Advancement of Ag–Graphene Based Nanocomposites: An Overview of Synthesis and Its Applications
Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its applic...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 32; pp. e1800871 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag–graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag–graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites.
Ag–graphene based nanocomposites exhibit great application potential in various fields such as antimicrobial agents, catalysts, and sensors due to the excellent properties. The shape and size of AgNPs on graphene sheets can be tuned with suitable methods for special application. The influence factors and mechanisms are discussed for enhancing the application performance. |
---|---|
AbstractList | Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag–graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag–graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites. Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag–graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag–graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites. Ag–graphene based nanocomposites exhibit great application potential in various fields such as antimicrobial agents, catalysts, and sensors due to the excellent properties. The shape and size of AgNPs on graphene sheets can be tuned with suitable methods for special application. The influence factors and mechanisms are discussed for enhancing the application performance. Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag-graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag-graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites.Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag-graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag-graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites. |
Author | Zeng, Guangming Xu, Piao He, Kai Zeng, Zhuotong Chen, Guiqiu Chen, Anwei Hu, Liang Xiao, Rong Shi, Jiangbo Huang, Zhenzhen |
Author_xml | – sequence: 1 givenname: Kai surname: He fullname: He, Kai organization: Ministry of Education – sequence: 2 givenname: Zhuotong surname: Zeng fullname: Zeng, Zhuotong organization: Central South University – sequence: 3 givenname: Anwei surname: Chen fullname: Chen, Anwei organization: Hunan Agricultural University – sequence: 4 givenname: Guangming surname: Zeng fullname: Zeng, Guangming email: zgming@hnu.edu.cn organization: Ministry of Education – sequence: 5 givenname: Rong surname: Xiao fullname: Xiao, Rong email: xiaorong65@csu.edu.cn organization: Central South University – sequence: 6 givenname: Piao surname: Xu fullname: Xu, Piao organization: Ministry of Education – sequence: 7 givenname: Zhenzhen surname: Huang fullname: Huang, Zhenzhen organization: Ministry of Education – sequence: 8 givenname: Jiangbo surname: Shi fullname: Shi, Jiangbo organization: Ministry of Education – sequence: 9 givenname: Liang surname: Hu fullname: Hu, Liang organization: Ministry of Education – sequence: 10 givenname: Guiqiu surname: Chen fullname: Chen, Guiqiu organization: Ministry of Education |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29952105$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC-wZYkssWEzg48d2wm7ULWl0pQuCmvjOifUVWIHOzPV7PoOfUOehAzTi1QJsfJZfN_R8f_vk50QAxLyFtgcGOMfc991c86gZKzU8ILsgQIxUyWvdh5nYLtkP-drxgTwQr8iu7yqJAcm98iPulnZ4LDHMNLY0vrn79u7k2SHKwxIP9uMDf1qQ3SxH2L2I-ZPtA70fIVp5fFmo1ysw3iF2WdqQ0NPx0zrYei8s6OPIb8mL1vbZXxz_x6Q78dH3w6_zBbnJ6eH9WLmhBYwQy4LqISSVirrtBZca6140TbCWYUgpFTAmktWFEK1VgIWUjQCZdtWvOFaHJAP271Dir-WmEfT--yw62zAuMyGMwUFTAmICX3_DL2OyxSm6yaqlHKKpiwn6t09tbzssTFD8r1Na_OQ3QQUW8ClmHPC1jg__v30mKzvDDCzqchsKjKPFU3a_Jn2sPmfQrUVbnyH6__Q5uJssXhy_wD4tqL1 |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2024_142512 crossref_primary_10_1016_j_chemosphere_2019_02_190 crossref_primary_10_1016_j_envres_2023_117540 crossref_primary_10_1016_j_mtcomm_2023_106957 crossref_primary_10_3390_mi13081232 crossref_primary_10_1016_j_solidstatesciences_2019_106107 crossref_primary_10_1016_j_addma_2022_103249 crossref_primary_10_2174_2667387816666220715121107 crossref_primary_10_34104_ijmms_022_083093 crossref_primary_10_1016_j_compositesb_2025_112359 crossref_primary_10_1016_j_colsurfa_2020_124929 crossref_primary_10_1016_j_ccr_2023_215275 crossref_primary_10_1016_j_envpol_2019_05_102 crossref_primary_10_35741_issn_0258_2724_54_6_14 crossref_primary_10_1016_j_jcat_2019_05_028 crossref_primary_10_3390_nano11112851 crossref_primary_10_1016_j_jenvman_2025_124269 crossref_primary_10_1007_s12668_024_01587_7 crossref_primary_10_1016_j_seppur_2019_116167 crossref_primary_10_1016_j_jcis_2019_11_025 crossref_primary_10_1021_acsanm_8b01544 crossref_primary_10_3390_molecules27113455 crossref_primary_10_1002_masy_202300034 crossref_primary_10_1007_s10854_019_02560_x crossref_primary_10_1016_j_optmat_2020_110126 crossref_primary_10_1021_acsomega_2c05265 crossref_primary_10_3390_nano14100859 crossref_primary_10_1016_j_jcis_2019_08_013 crossref_primary_10_1016_j_jcis_2019_02_030 crossref_primary_10_23939_ictee2023_01_163 crossref_primary_10_1039_D0CS00912A crossref_primary_10_1080_17458080_2022_2028775 crossref_primary_10_1016_j_apcatb_2019_03_008 crossref_primary_10_1016_j_jscs_2021_101303 crossref_primary_10_1016_j_mtcomm_2022_103663 crossref_primary_10_1002_adsu_202300511 crossref_primary_10_1016_j_envres_2022_113326 crossref_primary_10_1016_j_synthmet_2020_116550 crossref_primary_10_1039_D1RA01240A crossref_primary_10_1016_j_jphotochem_2021_113741 crossref_primary_10_1016_j_clay_2019_02_010 crossref_primary_10_3390_cells10030682 crossref_primary_10_1002_slct_202204183 crossref_primary_10_1021_acssuschemeng_2c04820 crossref_primary_10_1021_acsomega_2c05793 crossref_primary_10_1021_acsami_9b11990 crossref_primary_10_1021_acsestwater_3c00733 crossref_primary_10_1002_smll_201901701 crossref_primary_10_1039_D3BM00300K crossref_primary_10_1007_s00203_022_03087_2 crossref_primary_10_1016_j_biosystemseng_2023_12_002 crossref_primary_10_1016_j_jcis_2019_01_078 crossref_primary_10_1016_j_aca_2019_04_050 crossref_primary_10_7759_cureus_66632 crossref_primary_10_1016_j_colsurfa_2020_124666 crossref_primary_10_1016_j_molliq_2019_02_069 crossref_primary_10_1016_j_jhazmat_2021_126950 crossref_primary_10_1016_j_colsurfa_2021_126886 crossref_primary_10_1088_1361_6528_aba05c crossref_primary_10_1038_s41598_020_60070_x crossref_primary_10_1016_j_mtcomm_2019_100639 crossref_primary_10_1007_s11356_023_30151_1 crossref_primary_10_1016_j_talanta_2024_125738 crossref_primary_10_1016_j_inoche_2022_109474 crossref_primary_10_1016_j_physb_2019_411751 crossref_primary_10_1016_j_mtcomm_2023_106598 crossref_primary_10_1002_app_54258 crossref_primary_10_1016_j_mtbio_2023_100586 crossref_primary_10_1007_s12649_023_02101_y crossref_primary_10_1016_j_sna_2024_115634 crossref_primary_10_1016_j_materresbull_2022_111752 crossref_primary_10_1016_j_eti_2021_101504 crossref_primary_10_1039_D0DT03976D crossref_primary_10_1021_acs_analchem_4c01033 crossref_primary_10_3390_toxics11090795 crossref_primary_10_1080_17458080_2022_2054995 crossref_primary_10_1016_j_inoche_2021_109125 crossref_primary_10_1002_admi_202102077 crossref_primary_10_3390_polym12030723 crossref_primary_10_1016_j_nanoso_2021_100810 crossref_primary_10_1016_j_optmat_2019_109453 crossref_primary_10_1016_j_cej_2019_05_164 crossref_primary_10_1016_j_jmrt_2023_05_246 crossref_primary_10_1016_j_mtsust_2023_100544 crossref_primary_10_1039_C9NR03701B crossref_primary_10_3389_fchem_2020_00103 crossref_primary_10_1016_j_cej_2019_123196 crossref_primary_10_1021_acsanm_1c02005 crossref_primary_10_1016_j_ccr_2020_213618 crossref_primary_10_3389_fchem_2022_905781 crossref_primary_10_1016_j_chemosphere_2018_12_012 crossref_primary_10_1039_D0NR04925E crossref_primary_10_1016_j_trac_2021_116303 crossref_primary_10_1016_j_matchemphys_2024_129281 crossref_primary_10_3390_molecules27165184 crossref_primary_10_1039_D1NR00664A crossref_primary_10_1016_j_mtsust_2024_100970 crossref_primary_10_1016_j_ijhydene_2020_03_030 crossref_primary_10_1016_j_cej_2020_125743 crossref_primary_10_1016_j_cej_2019_123091 crossref_primary_10_1016_j_jconrel_2019_06_011 crossref_primary_10_1016_j_teac_2024_e00255 crossref_primary_10_2147_IJN_S373161 crossref_primary_10_1039_D0RA07976F crossref_primary_10_1016_j_wasman_2019_06_025 crossref_primary_10_1002_mgea_81 crossref_primary_10_1016_j_jcis_2021_09_053 crossref_primary_10_1007_s10854_020_03630_1 crossref_primary_10_1002_adhm_202301924 crossref_primary_10_1007_s12596_023_01467_5 crossref_primary_10_1016_j_cej_2019_123640 crossref_primary_10_2147_IJN_S402954 |
Cites_doi | 10.1021/ic300332x 10.1039/C5EN00086F 10.1007/s12257-015-0733-5 10.1088/0957-4484/25/5/055201 10.1016/j.ultsonch.2016.10.018 10.1016/j.saa.2012.09.011 10.1002/adma.201102752 10.1039/C5TA10599D 10.1016/j.nano.2009.01.012 10.1016/j.ceramint.2016.02.088 10.1088/0957-4484/19/44/445201 10.1039/C5NJ01320H 10.1016/j.catcom.2014.08.022 10.1007/s10853-011-5464-1 10.1016/j.jallcom.2016.04.229 10.1007/s11051-013-1727-x 10.1039/C3CP53820F 10.1021/acs.est.6b03237 10.1021/am301372d 10.1039/C3NR04941H 10.1016/j.ceramint.2015.09.138 10.1007/s10534-014-9756-1 10.1039/c1cc11125f 10.1002/ejic.200901048 10.1039/C6NR09931A 10.1002/adma.201001068 10.1016/j.jcis.2011.05.009 10.1016/j.carbon.2014.10.021 10.1016/j.electacta.2012.06.062 10.1016/j.cap.2014.06.006 10.1016/j.bios.2013.01.073 10.1021/jp902214f 10.1039/c1sc00254f 10.1016/j.jcis.2016.08.063 10.1039/C6RA20085K 10.1016/j.scitotenv.2012.02.023 10.1039/c2ra00008c 10.1039/C5NJ01621E 10.1039/C5RA13286J 10.1007/s11051-013-1639-9 10.1038/nature11458 10.1039/C6EN00156D 10.1016/j.snb.2015.04.028 10.1016/j.memsci.2016.10.040 10.1016/j.ceramint.2014.12.150 10.1002/bkcs.10457 10.1016/j.colsurfa.2013.01.014 10.1016/j.bios.2012.10.029 10.1007/s10853-012-6964-3 10.1007/s11051-011-0410-3 10.1021/nn4034794 10.1016/j.saa.2011.03.040 10.1016/j.jcis.2013.06.007 10.1016/j.apsusc.2012.08.094 10.1016/j.colsurfa.2015.09.046 10.1039/c0jm03827j 10.1016/j.susmat.2017.08.001 10.1002/etc.5620081003 10.1021/acsnano.6b08323 10.1039/C0JM03253K 10.1039/C2NR32092D 10.1016/j.materresbull.2014.02.015 10.1016/j.scitotenv.2016.05.199 10.1007/s12274-010-1037-x 10.1021/cr100275d 10.1126/science.1102896 10.1016/j.jhazmat.2014.09.021 10.1039/c1jm10671f 10.1039/c3ra46835f 10.1016/j.jhazmat.2013.07.034 10.1021/jp807989b 10.1016/j.apsusc.2015.03.175 10.1039/C5RA09585A 10.1016/j.cis.2013.03.009 10.1016/j.surfcoat.2016.01.022 10.1016/j.snb.2013.02.045 10.1021/nl204414u 10.1016/j.colsurfb.2013.08.006 10.1038/srep16366 10.1021/es800086f 10.1016/j.apsusc.2011.12.118 10.1038/nature04969 10.1016/j.snb.2014.10.091 10.1016/j.drudis.2014.11.014 10.1039/C6RA02928K 10.1021/acsami.6b05730 10.1039/C5RA00992H 10.1016/j.colsurfb.2010.10.033 10.1016/j.cej.2015.06.059 10.1021/nl301555t 10.1016/j.abb.2016.04.018 10.1021/bm034130m 10.1016/j.bios.2016.02.053 10.1021/am505677x 10.1016/j.jhazmat.2016.08.075 10.1016/j.apsusc.2015.11.146 10.1016/j.jallcom.2014.08.096 10.1039/c3cp51901e 10.1016/j.colsurfb.2016.09.011 10.1007/s11164-015-2394-6 10.1039/C6RA23655C 10.1016/j.ijpharm.2016.06.121 10.1002/smll.200900726 10.1016/j.bios.2015.07.076 10.1039/b926440j 10.1016/j.jhazmat.2013.03.064 10.1021/ja910010b 10.1039/C4RA11356J 10.1039/C0JM02806A 10.1016/j.materresbull.2012.12.037 10.1039/C4NR06984F 10.1039/C1RA00641J 10.1016/S1452-3981(23)06765-2 10.1039/C7EN00517B 10.1016/j.tsf.2011.07.012 10.1021/jp3047054 10.1016/j.actamat.2013.10.045 10.2147/IJN.S90660 10.1021/es504421y 10.1016/j.matlet.2016.02.063 10.1039/C3NR06316J 10.1016/j.seppur.2014.12.025 10.1007/s11051-011-0372-5 10.1021/am4005495 10.1021/nn202451x 10.1007/s00253-016-7972-z 10.1039/c1nr10604j 10.1007/s00339-014-8517-x 10.1021/am505908d 10.1016/j.carres.2009.09.001 10.1016/j.cplett.2013.05.007 10.1016/j.snb.2016.12.086 10.1039/C6RA14808E 10.1016/j.apcatb.2014.04.007 10.1016/j.snb.2014.01.046 10.1021/nn405887k 10.1039/C6RA04156F 10.1039/c4ra00934g 10.1007/s12154-011-0063-9 10.1016/j.solidstatesciences.2016.10.008 10.1016/j.snb.2013.12.062 10.1002/chem.201601667 10.1016/j.apsusc.2015.01.235 10.1021/acsami.5b00937 10.1016/j.materresbull.2015.07.025 10.1002/elan.201300227 10.1039/B917103G 10.1038/s41598-017-10262-9 10.1021/jo400556g 10.1021/jp800977b 10.1016/j.cej.2012.09.063 10.1016/j.nano.2006.12.001 10.1016/j.vacuum.2015.11.011 10.1039/c1cc15697g 10.1021/ac103047c 10.1016/j.jcis.2016.03.015 10.1016/j.bios.2015.12.085 10.1039/c0cc05613h 10.1039/C5RA13574E |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201800871 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 29952105 10_1002_smll_201800871 SMLL201800871 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Hunan Provincial Natural Science Foundation of China funderid: 2016JJ3076 – fundername: National Natural Science Foundation of China funderid: 81773333; 51521006; 51508186 – fundername: Program for Changjiang Scholars and Innovative Research Team in University funderid: IRT‐13R17 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3731-e25419365a56ac7732777624fd3ca6e1355610db04436fa51e453d3e5ff92d273 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 16:31:04 EDT 2025 Fri Jul 25 12:05:21 EDT 2025 Thu Apr 03 06:56:04 EDT 2025 Tue Jul 01 02:10:36 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Wed Jan 22 16:21:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | sensors antimicrobial agents silver nanoparticles hybridization catalysts graphene |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-e25419365a56ac7732777624fd3ca6e1355610db04436fa51e453d3e5ff92d273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 29952105 |
PQID | 2085552188 |
PQPubID | 1046358 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2061410313 proquest_journals_2085552188 pubmed_primary_29952105 crossref_citationtrail_10_1002_smll_201800871 crossref_primary_10_1002_smll_201800871 wiley_primary_10_1002_smll_201800871_SMLL201800871 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-00 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-00 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 406 2015; 72 2015; 74 2015; 142 2017; 89 2014; 27 2014; 25 2009; 113 2016; 148 2013; 7 2012; 12 2013; 5 2012; 99 2011; 111 2010; 22 2011; 520 2010; 20 2015; 81 2012; 490 2014; 16 2016; 42 2014; 14 2007; 3 2008; 112 2010; 3 2017; 321 2011; 360 2012; 24 2012; 258 2006; 442 2014; 158–159 2015; 58 2010; 2010 2011; 2 2016; 604 2010; 39 2015; 487 2011; 83 1989; 8 2016; 288 2011; 79 2016; 568 2011; 4 2013; 181 2004; 306 2011; 3 2011; 5 2016; 681 2016; 4 2016; 6 2016; 3 2013; 219 2013; 78 2016; 21 2009; 344 2013; 575 2008; 42 2016; 171 2012; 116 2016; 8 2013; 256‐257 2016; 22 2017; 7 2015; 36 2015; 39 2014; 617 2017; 4 2015; 345 2011; 13 2017; 9 2003; 99 2012; 51 2014; 64 2013; 15 2014; 4 2015; 49 2013; 435 2015; 332 2015; 41 2017; 35 2003; 4 2011; 21 2016; 511 2016; 81 2015; 216 2017; 243 2014; 8 2014; 6 2016; 471 2014; 53 2017; 525 2015; 2 2015; 283 2012; 261 2014; 116 2015; 281 2013; 48 2015; 5 2013; 46 2008; 19 2013; 42 2015; 10 2016; 124 2016; 484 2014; 194 2016; 50 2013; 261 2015; 207 2014; 195 2012; 79 2012; 424 2015; 7 2016; 361 2014; 113 2012; 2 2017; 11 2015; 20 2013; 195–196 2017; 13 2010; 132 2011; 46 2016; 61 2009; 5 2011; 47 2013 2017; 101 2012; 4 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 Zhu C. (e_1_2_8_131_1) 2003; 99 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Omidinia E. (e_1_2_8_147_1) 2015; 10 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Liu W. (e_1_2_8_138_1) 2013 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 471 start-page: 94 year: 2016 publication-title: J. Colloid Interface Sci. – volume: 525 start-page: 146 year: 2017 publication-title: J. Membr. Sci. – volume: 5 start-page: 3867 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 2010 start-page: 1244 year: 2010 publication-title: Eur. J. Inorg. Chem. – volume: 4 start-page: 2018 year: 2017 publication-title: Environ. Sci.: Nano – volume: 194 start-page: 45 year: 2014 publication-title: Sens. Actuators, B – volume: 25 start-page: 055201 year: 2014 publication-title: Nanotechnology – volume: 79 start-page: 46 year: 2012 publication-title: Electrochim. Acta – volume: 6 start-page: 4843 year: 2014 publication-title: Nanoscale – volume: 12 start-page: 2745 year: 2012 publication-title: Nano Lett. – volume: 261 start-page: 753 year: 2012 publication-title: Appl. Surf. Sci. – volume: 78 start-page: 4530 year: 2013 publication-title: J. Org. Chem. – volume: 256‐257 start-page: 33 year: 2013 publication-title: J. Hazard. Mater. – volume: 219 start-page: 217 year: 2013 publication-title: Chem. Eng. J. – volume: 46 start-page: 5260 year: 2011 publication-title: J. Mater. Sci. – volume: 5 start-page: 118 year: 2013 publication-title: Nanoscale – volume: 116 start-page: 17280 year: 2012 publication-title: J. Phys. Chem. C – volume: 83 start-page: 16 year: 2011 publication-title: Colloids Surf., B – volume: 5 start-page: 31139 year: 2015 publication-title: RSC Adv. – volume: 21 start-page: 3346 year: 2011 publication-title: J. Mater. Chem. – volume: 406 start-page: 231 year: 2013 publication-title: J. Colloid Interface Sci. – volume: 41 start-page: 5656 year: 2015 publication-title: Ceram. Int. – volume: 490 start-page: 192 year: 2012 publication-title: Nature – volume: 116 start-page: 25 year: 2014 publication-title: Appl. Phys. A – volume: 14 start-page: 1212 year: 2014 publication-title: Curr. Appl. Phys. – volume: 5 start-page: 2253 year: 2009 publication-title: Small – volume: 7 start-page: 9795 year: 2017 publication-title: Sci. Rep. – volume: 11 start-page: 2944 year: 2017 publication-title: ACS Nano – volume: 6 start-page: 91579 year: 2016 publication-title: RSC Adv. – volume: 81 start-page: 767 year: 2015 publication-title: Carbon – volume: 4 start-page: 185 year: 2011 publication-title: J. Chem. Biol. – volume: 24 start-page: 229 year: 2012 publication-title: Adv. Mater. – volume: 124 start-page: 40 year: 2016 publication-title: Vacuum – volume: 2 start-page: 1817 year: 2011 publication-title: Chem. Sci. – volume: 22 start-page: 10923 year: 2016 publication-title: Chem. – Eur. J. – volume: 484 start-page: 107 year: 2016 publication-title: J. Colloid Interface Sci. – volume: 48 start-page: 1980 year: 2013 publication-title: J. Mater. Sci. – volume: 16 start-page: 1111 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 681 start-page: 316 year: 2016 publication-title: J. Alloys Compd. – volume: 74 start-page: 996 year: 2015 publication-title: Biosens. Bioelectron. – volume: 10 start-page: 6847 year: 2015 publication-title: Int. J. Nanomed. – volume: 4 start-page: 9777 year: 2014 publication-title: RSC Adv. – volume: 604 start-page: 167 year: 2016 publication-title: Arch. Biochem. Biophys. – volume: 142 start-page: 1 year: 2015 publication-title: Sep. Purif. Technol. – volume: 46 start-page: 68 year: 2013 publication-title: Biosens. Bioelectron. – volume: 20 start-page: 595 year: 2015 publication-title: Drug Discovery Today – volume: 195–196 start-page: 19 year: 2013 publication-title: Adv. Colloid Interface Sci. – volume: 36 start-page: 2404 year: 2015 publication-title: Bull. Korean Chem. Soc. – volume: 112 start-page: 5263 year: 2008 publication-title: J. Phys. Chem. C – volume: 171 start-page: 182 year: 2016 publication-title: Mater. Lett. – volume: 42 start-page: 198 year: 2013 publication-title: Biosens. Bioelectron. – volume: 9 start-page: 5370 year: 2017 publication-title: Nanoscale – start-page: 2367 year: 2013 publication-title: Electroanalysis – volume: 3 start-page: 95 year: 2007 publication-title: Nanomedicine – volume: 6 start-page: 20085 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 24057 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 344 start-page: 2375 year: 2009 publication-title: Carbohydr. Res. – volume: 6 start-page: 52868 year: 2016 publication-title: RSC Adv. – volume: 20 start-page: 4567 year: 2010 publication-title: J. Mater. Chem. – volume: 13 start-page: 4539 year: 2011 publication-title: J. Nanopart. Res. – volume: 4 start-page: 14432 year: 2014 publication-title: RSC Adv. – volume: 21 start-page: 1 year: 2016 publication-title: Biotechnol. Bioprocess Eng. – volume: 13 start-page: 4267 year: 2011 publication-title: J. Nanopart. Res. – volume: 3 start-page: 1027 year: 2016 publication-title: Environ. Sci.: Nano – volume: 42 start-page: 8587 year: 2016 publication-title: Ceram. Int. – volume: 64 start-page: 326 year: 2014 publication-title: Acta Mater. – volume: 361 start-page: 102 year: 2016 publication-title: Appl. Surf. Sci. – volume: 6 start-page: 21026 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 1639 year: 2013 publication-title: J. Nanopart. Res. – volume: 113 start-page: 13103 year: 2009 publication-title: J. Phys. Chem. C – volume: 15 start-page: 1727 year: 2013 publication-title: J. Nanopart. Res. – volume: 6 start-page: 36576 year: 2016 publication-title: RSC Adv. – volume: 39 start-page: 9358 year: 2015 publication-title: New J. Chem. – volume: 48 start-page: 1453 year: 2013 publication-title: Mater. Res. Bull. – volume: 19 start-page: 445201 year: 2008 publication-title: Nanotechnology – volume: 27 start-page: 673 year: 2014 publication-title: BioMetals – volume: 511 start-page: 90 year: 2016 publication-title: Int. J. Pharm. – volume: 8 start-page: 1590 year: 2014 publication-title: ACS Nano – volume: 61 start-page: 239 year: 2016 publication-title: Solid State Sci. – volume: 35 start-page: 397 year: 2017 publication-title: Ultrason. Sonochem. – volume: 258 start-page: 5533 year: 2012 publication-title: Appl. Surf. Sci. – volume: 2 start-page: 538 year: 2012 publication-title: RSC Adv. – volume: 3 start-page: 4411 year: 2011 publication-title: Nanoscale – volume: 81 start-page: 61 year: 2016 publication-title: Biosens. Bioelectron. – volume: 5 start-page: 452 year: 2009 publication-title: Nanomedicine – volume: 424 start-page: 1 year: 2012 publication-title: Sci. Total Environ. – volume: 53 start-page: 145 year: 2014 publication-title: Mater. Res. Bull. – volume: 42 start-page: 5665 year: 2016 publication-title: Res. Chem. Intermed. – volume: 7 start-page: 6567 year: 2015 publication-title: Nanoscale – volume: 6 start-page: 1879 year: 2014 publication-title: Nanoscale – volume: 5 start-page: 54028 year: 2015 publication-title: RSC Adv. – volume: 21 start-page: 3634 year: 2011 publication-title: J. Mater. Chem. – volume: 58 start-page: 21 year: 2015 publication-title: Catal. Commun. – volume: 4 start-page: 5466 year: 2012 publication-title: ACS Applied Mater. Interfaces – volume: 42 start-page: 6730 year: 2008 publication-title: Environ. Sci. Technol. – volume: 4 start-page: 1457 year: 2003 publication-title: Biomacromolecules – volume: 617 start-page: 869 year: 2014 publication-title: J. Alloys Compd. – volume: 39 start-page: 8121 year: 2015 publication-title: New J. Chem. – volume: 243 start-page: 946 year: 2017 publication-title: Sens. Actuators, B – volume: 42 start-page: 1769 year: 2016 publication-title: Ceram. Int. – volume: 5 start-page: 16366 year: 2015 publication-title: Sci. Rep. – volume: 22 start-page: 3906 year: 2010 publication-title: Adv. Mater. – volume: 50 start-page: 12214 year: 2016 publication-title: Environ. Sci. Technol. – volume: 288 start-page: 144 year: 2016 publication-title: Surf. Coat. Technol. – volume: 181 start-page: 885 year: 2013 publication-title: Sens. Actuators, B – volume: 216 start-page: 33 year: 2015 publication-title: Sens. Actuators, B – volume: 5 start-page: 17809 year: 2015 publication-title: RSC Adv. – volume: 4 start-page: 5002 year: 2016 publication-title: J. Mater. Chem. A – volume: 113 start-page: 115 year: 2014 publication-title: Colloids Surf., B – volume: 195 start-page: 431 year: 2014 publication-title: Sens. Actuators, B – volume: 321 start-page: 37 year: 2017 publication-title: J. Hazard. Mater. – volume: 435 start-page: 147 year: 2013 publication-title: Colloids Surf. A – volume: 261 start-page: 214 year: 2013 publication-title: J. Hazard. Mater. – volume: 132 start-page: 1825 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 575 start-page: 81 year: 2013 publication-title: Chem. Phys. Lett. – volume: 8 start-page: 853 year: 1989 publication-title: Environ. Toxicol. Chem. – volume: 112 start-page: 19841 year: 2008 publication-title: J. Phys. Chem. C – volume: 72 start-page: 184 year: 2015 publication-title: Mater. Res. Bull. – volume: 2 start-page: 395 year: 2015 publication-title: Environ. Sci.: Nano – volume: 6 start-page: 88751 year: 2016 publication-title: RSC Adv. – volume: 281 start-page: 53 year: 2015 publication-title: Chem. Eng. J. – volume: 89 start-page: 620 year: 2017 publication-title: Biosens. Bioelectron. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 13 start-page: 18 year: 2017 publication-title: Sustainable Mater. Technol. – volume: 79 start-page: 594 year: 2011 publication-title: Spectrochim. Acta, Part A – volume: 21 start-page: 7795 year: 2011 publication-title: J. Mater. Chem. – volume: 39 start-page: 228 year: 2010 publication-title: Chem. Soc. Rev. – volume: 442 start-page: 282 year: 2006 publication-title: Nature – volume: 345 start-page: 310 year: 2015 publication-title: Appl. Surf. Sci. – volume: 332 start-page: 682 year: 2015 publication-title: Appl. Surf. Sci. – volume: 12 start-page: 4090 year: 2012 publication-title: Nano Lett. – volume: 15 start-page: 12785 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 283 start-page: 123 year: 2015 publication-title: J. Hazard. Mater. – volume: 2 start-page: 3816 year: 2012 publication-title: RSC Adv. – volume: 568 start-page: 95 year: 2016 publication-title: Sci. Total Environ. – volume: 3 start-page: 339 year: 2010 publication-title: Nano Res. – volume: 148 start-page: 392 year: 2016 publication-title: Colloids Surf., B – volume: 99 start-page: 389 year: 2003 publication-title: J. Hazard. Mater. – volume: 49 start-page: 67 year: 2015 publication-title: Environ. Sci. Technol. – volume: 207 start-page: 362 year: 2015 publication-title: Sens. Actuators, B – volume: 47 start-page: 6440 year: 2011 publication-title: Chem. Commun. – volume: 360 start-page: 463 year: 2011 publication-title: J. Colloid Interface Sci. – volume: 5 start-page: 6971 year: 2011 publication-title: ACS Nano – volume: 7 start-page: 6966 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 100383 year: 2016 publication-title: RSC Adv. – volume: 7 start-page: 8972 year: 2013 publication-title: ACS Nano – volume: 487 start-page: 113 year: 2015 publication-title: Colloids Surf., A – volume: 520 start-page: 179 year: 2011 publication-title: Thin Solid Films – volume: 5 start-page: 70968 year: 2015 publication-title: RSC Adv. – volume: 99 start-page: 390 year: 2012 publication-title: Spectrochim. Acta, Part A – volume: 111 start-page: 3669 year: 2011 publication-title: Chem. Rev. – volume: 83 start-page: 648 year: 2011 publication-title: Anal. Chem. – volume: 47 start-page: 3084 year: 2011 publication-title: Chem. Commun. – volume: 101 start-page: 1 year: 2017 publication-title: Appl. Microbiol. Biotechnol. – volume: 21 start-page: 3350 year: 2011 publication-title: J. Mater. Chem. – volume: 5 start-page: 81994 year: 2015 publication-title: RSC Adv. – volume: 51 start-page: 4742 year: 2012 publication-title: Inorg. Chem. – volume: 47 start-page: 12494 year: 2011 publication-title: Chem. Commun. – volume: 10 start-page: 6833 year: 2015 publication-title: Int. J. Electrochem. Sc. – volume: 158–159 start-page: 150 year: 2014 publication-title: Appl. Catal., B – ident: e_1_2_8_50_1 doi: 10.1021/ic300332x – ident: e_1_2_8_100_1 doi: 10.1039/C5EN00086F – ident: e_1_2_8_34_1 doi: 10.1007/s12257-015-0733-5 – ident: e_1_2_8_153_1 doi: 10.1088/0957-4484/25/5/055201 – ident: e_1_2_8_46_1 doi: 10.1016/j.ultsonch.2016.10.018 – ident: e_1_2_8_128_1 doi: 10.1016/j.saa.2012.09.011 – ident: e_1_2_8_109_1 doi: 10.1002/adma.201102752 – ident: e_1_2_8_13_1 doi: 10.1039/C5TA10599D – ident: e_1_2_8_70_1 doi: 10.1016/j.nano.2009.01.012 – ident: e_1_2_8_39_1 doi: 10.1016/j.ceramint.2016.02.088 – ident: e_1_2_8_19_1 doi: 10.1088/0957-4484/19/44/445201 – ident: e_1_2_8_62_1 doi: 10.1039/C5NJ01320H – ident: e_1_2_8_106_1 doi: 10.1016/j.catcom.2014.08.022 – ident: e_1_2_8_43_1 doi: 10.1007/s10853-011-5464-1 – ident: e_1_2_8_108_1 doi: 10.1016/j.jallcom.2016.04.229 – ident: e_1_2_8_27_1 doi: 10.1007/s11051-013-1727-x – ident: e_1_2_8_111_1 doi: 10.1039/C3CP53820F – ident: e_1_2_8_160_1 doi: 10.1021/acs.est.6b03237 – ident: e_1_2_8_12_1 doi: 10.1021/am301372d – ident: e_1_2_8_74_1 doi: 10.1039/C3NR04941H – ident: e_1_2_8_143_1 doi: 10.1016/j.ceramint.2015.09.138 – ident: e_1_2_8_80_1 doi: 10.1007/s10534-014-9756-1 – ident: e_1_2_8_20_1 doi: 10.1039/c1cc11125f – ident: e_1_2_8_32_1 doi: 10.1002/ejic.200901048 – ident: e_1_2_8_5_1 doi: 10.1039/C6NR09931A – ident: e_1_2_8_7_1 doi: 10.1002/adma.201001068 – ident: e_1_2_8_85_1 doi: 10.1016/j.jcis.2011.05.009 – ident: e_1_2_8_66_1 doi: 10.1016/j.carbon.2014.10.021 – ident: e_1_2_8_40_1 doi: 10.1016/j.electacta.2012.06.062 – ident: e_1_2_8_33_1 doi: 10.1016/j.cap.2014.06.006 – ident: e_1_2_8_136_1 doi: 10.1016/j.bios.2013.01.073 – ident: e_1_2_8_9_1 doi: 10.1021/jp902214f – ident: e_1_2_8_133_1 doi: 10.1039/c1sc00254f – ident: e_1_2_8_97_1 doi: 10.1016/j.jcis.2016.08.063 – ident: e_1_2_8_38_1 doi: 10.1039/C6RA20085K – ident: e_1_2_8_155_1 doi: 10.1016/j.scitotenv.2012.02.023 – ident: e_1_2_8_36_1 doi: 10.1039/c2ra00008c – ident: e_1_2_8_53_1 doi: 10.1039/C5NJ01621E – ident: e_1_2_8_29_1 doi: 10.1039/C5RA13286J – ident: e_1_2_8_149_1 doi: 10.1007/s11051-013-1639-9 – ident: e_1_2_8_2_1 doi: 10.1038/nature11458 – ident: e_1_2_8_26_1 doi: 10.1039/C6EN00156D – ident: e_1_2_8_141_1 doi: 10.1016/j.snb.2015.04.028 – ident: e_1_2_8_99_1 doi: 10.1016/j.memsci.2016.10.040 – ident: e_1_2_8_87_1 doi: 10.1016/j.ceramint.2014.12.150 – ident: e_1_2_8_105_1 doi: 10.1002/bkcs.10457 – ident: e_1_2_8_112_1 doi: 10.1016/j.colsurfa.2013.01.014 – ident: e_1_2_8_51_1 doi: 10.1016/j.bios.2012.10.029 – ident: e_1_2_8_79_1 doi: 10.1007/s10853-012-6964-3 – ident: e_1_2_8_59_1 doi: 10.1007/s11051-011-0410-3 – ident: e_1_2_8_101_1 doi: 10.1021/nn4034794 – ident: e_1_2_8_69_1 doi: 10.1016/j.saa.2011.03.040 – ident: e_1_2_8_146_1 doi: 10.1016/j.jcis.2013.06.007 – ident: e_1_2_8_52_1 doi: 10.1016/j.apsusc.2012.08.094 – volume: 99 start-page: 389 year: 2003 ident: e_1_2_8_131_1 publication-title: J. Hazard. Mater. – ident: e_1_2_8_90_1 doi: 10.1016/j.colsurfa.2015.09.046 – ident: e_1_2_8_15_1 doi: 10.1039/c0jm03827j – ident: e_1_2_8_23_1 doi: 10.1016/j.susmat.2017.08.001 – ident: e_1_2_8_104_1 doi: 10.1002/etc.5620081003 – ident: e_1_2_8_3_1 doi: 10.1021/acsnano.6b08323 – ident: e_1_2_8_17_1 doi: 10.1039/C0JM03253K – ident: e_1_2_8_48_1 doi: 10.1039/C2NR32092D – ident: e_1_2_8_42_1 doi: 10.1016/j.materresbull.2014.02.015 – ident: e_1_2_8_159_1 doi: 10.1016/j.scitotenv.2016.05.199 – ident: e_1_2_8_41_1 doi: 10.1007/s12274-010-1037-x – ident: e_1_2_8_134_1 doi: 10.1021/cr100275d – ident: e_1_2_8_4_1 doi: 10.1126/science.1102896 – ident: e_1_2_8_28_1 doi: 10.1016/j.jhazmat.2014.09.021 – ident: e_1_2_8_47_1 doi: 10.1039/c1jm10671f – ident: e_1_2_8_77_1 doi: 10.1039/c3ra46835f – ident: e_1_2_8_123_1 doi: 10.1016/j.jhazmat.2013.07.034 – ident: e_1_2_8_14_1 doi: 10.1021/jp807989b – ident: e_1_2_8_45_1 doi: 10.1016/j.apsusc.2015.03.175 – ident: e_1_2_8_126_1 doi: 10.1039/C5RA09585A – ident: e_1_2_8_8_1 doi: 10.1016/j.cis.2013.03.009 – ident: e_1_2_8_115_1 doi: 10.1016/j.surfcoat.2016.01.022 – ident: e_1_2_8_135_1 doi: 10.1016/j.snb.2013.02.045 – ident: e_1_2_8_10_1 doi: 10.1021/nl204414u – ident: e_1_2_8_44_1 doi: 10.1016/j.colsurfb.2013.08.006 – ident: e_1_2_8_154_1 doi: 10.1038/srep16366 – ident: e_1_2_8_94_1 doi: 10.1021/es800086f – ident: e_1_2_8_130_1 doi: 10.1016/j.apsusc.2011.12.118 – ident: e_1_2_8_1_1 doi: 10.1038/nature04969 – ident: e_1_2_8_144_1 doi: 10.1016/j.snb.2014.10.091 – ident: e_1_2_8_22_1 doi: 10.1016/j.drudis.2014.11.014 – ident: e_1_2_8_75_1 doi: 10.1039/C6RA02928K – ident: e_1_2_8_102_1 doi: 10.1021/acsami.6b05730 – ident: e_1_2_8_35_1 doi: 10.1039/C5RA00992H – ident: e_1_2_8_83_1 doi: 10.1016/j.colsurfb.2010.10.033 – ident: e_1_2_8_98_1 doi: 10.1016/j.cej.2015.06.059 – ident: e_1_2_8_67_1 doi: 10.1021/nl301555t – ident: e_1_2_8_81_1 doi: 10.1016/j.abb.2016.04.018 – ident: e_1_2_8_88_1 doi: 10.1021/bm034130m – ident: e_1_2_8_129_1 doi: 10.1016/j.bios.2016.02.053 – ident: e_1_2_8_122_1 doi: 10.1021/am505677x – ident: e_1_2_8_21_1 doi: 10.1016/j.jhazmat.2016.08.075 – ident: e_1_2_8_64_1 doi: 10.1016/j.apsusc.2015.11.146 – ident: e_1_2_8_116_1 doi: 10.1016/j.jallcom.2014.08.096 – ident: e_1_2_8_11_1 doi: 10.1039/c3cp51901e – ident: e_1_2_8_55_1 doi: 10.1016/j.colsurfb.2016.09.011 – ident: e_1_2_8_63_1 doi: 10.1007/s11164-015-2394-6 – ident: e_1_2_8_30_1 doi: 10.1039/C6RA23655C – ident: e_1_2_8_91_1 doi: 10.1016/j.ijpharm.2016.06.121 – ident: e_1_2_8_49_1 doi: 10.1002/smll.200900726 – ident: e_1_2_8_68_1 doi: 10.1016/j.bios.2015.07.076 – ident: e_1_2_8_96_1 doi: 10.1039/b926440j – ident: e_1_2_8_158_1 doi: 10.1016/j.jhazmat.2013.03.064 – ident: e_1_2_8_24_1 doi: 10.1021/ja910010b – ident: e_1_2_8_150_1 doi: 10.1039/C4RA11356J – ident: e_1_2_8_78_1 doi: 10.1039/C0JM02806A – ident: e_1_2_8_113_1 doi: 10.1016/j.materresbull.2012.12.037 – ident: e_1_2_8_16_1 doi: 10.1039/C4NR06984F – ident: e_1_2_8_57_1 doi: 10.1039/C1RA00641J – volume: 10 start-page: 6833 year: 2015 ident: e_1_2_8_147_1 publication-title: Int. J. Electrochem. Sc. doi: 10.1016/S1452-3981(23)06765-2 – ident: e_1_2_8_18_1 doi: 10.1039/C7EN00517B – ident: e_1_2_8_60_1 doi: 10.1016/j.tsf.2011.07.012 – ident: e_1_2_8_72_1 doi: 10.1021/jp3047054 – ident: e_1_2_8_54_1 doi: 10.1016/j.actamat.2013.10.045 – ident: e_1_2_8_76_1 doi: 10.2147/IJN.S90660 – ident: e_1_2_8_156_1 doi: 10.1021/es504421y – ident: e_1_2_8_119_1 doi: 10.1016/j.matlet.2016.02.063 – ident: e_1_2_8_132_1 doi: 10.1039/C3NR06316J – ident: e_1_2_8_125_1 doi: 10.1016/j.seppur.2014.12.025 – ident: e_1_2_8_148_1 doi: 10.1007/s11051-011-0372-5 – ident: e_1_2_8_86_1 doi: 10.1021/am4005495 – ident: e_1_2_8_73_1 doi: 10.1021/nn202451x – ident: e_1_2_8_25_1 doi: 10.1007/s00253-016-7972-z – ident: e_1_2_8_118_1 doi: 10.1039/c1nr10604j – ident: e_1_2_8_58_1 doi: 10.1007/s00339-014-8517-x – ident: e_1_2_8_152_1 doi: 10.1021/am505908d – ident: e_1_2_8_89_1 doi: 10.1016/j.carres.2009.09.001 – ident: e_1_2_8_110_1 doi: 10.1016/j.cplett.2013.05.007 – ident: e_1_2_8_127_1 doi: 10.1016/j.snb.2016.12.086 – ident: e_1_2_8_92_1 doi: 10.1039/C6RA14808E – ident: e_1_2_8_124_1 doi: 10.1016/j.apcatb.2014.04.007 – ident: e_1_2_8_157_1 doi: 10.1016/j.snb.2014.01.046 – ident: e_1_2_8_151_1 doi: 10.1021/nn405887k – ident: e_1_2_8_121_1 doi: 10.1039/C6RA04156F – ident: e_1_2_8_139_1 doi: 10.1039/c4ra00934g – ident: e_1_2_8_71_1 doi: 10.1007/s12154-011-0063-9 – ident: e_1_2_8_117_1 doi: 10.1016/j.solidstatesciences.2016.10.008 – ident: e_1_2_8_142_1 doi: 10.1016/j.snb.2013.12.062 – ident: e_1_2_8_140_1 doi: 10.1002/chem.201601667 – ident: e_1_2_8_120_1 doi: 10.1016/j.apsusc.2015.01.235 – ident: e_1_2_8_82_1 doi: 10.1021/acsami.5b00937 – ident: e_1_2_8_61_1 doi: 10.1016/j.materresbull.2015.07.025 – start-page: 2367 year: 2013 ident: e_1_2_8_138_1 publication-title: Electroanalysis doi: 10.1002/elan.201300227 – ident: e_1_2_8_6_1 doi: 10.1039/B917103G – ident: e_1_2_8_65_1 doi: 10.1038/s41598-017-10262-9 – ident: e_1_2_8_103_1 doi: 10.1021/jo400556g – ident: e_1_2_8_37_1 doi: 10.1021/jp800977b – ident: e_1_2_8_31_1 doi: 10.1016/j.cej.2012.09.063 – ident: e_1_2_8_84_1 doi: 10.1016/j.nano.2006.12.001 – ident: e_1_2_8_114_1 doi: 10.1016/j.vacuum.2015.11.011 – ident: e_1_2_8_137_1 doi: 10.1039/c1cc15697g – ident: e_1_2_8_145_1 doi: 10.1021/ac103047c – ident: e_1_2_8_95_1 doi: 10.1016/j.jcis.2016.03.015 – ident: e_1_2_8_93_1 doi: 10.1016/j.bios.2015.12.085 – ident: e_1_2_8_56_1 doi: 10.1039/c0cc05613h – ident: e_1_2_8_107_1 doi: 10.1039/C5RA13574E |
SSID | ssj0031247 |
Score | 2.5790217 |
SecondaryResourceType | review_article |
Snippet | Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800871 |
SubjectTerms | Antiinfectives and antibacterials Antimicrobial agents Catalysis catalysts Chemical synthesis Graphene hybridization Nanocomposites Nanomaterials Nanoparticles Nanotechnology Organic chemistry Properties (attributes) Raman spectra sensors Silver silver nanoparticles |
Title | Advancement of Ag–Graphene Based Nanocomposites: An Overview of Synthesis and Its Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201800871 https://www.ncbi.nlm.nih.gov/pubmed/29952105 https://www.proquest.com/docview/2085552188 https://www.proquest.com/docview/2061410313 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NToNAEN4YT3rw_6dazZqYeKIFlgXqDY21mlYTa5PecGEXY6xgpNXoyXfwDX0SZ6DFVmNM9AZhJiy7OzPf7g7fELIb6JLJ0FUa04XULB6CHzQdU6sxI3DcSFgiY-dvndmNjnXa5d2xv_hzfohiww0tI_PXaOAiSKufpKHpXQ-PDgwXWdVw_YMJW4iKLgr-KAbBK6uuAjFLQ-KtEWujblYn1Sej0jeoOYlcs9BTnydi1Og84-S2MugHlfDlC5_jf75qgcwNcSn18om0SKZUvERmx9gKl8mVl-cL4H4iTSLqXb-_vh0j4TX4S3oA4VBScNYJZqljKphK96kX0_NHdEfqCVXazzEAzvQmpSKW9KSfUm_sAH2FdOpHl4cNbVigQQuZwwxNweoSAKDNBbdF6DjMdBxwrlYkWShsZTCsvanLQLcsZkeCG8riTDLFo6hmSgBOq2Q6TmK1Tqgr3LAGc4NL5lhcyUC4TCpdSq4ErIB4iWijAfLDIXs5FtHo-Tnvsuljz_lFz5XIXiF_n_N2_ChZHo23P7Tf1MfKpRyQjeuWyE7xGCwPj1NErJIBytiYJMsMViJr-TwpXgVBHrR1aLaZjfYvbfDbrWazuNv4i9ImmcHrPDexTKb7DwO1BXipH2xnNvEB18cMZw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB5V4dByAEr5CdB2kZB6MrG9XtvhZlBpgASkJkjczNq7RqipU9UJCE68A2_IkzBjx4aAEBIcbe_I692dmW92x98AbESm4ir2tcFNqQxHxGgHbc82mtyKPD-RjszZ-TuHbuvY2T8RZTYh_QtT8ENUG26kGbm9JgWnDenGA2to9rdPZweWT7RqGABNUVnvPKr6XTFIcXRfeX0V9FoGUW-VvI2m3ZiUn_RLz8DmJHbNnc_uLERlt4uckz-bo2G0GV8_YXR813fNwcwYmrKgWEuf4YNO52H6EWHhFzgNipQB2lJkg4QFZ3c3t7-I8xpNJttGj6gY2usBJapTNpjOtliQsqMLskj6kkS6Vylizuw8YzJVbG-YseDRGfoCHO_-7O20jHGNBiPmHrcMjQEmYkBXSOHK2PO47XloX51E8Vi62uJUftNUkek43E2ksLQjuOJaJEnTVoidFqGWDlK9DMyXftzE5SEU9xyhVSR9rrSplNASgyBRB6OcoTAeE5hTHY1-WFAv2yGNXFiNXB1-VO3_FdQdL7ZcKyc8HKtwFlLxUoHgxvfrsF49RuWjExWZ6sGI2riUJ8stXoelYqFUr0I_j9ImdtvOp_uVPoTdTrtdXa28Reg7fGz1Ou2wvXd4sAqf6H6RqrgGteH_kf6K8GkYfcsV5B6bChCC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VIFXlUB4tsDxdqVJPgSS2Ey-38FheC61KkbgFJ3aqqpBFZLcVnPgP_EN-CTPJbthtVVWCYxKP4tjz-GxPvgH4mLiGm1RZh7vaOEKm6Af90Hea3EtClWmhS3b-o-Ng71QcnMmzob_4K36IesONLKP012TgVyZbfyINLS4v6OjAU8SqhuufcRG4ivR6-2tNIMUxepXlVTBoOcS8NaBtdP31UfnRsPQX1hyFrmXsaU2CHvS6Sjn5udbrJmvp7R-Eji_5rCl42wemLKo0aRpe2XwGJoboCt_BeVQlDNCGIutkLPr-cHe_S4zX6DDZJsZDw9BbdyhNnXLBbLHBopx9_kX-yP4mkZObHBFn8aNgOjdsv1uwaOgE_T2ctna-be05_QoNTspD7jkWl5eIAAOpZaDTMOR-GKJ3FZnhqQ6sx6n4pmsSVwgeZFp6VkhuuJVZ1vQNIqdZGMs7uZ0HprRKm6gc0vBQSGsSrbixrjHSalwCyQY4gwmK0z59OVXRuIgr4mU_ppGL65FrwKe6_VVF3PHPlkuD-Y77BlzEVLpUIrRRqgEf6sdoenSeonPb6VGbgLJkuccbMFfpSf0qjPIo7WK3_XK2_9OH-OSo3a6vFp4jtAqvv2y34vb-8eEivKHbVZ7iEox1r3t2GbFTN1kpzeMRctwPOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancement+of+Ag%E2%80%93Graphene+Based+Nanocomposites%3A+An+Overview+of+Synthesis+and+Its+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=He%2C+Kai&rft.au=Zeng%2C+Zhuotong&rft.au=Chen%2C+Anwei&rft.au=Zeng%2C+Guangming&rft.date=2018-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201800871&rft.externalDBID=10.1002%252Fsmll.201800871&rft.externalDocID=SMLL201800871 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |