Advancement of Ag–Graphene Based Nanocomposites: An Overview of Synthesis and Its Applications

Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its applic...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 32; pp. e1800871 - n/a
Main Authors He, Kai, Zeng, Zhuotong, Chen, Anwei, Zeng, Guangming, Xiao, Rong, Xu, Piao, Huang, Zhenzhen, Shi, Jiangbo, Hu, Liang, Chen, Guiqiu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag–graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag–graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites. Ag–graphene based nanocomposites exhibit great application potential in various fields such as antimicrobial agents, catalysts, and sensors due to the excellent properties. The shape and size of AgNPs on graphene sheets can be tuned with suitable methods for special application. The influence factors and mechanisms are discussed for enhancing the application performance.
AbstractList Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag–graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag–graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites.
Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag–graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag–graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites. Ag–graphene based nanocomposites exhibit great application potential in various fields such as antimicrobial agents, catalysts, and sensors due to the excellent properties. The shape and size of AgNPs on graphene sheets can be tuned with suitable methods for special application. The influence factors and mechanisms are discussed for enhancing the application performance.
Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag-graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag-graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites.Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag-graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag-graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites.
Author Zeng, Guangming
Xu, Piao
He, Kai
Zeng, Zhuotong
Chen, Guiqiu
Chen, Anwei
Hu, Liang
Xiao, Rong
Shi, Jiangbo
Huang, Zhenzhen
Author_xml – sequence: 1
  givenname: Kai
  surname: He
  fullname: He, Kai
  organization: Ministry of Education
– sequence: 2
  givenname: Zhuotong
  surname: Zeng
  fullname: Zeng, Zhuotong
  organization: Central South University
– sequence: 3
  givenname: Anwei
  surname: Chen
  fullname: Chen, Anwei
  organization: Hunan Agricultural University
– sequence: 4
  givenname: Guangming
  surname: Zeng
  fullname: Zeng, Guangming
  email: zgming@hnu.edu.cn
  organization: Ministry of Education
– sequence: 5
  givenname: Rong
  surname: Xiao
  fullname: Xiao, Rong
  email: xiaorong65@csu.edu.cn
  organization: Central South University
– sequence: 6
  givenname: Piao
  surname: Xu
  fullname: Xu, Piao
  organization: Ministry of Education
– sequence: 7
  givenname: Zhenzhen
  surname: Huang
  fullname: Huang, Zhenzhen
  organization: Ministry of Education
– sequence: 8
  givenname: Jiangbo
  surname: Shi
  fullname: Shi, Jiangbo
  organization: Ministry of Education
– sequence: 9
  givenname: Liang
  surname: Hu
  fullname: Hu, Liang
  organization: Ministry of Education
– sequence: 10
  givenname: Guiqiu
  surname: Chen
  fullname: Chen, Guiqiu
  organization: Ministry of Education
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29952105$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkssWEzg48d2wm7ULWl0pQuCmvjOifUVWIHOzPV7PoOfUOehAzTi1QJsfJZfN_R8f_vk50QAxLyFtgcGOMfc991c86gZKzU8ILsgQIxUyWvdh5nYLtkP-drxgTwQr8iu7yqJAcm98iPulnZ4LDHMNLY0vrn79u7k2SHKwxIP9uMDf1qQ3SxH2L2I-ZPtA70fIVp5fFmo1ysw3iF2WdqQ0NPx0zrYei8s6OPIb8mL1vbZXxz_x6Q78dH3w6_zBbnJ6eH9WLmhBYwQy4LqISSVirrtBZca6140TbCWYUgpFTAmktWFEK1VgIWUjQCZdtWvOFaHJAP271Dir-WmEfT--yw62zAuMyGMwUFTAmICX3_DL2OyxSm6yaqlHKKpiwn6t09tbzssTFD8r1Na_OQ3QQUW8ClmHPC1jg__v30mKzvDDCzqchsKjKPFU3a_Jn2sPmfQrUVbnyH6__Q5uJssXhy_wD4tqL1
CitedBy_id crossref_primary_10_1016_j_chemosphere_2024_142512
crossref_primary_10_1016_j_chemosphere_2019_02_190
crossref_primary_10_1016_j_envres_2023_117540
crossref_primary_10_1016_j_mtcomm_2023_106957
crossref_primary_10_3390_mi13081232
crossref_primary_10_1016_j_solidstatesciences_2019_106107
crossref_primary_10_1016_j_addma_2022_103249
crossref_primary_10_2174_2667387816666220715121107
crossref_primary_10_34104_ijmms_022_083093
crossref_primary_10_1016_j_compositesb_2025_112359
crossref_primary_10_1016_j_colsurfa_2020_124929
crossref_primary_10_1016_j_ccr_2023_215275
crossref_primary_10_1016_j_envpol_2019_05_102
crossref_primary_10_35741_issn_0258_2724_54_6_14
crossref_primary_10_1016_j_jcat_2019_05_028
crossref_primary_10_3390_nano11112851
crossref_primary_10_1016_j_jenvman_2025_124269
crossref_primary_10_1007_s12668_024_01587_7
crossref_primary_10_1016_j_seppur_2019_116167
crossref_primary_10_1016_j_jcis_2019_11_025
crossref_primary_10_1021_acsanm_8b01544
crossref_primary_10_3390_molecules27113455
crossref_primary_10_1002_masy_202300034
crossref_primary_10_1007_s10854_019_02560_x
crossref_primary_10_1016_j_optmat_2020_110126
crossref_primary_10_1021_acsomega_2c05265
crossref_primary_10_3390_nano14100859
crossref_primary_10_1016_j_jcis_2019_08_013
crossref_primary_10_1016_j_jcis_2019_02_030
crossref_primary_10_23939_ictee2023_01_163
crossref_primary_10_1039_D0CS00912A
crossref_primary_10_1080_17458080_2022_2028775
crossref_primary_10_1016_j_apcatb_2019_03_008
crossref_primary_10_1016_j_jscs_2021_101303
crossref_primary_10_1016_j_mtcomm_2022_103663
crossref_primary_10_1002_adsu_202300511
crossref_primary_10_1016_j_envres_2022_113326
crossref_primary_10_1016_j_synthmet_2020_116550
crossref_primary_10_1039_D1RA01240A
crossref_primary_10_1016_j_jphotochem_2021_113741
crossref_primary_10_1016_j_clay_2019_02_010
crossref_primary_10_3390_cells10030682
crossref_primary_10_1002_slct_202204183
crossref_primary_10_1021_acssuschemeng_2c04820
crossref_primary_10_1021_acsomega_2c05793
crossref_primary_10_1021_acsami_9b11990
crossref_primary_10_1021_acsestwater_3c00733
crossref_primary_10_1002_smll_201901701
crossref_primary_10_1039_D3BM00300K
crossref_primary_10_1007_s00203_022_03087_2
crossref_primary_10_1016_j_biosystemseng_2023_12_002
crossref_primary_10_1016_j_jcis_2019_01_078
crossref_primary_10_1016_j_aca_2019_04_050
crossref_primary_10_7759_cureus_66632
crossref_primary_10_1016_j_colsurfa_2020_124666
crossref_primary_10_1016_j_molliq_2019_02_069
crossref_primary_10_1016_j_jhazmat_2021_126950
crossref_primary_10_1016_j_colsurfa_2021_126886
crossref_primary_10_1088_1361_6528_aba05c
crossref_primary_10_1038_s41598_020_60070_x
crossref_primary_10_1016_j_mtcomm_2019_100639
crossref_primary_10_1007_s11356_023_30151_1
crossref_primary_10_1016_j_talanta_2024_125738
crossref_primary_10_1016_j_inoche_2022_109474
crossref_primary_10_1016_j_physb_2019_411751
crossref_primary_10_1016_j_mtcomm_2023_106598
crossref_primary_10_1002_app_54258
crossref_primary_10_1016_j_mtbio_2023_100586
crossref_primary_10_1007_s12649_023_02101_y
crossref_primary_10_1016_j_sna_2024_115634
crossref_primary_10_1016_j_materresbull_2022_111752
crossref_primary_10_1016_j_eti_2021_101504
crossref_primary_10_1039_D0DT03976D
crossref_primary_10_1021_acs_analchem_4c01033
crossref_primary_10_3390_toxics11090795
crossref_primary_10_1080_17458080_2022_2054995
crossref_primary_10_1016_j_inoche_2021_109125
crossref_primary_10_1002_admi_202102077
crossref_primary_10_3390_polym12030723
crossref_primary_10_1016_j_nanoso_2021_100810
crossref_primary_10_1016_j_optmat_2019_109453
crossref_primary_10_1016_j_cej_2019_05_164
crossref_primary_10_1016_j_jmrt_2023_05_246
crossref_primary_10_1016_j_mtsust_2023_100544
crossref_primary_10_1039_C9NR03701B
crossref_primary_10_3389_fchem_2020_00103
crossref_primary_10_1016_j_cej_2019_123196
crossref_primary_10_1021_acsanm_1c02005
crossref_primary_10_1016_j_ccr_2020_213618
crossref_primary_10_3389_fchem_2022_905781
crossref_primary_10_1016_j_chemosphere_2018_12_012
crossref_primary_10_1039_D0NR04925E
crossref_primary_10_1016_j_trac_2021_116303
crossref_primary_10_1016_j_matchemphys_2024_129281
crossref_primary_10_3390_molecules27165184
crossref_primary_10_1039_D1NR00664A
crossref_primary_10_1016_j_mtsust_2024_100970
crossref_primary_10_1016_j_ijhydene_2020_03_030
crossref_primary_10_1016_j_cej_2020_125743
crossref_primary_10_1016_j_cej_2019_123091
crossref_primary_10_1016_j_jconrel_2019_06_011
crossref_primary_10_1016_j_teac_2024_e00255
crossref_primary_10_2147_IJN_S373161
crossref_primary_10_1039_D0RA07976F
crossref_primary_10_1016_j_wasman_2019_06_025
crossref_primary_10_1002_mgea_81
crossref_primary_10_1016_j_jcis_2021_09_053
crossref_primary_10_1007_s10854_020_03630_1
crossref_primary_10_1002_adhm_202301924
crossref_primary_10_1007_s12596_023_01467_5
crossref_primary_10_1016_j_cej_2019_123640
crossref_primary_10_2147_IJN_S402954
Cites_doi 10.1021/ic300332x
10.1039/C5EN00086F
10.1007/s12257-015-0733-5
10.1088/0957-4484/25/5/055201
10.1016/j.ultsonch.2016.10.018
10.1016/j.saa.2012.09.011
10.1002/adma.201102752
10.1039/C5TA10599D
10.1016/j.nano.2009.01.012
10.1016/j.ceramint.2016.02.088
10.1088/0957-4484/19/44/445201
10.1039/C5NJ01320H
10.1016/j.catcom.2014.08.022
10.1007/s10853-011-5464-1
10.1016/j.jallcom.2016.04.229
10.1007/s11051-013-1727-x
10.1039/C3CP53820F
10.1021/acs.est.6b03237
10.1021/am301372d
10.1039/C3NR04941H
10.1016/j.ceramint.2015.09.138
10.1007/s10534-014-9756-1
10.1039/c1cc11125f
10.1002/ejic.200901048
10.1039/C6NR09931A
10.1002/adma.201001068
10.1016/j.jcis.2011.05.009
10.1016/j.carbon.2014.10.021
10.1016/j.electacta.2012.06.062
10.1016/j.cap.2014.06.006
10.1016/j.bios.2013.01.073
10.1021/jp902214f
10.1039/c1sc00254f
10.1016/j.jcis.2016.08.063
10.1039/C6RA20085K
10.1016/j.scitotenv.2012.02.023
10.1039/c2ra00008c
10.1039/C5NJ01621E
10.1039/C5RA13286J
10.1007/s11051-013-1639-9
10.1038/nature11458
10.1039/C6EN00156D
10.1016/j.snb.2015.04.028
10.1016/j.memsci.2016.10.040
10.1016/j.ceramint.2014.12.150
10.1002/bkcs.10457
10.1016/j.colsurfa.2013.01.014
10.1016/j.bios.2012.10.029
10.1007/s10853-012-6964-3
10.1007/s11051-011-0410-3
10.1021/nn4034794
10.1016/j.saa.2011.03.040
10.1016/j.jcis.2013.06.007
10.1016/j.apsusc.2012.08.094
10.1016/j.colsurfa.2015.09.046
10.1039/c0jm03827j
10.1016/j.susmat.2017.08.001
10.1002/etc.5620081003
10.1021/acsnano.6b08323
10.1039/C0JM03253K
10.1039/C2NR32092D
10.1016/j.materresbull.2014.02.015
10.1016/j.scitotenv.2016.05.199
10.1007/s12274-010-1037-x
10.1021/cr100275d
10.1126/science.1102896
10.1016/j.jhazmat.2014.09.021
10.1039/c1jm10671f
10.1039/c3ra46835f
10.1016/j.jhazmat.2013.07.034
10.1021/jp807989b
10.1016/j.apsusc.2015.03.175
10.1039/C5RA09585A
10.1016/j.cis.2013.03.009
10.1016/j.surfcoat.2016.01.022
10.1016/j.snb.2013.02.045
10.1021/nl204414u
10.1016/j.colsurfb.2013.08.006
10.1038/srep16366
10.1021/es800086f
10.1016/j.apsusc.2011.12.118
10.1038/nature04969
10.1016/j.snb.2014.10.091
10.1016/j.drudis.2014.11.014
10.1039/C6RA02928K
10.1021/acsami.6b05730
10.1039/C5RA00992H
10.1016/j.colsurfb.2010.10.033
10.1016/j.cej.2015.06.059
10.1021/nl301555t
10.1016/j.abb.2016.04.018
10.1021/bm034130m
10.1016/j.bios.2016.02.053
10.1021/am505677x
10.1016/j.jhazmat.2016.08.075
10.1016/j.apsusc.2015.11.146
10.1016/j.jallcom.2014.08.096
10.1039/c3cp51901e
10.1016/j.colsurfb.2016.09.011
10.1007/s11164-015-2394-6
10.1039/C6RA23655C
10.1016/j.ijpharm.2016.06.121
10.1002/smll.200900726
10.1016/j.bios.2015.07.076
10.1039/b926440j
10.1016/j.jhazmat.2013.03.064
10.1021/ja910010b
10.1039/C4RA11356J
10.1039/C0JM02806A
10.1016/j.materresbull.2012.12.037
10.1039/C4NR06984F
10.1039/C1RA00641J
10.1016/S1452-3981(23)06765-2
10.1039/C7EN00517B
10.1016/j.tsf.2011.07.012
10.1021/jp3047054
10.1016/j.actamat.2013.10.045
10.2147/IJN.S90660
10.1021/es504421y
10.1016/j.matlet.2016.02.063
10.1039/C3NR06316J
10.1016/j.seppur.2014.12.025
10.1007/s11051-011-0372-5
10.1021/am4005495
10.1021/nn202451x
10.1007/s00253-016-7972-z
10.1039/c1nr10604j
10.1007/s00339-014-8517-x
10.1021/am505908d
10.1016/j.carres.2009.09.001
10.1016/j.cplett.2013.05.007
10.1016/j.snb.2016.12.086
10.1039/C6RA14808E
10.1016/j.apcatb.2014.04.007
10.1016/j.snb.2014.01.046
10.1021/nn405887k
10.1039/C6RA04156F
10.1039/c4ra00934g
10.1007/s12154-011-0063-9
10.1016/j.solidstatesciences.2016.10.008
10.1016/j.snb.2013.12.062
10.1002/chem.201601667
10.1016/j.apsusc.2015.01.235
10.1021/acsami.5b00937
10.1016/j.materresbull.2015.07.025
10.1002/elan.201300227
10.1039/B917103G
10.1038/s41598-017-10262-9
10.1021/jo400556g
10.1021/jp800977b
10.1016/j.cej.2012.09.063
10.1016/j.nano.2006.12.001
10.1016/j.vacuum.2015.11.011
10.1039/c1cc15697g
10.1021/ac103047c
10.1016/j.jcis.2016.03.015
10.1016/j.bios.2015.12.085
10.1039/c0cc05613h
10.1039/C5RA13574E
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201800871
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 29952105
10_1002_smll_201800871
SMLL201800871
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Hunan Provincial Natural Science Foundation of China
  funderid: 2016JJ3076
– fundername: National Natural Science Foundation of China
  funderid: 81773333; 51521006; 51508186
– fundername: Program for Changjiang Scholars and Innovative Research Team in University
  funderid: IRT‐13R17
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3731-e25419365a56ac7732777624fd3ca6e1355610db04436fa51e453d3e5ff92d273
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 16:31:04 EDT 2025
Fri Jul 25 12:05:21 EDT 2025
Thu Apr 03 06:56:04 EDT 2025
Tue Jul 01 02:10:36 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Wed Jan 22 16:21:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords sensors
antimicrobial agents
silver nanoparticles
hybridization
catalysts
graphene
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-e25419365a56ac7732777624fd3ca6e1355610db04436fa51e453d3e5ff92d273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 29952105
PQID 2085552188
PQPubID 1046358
PageCount 13
ParticipantIDs proquest_miscellaneous_2061410313
proquest_journals_2085552188
pubmed_primary_29952105
crossref_citationtrail_10_1002_smll_201800871
crossref_primary_10_1002_smll_201800871
wiley_primary_10_1002_smll_201800871_SMLL201800871
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-00
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-00
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 406
2015; 72
2015; 74
2015; 142
2017; 89
2014; 27
2014; 25
2009; 113
2016; 148
2013; 7
2012; 12
2013; 5
2012; 99
2011; 111
2010; 22
2011; 520
2010; 20
2015; 81
2012; 490
2014; 16
2016; 42
2014; 14
2007; 3
2008; 112
2010; 3
2017; 321
2011; 360
2012; 24
2012; 258
2006; 442
2014; 158–159
2015; 58
2010; 2010
2011; 2
2016; 604
2010; 39
2015; 487
2011; 83
1989; 8
2016; 288
2011; 79
2016; 568
2011; 4
2013; 181
2004; 306
2011; 3
2011; 5
2016; 681
2016; 4
2016; 6
2016; 3
2013; 219
2013; 78
2016; 21
2009; 344
2013; 575
2008; 42
2016; 171
2012; 116
2016; 8
2013; 256‐257
2016; 22
2017; 7
2015; 36
2015; 39
2014; 617
2017; 4
2015; 345
2011; 13
2017; 9
2003; 99
2012; 51
2014; 64
2013; 15
2014; 4
2015; 49
2013; 435
2015; 332
2015; 41
2017; 35
2003; 4
2011; 21
2016; 511
2016; 81
2015; 216
2017; 243
2014; 8
2014; 6
2016; 471
2014; 53
2017; 525
2015; 2
2015; 283
2012; 261
2014; 116
2015; 281
2013; 48
2015; 5
2013; 46
2008; 19
2013; 42
2015; 10
2016; 124
2016; 484
2014; 194
2016; 50
2013; 261
2015; 207
2014; 195
2012; 79
2012; 424
2015; 7
2016; 361
2014; 113
2012; 2
2017; 11
2015; 20
2013; 195–196
2017; 13
2010; 132
2011; 46
2016; 61
2009; 5
2011; 47
2013
2017; 101
2012; 4
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
Zhu C. (e_1_2_8_131_1) 2003; 99
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Omidinia E. (e_1_2_8_147_1) 2015; 10
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Liu W. (e_1_2_8_138_1) 2013
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 471
  start-page: 94
  year: 2016
  publication-title: J. Colloid Interface Sci.
– volume: 525
  start-page: 146
  year: 2017
  publication-title: J. Membr. Sci.
– volume: 5
  start-page: 3867
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2010
  start-page: 1244
  year: 2010
  publication-title: Eur. J. Inorg. Chem.
– volume: 4
  start-page: 2018
  year: 2017
  publication-title: Environ. Sci.: Nano
– volume: 194
  start-page: 45
  year: 2014
  publication-title: Sens. Actuators, B
– volume: 25
  start-page: 055201
  year: 2014
  publication-title: Nanotechnology
– volume: 79
  start-page: 46
  year: 2012
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 4843
  year: 2014
  publication-title: Nanoscale
– volume: 12
  start-page: 2745
  year: 2012
  publication-title: Nano Lett.
– volume: 261
  start-page: 753
  year: 2012
  publication-title: Appl. Surf. Sci.
– volume: 78
  start-page: 4530
  year: 2013
  publication-title: J. Org. Chem.
– volume: 256‐257
  start-page: 33
  year: 2013
  publication-title: J. Hazard. Mater.
– volume: 219
  start-page: 217
  year: 2013
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 5260
  year: 2011
  publication-title: J. Mater. Sci.
– volume: 5
  start-page: 118
  year: 2013
  publication-title: Nanoscale
– volume: 116
  start-page: 17280
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 83
  start-page: 16
  year: 2011
  publication-title: Colloids Surf., B
– volume: 5
  start-page: 31139
  year: 2015
  publication-title: RSC Adv.
– volume: 21
  start-page: 3346
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 406
  start-page: 231
  year: 2013
  publication-title: J. Colloid Interface Sci.
– volume: 41
  start-page: 5656
  year: 2015
  publication-title: Ceram. Int.
– volume: 490
  start-page: 192
  year: 2012
  publication-title: Nature
– volume: 116
  start-page: 25
  year: 2014
  publication-title: Appl. Phys. A
– volume: 14
  start-page: 1212
  year: 2014
  publication-title: Curr. Appl. Phys.
– volume: 5
  start-page: 2253
  year: 2009
  publication-title: Small
– volume: 7
  start-page: 9795
  year: 2017
  publication-title: Sci. Rep.
– volume: 11
  start-page: 2944
  year: 2017
  publication-title: ACS Nano
– volume: 6
  start-page: 91579
  year: 2016
  publication-title: RSC Adv.
– volume: 81
  start-page: 767
  year: 2015
  publication-title: Carbon
– volume: 4
  start-page: 185
  year: 2011
  publication-title: J. Chem. Biol.
– volume: 24
  start-page: 229
  year: 2012
  publication-title: Adv. Mater.
– volume: 124
  start-page: 40
  year: 2016
  publication-title: Vacuum
– volume: 2
  start-page: 1817
  year: 2011
  publication-title: Chem. Sci.
– volume: 22
  start-page: 10923
  year: 2016
  publication-title: Chem. – Eur. J.
– volume: 484
  start-page: 107
  year: 2016
  publication-title: J. Colloid Interface Sci.
– volume: 48
  start-page: 1980
  year: 2013
  publication-title: J. Mater. Sci.
– volume: 16
  start-page: 1111
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 681
  start-page: 316
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 74
  start-page: 996
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 10
  start-page: 6847
  year: 2015
  publication-title: Int. J. Nanomed.
– volume: 4
  start-page: 9777
  year: 2014
  publication-title: RSC Adv.
– volume: 604
  start-page: 167
  year: 2016
  publication-title: Arch. Biochem. Biophys.
– volume: 142
  start-page: 1
  year: 2015
  publication-title: Sep. Purif. Technol.
– volume: 46
  start-page: 68
  year: 2013
  publication-title: Biosens. Bioelectron.
– volume: 20
  start-page: 595
  year: 2015
  publication-title: Drug Discovery Today
– volume: 195–196
  start-page: 19
  year: 2013
  publication-title: Adv. Colloid Interface Sci.
– volume: 36
  start-page: 2404
  year: 2015
  publication-title: Bull. Korean Chem. Soc.
– volume: 112
  start-page: 5263
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 171
  start-page: 182
  year: 2016
  publication-title: Mater. Lett.
– volume: 42
  start-page: 198
  year: 2013
  publication-title: Biosens. Bioelectron.
– volume: 9
  start-page: 5370
  year: 2017
  publication-title: Nanoscale
– start-page: 2367
  year: 2013
  publication-title: Electroanalysis
– volume: 3
  start-page: 95
  year: 2007
  publication-title: Nanomedicine
– volume: 6
  start-page: 20085
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 24057
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 344
  start-page: 2375
  year: 2009
  publication-title: Carbohydr. Res.
– volume: 6
  start-page: 52868
  year: 2016
  publication-title: RSC Adv.
– volume: 20
  start-page: 4567
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 13
  start-page: 4539
  year: 2011
  publication-title: J. Nanopart. Res.
– volume: 4
  start-page: 14432
  year: 2014
  publication-title: RSC Adv.
– volume: 21
  start-page: 1
  year: 2016
  publication-title: Biotechnol. Bioprocess Eng.
– volume: 13
  start-page: 4267
  year: 2011
  publication-title: J. Nanopart. Res.
– volume: 3
  start-page: 1027
  year: 2016
  publication-title: Environ. Sci.: Nano
– volume: 42
  start-page: 8587
  year: 2016
  publication-title: Ceram. Int.
– volume: 64
  start-page: 326
  year: 2014
  publication-title: Acta Mater.
– volume: 361
  start-page: 102
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 21026
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 1639
  year: 2013
  publication-title: J. Nanopart. Res.
– volume: 113
  start-page: 13103
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 1727
  year: 2013
  publication-title: J. Nanopart. Res.
– volume: 6
  start-page: 36576
  year: 2016
  publication-title: RSC Adv.
– volume: 39
  start-page: 9358
  year: 2015
  publication-title: New J. Chem.
– volume: 48
  start-page: 1453
  year: 2013
  publication-title: Mater. Res. Bull.
– volume: 19
  start-page: 445201
  year: 2008
  publication-title: Nanotechnology
– volume: 27
  start-page: 673
  year: 2014
  publication-title: BioMetals
– volume: 511
  start-page: 90
  year: 2016
  publication-title: Int. J. Pharm.
– volume: 8
  start-page: 1590
  year: 2014
  publication-title: ACS Nano
– volume: 61
  start-page: 239
  year: 2016
  publication-title: Solid State Sci.
– volume: 35
  start-page: 397
  year: 2017
  publication-title: Ultrason. Sonochem.
– volume: 258
  start-page: 5533
  year: 2012
  publication-title: Appl. Surf. Sci.
– volume: 2
  start-page: 538
  year: 2012
  publication-title: RSC Adv.
– volume: 3
  start-page: 4411
  year: 2011
  publication-title: Nanoscale
– volume: 81
  start-page: 61
  year: 2016
  publication-title: Biosens. Bioelectron.
– volume: 5
  start-page: 452
  year: 2009
  publication-title: Nanomedicine
– volume: 424
  start-page: 1
  year: 2012
  publication-title: Sci. Total Environ.
– volume: 53
  start-page: 145
  year: 2014
  publication-title: Mater. Res. Bull.
– volume: 42
  start-page: 5665
  year: 2016
  publication-title: Res. Chem. Intermed.
– volume: 7
  start-page: 6567
  year: 2015
  publication-title: Nanoscale
– volume: 6
  start-page: 1879
  year: 2014
  publication-title: Nanoscale
– volume: 5
  start-page: 54028
  year: 2015
  publication-title: RSC Adv.
– volume: 21
  start-page: 3634
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 58
  start-page: 21
  year: 2015
  publication-title: Catal. Commun.
– volume: 4
  start-page: 5466
  year: 2012
  publication-title: ACS Applied Mater. Interfaces
– volume: 42
  start-page: 6730
  year: 2008
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 1457
  year: 2003
  publication-title: Biomacromolecules
– volume: 617
  start-page: 869
  year: 2014
  publication-title: J. Alloys Compd.
– volume: 39
  start-page: 8121
  year: 2015
  publication-title: New J. Chem.
– volume: 243
  start-page: 946
  year: 2017
  publication-title: Sens. Actuators, B
– volume: 42
  start-page: 1769
  year: 2016
  publication-title: Ceram. Int.
– volume: 5
  start-page: 16366
  year: 2015
  publication-title: Sci. Rep.
– volume: 22
  start-page: 3906
  year: 2010
  publication-title: Adv. Mater.
– volume: 50
  start-page: 12214
  year: 2016
  publication-title: Environ. Sci. Technol.
– volume: 288
  start-page: 144
  year: 2016
  publication-title: Surf. Coat. Technol.
– volume: 181
  start-page: 885
  year: 2013
  publication-title: Sens. Actuators, B
– volume: 216
  start-page: 33
  year: 2015
  publication-title: Sens. Actuators, B
– volume: 5
  start-page: 17809
  year: 2015
  publication-title: RSC Adv.
– volume: 4
  start-page: 5002
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 113
  start-page: 115
  year: 2014
  publication-title: Colloids Surf., B
– volume: 195
  start-page: 431
  year: 2014
  publication-title: Sens. Actuators, B
– volume: 321
  start-page: 37
  year: 2017
  publication-title: J. Hazard. Mater.
– volume: 435
  start-page: 147
  year: 2013
  publication-title: Colloids Surf. A
– volume: 261
  start-page: 214
  year: 2013
  publication-title: J. Hazard. Mater.
– volume: 132
  start-page: 1825
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 575
  start-page: 81
  year: 2013
  publication-title: Chem. Phys. Lett.
– volume: 8
  start-page: 853
  year: 1989
  publication-title: Environ. Toxicol. Chem.
– volume: 112
  start-page: 19841
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 72
  start-page: 184
  year: 2015
  publication-title: Mater. Res. Bull.
– volume: 2
  start-page: 395
  year: 2015
  publication-title: Environ. Sci.: Nano
– volume: 6
  start-page: 88751
  year: 2016
  publication-title: RSC Adv.
– volume: 281
  start-page: 53
  year: 2015
  publication-title: Chem. Eng. J.
– volume: 89
  start-page: 620
  year: 2017
  publication-title: Biosens. Bioelectron.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 13
  start-page: 18
  year: 2017
  publication-title: Sustainable Mater. Technol.
– volume: 79
  start-page: 594
  year: 2011
  publication-title: Spectrochim. Acta, Part A
– volume: 21
  start-page: 7795
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 39
  start-page: 228
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 442
  start-page: 282
  year: 2006
  publication-title: Nature
– volume: 345
  start-page: 310
  year: 2015
  publication-title: Appl. Surf. Sci.
– volume: 332
  start-page: 682
  year: 2015
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 4090
  year: 2012
  publication-title: Nano Lett.
– volume: 15
  start-page: 12785
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 283
  start-page: 123
  year: 2015
  publication-title: J. Hazard. Mater.
– volume: 2
  start-page: 3816
  year: 2012
  publication-title: RSC Adv.
– volume: 568
  start-page: 95
  year: 2016
  publication-title: Sci. Total Environ.
– volume: 3
  start-page: 339
  year: 2010
  publication-title: Nano Res.
– volume: 148
  start-page: 392
  year: 2016
  publication-title: Colloids Surf., B
– volume: 99
  start-page: 389
  year: 2003
  publication-title: J. Hazard. Mater.
– volume: 49
  start-page: 67
  year: 2015
  publication-title: Environ. Sci. Technol.
– volume: 207
  start-page: 362
  year: 2015
  publication-title: Sens. Actuators, B
– volume: 47
  start-page: 6440
  year: 2011
  publication-title: Chem. Commun.
– volume: 360
  start-page: 463
  year: 2011
  publication-title: J. Colloid Interface Sci.
– volume: 5
  start-page: 6971
  year: 2011
  publication-title: ACS Nano
– volume: 7
  start-page: 6966
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 100383
  year: 2016
  publication-title: RSC Adv.
– volume: 7
  start-page: 8972
  year: 2013
  publication-title: ACS Nano
– volume: 487
  start-page: 113
  year: 2015
  publication-title: Colloids Surf., A
– volume: 520
  start-page: 179
  year: 2011
  publication-title: Thin Solid Films
– volume: 5
  start-page: 70968
  year: 2015
  publication-title: RSC Adv.
– volume: 99
  start-page: 390
  year: 2012
  publication-title: Spectrochim. Acta, Part A
– volume: 111
  start-page: 3669
  year: 2011
  publication-title: Chem. Rev.
– volume: 83
  start-page: 648
  year: 2011
  publication-title: Anal. Chem.
– volume: 47
  start-page: 3084
  year: 2011
  publication-title: Chem. Commun.
– volume: 101
  start-page: 1
  year: 2017
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 21
  start-page: 3350
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 81994
  year: 2015
  publication-title: RSC Adv.
– volume: 51
  start-page: 4742
  year: 2012
  publication-title: Inorg. Chem.
– volume: 47
  start-page: 12494
  year: 2011
  publication-title: Chem. Commun.
– volume: 10
  start-page: 6833
  year: 2015
  publication-title: Int. J. Electrochem. Sc.
– volume: 158–159
  start-page: 150
  year: 2014
  publication-title: Appl. Catal., B
– ident: e_1_2_8_50_1
  doi: 10.1021/ic300332x
– ident: e_1_2_8_100_1
  doi: 10.1039/C5EN00086F
– ident: e_1_2_8_34_1
  doi: 10.1007/s12257-015-0733-5
– ident: e_1_2_8_153_1
  doi: 10.1088/0957-4484/25/5/055201
– ident: e_1_2_8_46_1
  doi: 10.1016/j.ultsonch.2016.10.018
– ident: e_1_2_8_128_1
  doi: 10.1016/j.saa.2012.09.011
– ident: e_1_2_8_109_1
  doi: 10.1002/adma.201102752
– ident: e_1_2_8_13_1
  doi: 10.1039/C5TA10599D
– ident: e_1_2_8_70_1
  doi: 10.1016/j.nano.2009.01.012
– ident: e_1_2_8_39_1
  doi: 10.1016/j.ceramint.2016.02.088
– ident: e_1_2_8_19_1
  doi: 10.1088/0957-4484/19/44/445201
– ident: e_1_2_8_62_1
  doi: 10.1039/C5NJ01320H
– ident: e_1_2_8_106_1
  doi: 10.1016/j.catcom.2014.08.022
– ident: e_1_2_8_43_1
  doi: 10.1007/s10853-011-5464-1
– ident: e_1_2_8_108_1
  doi: 10.1016/j.jallcom.2016.04.229
– ident: e_1_2_8_27_1
  doi: 10.1007/s11051-013-1727-x
– ident: e_1_2_8_111_1
  doi: 10.1039/C3CP53820F
– ident: e_1_2_8_160_1
  doi: 10.1021/acs.est.6b03237
– ident: e_1_2_8_12_1
  doi: 10.1021/am301372d
– ident: e_1_2_8_74_1
  doi: 10.1039/C3NR04941H
– ident: e_1_2_8_143_1
  doi: 10.1016/j.ceramint.2015.09.138
– ident: e_1_2_8_80_1
  doi: 10.1007/s10534-014-9756-1
– ident: e_1_2_8_20_1
  doi: 10.1039/c1cc11125f
– ident: e_1_2_8_32_1
  doi: 10.1002/ejic.200901048
– ident: e_1_2_8_5_1
  doi: 10.1039/C6NR09931A
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.201001068
– ident: e_1_2_8_85_1
  doi: 10.1016/j.jcis.2011.05.009
– ident: e_1_2_8_66_1
  doi: 10.1016/j.carbon.2014.10.021
– ident: e_1_2_8_40_1
  doi: 10.1016/j.electacta.2012.06.062
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cap.2014.06.006
– ident: e_1_2_8_136_1
  doi: 10.1016/j.bios.2013.01.073
– ident: e_1_2_8_9_1
  doi: 10.1021/jp902214f
– ident: e_1_2_8_133_1
  doi: 10.1039/c1sc00254f
– ident: e_1_2_8_97_1
  doi: 10.1016/j.jcis.2016.08.063
– ident: e_1_2_8_38_1
  doi: 10.1039/C6RA20085K
– ident: e_1_2_8_155_1
  doi: 10.1016/j.scitotenv.2012.02.023
– ident: e_1_2_8_36_1
  doi: 10.1039/c2ra00008c
– ident: e_1_2_8_53_1
  doi: 10.1039/C5NJ01621E
– ident: e_1_2_8_29_1
  doi: 10.1039/C5RA13286J
– ident: e_1_2_8_149_1
  doi: 10.1007/s11051-013-1639-9
– ident: e_1_2_8_2_1
  doi: 10.1038/nature11458
– ident: e_1_2_8_26_1
  doi: 10.1039/C6EN00156D
– ident: e_1_2_8_141_1
  doi: 10.1016/j.snb.2015.04.028
– ident: e_1_2_8_99_1
  doi: 10.1016/j.memsci.2016.10.040
– ident: e_1_2_8_87_1
  doi: 10.1016/j.ceramint.2014.12.150
– ident: e_1_2_8_105_1
  doi: 10.1002/bkcs.10457
– ident: e_1_2_8_112_1
  doi: 10.1016/j.colsurfa.2013.01.014
– ident: e_1_2_8_51_1
  doi: 10.1016/j.bios.2012.10.029
– ident: e_1_2_8_79_1
  doi: 10.1007/s10853-012-6964-3
– ident: e_1_2_8_59_1
  doi: 10.1007/s11051-011-0410-3
– ident: e_1_2_8_101_1
  doi: 10.1021/nn4034794
– ident: e_1_2_8_69_1
  doi: 10.1016/j.saa.2011.03.040
– ident: e_1_2_8_146_1
  doi: 10.1016/j.jcis.2013.06.007
– ident: e_1_2_8_52_1
  doi: 10.1016/j.apsusc.2012.08.094
– volume: 99
  start-page: 389
  year: 2003
  ident: e_1_2_8_131_1
  publication-title: J. Hazard. Mater.
– ident: e_1_2_8_90_1
  doi: 10.1016/j.colsurfa.2015.09.046
– ident: e_1_2_8_15_1
  doi: 10.1039/c0jm03827j
– ident: e_1_2_8_23_1
  doi: 10.1016/j.susmat.2017.08.001
– ident: e_1_2_8_104_1
  doi: 10.1002/etc.5620081003
– ident: e_1_2_8_3_1
  doi: 10.1021/acsnano.6b08323
– ident: e_1_2_8_17_1
  doi: 10.1039/C0JM03253K
– ident: e_1_2_8_48_1
  doi: 10.1039/C2NR32092D
– ident: e_1_2_8_42_1
  doi: 10.1016/j.materresbull.2014.02.015
– ident: e_1_2_8_159_1
  doi: 10.1016/j.scitotenv.2016.05.199
– ident: e_1_2_8_41_1
  doi: 10.1007/s12274-010-1037-x
– ident: e_1_2_8_134_1
  doi: 10.1021/cr100275d
– ident: e_1_2_8_4_1
  doi: 10.1126/science.1102896
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jhazmat.2014.09.021
– ident: e_1_2_8_47_1
  doi: 10.1039/c1jm10671f
– ident: e_1_2_8_77_1
  doi: 10.1039/c3ra46835f
– ident: e_1_2_8_123_1
  doi: 10.1016/j.jhazmat.2013.07.034
– ident: e_1_2_8_14_1
  doi: 10.1021/jp807989b
– ident: e_1_2_8_45_1
  doi: 10.1016/j.apsusc.2015.03.175
– ident: e_1_2_8_126_1
  doi: 10.1039/C5RA09585A
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cis.2013.03.009
– ident: e_1_2_8_115_1
  doi: 10.1016/j.surfcoat.2016.01.022
– ident: e_1_2_8_135_1
  doi: 10.1016/j.snb.2013.02.045
– ident: e_1_2_8_10_1
  doi: 10.1021/nl204414u
– ident: e_1_2_8_44_1
  doi: 10.1016/j.colsurfb.2013.08.006
– ident: e_1_2_8_154_1
  doi: 10.1038/srep16366
– ident: e_1_2_8_94_1
  doi: 10.1021/es800086f
– ident: e_1_2_8_130_1
  doi: 10.1016/j.apsusc.2011.12.118
– ident: e_1_2_8_1_1
  doi: 10.1038/nature04969
– ident: e_1_2_8_144_1
  doi: 10.1016/j.snb.2014.10.091
– ident: e_1_2_8_22_1
  doi: 10.1016/j.drudis.2014.11.014
– ident: e_1_2_8_75_1
  doi: 10.1039/C6RA02928K
– ident: e_1_2_8_102_1
  doi: 10.1021/acsami.6b05730
– ident: e_1_2_8_35_1
  doi: 10.1039/C5RA00992H
– ident: e_1_2_8_83_1
  doi: 10.1016/j.colsurfb.2010.10.033
– ident: e_1_2_8_98_1
  doi: 10.1016/j.cej.2015.06.059
– ident: e_1_2_8_67_1
  doi: 10.1021/nl301555t
– ident: e_1_2_8_81_1
  doi: 10.1016/j.abb.2016.04.018
– ident: e_1_2_8_88_1
  doi: 10.1021/bm034130m
– ident: e_1_2_8_129_1
  doi: 10.1016/j.bios.2016.02.053
– ident: e_1_2_8_122_1
  doi: 10.1021/am505677x
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jhazmat.2016.08.075
– ident: e_1_2_8_64_1
  doi: 10.1016/j.apsusc.2015.11.146
– ident: e_1_2_8_116_1
  doi: 10.1016/j.jallcom.2014.08.096
– ident: e_1_2_8_11_1
  doi: 10.1039/c3cp51901e
– ident: e_1_2_8_55_1
  doi: 10.1016/j.colsurfb.2016.09.011
– ident: e_1_2_8_63_1
  doi: 10.1007/s11164-015-2394-6
– ident: e_1_2_8_30_1
  doi: 10.1039/C6RA23655C
– ident: e_1_2_8_91_1
  doi: 10.1016/j.ijpharm.2016.06.121
– ident: e_1_2_8_49_1
  doi: 10.1002/smll.200900726
– ident: e_1_2_8_68_1
  doi: 10.1016/j.bios.2015.07.076
– ident: e_1_2_8_96_1
  doi: 10.1039/b926440j
– ident: e_1_2_8_158_1
  doi: 10.1016/j.jhazmat.2013.03.064
– ident: e_1_2_8_24_1
  doi: 10.1021/ja910010b
– ident: e_1_2_8_150_1
  doi: 10.1039/C4RA11356J
– ident: e_1_2_8_78_1
  doi: 10.1039/C0JM02806A
– ident: e_1_2_8_113_1
  doi: 10.1016/j.materresbull.2012.12.037
– ident: e_1_2_8_16_1
  doi: 10.1039/C4NR06984F
– ident: e_1_2_8_57_1
  doi: 10.1039/C1RA00641J
– volume: 10
  start-page: 6833
  year: 2015
  ident: e_1_2_8_147_1
  publication-title: Int. J. Electrochem. Sc.
  doi: 10.1016/S1452-3981(23)06765-2
– ident: e_1_2_8_18_1
  doi: 10.1039/C7EN00517B
– ident: e_1_2_8_60_1
  doi: 10.1016/j.tsf.2011.07.012
– ident: e_1_2_8_72_1
  doi: 10.1021/jp3047054
– ident: e_1_2_8_54_1
  doi: 10.1016/j.actamat.2013.10.045
– ident: e_1_2_8_76_1
  doi: 10.2147/IJN.S90660
– ident: e_1_2_8_156_1
  doi: 10.1021/es504421y
– ident: e_1_2_8_119_1
  doi: 10.1016/j.matlet.2016.02.063
– ident: e_1_2_8_132_1
  doi: 10.1039/C3NR06316J
– ident: e_1_2_8_125_1
  doi: 10.1016/j.seppur.2014.12.025
– ident: e_1_2_8_148_1
  doi: 10.1007/s11051-011-0372-5
– ident: e_1_2_8_86_1
  doi: 10.1021/am4005495
– ident: e_1_2_8_73_1
  doi: 10.1021/nn202451x
– ident: e_1_2_8_25_1
  doi: 10.1007/s00253-016-7972-z
– ident: e_1_2_8_118_1
  doi: 10.1039/c1nr10604j
– ident: e_1_2_8_58_1
  doi: 10.1007/s00339-014-8517-x
– ident: e_1_2_8_152_1
  doi: 10.1021/am505908d
– ident: e_1_2_8_89_1
  doi: 10.1016/j.carres.2009.09.001
– ident: e_1_2_8_110_1
  doi: 10.1016/j.cplett.2013.05.007
– ident: e_1_2_8_127_1
  doi: 10.1016/j.snb.2016.12.086
– ident: e_1_2_8_92_1
  doi: 10.1039/C6RA14808E
– ident: e_1_2_8_124_1
  doi: 10.1016/j.apcatb.2014.04.007
– ident: e_1_2_8_157_1
  doi: 10.1016/j.snb.2014.01.046
– ident: e_1_2_8_151_1
  doi: 10.1021/nn405887k
– ident: e_1_2_8_121_1
  doi: 10.1039/C6RA04156F
– ident: e_1_2_8_139_1
  doi: 10.1039/c4ra00934g
– ident: e_1_2_8_71_1
  doi: 10.1007/s12154-011-0063-9
– ident: e_1_2_8_117_1
  doi: 10.1016/j.solidstatesciences.2016.10.008
– ident: e_1_2_8_142_1
  doi: 10.1016/j.snb.2013.12.062
– ident: e_1_2_8_140_1
  doi: 10.1002/chem.201601667
– ident: e_1_2_8_120_1
  doi: 10.1016/j.apsusc.2015.01.235
– ident: e_1_2_8_82_1
  doi: 10.1021/acsami.5b00937
– ident: e_1_2_8_61_1
  doi: 10.1016/j.materresbull.2015.07.025
– start-page: 2367
  year: 2013
  ident: e_1_2_8_138_1
  publication-title: Electroanalysis
  doi: 10.1002/elan.201300227
– ident: e_1_2_8_6_1
  doi: 10.1039/B917103G
– ident: e_1_2_8_65_1
  doi: 10.1038/s41598-017-10262-9
– ident: e_1_2_8_103_1
  doi: 10.1021/jo400556g
– ident: e_1_2_8_37_1
  doi: 10.1021/jp800977b
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cej.2012.09.063
– ident: e_1_2_8_84_1
  doi: 10.1016/j.nano.2006.12.001
– ident: e_1_2_8_114_1
  doi: 10.1016/j.vacuum.2015.11.011
– ident: e_1_2_8_137_1
  doi: 10.1039/c1cc15697g
– ident: e_1_2_8_145_1
  doi: 10.1021/ac103047c
– ident: e_1_2_8_95_1
  doi: 10.1016/j.jcis.2016.03.015
– ident: e_1_2_8_93_1
  doi: 10.1016/j.bios.2015.12.085
– ident: e_1_2_8_56_1
  doi: 10.1039/c0cc05613h
– ident: e_1_2_8_107_1
  doi: 10.1039/C5RA13574E
SSID ssj0031247
Score 2.5790217
SecondaryResourceType review_article
Snippet Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800871
SubjectTerms Antiinfectives and antibacterials
Antimicrobial agents
Catalysis
catalysts
Chemical synthesis
Graphene
hybridization
Nanocomposites
Nanomaterials
Nanoparticles
Nanotechnology
Organic chemistry
Properties (attributes)
Raman spectra
sensors
Silver
silver nanoparticles
Title Advancement of Ag–Graphene Based Nanocomposites: An Overview of Synthesis and Its Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201800871
https://www.ncbi.nlm.nih.gov/pubmed/29952105
https://www.proquest.com/docview/2085552188
https://www.proquest.com/docview/2061410313
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NToNAEN4YT3rw_6dazZqYeKIFlgXqDY21mlYTa5PecGEXY6xgpNXoyXfwDX0SZ6DFVmNM9AZhJiy7OzPf7g7fELIb6JLJ0FUa04XULB6CHzQdU6sxI3DcSFgiY-dvndmNjnXa5d2xv_hzfohiww0tI_PXaOAiSKufpKHpXQ-PDgwXWdVw_YMJW4iKLgr-KAbBK6uuAjFLQ-KtEWujblYn1Sej0jeoOYlcs9BTnydi1Og84-S2MugHlfDlC5_jf75qgcwNcSn18om0SKZUvERmx9gKl8mVl-cL4H4iTSLqXb-_vh0j4TX4S3oA4VBScNYJZqljKphK96kX0_NHdEfqCVXazzEAzvQmpSKW9KSfUm_sAH2FdOpHl4cNbVigQQuZwwxNweoSAKDNBbdF6DjMdBxwrlYkWShsZTCsvanLQLcsZkeCG8riTDLFo6hmSgBOq2Q6TmK1Tqgr3LAGc4NL5lhcyUC4TCpdSq4ErIB4iWijAfLDIXs5FtHo-Tnvsuljz_lFz5XIXiF_n_N2_ChZHo23P7Tf1MfKpRyQjeuWyE7xGCwPj1NErJIBytiYJMsMViJr-TwpXgVBHrR1aLaZjfYvbfDbrWazuNv4i9ImmcHrPDexTKb7DwO1BXipH2xnNvEB18cMZw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB5V4dByAEr5CdB2kZB6MrG9XtvhZlBpgASkJkjczNq7RqipU9UJCE68A2_IkzBjx4aAEBIcbe_I692dmW92x98AbESm4ir2tcFNqQxHxGgHbc82mtyKPD-RjszZ-TuHbuvY2T8RZTYh_QtT8ENUG26kGbm9JgWnDenGA2to9rdPZweWT7RqGABNUVnvPKr6XTFIcXRfeX0V9FoGUW-VvI2m3ZiUn_RLz8DmJHbNnc_uLERlt4uckz-bo2G0GV8_YXR813fNwcwYmrKgWEuf4YNO52H6EWHhFzgNipQB2lJkg4QFZ3c3t7-I8xpNJttGj6gY2usBJapTNpjOtliQsqMLskj6kkS6Vylizuw8YzJVbG-YseDRGfoCHO_-7O20jHGNBiPmHrcMjQEmYkBXSOHK2PO47XloX51E8Vi62uJUftNUkek43E2ksLQjuOJaJEnTVoidFqGWDlK9DMyXftzE5SEU9xyhVSR9rrSplNASgyBRB6OcoTAeE5hTHY1-WFAv2yGNXFiNXB1-VO3_FdQdL7ZcKyc8HKtwFlLxUoHgxvfrsF49RuWjExWZ6sGI2riUJ8stXoelYqFUr0I_j9ImdtvOp_uVPoTdTrtdXa28Reg7fGz1Ou2wvXd4sAqf6H6RqrgGteH_kf6K8GkYfcsV5B6bChCC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VIFXlUB4tsDxdqVJPgSS2Ey-38FheC61KkbgFJ3aqqpBFZLcVnPgP_EN-CTPJbthtVVWCYxKP4tjz-GxPvgH4mLiGm1RZh7vaOEKm6Af90Hea3EtClWmhS3b-o-Ng71QcnMmzob_4K36IesONLKP012TgVyZbfyINLS4v6OjAU8SqhuufcRG4ivR6-2tNIMUxepXlVTBoOcS8NaBtdP31UfnRsPQX1hyFrmXsaU2CHvS6Sjn5udbrJmvp7R-Eji_5rCl42wemLKo0aRpe2XwGJoboCt_BeVQlDNCGIutkLPr-cHe_S4zX6DDZJsZDw9BbdyhNnXLBbLHBopx9_kX-yP4mkZObHBFn8aNgOjdsv1uwaOgE_T2ctna-be05_QoNTspD7jkWl5eIAAOpZaDTMOR-GKJ3FZnhqQ6sx6n4pmsSVwgeZFp6VkhuuJVZ1vQNIqdZGMs7uZ0HprRKm6gc0vBQSGsSrbixrjHSalwCyQY4gwmK0z59OVXRuIgr4mU_ppGL65FrwKe6_VVF3PHPlkuD-Y77BlzEVLpUIrRRqgEf6sdoenSeonPb6VGbgLJkuccbMFfpSf0qjPIo7WK3_XK2_9OH-OSo3a6vFp4jtAqvv2y34vb-8eEivKHbVZ7iEox1r3t2GbFTN1kpzeMRctwPOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancement+of+Ag%E2%80%93Graphene+Based+Nanocomposites%3A+An+Overview+of+Synthesis+and+Its+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=He%2C+Kai&rft.au=Zeng%2C+Zhuotong&rft.au=Chen%2C+Anwei&rft.au=Zeng%2C+Guangming&rft.date=2018-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201800871&rft.externalDBID=10.1002%252Fsmll.201800871&rft.externalDocID=SMLL201800871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon