Gold‐Nanolayer‐Derived Zincophilicity Suppressing Metallic Zinc Dendrites and Its Efficacy in Improving Electrochemical Stability of Aqueous Zinc‐Ion Batteries

Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au‐coated Zn metal symmetric cell, uniform d...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 1; pp. e2308592 - n/a
Main Authors Kim, Hee Jae, Kim, Sun, Kim, Suhwan, Kim, Sungkyu, Heo, Kwang, Lim, Jae‐Hong, Yashiro, Hitoshi, Shin, Hyeon‐Ji, Jung, Hun‐Gi, Lee, Yong Min, Myung, Seung‐Taek
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au‐coated Zn metal symmetric cell, uniform deposition of Zn‐derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au‐coating layer is induced to form a new Zn–Au alloy during the initial Zn deposition, resulting in stabilized long‐term stripping/plating of Zn via the ‘embracing effect’ that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm−2. According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro‐conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au‐coating layer for full cell configuration is verified using NaV3O8 as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer. From the initial Zn deposition, a Zn‐Au alloy grows from the Au‐coating layer. This further results in smooth Zn deposition, which stabilizes long‐term Zn stripping/plating without Zn dendrite via the ‘embracing effect’.
AbstractList Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au‐coated Zn metal symmetric cell, uniform deposition of Zn‐derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au‐coating layer is induced to form a new Zn–Au alloy during the initial Zn deposition, resulting in stabilized long‐term stripping/plating of Zn via the ‘embracing effect’ that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm−2. According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro‐conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au‐coating layer for full cell configuration is verified using NaV3O8 as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer.
Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au‐coated Zn metal symmetric cell, uniform deposition of Zn‐derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au‐coating layer is induced to form a new Zn–Au alloy during the initial Zn deposition, resulting in stabilized long‐term stripping/plating of Zn via the ‘embracing effect’ that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm−2. According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro‐conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au‐coating layer for full cell configuration is verified using NaV3O8 as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer. From the initial Zn deposition, a Zn‐Au alloy grows from the Au‐coating layer. This further results in smooth Zn deposition, which stabilizes long‐term Zn stripping/plating without Zn dendrite via the ‘embracing effect’.
Abstract Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au‐coated Zn metal symmetric cell, uniform deposition of Zn‐derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au‐coating layer is induced to form a new Zn–Au alloy during the initial Zn deposition, resulting in stabilized long‐term stripping/plating of Zn via the ‘embracing effect’ that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm −2 . According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro‐conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au‐coating layer for full cell configuration is verified using NaV 3 O 8 as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer.
Herein, an Au-coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au-coated Zn metal symmetric cell, uniform deposition of Zn-derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au-coating layer is induced to form a new Zn-Au alloy during the initial Zn deposition, resulting in stabilized long-term stripping/plating of Zn via the 'embracing effect' that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm . According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro-conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au-coating layer for full cell configuration is verified using NaV O as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer.
Herein, an Au-coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au-coated Zn metal symmetric cell, uniform deposition of Zn-derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au-coating layer is induced to form a new Zn-Au alloy during the initial Zn deposition, resulting in stabilized long-term stripping/plating of Zn via the 'embracing effect' that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm-2 . According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro-conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au-coating layer for full cell configuration is verified using NaV3 O8 as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer.
Author Jung, Hun‐Gi
Lee, Yong Min
Shin, Hyeon‐Ji
Kim, Suhwan
Yashiro, Hitoshi
Heo, Kwang
Lim, Jae‐Hong
Kim, Sungkyu
Myung, Seung‐Taek
Kim, Sun
Kim, Hee Jae
Author_xml – sequence: 1
  givenname: Hee Jae
  surname: Kim
  fullname: Kim, Hee Jae
  organization: Sejong University
– sequence: 2
  givenname: Sun
  surname: Kim
  fullname: Kim, Sun
  organization: Sejong University
– sequence: 3
  givenname: Suhwan
  surname: Kim
  fullname: Kim, Suhwan
  organization: Daegu Gyeongbuk Institute of Science and Technology (DGIST)
– sequence: 4
  givenname: Sungkyu
  surname: Kim
  fullname: Kim, Sungkyu
  organization: Sejong University
– sequence: 5
  givenname: Kwang
  surname: Heo
  fullname: Heo, Kwang
  organization: Sejong University
– sequence: 6
  givenname: Jae‐Hong
  surname: Lim
  fullname: Lim, Jae‐Hong
  organization: Pohang Accelerator Laboratory
– sequence: 7
  givenname: Hitoshi
  surname: Yashiro
  fullname: Yashiro, Hitoshi
  organization: Iwate University
– sequence: 8
  givenname: Hyeon‐Ji
  surname: Shin
  fullname: Shin, Hyeon‐Ji
  organization: Korea Institute of Science and Technology
– sequence: 9
  givenname: Hun‐Gi
  surname: Jung
  fullname: Jung, Hun‐Gi
  organization: Sungkyunkwan University
– sequence: 10
  givenname: Yong Min
  orcidid: 0000-0003-2002-2218
  surname: Lee
  fullname: Lee, Yong Min
  email: yongmin.lee@dgist.ac.kr
  organization: Daegu Gyeongbuk Institute of Science and Technology (DGIST)
– sequence: 11
  givenname: Seung‐Taek
  orcidid: 0000-0001-6888-5376
  surname: Myung
  fullname: Myung, Seung‐Taek
  email: smyung@sejong.ac.kr
  organization: Sejong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37951603$$D View this record in MEDLINE/PubMed
BookMark eNqFkT9v1DAchi1URK-FlRFZYmHJ4b-JPR69azmpLUNhYYlcx6GuHDvYSVG2foR-iX4xPglOr7QSC5Mt-_Gj17_3AOz54A0AbzFaYoTIR9V0akkQoUhwSV6ABeYEFwxJvgcWSFJeyJKJfXCQ0jVCSJaofAX2aSU5LhFdgPuT4Jrft3fnygenJhPzfm2ivTEN_G69Dv2VdVbbYYIXY99Hk5L1P-CZGZTL5w8MXBvfRDuYBJVv4HZIcNO2Vis9QevhtutjuJlfbZzRQwz6ynT51sGLQV1me3aHFq5-jiaM6cGYQ2yDh5_UMOQsJr0GL1vlknnzuB6Cb8ebr0efi9MvJ9uj1WmhaUVJgUtMWk54mb9GKRMNayqNGCNYC4SM5IxLIYxija4QblUlKK0wZqJkLE9T0kPwYefNiXOcNNSdTdo4p_ycrSZCSMLyHFlG3_-DXocx-pyuJjKrZMXpLFzuKB1DStG0dR9tp-JUY1TPBdZzgfVTgfnBu0fteNmZ5gn_21gG5A74ZZ2Z_qOrV-uz1bP8D_lrrGE
CitedBy_id crossref_primary_10_20517_jmi_2023_42
crossref_primary_10_1002_adfm_202316535
crossref_primary_10_1021_acsnano_4c06008
crossref_primary_10_1002_celc_202400188
Cites_doi 10.1002/adma.201803181
10.1002/adfm.202001867
10.1016/j.cej.2021.128584
10.1016/j.cej.2022.139963
10.1002/aenm.202102797
10.1002/adma.202105951
10.1002/adma.202003021
10.1002/anie.202000162
10.1021/acsami.8b07781
10.1002/adfm.202103922
10.1002/adma.201506126
10.1016/j.ensm.2022.10.061
10.1016/0021-9797(80)90348-3
10.1016/j.cej.2022.141016
10.1016/j.matt.2020.08.011
10.1021/acsaem.1c00224
10.1002/aenm.202003927
10.1002/aenm.202001599
10.1002/adma.202203835
10.1126/sciadv.abm5766
10.1038/nenergy.2016.10
10.1002/adma.202211498
10.1016/j.ensm.2020.01.032
10.1002/anie.202115649
10.1016/j.jpowsour.2022.232622
10.1002/aenm.202203189
10.1007/s11669-006-0027-x
10.1016/j.cej.2023.142308
10.1021/acsaem.0c00183
10.1016/j.mtener.2022.101056
10.1016/j.jpowsour.2023.232628
10.1016/j.jpowsour.2022.232356
10.1016/j.ensm.2021.10.002
10.1002/adma.202203104
10.1016/j.ensm.2022.02.024
10.1002/anie.202012322
10.1016/j.apsusc.2022.156129
10.1016/j.ensm.2022.07.036
10.1016/j.colsurfa.2023.130960
10.1016/j.ensm.2022.11.033
10.1002/aenm.202103708
10.1016/j.ensm.2021.11.015
10.1002/aenm.202203254
10.1016/j.cej.2023.141392
10.1002/ange.202112304
10.1016/j.ensm.2021.10.033
10.1002/smll.202104148
10.1002/aenm.202200115
10.1002/adfm.202205602
10.1016/j.scib.2022.12.020
10.1016/j.cej.2022.139465
10.1016/j.jallcom.2022.168406
10.1016/0022-0728(82)85127-9
10.1002/adma.201906803
10.1002/smll.202203327
10.1016/j.esci.2022.04.003
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202308592
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202308592
37951603
ADMA202308592
Genre article
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
– fundername: Ministry of Education, Science and Technology
  funderid: NRF‐2020R1A6A1A03043435; NRF‐2022M3H4A1A04096478; NRF‐2023R1A2C2003210
– fundername: Ministry of Education, Science and Technology
  grantid: NRF-2020R1A6A1A03043435
– fundername: Ministry of Education, Science and Technology
  grantid: NRF-2023R1A2C2003210
– fundername: Ministry of Education, Science and Technology
  grantid: NRF-2022M3H4A1A04096478
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LH4
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3732-1612f52566033348d4d7c04421c800e9545988ea4dc701fa78337114864410093
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Sat Aug 17 00:15:33 EDT 2024
Thu Oct 10 19:39:24 EDT 2024
Thu Sep 26 16:09:14 EDT 2024
Sat Nov 02 12:18:11 EDT 2024
Sat Aug 24 00:41:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords zinc-gold alloy
zinc-ion battery
dendrite suppression
gold nanolayer coating
zincophilic surface
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-1612f52566033348d4d7c04421c800e9545988ea4dc701fa78337114864410093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6888-5376
0000-0003-2002-2218
PMID 37951603
PQID 2909397539
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2889240004
proquest_journals_2909397539
crossref_primary_10_1002_adma_202308592
pubmed_primary_37951603
wiley_primary_10_1002_adma_202308592_ADMA202308592
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 134
2023; 54
2023; 13
2023; 35
2021; 4
2023; 55
2023; 661
2023; 462
2022; 46
2020; 59
2022; 47
2020; 10
2020; 32
2022; 44
2022; 28
2023; 68
2020; 3
2021; 31
2016; 1
2021; 11
2021; 33
1980; 75
1982; 139
2022; 61
2021; 411
2006; 27
2022; 8
2023; 453
2023; 452
2022; 12
2023; 458
2022; 34
2020; 27
2023; 456
2022; 52
2018; 30
2022; 32
2023; 558
2023; 613
2022; 2
2021; 60
2016; 28
2018; 10
2023; 937
2022; 18
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 47
  start-page: 491
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 139
  start-page: 285
  year: 1982
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 27
  start-page: 205
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 408
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 453
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 458
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 411
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 60
  start-page: 2861
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 613
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 75
  start-page: 51
  year: 1980
  publication-title: J. Colloid Interface Sci.
– volume: 10
  year: 2018
  publication-title: ACS Appl Mater Interfaces
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 427
  year: 2006
  publication-title: J. Phase Equilib. Diffus.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 4499
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 937
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 456
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 661
  year: 2023
  publication-title: Colloids Surf., A
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 54
  start-page: 469
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 68
  start-page: 56
  year: 2023
  publication-title: Sci. Bull.
– volume: 52
  start-page: 40
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 117
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 46
  start-page: 605
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 462
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 452
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 509
  year: 2022
  publication-title: eScience
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 3592
  year: 2016
  publication-title: Adv. Mater.
– volume: 44
  start-page: 57
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 4602
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 134
  year: 2022
  publication-title: Angew. Chem.
– volume: 558
  year: 2023
  publication-title: J. Power Sources
– volume: 28
  year: 2022
  publication-title: Mater. Today Energy
– volume: 3
  start-page: 1685
  year: 2020
  publication-title: Matter
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201803181
– ident: e_1_2_7_28_1
  doi: 10.1002/adfm.202001867
– ident: e_1_2_7_10_1
  doi: 10.1016/j.cej.2021.128584
– ident: e_1_2_7_38_1
  doi: 10.1016/j.cej.2022.139963
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.202102797
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.202105951
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.202003021
– ident: e_1_2_7_1_1
  doi: 10.1002/anie.202000162
– ident: e_1_2_7_4_1
  doi: 10.1021/acsami.8b07781
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.202103922
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.201506126
– ident: e_1_2_7_46_1
  doi: 10.1016/j.ensm.2022.10.061
– ident: e_1_2_7_24_1
  doi: 10.1016/0021-9797(80)90348-3
– ident: e_1_2_7_37_1
  doi: 10.1016/j.cej.2022.141016
– ident: e_1_2_7_30_1
  doi: 10.1016/j.matt.2020.08.011
– ident: e_1_2_7_15_1
  doi: 10.1021/acsaem.1c00224
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.202003927
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.202001599
– ident: e_1_2_7_53_1
  doi: 10.1002/adma.202203835
– ident: e_1_2_7_21_1
  doi: 10.1126/sciadv.abm5766
– ident: e_1_2_7_32_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_7_47_1
  doi: 10.1002/adma.202211498
– ident: e_1_2_7_29_1
  doi: 10.1016/j.ensm.2020.01.032
– ident: e_1_2_7_51_1
  doi: 10.1002/anie.202115649
– ident: e_1_2_7_34_1
  doi: 10.1016/j.jpowsour.2022.232622
– ident: e_1_2_7_27_1
  doi: 10.1002/aenm.202203189
– ident: e_1_2_7_31_1
  doi: 10.1007/s11669-006-0027-x
– ident: e_1_2_7_8_1
  doi: 10.1016/j.cej.2023.142308
– ident: e_1_2_7_3_1
  doi: 10.1021/acsaem.0c00183
– ident: e_1_2_7_17_1
  doi: 10.1016/j.mtener.2022.101056
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jpowsour.2023.232628
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jpowsour.2022.232356
– ident: e_1_2_7_57_1
  doi: 10.1016/j.ensm.2021.10.002
– ident: e_1_2_7_56_1
  doi: 10.1002/adma.202203104
– ident: e_1_2_7_52_1
  doi: 10.1016/j.ensm.2022.02.024
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.202012322
– ident: e_1_2_7_40_1
  doi: 10.1016/j.apsusc.2022.156129
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ensm.2022.07.036
– ident: e_1_2_7_39_1
  doi: 10.1016/j.colsurfa.2023.130960
– ident: e_1_2_7_42_1
  doi: 10.1016/j.ensm.2022.11.033
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.202103708
– ident: e_1_2_7_55_1
  doi: 10.1016/j.ensm.2021.11.015
– ident: e_1_2_7_45_1
  doi: 10.1002/aenm.202203254
– ident: e_1_2_7_41_1
  doi: 10.1016/j.cej.2023.141392
– ident: e_1_2_7_7_1
  doi: 10.1002/ange.202112304
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ensm.2021.10.033
– ident: e_1_2_7_50_1
  doi: 10.1002/smll.202104148
– ident: e_1_2_7_54_1
  doi: 10.1002/aenm.202200115
– ident: e_1_2_7_5_1
  doi: 10.1002/adfm.202205602
– ident: e_1_2_7_43_1
  doi: 10.1016/j.scib.2022.12.020
– ident: e_1_2_7_44_1
  doi: 10.1016/j.cej.2022.139465
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jallcom.2022.168406
– ident: e_1_2_7_25_1
  doi: 10.1016/0022-0728(82)85127-9
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201906803
– ident: e_1_2_7_23_1
– ident: e_1_2_7_48_1
  doi: 10.1002/smll.202203327
– ident: e_1_2_7_49_1
  doi: 10.1016/j.esci.2022.04.003
SSID ssj0009606
Score 2.5101917
Snippet Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms...
Herein, an Au-coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms...
Abstract Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2308592
SubjectTerms dendrite suppression
Electric fields
Electrochemical analysis
Electrode materials
Electrodeposition
Electrodes
Gold
Gold coatings
gold nanolayer coating
Synchrotrons
Zinc
zincophilic surface
zinc‐gold alloy
zinc‐ion battery
Title Gold‐Nanolayer‐Derived Zincophilicity Suppressing Metallic Zinc Dendrites and Its Efficacy in Improving Electrochemical Stability of Aqueous Zinc‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202308592
https://www.ncbi.nlm.nih.gov/pubmed/37951603
https://www.proquest.com/docview/2909397539
https://search.proquest.com/docview/2889240004
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTnCg_LYLC3IlJE6BxHYS57jq7gKVtgcEEuISOXZSVSBnRXaR4MQj8BJ9sT5JZ-zdwNIDUntz4jj-yYz9eTLzmZCDqIhijHcE4WUmECqrAilMEiRGpZyFcaU0RiOPvienl-LbVXz1Korf80O0BjfUDDdfo4Krojl-IQ1VxvEGAYSWcYaTcMRT9Onqn7_wRyE8d2R7PA6yRMg5a2PIjheLL65Kf0HNReTqlp7hR6LmjfYeJzdH00lxpB_f8Dn-T6_WyOoMl9KeF6R18qG0G2TlFVvhJvl1Ut-a30_PMCHDfhigOqT7kHdfGnqNJA9jNM5ogPUUzwp1Drb2Bx2VgO_hvnuG9ktr7gDmNlRZQ88mDR0giYXSD_Snpa2Jgw788Tx6xmdAARQ7N94HWle0B-NWTxv3RmjEWW2p5wmFbf8WuRwOLr6eBrNTHgLNQRwCgJysigF5JSHHsGAjTKpDIVikAcyWGUC8TMpSCaPTMKpUKjlPcReHSA4NMttkyda2_EyoqUyoCx5rWHKRukzBhMQKGcZQWMD2u0MO5185H3syj9zTNrMcBz5vB75DunMhyGdK3eQsg9owEDnrkC9tNqgj_mNRFjueMykzdMsNobJPXnjaqngKcBZ62SHMicA7bch7_VGvvdr5l0K7ZBnSwpuMumRpcjct9wBETYp9pyh_AMNrFeM
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcgAO5Z8uFDASEqe0WdtJnOOK3bIL3R5QKyEulmMnFQI5VXcXqZx4BF6CF-NJmLE3KQsHJLgldhz_ZMb-PJn5DPB8WA0zindE4eUukaZsEiVdnuTOFIKnWWMsRSPPj_LpiXz9Luu8CSkWJvJD9AY30owwX5OCk0F6_5I11LhAHIQYWmUlzsJXUecFnd4wfnvJIEUAPdDtiSwpc6k63saU72-W31yX_gCbm9g1LD4HN6Hqmh19Tj7urZbVnv3yG6Pjf_XrFmyvoSkbRVm6DVdqfwdu_EJYeBe-v2o_uR9fv-GcjFtiROt4Pca8z7Vj74nn4YzsMxaRPaPjQoOPrT9l8xohPqaHZ9i49u4cke6CGe_YbLlgE-KxMPaCffCst3KwSTyhx64pDRji4uDJe8Haho1w4NrVIrwRGzFrPYtUobjzvwcnB5Pjl9NkfdBDYgVKRIKokzcZgq88FRQZ7KQrbColH1rEs3WJKK9UqjbS2SIdNqZQQhS0kSMwRzaZ-7DlW1_vAHONS20lMourLrGXGZyTeKXSDAtL3IEP4EX3mfVZ5PPQkbmZaxp43Q_8AHY7KdBrvV5oXmJtFItcDuBZn40aSb9ZjKeOa65USZ65KVb2IEpPX5UoENFiLwfAgwz8pQ16NJ6P-ruH_1LoKVybHs8P9eHs6M0juI7pMlqQdmFreb6qHyOmWlZPgtb8BAeUGfs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dbtMwFMeP0CYhuGDju2OAkZC4ypY6TuJcVmvLCnRCiEkTN5ZjJ2gacqq1Rdqu9gh7CV5sT7Jz7DZb4QIJ7pqkrj9ybP986vM3wNtu2U0p3hGNl9tI6KKOpLBZlFmdJzxOa20oGnl8kO0fig9H6dGtKP6gD9E63Khn-PGaOvjE1rs3oqHaet0gRGiZFjgIr4sM8Zew6MuNgBTxuVfbS9KoyIRcyjbGfHc1_eq09AdrrqKrn3uGG6CXpQ5bTk525rNyx5z_Juj4P9XahAcLMGW9YEkP4U7lHsH9W3KFj-HX--aHvbq4xBEZF8TI6vi5j89-VpZ9I5WHCXlnDHI9o8NC_Q5b952NKwR8vO-_w_qVs6fIuVOmnWWj2ZQNSMVCmzN27Fjr42CDcD6PWQgaMKRiv4_3jDU162G7NfOp_0UsxKhxLAiF4rr_CRwOB1_39qPFMQ-RSdAeImROXqeIXlmcUFywFTY3sRC8a5BmqwIZr5Cy0sKaPO7WOpdJktMyjlCOPDJPYc01rnoOzNY2NmWSGpxzSbtM44jESxmnmFjg-rsD75ZvWU2CmocKus1cUcOrtuE7sL00ArXo1VPFC8yNIpGLDrxpH2N_pD9ZtKOKKy5lQftyY8zsWTCeNqskR57FWnaAexP4SxlUrz_utVdb_5LoNdz93B-qT6ODjy_gHt4WwX20DWuz03n1EoFqVr7yfeYapdoYqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold%E2%80%90Nanolayer%E2%80%90Derived+Zincophilicity+Suppressing+Metallic+Zinc+Dendrites+and+Its+Efficacy+in+Improving+Electrochemical+Stability+of+Aqueous+Zinc%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kim%2C+Hee+Jae&rft.au=Kim%2C+Sun&rft.au=Kim%2C+Suhwan&rft.au=Kim%2C+Sungkyu&rft.date=2024-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=1&rft_id=info:doi/10.1002%2Fadma.202308592&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202308592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon