Gold‐Nanolayer‐Derived Zincophilicity Suppressing Metallic Zinc Dendrites and Its Efficacy in Improving Electrochemical Stability of Aqueous Zinc‐Ion Batteries
Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au‐coated Zn metal symmetric cell, uniform d...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 1; pp. e2308592 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au‐coated Zn metal symmetric cell, uniform deposition of Zn‐derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au‐coating layer is induced to form a new Zn–Au alloy during the initial Zn deposition, resulting in stabilized long‐term stripping/plating of Zn via the ‘embracing effect’ that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm−2. According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro‐conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au‐coating layer for full cell configuration is verified using NaV3O8 as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer.
From the initial Zn deposition, a Zn‐Au alloy grows from the Au‐coating layer. This further results in smooth Zn deposition, which stabilizes long‐term Zn stripping/plating without Zn dendrite via the ‘embracing effect’. |
---|---|
AbstractList | Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au‐coated Zn metal symmetric cell, uniform deposition of Zn‐derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au‐coating layer is induced to form a new Zn–Au alloy during the initial Zn deposition, resulting in stabilized long‐term stripping/plating of Zn via the ‘embracing effect’ that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm−2. According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro‐conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au‐coating layer for full cell configuration is verified using NaV3O8 as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer. Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au‐coated Zn metal symmetric cell, uniform deposition of Zn‐derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au‐coating layer is induced to form a new Zn–Au alloy during the initial Zn deposition, resulting in stabilized long‐term stripping/plating of Zn via the ‘embracing effect’ that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm−2. According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro‐conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au‐coating layer for full cell configuration is verified using NaV3O8 as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer. From the initial Zn deposition, a Zn‐Au alloy grows from the Au‐coating layer. This further results in smooth Zn deposition, which stabilizes long‐term Zn stripping/plating without Zn dendrite via the ‘embracing effect’. Abstract Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au‐coated Zn metal symmetric cell, uniform deposition of Zn‐derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au‐coating layer is induced to form a new Zn–Au alloy during the initial Zn deposition, resulting in stabilized long‐term stripping/plating of Zn via the ‘embracing effect’ that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm −2 . According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro‐conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au‐coating layer for full cell configuration is verified using NaV 3 O 8 as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer. Herein, an Au-coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au-coated Zn metal symmetric cell, uniform deposition of Zn-derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au-coating layer is induced to form a new Zn-Au alloy during the initial Zn deposition, resulting in stabilized long-term stripping/plating of Zn via the 'embracing effect' that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm . According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro-conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au-coating layer for full cell configuration is verified using NaV O as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer. Herein, an Au-coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au-coated Zn metal symmetric cell, uniform deposition of Zn-derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au-coating layer is induced to form a new Zn-Au alloy during the initial Zn deposition, resulting in stabilized long-term stripping/plating of Zn via the 'embracing effect' that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm-2 . According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro-conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au-coating layer for full cell configuration is verified using NaV3 O8 as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer. |
Author | Jung, Hun‐Gi Lee, Yong Min Shin, Hyeon‐Ji Kim, Suhwan Yashiro, Hitoshi Heo, Kwang Lim, Jae‐Hong Kim, Sungkyu Myung, Seung‐Taek Kim, Sun Kim, Hee Jae |
Author_xml | – sequence: 1 givenname: Hee Jae surname: Kim fullname: Kim, Hee Jae organization: Sejong University – sequence: 2 givenname: Sun surname: Kim fullname: Kim, Sun organization: Sejong University – sequence: 3 givenname: Suhwan surname: Kim fullname: Kim, Suhwan organization: Daegu Gyeongbuk Institute of Science and Technology (DGIST) – sequence: 4 givenname: Sungkyu surname: Kim fullname: Kim, Sungkyu organization: Sejong University – sequence: 5 givenname: Kwang surname: Heo fullname: Heo, Kwang organization: Sejong University – sequence: 6 givenname: Jae‐Hong surname: Lim fullname: Lim, Jae‐Hong organization: Pohang Accelerator Laboratory – sequence: 7 givenname: Hitoshi surname: Yashiro fullname: Yashiro, Hitoshi organization: Iwate University – sequence: 8 givenname: Hyeon‐Ji surname: Shin fullname: Shin, Hyeon‐Ji organization: Korea Institute of Science and Technology – sequence: 9 givenname: Hun‐Gi surname: Jung fullname: Jung, Hun‐Gi organization: Sungkyunkwan University – sequence: 10 givenname: Yong Min orcidid: 0000-0003-2002-2218 surname: Lee fullname: Lee, Yong Min email: yongmin.lee@dgist.ac.kr organization: Daegu Gyeongbuk Institute of Science and Technology (DGIST) – sequence: 11 givenname: Seung‐Taek orcidid: 0000-0001-6888-5376 surname: Myung fullname: Myung, Seung‐Taek email: smyung@sejong.ac.kr organization: Sejong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37951603$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT9v1DAchi1URK-FlRFZYmHJ4b-JPR69azmpLUNhYYlcx6GuHDvYSVG2foR-iX4xPglOr7QSC5Mt-_Gj17_3AOz54A0AbzFaYoTIR9V0akkQoUhwSV6ABeYEFwxJvgcWSFJeyJKJfXCQ0jVCSJaofAX2aSU5LhFdgPuT4Jrft3fnygenJhPzfm2ivTEN_G69Dv2VdVbbYYIXY99Hk5L1P-CZGZTL5w8MXBvfRDuYBJVv4HZIcNO2Vis9QevhtutjuJlfbZzRQwz6ynT51sGLQV1me3aHFq5-jiaM6cGYQ2yDh5_UMOQsJr0GL1vlknnzuB6Cb8ebr0efi9MvJ9uj1WmhaUVJgUtMWk54mb9GKRMNayqNGCNYC4SM5IxLIYxija4QblUlKK0wZqJkLE9T0kPwYefNiXOcNNSdTdo4p_ycrSZCSMLyHFlG3_-DXocx-pyuJjKrZMXpLFzuKB1DStG0dR9tp-JUY1TPBdZzgfVTgfnBu0fteNmZ5gn_21gG5A74ZZ2Z_qOrV-uz1bP8D_lrrGE |
CitedBy_id | crossref_primary_10_20517_jmi_2023_42 crossref_primary_10_1002_adfm_202316535 crossref_primary_10_1021_acsnano_4c06008 crossref_primary_10_1002_celc_202400188 |
Cites_doi | 10.1002/adma.201803181 10.1002/adfm.202001867 10.1016/j.cej.2021.128584 10.1016/j.cej.2022.139963 10.1002/aenm.202102797 10.1002/adma.202105951 10.1002/adma.202003021 10.1002/anie.202000162 10.1021/acsami.8b07781 10.1002/adfm.202103922 10.1002/adma.201506126 10.1016/j.ensm.2022.10.061 10.1016/0021-9797(80)90348-3 10.1016/j.cej.2022.141016 10.1016/j.matt.2020.08.011 10.1021/acsaem.1c00224 10.1002/aenm.202003927 10.1002/aenm.202001599 10.1002/adma.202203835 10.1126/sciadv.abm5766 10.1038/nenergy.2016.10 10.1002/adma.202211498 10.1016/j.ensm.2020.01.032 10.1002/anie.202115649 10.1016/j.jpowsour.2022.232622 10.1002/aenm.202203189 10.1007/s11669-006-0027-x 10.1016/j.cej.2023.142308 10.1021/acsaem.0c00183 10.1016/j.mtener.2022.101056 10.1016/j.jpowsour.2023.232628 10.1016/j.jpowsour.2022.232356 10.1016/j.ensm.2021.10.002 10.1002/adma.202203104 10.1016/j.ensm.2022.02.024 10.1002/anie.202012322 10.1016/j.apsusc.2022.156129 10.1016/j.ensm.2022.07.036 10.1016/j.colsurfa.2023.130960 10.1016/j.ensm.2022.11.033 10.1002/aenm.202103708 10.1016/j.ensm.2021.11.015 10.1002/aenm.202203254 10.1016/j.cej.2023.141392 10.1002/ange.202112304 10.1016/j.ensm.2021.10.033 10.1002/smll.202104148 10.1002/aenm.202200115 10.1002/adfm.202205602 10.1016/j.scib.2022.12.020 10.1016/j.cej.2022.139465 10.1016/j.jallcom.2022.168406 10.1016/0022-0728(82)85127-9 10.1002/adma.201906803 10.1002/smll.202203327 10.1016/j.esci.2022.04.003 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202308592 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202308592 37951603 ADMA202308592 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea – fundername: Ministry of Education, Science and Technology funderid: NRF‐2020R1A6A1A03043435; NRF‐2022M3H4A1A04096478; NRF‐2023R1A2C2003210 – fundername: Ministry of Education, Science and Technology grantid: NRF-2020R1A6A1A03043435 – fundername: Ministry of Education, Science and Technology grantid: NRF-2023R1A2C2003210 – fundername: Ministry of Education, Science and Technology grantid: NRF-2022M3H4A1A04096478 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LH4 LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3732-1612f52566033348d4d7c04421c800e9545988ea4dc701fa78337114864410093 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Sat Aug 17 00:15:33 EDT 2024 Thu Oct 10 19:39:24 EDT 2024 Thu Sep 26 16:09:14 EDT 2024 Sat Nov 02 12:18:11 EDT 2024 Sat Aug 24 00:41:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | zinc-gold alloy zinc-ion battery dendrite suppression gold nanolayer coating zincophilic surface |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-1612f52566033348d4d7c04421c800e9545988ea4dc701fa78337114864410093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6888-5376 0000-0003-2002-2218 |
PMID | 37951603 |
PQID | 2909397539 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2889240004 proquest_journals_2909397539 crossref_primary_10_1002_adma_202308592 pubmed_primary_37951603 wiley_primary_10_1002_adma_202308592_ADMA202308592 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 134 2023; 54 2023; 13 2023; 35 2021; 4 2023; 55 2023; 661 2023; 462 2022; 46 2020; 59 2022; 47 2020; 10 2020; 32 2022; 44 2022; 28 2023; 68 2020; 3 2021; 31 2016; 1 2021; 11 2021; 33 1980; 75 1982; 139 2022; 61 2021; 411 2006; 27 2022; 8 2023; 453 2023; 452 2022; 12 2023; 458 2022; 34 2020; 27 2023; 456 2022; 52 2018; 30 2022; 32 2023; 558 2023; 613 2022; 2 2021; 60 2016; 28 2018; 10 2023; 937 2022; 18 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 47 start-page: 491 year: 2022 publication-title: Energy Storage Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 139 start-page: 285 year: 1982 publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 27 start-page: 205 year: 2020 publication-title: Energy Storage Mater. – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 44 start-page: 408 year: 2022 publication-title: Energy Storage Mater. – volume: 453 year: 2023 publication-title: Chem. Eng. J. – volume: 458 year: 2023 publication-title: Chem. Eng. J. – volume: 411 year: 2021 publication-title: Chem. Eng. J. – volume: 60 start-page: 2861 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 613 year: 2023 publication-title: Appl. Surf. Sci. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 75 start-page: 51 year: 1980 publication-title: J. Colloid Interface Sci. – volume: 10 year: 2018 publication-title: ACS Appl Mater Interfaces – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 427 year: 2006 publication-title: J. Phase Equilib. Diffus. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 3 start-page: 4499 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 937 year: 2023 publication-title: J. Alloys Compd. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 456 year: 2023 publication-title: Chem. Eng. J. – volume: 661 year: 2023 publication-title: Colloids Surf., A – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 54 start-page: 469 year: 2023 publication-title: Energy Storage Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 68 start-page: 56 year: 2023 publication-title: Sci. Bull. – volume: 52 start-page: 40 year: 2022 publication-title: Energy Storage Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 55 start-page: 117 year: 2023 publication-title: Energy Storage Mater. – volume: 46 start-page: 605 year: 2022 publication-title: Energy Storage Mater. – volume: 462 year: 2023 publication-title: Chem. Eng. J. – volume: 452 year: 2023 publication-title: Chem. Eng. J. – volume: 2 start-page: 509 year: 2022 publication-title: eScience – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 28 start-page: 3592 year: 2016 publication-title: Adv. Mater. – volume: 44 start-page: 57 year: 2022 publication-title: Energy Storage Mater. – volume: 4 start-page: 4602 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 134 year: 2022 publication-title: Angew. Chem. – volume: 558 year: 2023 publication-title: J. Power Sources – volume: 28 year: 2022 publication-title: Mater. Today Energy – volume: 3 start-page: 1685 year: 2020 publication-title: Matter – ident: e_1_2_7_20_1 doi: 10.1002/adma.201803181 – ident: e_1_2_7_28_1 doi: 10.1002/adfm.202001867 – ident: e_1_2_7_10_1 doi: 10.1016/j.cej.2021.128584 – ident: e_1_2_7_38_1 doi: 10.1016/j.cej.2022.139963 – ident: e_1_2_7_11_1 doi: 10.1002/aenm.202102797 – ident: e_1_2_7_18_1 doi: 10.1002/adma.202105951 – ident: e_1_2_7_12_1 doi: 10.1002/adma.202003021 – ident: e_1_2_7_1_1 doi: 10.1002/anie.202000162 – ident: e_1_2_7_4_1 doi: 10.1021/acsami.8b07781 – ident: e_1_2_7_14_1 doi: 10.1002/adfm.202103922 – ident: e_1_2_7_26_1 doi: 10.1002/adma.201506126 – ident: e_1_2_7_46_1 doi: 10.1016/j.ensm.2022.10.061 – ident: e_1_2_7_24_1 doi: 10.1016/0021-9797(80)90348-3 – ident: e_1_2_7_37_1 doi: 10.1016/j.cej.2022.141016 – ident: e_1_2_7_30_1 doi: 10.1016/j.matt.2020.08.011 – ident: e_1_2_7_15_1 doi: 10.1021/acsaem.1c00224 – ident: e_1_2_7_13_1 doi: 10.1002/aenm.202003927 – ident: e_1_2_7_2_1 doi: 10.1002/aenm.202001599 – ident: e_1_2_7_53_1 doi: 10.1002/adma.202203835 – ident: e_1_2_7_21_1 doi: 10.1126/sciadv.abm5766 – ident: e_1_2_7_32_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_7_47_1 doi: 10.1002/adma.202211498 – ident: e_1_2_7_29_1 doi: 10.1016/j.ensm.2020.01.032 – ident: e_1_2_7_51_1 doi: 10.1002/anie.202115649 – ident: e_1_2_7_34_1 doi: 10.1016/j.jpowsour.2022.232622 – ident: e_1_2_7_27_1 doi: 10.1002/aenm.202203189 – ident: e_1_2_7_31_1 doi: 10.1007/s11669-006-0027-x – ident: e_1_2_7_8_1 doi: 10.1016/j.cej.2023.142308 – ident: e_1_2_7_3_1 doi: 10.1021/acsaem.0c00183 – ident: e_1_2_7_17_1 doi: 10.1016/j.mtener.2022.101056 – ident: e_1_2_7_33_1 doi: 10.1016/j.jpowsour.2023.232628 – ident: e_1_2_7_35_1 doi: 10.1016/j.jpowsour.2022.232356 – ident: e_1_2_7_57_1 doi: 10.1016/j.ensm.2021.10.002 – ident: e_1_2_7_56_1 doi: 10.1002/adma.202203104 – ident: e_1_2_7_52_1 doi: 10.1016/j.ensm.2022.02.024 – ident: e_1_2_7_6_1 doi: 10.1002/anie.202012322 – ident: e_1_2_7_40_1 doi: 10.1016/j.apsusc.2022.156129 – ident: e_1_2_7_9_1 doi: 10.1016/j.ensm.2022.07.036 – ident: e_1_2_7_39_1 doi: 10.1016/j.colsurfa.2023.130960 – ident: e_1_2_7_42_1 doi: 10.1016/j.ensm.2022.11.033 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.202103708 – ident: e_1_2_7_55_1 doi: 10.1016/j.ensm.2021.11.015 – ident: e_1_2_7_45_1 doi: 10.1002/aenm.202203254 – ident: e_1_2_7_41_1 doi: 10.1016/j.cej.2023.141392 – ident: e_1_2_7_7_1 doi: 10.1002/ange.202112304 – ident: e_1_2_7_16_1 doi: 10.1016/j.ensm.2021.10.033 – ident: e_1_2_7_50_1 doi: 10.1002/smll.202104148 – ident: e_1_2_7_54_1 doi: 10.1002/aenm.202200115 – ident: e_1_2_7_5_1 doi: 10.1002/adfm.202205602 – ident: e_1_2_7_43_1 doi: 10.1016/j.scib.2022.12.020 – ident: e_1_2_7_44_1 doi: 10.1016/j.cej.2022.139465 – ident: e_1_2_7_36_1 doi: 10.1016/j.jallcom.2022.168406 – ident: e_1_2_7_25_1 doi: 10.1016/0022-0728(82)85127-9 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201906803 – ident: e_1_2_7_23_1 – ident: e_1_2_7_48_1 doi: 10.1002/smll.202203327 – ident: e_1_2_7_49_1 doi: 10.1016/j.esci.2022.04.003 |
SSID | ssj0009606 |
Score | 2.5101917 |
Snippet | Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms... Herein, an Au-coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms... Abstract Herein, an Au‐coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2308592 |
SubjectTerms | dendrite suppression Electric fields Electrochemical analysis Electrode materials Electrodeposition Electrodes Gold Gold coatings gold nanolayer coating Synchrotrons Zinc zincophilic surface zinc‐gold alloy zinc‐ion battery |
Title | Gold‐Nanolayer‐Derived Zincophilicity Suppressing Metallic Zinc Dendrites and Its Efficacy in Improving Electrochemical Stability of Aqueous Zinc‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202308592 https://www.ncbi.nlm.nih.gov/pubmed/37951603 https://www.proquest.com/docview/2909397539 https://search.proquest.com/docview/2889240004 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTnCg_LYLC3IlJE6BxHYS57jq7gKVtgcEEuISOXZSVSBnRXaR4MQj8BJ9sT5JZ-zdwNIDUntz4jj-yYz9eTLzmZCDqIhijHcE4WUmECqrAilMEiRGpZyFcaU0RiOPvienl-LbVXz1Korf80O0BjfUDDdfo4Krojl-IQ1VxvEGAYSWcYaTcMRT9Onqn7_wRyE8d2R7PA6yRMg5a2PIjheLL65Kf0HNReTqlp7hR6LmjfYeJzdH00lxpB_f8Dn-T6_WyOoMl9KeF6R18qG0G2TlFVvhJvl1Ut-a30_PMCHDfhigOqT7kHdfGnqNJA9jNM5ogPUUzwp1Drb2Bx2VgO_hvnuG9ktr7gDmNlRZQ88mDR0giYXSD_Snpa2Jgw788Tx6xmdAARQ7N94HWle0B-NWTxv3RmjEWW2p5wmFbf8WuRwOLr6eBrNTHgLNQRwCgJysigF5JSHHsGAjTKpDIVikAcyWGUC8TMpSCaPTMKpUKjlPcReHSA4NMttkyda2_EyoqUyoCx5rWHKRukzBhMQKGcZQWMD2u0MO5185H3syj9zTNrMcBz5vB75DunMhyGdK3eQsg9owEDnrkC9tNqgj_mNRFjueMykzdMsNobJPXnjaqngKcBZ62SHMicA7bch7_VGvvdr5l0K7ZBnSwpuMumRpcjct9wBETYp9pyh_AMNrFeM |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcgAO5Z8uFDASEqe0WdtJnOOK3bIL3R5QKyEulmMnFQI5VXcXqZx4BF6CF-NJmLE3KQsHJLgldhz_ZMb-PJn5DPB8WA0zindE4eUukaZsEiVdnuTOFIKnWWMsRSPPj_LpiXz9Luu8CSkWJvJD9AY30owwX5OCk0F6_5I11LhAHIQYWmUlzsJXUecFnd4wfnvJIEUAPdDtiSwpc6k63saU72-W31yX_gCbm9g1LD4HN6Hqmh19Tj7urZbVnv3yG6Pjf_XrFmyvoSkbRVm6DVdqfwdu_EJYeBe-v2o_uR9fv-GcjFtiROt4Pca8z7Vj74nn4YzsMxaRPaPjQoOPrT9l8xohPqaHZ9i49u4cke6CGe_YbLlgE-KxMPaCffCst3KwSTyhx64pDRji4uDJe8Haho1w4NrVIrwRGzFrPYtUobjzvwcnB5Pjl9NkfdBDYgVKRIKokzcZgq88FRQZ7KQrbColH1rEs3WJKK9UqjbS2SIdNqZQQhS0kSMwRzaZ-7DlW1_vAHONS20lMourLrGXGZyTeKXSDAtL3IEP4EX3mfVZ5PPQkbmZaxp43Q_8AHY7KdBrvV5oXmJtFItcDuBZn40aSb9ZjKeOa65USZ65KVb2IEpPX5UoENFiLwfAgwz8pQ16NJ6P-ruH_1LoKVybHs8P9eHs6M0juI7pMlqQdmFreb6qHyOmWlZPgtb8BAeUGfs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dbtMwFMeP0CYhuGDju2OAkZC4ypY6TuJcVmvLCnRCiEkTN5ZjJ2gacqq1Rdqu9gh7CV5sT7Jz7DZb4QIJ7pqkrj9ybP986vM3wNtu2U0p3hGNl9tI6KKOpLBZlFmdJzxOa20oGnl8kO0fig9H6dGtKP6gD9E63Khn-PGaOvjE1rs3oqHaet0gRGiZFjgIr4sM8Zew6MuNgBTxuVfbS9KoyIRcyjbGfHc1_eq09AdrrqKrn3uGG6CXpQ5bTk525rNyx5z_Juj4P9XahAcLMGW9YEkP4U7lHsH9W3KFj-HX--aHvbq4xBEZF8TI6vi5j89-VpZ9I5WHCXlnDHI9o8NC_Q5b952NKwR8vO-_w_qVs6fIuVOmnWWj2ZQNSMVCmzN27Fjr42CDcD6PWQgaMKRiv4_3jDU162G7NfOp_0UsxKhxLAiF4rr_CRwOB1_39qPFMQ-RSdAeImROXqeIXlmcUFywFTY3sRC8a5BmqwIZr5Cy0sKaPO7WOpdJktMyjlCOPDJPYc01rnoOzNY2NmWSGpxzSbtM44jESxmnmFjg-rsD75ZvWU2CmocKus1cUcOrtuE7sL00ArXo1VPFC8yNIpGLDrxpH2N_pD9ZtKOKKy5lQftyY8zsWTCeNqskR57FWnaAexP4SxlUrz_utVdb_5LoNdz93B-qT6ODjy_gHt4WwX20DWuz03n1EoFqVr7yfeYapdoYqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold%E2%80%90Nanolayer%E2%80%90Derived+Zincophilicity+Suppressing+Metallic+Zinc+Dendrites+and+Its+Efficacy+in+Improving+Electrochemical+Stability+of+Aqueous+Zinc%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kim%2C+Hee+Jae&rft.au=Kim%2C+Sun&rft.au=Kim%2C+Suhwan&rft.au=Kim%2C+Sungkyu&rft.date=2024-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=1&rft_id=info:doi/10.1002%2Fadma.202308592&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202308592 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |