKx-MBzvBDzkfDl_1dt64r4CoRCe76SqlU-jzRkg4RNZcSHUHjRylXodGo8XSgfE9pKvnqGcOFkJ1Uplyg8eRpT2C_Z-BsEHo7VCxisN8CVnGUhiqfSQiXyt43MJEe31793lU1-Itte0INrlrOVvWNLsHXZtCqiJfXW8tFsqWOT-BJ_k-jehku1nY461WCcwXWTH4Vzveb8nfX4CNFwByWbEiRQtm8sPWCUDWwF2WORnORFWyessm39x-meQ12YTSb5hYpFXv-8hmberMsn7OeyjQboKi_tSjrBUtKZjML8mw5Q6o-baGVx_h4pYBYryhnMyp1ptg-Qeva91JfVoyuw_RURuYGrOfz3NwCJkwoZNhNDQEXdmVXComrnEzQkFM8kB0H3IatYlWDvFOtkcO4gqfmMU1w3E6wA49a-qMK3uS3lBsNl8b1MlfEPERvVIToUzvwoG3GiaJTJ5mb-ZJogoDKFESRAzcr7m5fJdDZ4OjROrD5M7u37daC9Qnc3p5COeD_DVm__nFCdVg4wC2__-H34t5kPGyvbv_LQ_fh3PPBKH46nuzdgQt0m0IKubcB64s3S3MXjddFcs-uFwxenbYofQd9taNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Enantioselective+Synthesis+of+N-Unprotected+Unnatural+%CE%B1-Amino+Acid+Derivatives+by+Ruthenium-Catalyzed+Direct+Asymmetric+Reductive+Amination&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Hu%2C+Le%27an&rft.au=Wang%2C+Yuan-Zheng&rft.au=Xu%2C+Lei&rft.au=Yin%2C+Qin&rft.date=2022-06-20&rft.eissn=1521-3773&rft.volume=61&rft.issue=25&rft.spage=e202202552&rft_id=info:doi/10.1002%2Fanie.202202552&rft_id=info%3Apmid%2F35332974&rft.externalDocID=35332974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon