Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Ti‐MOF/COF Composites
Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 3; pp. e202114071 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
17.01.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond.
A series of covalently connected multivariate Ti‐MOF/COF hybrid materials were constructed demonstrating outstanding photocatalytic H2 evolution performance with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (TOF=227 h−1), much higher than the prototypical counterparts. |
---|---|
AbstractList | Titanium metal-organic frameworks (Ti-MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well-studied photoredox activity (similar to TiO2 ) and good optical responsiveness of linkers, which serve as the antenna to absorb visible-light. Although much effort has been dedicated to developing Ti-MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent-integration strategy to construct a series of multivariate Ti-MOF/COF hybrid materials PdTCPP⊂PCN-415(NH2 )/TpPa (composites 1, 2, and 3), featuring excellent visible-light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible-light-driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g-1 h-1 (turnover frequency (TOF)=227 h-1 ), which is much higher than that of PdTCPP⊂PCN-415(NH2 ) (0.21 mmol g-1 h-1 ) and TpPa (6.51 mmol g-1 h-1 ). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond.Titanium metal-organic frameworks (Ti-MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well-studied photoredox activity (similar to TiO2 ) and good optical responsiveness of linkers, which serve as the antenna to absorb visible-light. Although much effort has been dedicated to developing Ti-MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent-integration strategy to construct a series of multivariate Ti-MOF/COF hybrid materials PdTCPP⊂PCN-415(NH2 )/TpPa (composites 1, 2, and 3), featuring excellent visible-light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible-light-driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g-1 h-1 (turnover frequency (TOF)=227 h-1 ), which is much higher than that of PdTCPP⊂PCN-415(NH2 ) (0.21 mmol g-1 h-1 ) and TpPa (6.51 mmol g-1 h-1 ). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond. Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO 2 ) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH 2 )/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H 2 production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H 2 evolution performance, especially for the composite 2 with a maximum H 2 evolution rate of 13.98 mmol g −1 h −1 (turnover frequency (TOF)=227 h −1 ), which is much higher than that of PdTCPP⊂PCN‐415(NH 2 ) (0.21 mmol g −1 h −1 ) and TpPa (6.51 mmol g −1 h −1 ). Our work thereby suggests a new approach to highly efficient photocatalysts for H 2 evolution and beyond. Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond. A series of covalently connected multivariate Ti‐MOF/COF hybrid materials were constructed demonstrating outstanding photocatalytic H2 evolution performance with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (TOF=227 h−1), much higher than the prototypical counterparts. Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond. Titanium metal-organic frameworks (Ti-MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well-studied photoredox activity (similar to TiO ) and good optical responsiveness of linkers, which serve as the antenna to absorb visible-light. Although much effort has been dedicated to developing Ti-MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent-integration strategy to construct a series of multivariate Ti-MOF/COF hybrid materials PdTCPP⊂PCN-415(NH )/TpPa (composites 1, 2, and 3), featuring excellent visible-light utilization, a suitable band gap, and high surface area for photocatalytic H production. Notably, the resulting composites demonstrated remarkably enhanced visible-light-driven photocatalytic H evolution performance, especially for the composite 2 with a maximum H evolution rate of 13.98 mmol g h (turnover frequency (TOF)=227 h ), which is much higher than that of PdTCPP⊂PCN-415(NH ) (0.21 mmol g h ) and TpPa (6.51 mmol g h ). Our work thereby suggests a new approach to highly efficient photocatalysts for H evolution and beyond. |
Author | Chen, Cheng‐Xia Sirajuddin Lan, Pui Ching Zhong, Xin Su, Pei‐Yang Wei, Zhang‐Wen Pan, Hongjun Song, Yujie Nafady, Ayman Chen, Yi‐Fan Xiong, Yang‐Yang Ma, Shengqian |
Author_xml | – sequence: 1 givenname: Cheng‐Xia surname: Chen fullname: Chen, Cheng‐Xia organization: University of North Texas – sequence: 2 givenname: Yang‐Yang surname: Xiong fullname: Xiong, Yang‐Yang organization: Sun Yat-sen University – sequence: 3 givenname: Xin surname: Zhong fullname: Zhong, Xin organization: Hainan University – sequence: 4 givenname: Pui Ching surname: Lan fullname: Lan, Pui Ching organization: University of North Texas – sequence: 5 givenname: Zhang‐Wen surname: Wei fullname: Wei, Zhang‐Wen organization: Sun Yat-sen University – sequence: 6 givenname: Hongjun surname: Pan fullname: Pan, Hongjun organization: University of North Texas – sequence: 7 givenname: Pei‐Yang surname: Su fullname: Su, Pei‐Yang organization: Guangzhou University – sequence: 8 givenname: Yujie surname: Song fullname: Song, Yujie organization: Hainan University – sequence: 9 givenname: Yi‐Fan surname: Chen fullname: Chen, Yi‐Fan email: chenyifan@hainanu.edu.cn organization: Hainan University – sequence: 10 givenname: Ayman surname: Nafady fullname: Nafady, Ayman organization: King Saud University – sequence: 11 surname: Sirajuddin fullname: Sirajuddin organization: University of Karachi – sequence: 12 givenname: Shengqian orcidid: 0000-0002-1897-7069 surname: Ma fullname: Ma, Shengqian email: shengqian.ma@unt.edu organization: University of North Texas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34780112$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9P2zAYh60JNKDbdccp0i67pPi1kzg5oqodSEDRxM6W49jUKLU72wH1to-wz8gnwVE7JiEhTv6j5_H7-veeoAPrrELoC-ApYExOhTVqSjABKDCDD-gYSgI5ZYwepH1Bac7qEo7QSQj3ia9rXH1ER7RgNQYgx2gztythpbF32c3KRSdFFP02Gpmdbzvv7pTNbrzrBhmNs9mDEVlcqWzmbIh-f-l09tO1Q4jZ1dBH8yC8EVFlt-bpz9-r5eJ0tlwkYb1xwUQVPqFDLfqgPu_XCfq1mN_OzvPL5Y-L2dllLimjkHe60ulHTSVFgVXLGqq7shIUsGZFo8ajbghUmladoES3hEHRlqKpRcG0knSCvu_e3Xj3e1Ah8rUJUvW9sMoNgZOyYTWwOiU1Qd9eofdu8DZ1x0kFNVRjH4n6uqeGdq06vvFmLfyW_8syAdMdIL0LwSv9ggDm47D4OCz-MqwkFK8EaaIYM41emP5trdlpj6ZX23eK8LPri_l_9xmBnKpK |
CitedBy_id | crossref_primary_10_1039_D3NR02868B crossref_primary_10_1039_D4TC02938K crossref_primary_10_1093_rb_rbad115 crossref_primary_10_1021_acsmaterialslett_3c00622 crossref_primary_10_1039_D3CC01970E crossref_primary_10_1002_anie_202410525 crossref_primary_10_1007_s12274_024_6580_y crossref_primary_10_1016_j_cej_2024_155194 crossref_primary_10_1002_smtd_202201258 crossref_primary_10_1002_anie_202212243 crossref_primary_10_1021_acs_inorgchem_4c03123 crossref_primary_10_1021_acsami_4c13012 crossref_primary_10_1002_anie_202217897 crossref_primary_10_1039_D4NJ00059E crossref_primary_10_1002_adma_202413440 crossref_primary_10_1002_anie_202302123 crossref_primary_10_1002_adma_202403328 crossref_primary_10_1002_chem_202302201 crossref_primary_10_1002_anie_202412553 crossref_primary_10_3390_nano14030256 crossref_primary_10_1002_anie_202412279 crossref_primary_10_1039_D3MH01645E crossref_primary_10_1016_j_ccr_2022_214889 crossref_primary_10_1016_j_ccr_2023_215272 crossref_primary_10_1002_anie_202313358 crossref_primary_10_3390_w14233827 crossref_primary_10_1016_j_cej_2022_137095 crossref_primary_10_1021_acsami_1c18238 crossref_primary_10_1039_D3NA00627A crossref_primary_10_1002_ange_202319664 crossref_primary_10_1039_D3QM00565H crossref_primary_10_1007_s12598_023_02505_8 crossref_primary_10_1016_j_xcrp_2023_101657 crossref_primary_10_1039_D4GC05728G crossref_primary_10_1016_j_ccr_2022_214882 crossref_primary_10_1021_acssuschemeng_3c07466 crossref_primary_10_1002_anie_202319664 crossref_primary_10_1038_s41467_025_57742_5 crossref_primary_10_1039_D3CP04297A crossref_primary_10_1007_s00396_023_05086_1 crossref_primary_10_1039_D2QM00314G crossref_primary_10_1186_s11671_024_04019_3 crossref_primary_10_1002_ange_202302123 crossref_primary_10_1007_s40820_023_01180_9 crossref_primary_10_1021_acs_inorgchem_3c02479 crossref_primary_10_1039_D4CC00910J crossref_primary_10_1002_ange_202313358 crossref_primary_10_1002_smll_202208118 crossref_primary_10_1038_s41467_023_37271_9 crossref_primary_10_1002_anie_202303086 crossref_primary_10_1021_acscatal_4c02738 crossref_primary_10_1021_acs_inorgchem_4c00666 crossref_primary_10_1039_D2TA04073E crossref_primary_10_1021_jacs_5c00686 crossref_primary_10_1049_tje2_12247 crossref_primary_10_1007_s11356_023_30258_5 crossref_primary_10_1515_revce_2024_0088 crossref_primary_10_1039_D3QM00965C crossref_primary_10_1039_D3DT02719H crossref_primary_10_3390_molecules29245834 crossref_primary_10_1002_ange_202410525 crossref_primary_10_3390_nano14070643 crossref_primary_10_1021_acsanm_2c00831 crossref_primary_10_3390_catal12111350 crossref_primary_10_1016_j_seppur_2023_124040 crossref_primary_10_1039_D3TA03079B crossref_primary_10_1002_chem_202401122 crossref_primary_10_1021_acsnano_4c18724 crossref_primary_10_12677_MS_2023_133013 crossref_primary_10_1016_j_ccr_2024_215995 crossref_primary_10_1016_j_jcis_2023_12_109 crossref_primary_10_1039_D3GC00337J crossref_primary_10_1002_ange_202303086 crossref_primary_10_1039_D2CE01296K crossref_primary_10_1002_adfm_202207394 crossref_primary_10_1002_advs_202302109 crossref_primary_10_1002_aoc_7549 crossref_primary_10_1002_inf2_12646 crossref_primary_10_1016_j_ccr_2022_214664 crossref_primary_10_1039_D2CC06948B crossref_primary_10_1002_elan_202300091 crossref_primary_10_1039_D2TA00198E crossref_primary_10_1039_D3QM00188A crossref_primary_10_1002_ange_202217897 crossref_primary_10_1002_marc_202200108 crossref_primary_10_1016_j_cej_2022_137873 crossref_primary_10_1039_D2TA06050G crossref_primary_10_1002_ange_202212243 crossref_primary_10_1002_cey2_344 crossref_primary_10_1002_ange_202412553 crossref_primary_10_1002_adfm_202203224 crossref_primary_10_1021_acs_inorgchem_2c04471 crossref_primary_10_1002_ange_202412279 crossref_primary_10_1002_smll_202305767 crossref_primary_10_1021_acsanm_4c05747 crossref_primary_10_1002_cctc_202300414 |
Cites_doi | 10.1002/ange.201904058 10.1039/C5TA09323F 10.1039/C6TC01762B 10.1021/acs.chemrev.6b00396 10.1016/j.apcatb.2018.02.055 10.1002/anie.202104870 10.1002/adma.201102752 10.1002/adfm.201707110 10.1021/ja308278w 10.1126/science.1062965 10.1016/j.ijhydene.2021.02.176 10.1021/acssuschemeng.8b05352 10.1002/chem.201403800 10.1038/s41929-019-0242-6 10.1002/ange.201611137 10.1021/ja4030963 10.1002/anie.201806862 10.1039/C4CS00180J 10.1039/C4NR07224C 10.1021/cr050193e 10.1021/acscatal.6b01293 10.1002/anie.202000158 10.1016/j.apcatb.2017.01.040 10.1002/anie.201603990 10.1021/jacsau.0c00082 10.1016/j.ccr.2014.12.005 10.1021/jo051580r 10.1002/anie.202008408 10.1002/ange.201602274 10.1039/C5CS00448A 10.1007/s00897990360a 10.1039/C2CS35072F 10.1002/adma.201705666 10.1038/s41557-018-0141-5 10.1002/ange.201603990 10.1002/adma.201705112 10.1016/j.apsusc.2019.03.171 10.1002/ange.201600431 10.1002/aenm.201702142 10.1002/ange.201904766 10.1021/cr500008u 10.1002/ange.201800817 10.1016/j.cej.2020.125080 10.1002/anie.202007193 10.1002/ange.201806077 10.1038/s41467-021-21527-3 10.1039/C4TA02873B 10.1002/anie.201711725 10.1073/pnas.0603395103 10.1039/C6CS00436A 10.1002/ange.202000158 10.1002/anie.201806077 10.1039/C5SC00916B 10.1002/anie.202014408 10.1002/anie.201602274 10.1021/acs.chemmater.6b01894 10.1002/ange.202008408 10.1039/C8CS00443A 10.1002/anie.201904058 10.1002/anie.201600431 10.1021/acscentsci.7b00497 10.1002/ange.202007193 10.1002/ange.202014408 10.1002/anie.201800817 10.1002/aenm.202003303 10.1002/anie.201611137 10.1021/acs.inorgchem.1c00041 10.1002/ange.201806862 10.1039/C8CS00978C 10.1039/C7CS00511C 10.1039/C9TA01942A 10.1039/C7TA00437K 10.1002/ange.201711725 10.2147/NSA.S9040 10.1039/C9SC01866B 10.1080/14686996.2017.1375376 10.1021/jacs.0c00054 10.1002/ange.202104870 10.1016/j.apcatb.2016.05.074 10.1002/anie.201904766 10.1021/ja405350u 10.1039/C9SC06500H 10.1039/D0TA03749D 10.1021/ja903726m |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202114071 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 34780112 10_1002_anie_202114071 ANIE202114071 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22001271, 21806027 – fundername: International Postdoctoral Exchange Fellowship Program funderid: 20180055 – fundername: Chinese Postdoctoral Science Foundation funderid: 2017M622866 – fundername: Division of Electrical, Communications and Cyber Systems funderid: ECCS-2029800 – fundername: King Saud University funderid: RSP-2021/79 – fundername: Welch Foundation funderid: B-0027 – fundername: National Natural Science Foundation of China grantid: 22001271, 21806027 – fundername: Welch Foundation grantid: B-0027 – fundername: Division of Electrical, Communications and Cyber Systems grantid: ECCS-2029800 – fundername: International Postdoctoral Exchange Fellowship Program grantid: 20180055 – fundername: King Saud University grantid: RSP-2021/79 – fundername: Chinese Postdoctoral Science Foundation grantid: 2017M622866 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3731-df6f40796ca40eb793fd56a310f749e93fdf9216f36da32fb2714b5a98a47fec3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 18:13:21 EDT 2025 Fri Jul 25 12:07:26 EDT 2025 Wed Feb 19 02:26:48 EST 2025 Thu Apr 24 23:03:06 EDT 2025 Tue Jul 01 01:18:12 EDT 2025 Wed Jan 22 16:27:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | covalent connecting junctions hybrid materials covalent organic frameworks multivariate Ti-MOFs metal-organic frameworks |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-df6f40796ca40eb793fd56a310f749e93fdf9216f36da32fb2714b5a98a47fec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1897-7069 |
PMID | 34780112 |
PQID | 2618160796 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2597817877 proquest_journals_2618160796 pubmed_primary_34780112 crossref_primary_10_1002_anie_202114071 crossref_citationtrail_10_1002_anie_202114071 wiley_primary_10_1002_anie_202114071_ANIE202114071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 17, 2022 |
PublicationDateYYYYMMDD | 2022-01-17 |
PublicationDate_xml | – month: 01 year: 2022 text: January 17, 2022 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2007; 107 2000; 5 2019; 10 2017; 46 2020 2020; 59 132 2020; 11 2019; 481 2018; 47 2017; 117 2014; 20 2020; 8 2018; 8 2001; 293 2012; 134 2018; 4 2018 2018; 57 130 2016; 198 2018; 30 2005; 70 2012; 24 2016; 45 2017; 206 2019; 7 2021; 46 2018; 28 2015; 6 2015; 3 2019; 2 2020; 142 2015; 287 2013; 42 2017 2017; 56 129 2009; 131 2011; 4 2021; 1 2015; 7 2014; 114 2019 2019; 58 131 2014; 43 2016; 4 2016; 6 2018; 231 2016 2016; 55 128 2021; 12 2021; 11 2021 2020; 395 2019; 48 2021 2021; 60 133 2013; 135 2017; 18 2016; 28 2021; 60 2018; 10 2006; 103 e_1_2_6_72_2 e_1_2_6_53_2 e_1_2_6_30_3 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_53_3 e_1_2_6_38_2 e_1_2_6_76_2 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_83_2 e_1_2_6_64_2 e_1_2_6_41_3 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_9_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_26_1 e_1_2_6_31_2 e_1_2_6_50_1 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_2 e_1_2_6_54_3 e_1_2_6_77_1 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_61_3 e_1_2_6_84_1 e_1_2_6_42_2 e_1_2_6_80_2 e_1_2_6_6_1 e_1_2_6_46_3 e_1_2_6_23_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_65_3 e_1_2_6_46_2 e_1_2_6_51_2 e_1_2_6_74_2 e_1_2_6_70_3 e_1_2_6_70_2 e_1_2_6_59_1 e_1_2_6_13_2 e_1_2_6_32_2 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_55_2 e_1_2_6_36_2 e_1_2_6_85_1 e_1_2_6_62_2 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_81_3 e_1_2_6_81_2 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_24_2 e_1_2_6_28_2 e_1_2_6_66_1 e_1_2_6_47_1 e_1_2_6_71_3 Lin C. (e_1_2_6_73_2) 2021 e_1_2_6_52_2 e_1_2_6_75_2 e_1_2_6_52_3 e_1_2_6_71_2 e_1_2_6_18_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_79_2 e_1_2_6_63_2 e_1_2_6_86_1 e_1_2_6_40_2 e_1_2_6_82_2 e_1_2_6_8_2 e_1_2_6_4_2 e_1_2_6_25_1 e_1_2_6_48_2 e_1_2_6_48_3 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_2 |
References_xml | – volume: 58 131 start-page: 10198 10304 year: 2019 2019 end-page: 10203 10309 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 6411 6521 year: 2016 2016 end-page: 6416 6526 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 287 start-page: 1 year: 2015 end-page: 14 publication-title: Coord. Chem. Rev. – volume: 45 start-page: 3701 year: 2016 end-page: 3730 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 6772 year: 2016 end-page: 6801 publication-title: J. Mater. Chem. A – volume: 60 start-page: 3988 year: 2021 end-page: 3995 publication-title: Inorg. Chem. – volume: 198 start-page: 286 year: 2016 end-page: 294 publication-title: Appl. Catal. B – volume: 42 start-page: 548 year: 2013 end-page: 568 publication-title: Chem. Soc. Rev. – volume: 60 133 start-page: 1869 1897 year: 2021 2021 end-page: 1874 1902 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 114 start-page: 9987 year: 2014 end-page: 10043 publication-title: Chem. Rev. – volume: 7 start-page: 11928 year: 2019 end-page: 11933 publication-title: J. Mater. Chem. A – volume: 59 132 start-page: 19602 19770 year: 2020 2020 end-page: 19609 19777 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 19524 year: 2012 end-page: 19527 publication-title: J. Am. Chem. Soc. – volume: 70 start-page: 9562 year: 2005 end-page: 9572 publication-title: J. Org. Chem. – volume: 10 start-page: 10577 year: 2019 end-page: 10585 publication-title: Chem. Sci. – volume: 142 start-page: 4862 year: 2020 end-page: 4871 publication-title: J. Am. Chem. Soc. – volume: 293 start-page: 1639 year: 2001 end-page: 1641 publication-title: Science – volume: 43 start-page: 6920 year: 2014 end-page: 6937 publication-title: Chem. Soc. Rev. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 56 129 start-page: 816 834 year: 2017 2017 end-page: 820 838 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 15245 year: 2020 end-page: 15270 publication-title: J. Mater. Chem. A – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 5 start-page: 11854 year: 2017 end-page: 11863 publication-title: J. Mater. Chem. A – volume: 60 133 start-page: 19797 19950 year: 2021 2021 end-page: 19803 19956 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 35 year: 2011 end-page: 65 publication-title: Nanotechnol. Sci. Appl. – volume: 55 128 start-page: 6471 6581 year: 2016 2016 end-page: 6475 6585 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 49 year: 2000 end-page: 53 publication-title: Chem. Educ. – volume: 46 start-page: 603 year: 2017 end-page: 631 publication-title: Chem. Soc. Rev. – volume: 206 start-page: 426 year: 2017 end-page: 433 publication-title: Appl. Catal. B – volume: 7 start-page: 4868 year: 2019 end-page: 4877 publication-title: ACS Sustainable Chem. Eng. – volume: 47 start-page: 404 year: 2018 end-page: 421 publication-title: Chem. Soc. Rev. – volume: 47 start-page: 8203 year: 2018 end-page: 8237 publication-title: Chem. Soc. Rev. – volume: 395 year: 2020 publication-title: Chem. Eng. J. – volume: 55 128 start-page: 9389 9535 year: 2016 2016 end-page: 9393 9539 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 9512 9612 year: 2019 2019 end-page: 9516 9616 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 3493 3551 year: 2018 2018 end-page: 3498 3556 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 212 year: 2021 end-page: 220 publication-title: JACS Au – volume: 46 start-page: 17666 year: 2021 end-page: 17676 publication-title: Int. J. Hydrogen Energy – volume: 24 start-page: 229 year: 2012 end-page: 251 publication-title: Adv. Mater. – volume: 135 start-page: 10942 year: 2013 end-page: 10945 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 5191 year: 2016 end-page: 5204 publication-title: Chem. Mater. – volume: 6 start-page: 5359 year: 2016 end-page: 5365 publication-title: ACS Catal. – volume: 18 start-page: 705 year: 2017 end-page: 723 publication-title: Sci. Technol. Adv. Mater. – volume: 28 start-page: 1707110 year: 2018 end-page: 1707116 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1180 year: 2018 end-page: 1189 publication-title: Nat. Chem. – volume: 30 start-page: 1705112 year: 2018 end-page: 1705118 publication-title: Adv. Mater. – volume: 59 132 start-page: 13468 13570 year: 2020 2020 end-page: 13472 13574 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 21591 21775 year: 2020 2020 end-page: 21596 21780 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 3903 year: 2019 end-page: 3945 publication-title: Chem. Soc. Rev. – volume: 135 start-page: 10206 year: 2013 end-page: 10209 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 3748 year: 2015 end-page: 3756 publication-title: J. Mater. Chem. A – volume: 107 start-page: 4022 year: 2007 end-page: 4047 publication-title: Chem. Rev. – volume: 481 start-page: 669 year: 2019 end-page: 677 publication-title: Appl. Surf. Sci. – volume: 103 start-page: 15729 year: 2006 end-page: 15735 publication-title: Proc. Natl. Acad. Sci. USA – volume: 57 130 start-page: 12106 12282 year: 2018 2018 end-page: 12110 12286 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 387 year: 2019 end-page: 399 publication-title: Nat. Catal. – volume: 131 start-page: 10857 year: 2009 end-page: 10859 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 9864 10012 year: 2018 2018 end-page: 9869 10017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 1354 year: 2021 publication-title: Nat. Commun. – volume: 11 start-page: 3978 year: 2020 end-page: 3985 publication-title: Chem. Sci. – volume: 57 130 start-page: 1103 1115 year: 2018 2018 end-page: 1107 1119 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 1445 year: 2017 end-page: 1514 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 105 year: 2018 end-page: 111 publication-title: ACS Cent. Sci. – volume: 4 start-page: 9581 year: 2016 end-page: 9587 publication-title: J. Mater. Chem. C – volume: 6 start-page: 3926 year: 2015 end-page: 3930 publication-title: Chem. Sci. – volume: 7 start-page: 8187 year: 2015 end-page: 8208 publication-title: Nanoscale – volume: 231 start-page: 173 year: 2018 end-page: 181 publication-title: Appl. Catal. B – volume: 20 start-page: 15961 year: 2014 end-page: 15965 publication-title: Chem. Eur. J. – ident: e_1_2_6_61_3 doi: 10.1002/ange.201904058 – ident: e_1_2_6_23_2 doi: 10.1039/C5TA09323F – ident: e_1_2_6_62_2 doi: 10.1039/C6TC01762B – ident: e_1_2_6_8_2 doi: 10.1021/acs.chemrev.6b00396 – ident: e_1_2_6_29_1 – ident: e_1_2_6_60_2 doi: 10.1016/j.apcatb.2018.02.055 – ident: e_1_2_6_70_2 doi: 10.1002/anie.202104870 – ident: e_1_2_6_59_1 – ident: e_1_2_6_13_2 doi: 10.1002/adma.201102752 – ident: e_1_2_6_51_2 doi: 10.1002/adfm.201707110 – ident: e_1_2_6_76_2 doi: 10.1021/ja308278w – ident: e_1_2_6_11_2 doi: 10.1126/science.1062965 – ident: e_1_2_6_44_1 – ident: e_1_2_6_82_2 doi: 10.1016/j.ijhydene.2021.02.176 – ident: e_1_2_6_35_2 doi: 10.1021/acssuschemeng.8b05352 – ident: e_1_2_6_74_2 doi: 10.1002/chem.201403800 – ident: e_1_2_6_47_1 – ident: e_1_2_6_2_2 doi: 10.1038/s41929-019-0242-6 – ident: e_1_2_6_30_3 doi: 10.1002/ange.201611137 – ident: e_1_2_6_14_2 doi: 10.1021/ja4030963 – ident: e_1_2_6_52_2 doi: 10.1002/anie.201806862 – ident: e_1_2_6_24_2 doi: 10.1039/C4CS00180J – ident: e_1_2_6_50_1 – ident: e_1_2_6_9_1 – ident: e_1_2_6_85_1 doi: 10.1039/C4NR07224C – ident: e_1_2_6_10_2 doi: 10.1021/cr050193e – ident: e_1_2_6_18_2 doi: 10.1021/acscatal.6b01293 – ident: e_1_2_6_41_2 doi: 10.1002/anie.202000158 – ident: e_1_2_6_58_2 doi: 10.1016/j.apcatb.2017.01.040 – ident: e_1_2_6_84_1 doi: 10.1002/anie.201603990 – ident: e_1_2_6_12_1 – ident: e_1_2_6_80_2 doi: 10.1021/jacsau.0c00082 – ident: e_1_2_6_19_2 doi: 10.1016/j.ccr.2014.12.005 – ident: e_1_2_6_63_2 doi: 10.1021/jo051580r – ident: e_1_2_6_34_1 – ident: e_1_2_6_54_2 doi: 10.1002/anie.202008408 – ident: e_1_2_6_77_2 doi: 10.1002/ange.201602274 – ident: e_1_2_6_33_2 doi: 10.1039/C5CS00448A – ident: e_1_2_6_86_1 doi: 10.1007/s00897990360a – ident: e_1_2_6_67_2 doi: 10.1039/C2CS35072F – ident: e_1_2_6_21_2 doi: 10.1002/adma.201705666 – ident: e_1_2_6_69_2 doi: 10.1038/s41557-018-0141-5 – ident: e_1_2_6_84_2 doi: 10.1002/ange.201603990 – ident: e_1_2_6_56_1 – ident: e_1_2_6_64_2 doi: 10.1002/adma.201705112 – ident: e_1_2_6_16_2 doi: 10.1016/j.apsusc.2019.03.171 – ident: e_1_2_6_81_3 doi: 10.1002/ange.201600431 – ident: e_1_2_6_78_1 – ident: e_1_2_6_17_1 – ident: e_1_2_6_31_2 doi: 10.1002/aenm.201702142 – ident: e_1_2_6_53_3 doi: 10.1002/ange.201904766 – ident: e_1_2_6_22_2 doi: 10.1021/cr500008u – ident: e_1_2_6_65_3 doi: 10.1002/ange.201800817 – ident: e_1_2_6_42_2 doi: 10.1016/j.cej.2020.125080 – ident: e_1_2_6_48_2 doi: 10.1002/anie.202007193 – ident: e_1_2_6_46_3 doi: 10.1002/ange.201806077 – ident: e_1_2_6_72_2 doi: 10.1038/s41467-021-21527-3 – ident: e_1_2_6_28_2 doi: 10.1039/C4TA02873B – ident: e_1_2_6_55_1 doi: 10.1002/anie.201711725 – ident: e_1_2_6_3_2 doi: 10.1073/pnas.0603395103 – ident: e_1_2_6_7_2 doi: 10.1039/C6CS00436A – year: 2021 ident: e_1_2_6_73_2 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_6_41_3 doi: 10.1002/ange.202000158 – ident: e_1_2_6_46_2 doi: 10.1002/anie.201806077 – ident: e_1_2_6_49_2 doi: 10.1039/C5SC00916B – ident: e_1_2_6_71_2 doi: 10.1002/anie.202014408 – ident: e_1_2_6_77_1 doi: 10.1002/anie.201602274 – ident: e_1_2_6_15_2 doi: 10.1021/acs.chemmater.6b01894 – ident: e_1_2_6_54_3 doi: 10.1002/ange.202008408 – ident: e_1_2_6_66_1 – ident: e_1_2_6_4_2 doi: 10.1039/C8CS00443A – ident: e_1_2_6_61_2 doi: 10.1002/anie.201904058 – ident: e_1_2_6_81_2 doi: 10.1002/anie.201600431 – ident: e_1_2_6_6_1 – ident: e_1_2_6_36_2 doi: 10.1021/acscentsci.7b00497 – ident: e_1_2_6_20_1 – ident: e_1_2_6_26_1 – ident: e_1_2_6_48_3 doi: 10.1002/ange.202007193 – ident: e_1_2_6_71_3 doi: 10.1002/ange.202014408 – ident: e_1_2_6_1_1 – ident: e_1_2_6_65_2 doi: 10.1002/anie.201800817 – ident: e_1_2_6_5_2 doi: 10.1002/aenm.202003303 – ident: e_1_2_6_30_2 doi: 10.1002/anie.201611137 – ident: e_1_2_6_83_2 doi: 10.1021/acs.inorgchem.1c00041 – ident: e_1_2_6_52_3 doi: 10.1002/ange.201806862 – ident: e_1_2_6_68_2 doi: 10.1039/C8CS00978C – ident: e_1_2_6_43_1 doi: 10.1039/C7CS00511C – ident: e_1_2_6_40_2 doi: 10.1039/C9TA01942A – ident: e_1_2_6_57_2 doi: 10.1039/C7TA00437K – ident: e_1_2_6_55_2 doi: 10.1002/ange.201711725 – ident: e_1_2_6_25_1 doi: 10.2147/NSA.S9040 – ident: e_1_2_6_79_2 doi: 10.1039/C9SC01866B – ident: e_1_2_6_27_2 doi: 10.1080/14686996.2017.1375376 – ident: e_1_2_6_75_2 doi: 10.1021/jacs.0c00054 – ident: e_1_2_6_70_3 doi: 10.1002/ange.202104870 – ident: e_1_2_6_32_2 doi: 10.1016/j.apcatb.2016.05.074 – ident: e_1_2_6_53_2 doi: 10.1002/anie.201904766 – ident: e_1_2_6_45_2 doi: 10.1021/ja405350u – ident: e_1_2_6_39_2 doi: 10.1039/C9SC06500H – ident: e_1_2_6_38_2 doi: 10.1039/D0TA03749D – ident: e_1_2_6_37_2 doi: 10.1021/ja903726m |
SSID | ssj0028806 |
Score | 2.6667244 |
Snippet | Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy... Titanium metal-organic frameworks (Ti-MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202114071 |
SubjectTerms | Catalytic activity Composite materials covalent connecting junctions covalent organic frameworks Energy conversion Evolution hybrid materials Hydrogen evolution Hydrogen production Metal-organic frameworks Multivariate analysis multivariate Ti-MOFs Photocatalysis Photocatalysts Photovoltaic cells Solar energy Solar energy conversion Titanium Titanium dioxide |
Title | Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Ti‐MOF/COF Composites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202114071 https://www.ncbi.nlm.nih.gov/pubmed/34780112 https://www.proquest.com/docview/2618160796 https://www.proquest.com/docview/2597817877 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFA7ii764Xnbd8UYEYZ_iNJem00cZZhgFL4iCbyVpk1WUVpwZQZ_8Cf5Gf4nntNPqKIuwPpYmJM255DtpzncI2fHKhNxbCEtS45nKUsds4AIGm7fxWZZyU3J3Hh7pwbk6uAgv3mXxV_wQzYEbWkbpr9HAjR2230hDMQMb4jsIYDAmASeMF7YQFZ02_FEClLNKL5KSYRX6mrUxEO3p7tO70ieoOY1cy62n_4OYetLVjZPr3fHI7qaPH_gcv_NVi2RhgkvpXqVIS2TG5ctkrluXg1sht738Erk58r_05LIYFeW5zwO0poOH7K4APaQnFXssSJreXxkK0JJiPdCaoZYWnp4Wdjwc0TLt9x7CdEC69Ozq5en58Ljf7h73KfonvEfmhj_Jeb931h2wSbkGlspIcpZ57WHSMUhdBc6C4fss1Abwo49U7PDRx4JrL3VmpPBWRFzZ0MQdoyLvUvmLzOZF7n4TqrlDwlytjbDKWNcBUCKVcxEAKKekbhFWiytJJ1zmWFLjJqlYmEWC65g069gif5r2txWLxz9bbtTSTybWPEwgyuwgEV8MA283r2H98eeKyV0xhjYhsoeB-4taZLXSmmYoqSIAAly0iChl_8Uckr2j_V7ztPY_ndbJvMA8jYAzHm2QWZC02wT0NLJbpYW8AsHyElw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8WChgJxCndxHaSzYFDtd3VLu1uq2or9RbsxKZVq6Ris0XLiUfgVXgVHoEnYSZ_aEEICakHjlbs2PHM2N84nm8AXlqpfM9qdEsSZR2ZJsbRrnEd3LyVTdPEUyV352QajI7k22P_eA2-NrEwFT9Ee-BGllGu12TgdCDd_ckaSiHY6OChB0NOSX2vctcsP6LXNn8z3kERv-J8OJj1R06dWMBJRCg8J7WBxTYRjk-6RqOK2tQPFCIdG8rIUNFG3AusCFIluNU89KT2VdRTMrQmEfjea3Cd0ogTXf_OYctYxdEcqoAmIRzKe9_wRLq8uzre1X3wN3C7ipXLzW54C74101TdcTnbWhR6K_n0C4PkfzWPt-FmDb3ZdmUrd2DNZHdho99kvLsHF4PshOhHsvfs4CQv8vJoa4m12WiZfsjR1NhBRZCLyswuTxVD9Mwo5WlDwstyyw5zvZgXrIxsvlRo34Vhs9Pvn79M9ofd_v6Q0RJMV-XM_D4cXckHP4D1LM_MI2CBZ4gTOAgU11Jp00PcJaQxIWJEI0XQAafRjzip6dopa8h5XBFN85jkFrdy68Drtv5FRVTyx5qbjbrF9YI1j9GR7hHXYIQdv2gf4_zT_yOVmXyBdXwiSMMVPuzAw0pN266EDBHreLwDvFS2v4wh3p6OB23p8b80eg4bo9lkL94bT3efwA1OYSmu53jhJqyj1M1TBIuFflaaJ4N3V63HPwBF5XD1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVgIuUP4XChgJxCndxHaczYFDtbvRLqXbVdVKvaV2YtMKlKzYbKvtiUfgUXgVXoEnYZw_tCCEhNQDRyt27Hhm7G8czzcALw2XvmcUuiWJNA5PE-0oV7sObt7SpGniyZK7c28iRkf87bF_vAZfm1iYih-iPXCzllGu19bAZ6np_iQNtRHY6N-hA2N9kvpa5a5eXqDTNn8zHqCEX1EaDQ_7I6fOK-AkLGCekxphsE2Iw-OuVqihJvWFRKBjAh5qWzQh9YRhIpWMGkUDjytfhj3JA6MThu-9BhtcuKFNFjE4aAmrKFpDFc_EmGPT3jc0kS7tro53dRv8DduuQuVyr4tuw7dmlqorLh-2F4XaTi5_IZD8n6ZxE27VwJvsVJZyB9Z0dhdu9Jt8d_dgNsxOLflI9p5MT_MiLw-2llibjJbppxwNjUwrelxUZXJ-JgliZ2ITnjYUvCQ35CBXi3lByrjmc4nWXWhyePb985e9_ajb34-IXYDtRTk9vw9HV_LBD2A9yzP9CIjwtGUEFkJSxaXSPURdjGsdIELUnIkOOI16xElN1m5zhnyMK5ppGlu5xa3cOvC6rT-raEr-WHOr0ba4Xq7mMbrRPcs0GGLHL9rHOP_275HMdL7AOr6lR8P1PejAw0pL264YDxDpeLQDtNS1v4wh3pmMh23p8b80eg7Xp4Mofjee7D6Bm9TGpLie4wVbsI5C108RKRbqWWmcBE6uWo1_AGefb6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Photocatalytic+Hydrogen+Production+via+the+Construction+of+Robust+Multivariate+Ti-MOF%2FCOF+Composites&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Cheng-Xia&rft.au=Xiong%2C+Yang-Yang&rft.au=Zhong%2C+Xin&rft.au=Lan%2C+Pui+Ching&rft.date=2022-01-17&rft.eissn=1521-3773&rft.volume=61&rft.issue=3&rft.spage=e202114071&rft_id=info:doi/10.1002%2Fanie.202114071&rft_id=info%3Apmid%2F34780112&rft.externalDocID=34780112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |