Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Ti‐MOF/COF Composites

Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 3; pp. e202114071 - n/a
Main Authors Chen, Cheng‐Xia, Xiong, Yang‐Yang, Zhong, Xin, Lan, Pui Ching, Wei, Zhang‐Wen, Pan, Hongjun, Su, Pei‐Yang, Song, Yujie, Chen, Yi‐Fan, Nafady, Ayman, Sirajuddin, Ma, Shengqian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 17.01.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond. A series of covalently connected multivariate Ti‐MOF/COF hybrid materials were constructed demonstrating outstanding photocatalytic H2 evolution performance with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (TOF=227 h−1), much higher than the prototypical counterparts.
AbstractList Titanium metal-organic frameworks (Ti-MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well-studied photoredox activity (similar to TiO2 ) and good optical responsiveness of linkers, which serve as the antenna to absorb visible-light. Although much effort has been dedicated to developing Ti-MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent-integration strategy to construct a series of multivariate Ti-MOF/COF hybrid materials PdTCPP⊂PCN-415(NH2 )/TpPa (composites 1, 2, and 3), featuring excellent visible-light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible-light-driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g-1  h-1 (turnover frequency (TOF)=227 h-1 ), which is much higher than that of PdTCPP⊂PCN-415(NH2 ) (0.21 mmol g-1  h-1 ) and TpPa (6.51 mmol g-1  h-1 ). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond.Titanium metal-organic frameworks (Ti-MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well-studied photoredox activity (similar to TiO2 ) and good optical responsiveness of linkers, which serve as the antenna to absorb visible-light. Although much effort has been dedicated to developing Ti-MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent-integration strategy to construct a series of multivariate Ti-MOF/COF hybrid materials PdTCPP⊂PCN-415(NH2 )/TpPa (composites 1, 2, and 3), featuring excellent visible-light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible-light-driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g-1  h-1 (turnover frequency (TOF)=227 h-1 ), which is much higher than that of PdTCPP⊂PCN-415(NH2 ) (0.21 mmol g-1  h-1 ) and TpPa (6.51 mmol g-1  h-1 ). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond.
Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO 2 ) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH 2 )/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H 2 production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H 2 evolution performance, especially for the composite 2 with a maximum H 2 evolution rate of 13.98 mmol g −1  h −1 (turnover frequency (TOF)=227 h −1 ), which is much higher than that of PdTCPP⊂PCN‐415(NH 2 ) (0.21 mmol g −1  h −1 ) and TpPa (6.51 mmol g −1  h −1 ). Our work thereby suggests a new approach to highly efficient photocatalysts for H 2 evolution and beyond.
Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond. A series of covalently connected multivariate Ti‐MOF/COF hybrid materials were constructed demonstrating outstanding photocatalytic H2 evolution performance with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (TOF=227 h−1), much higher than the prototypical counterparts.
Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2 production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2 evolution performance, especially for the composite 2 with a maximum H2 evolution rate of 13.98 mmol g−1 h−1 (turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2 evolution and beyond.
Titanium metal-organic frameworks (Ti-MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well-studied photoredox activity (similar to TiO ) and good optical responsiveness of linkers, which serve as the antenna to absorb visible-light. Although much effort has been dedicated to developing Ti-MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent-integration strategy to construct a series of multivariate Ti-MOF/COF hybrid materials PdTCPP⊂PCN-415(NH )/TpPa (composites 1, 2, and 3), featuring excellent visible-light utilization, a suitable band gap, and high surface area for photocatalytic H production. Notably, the resulting composites demonstrated remarkably enhanced visible-light-driven photocatalytic H evolution performance, especially for the composite 2 with a maximum H evolution rate of 13.98 mmol g  h (turnover frequency (TOF)=227 h ), which is much higher than that of PdTCPP⊂PCN-415(NH ) (0.21 mmol g  h ) and TpPa (6.51 mmol g  h ). Our work thereby suggests a new approach to highly efficient photocatalysts for H evolution and beyond.
Author Chen, Cheng‐Xia
Sirajuddin
Lan, Pui Ching
Zhong, Xin
Su, Pei‐Yang
Wei, Zhang‐Wen
Pan, Hongjun
Song, Yujie
Nafady, Ayman
Chen, Yi‐Fan
Xiong, Yang‐Yang
Ma, Shengqian
Author_xml – sequence: 1
  givenname: Cheng‐Xia
  surname: Chen
  fullname: Chen, Cheng‐Xia
  organization: University of North Texas
– sequence: 2
  givenname: Yang‐Yang
  surname: Xiong
  fullname: Xiong, Yang‐Yang
  organization: Sun Yat-sen University
– sequence: 3
  givenname: Xin
  surname: Zhong
  fullname: Zhong, Xin
  organization: Hainan University
– sequence: 4
  givenname: Pui Ching
  surname: Lan
  fullname: Lan, Pui Ching
  organization: University of North Texas
– sequence: 5
  givenname: Zhang‐Wen
  surname: Wei
  fullname: Wei, Zhang‐Wen
  organization: Sun Yat-sen University
– sequence: 6
  givenname: Hongjun
  surname: Pan
  fullname: Pan, Hongjun
  organization: University of North Texas
– sequence: 7
  givenname: Pei‐Yang
  surname: Su
  fullname: Su, Pei‐Yang
  organization: Guangzhou University
– sequence: 8
  givenname: Yujie
  surname: Song
  fullname: Song, Yujie
  organization: Hainan University
– sequence: 9
  givenname: Yi‐Fan
  surname: Chen
  fullname: Chen, Yi‐Fan
  email: chenyifan@hainanu.edu.cn
  organization: Hainan University
– sequence: 10
  givenname: Ayman
  surname: Nafady
  fullname: Nafady, Ayman
  organization: King Saud University
– sequence: 11
  surname: Sirajuddin
  fullname: Sirajuddin
  organization: University of Karachi
– sequence: 12
  givenname: Shengqian
  orcidid: 0000-0002-1897-7069
  surname: Ma
  fullname: Ma, Shengqian
  email: shengqian.ma@unt.edu
  organization: University of North Texas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34780112$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9P2zAYh60JNKDbdccp0i67pPi1kzg5oqodSEDRxM6W49jUKLU72wH1to-wz8gnwVE7JiEhTv6j5_H7-veeoAPrrELoC-ApYExOhTVqSjABKDCDD-gYSgI5ZYwepH1Bac7qEo7QSQj3ia9rXH1ER7RgNQYgx2gztythpbF32c3KRSdFFP02Gpmdbzvv7pTNbrzrBhmNs9mDEVlcqWzmbIh-f-l09tO1Q4jZ1dBH8yC8EVFlt-bpz9-r5eJ0tlwkYb1xwUQVPqFDLfqgPu_XCfq1mN_OzvPL5Y-L2dllLimjkHe60ulHTSVFgVXLGqq7shIUsGZFo8ajbghUmladoES3hEHRlqKpRcG0knSCvu_e3Xj3e1Ah8rUJUvW9sMoNgZOyYTWwOiU1Qd9eofdu8DZ1x0kFNVRjH4n6uqeGdq06vvFmLfyW_8syAdMdIL0LwSv9ggDm47D4OCz-MqwkFK8EaaIYM41emP5trdlpj6ZX23eK8LPri_l_9xmBnKpK
CitedBy_id crossref_primary_10_1039_D3NR02868B
crossref_primary_10_1039_D4TC02938K
crossref_primary_10_1093_rb_rbad115
crossref_primary_10_1021_acsmaterialslett_3c00622
crossref_primary_10_1039_D3CC01970E
crossref_primary_10_1002_anie_202410525
crossref_primary_10_1007_s12274_024_6580_y
crossref_primary_10_1016_j_cej_2024_155194
crossref_primary_10_1002_smtd_202201258
crossref_primary_10_1002_anie_202212243
crossref_primary_10_1021_acs_inorgchem_4c03123
crossref_primary_10_1021_acsami_4c13012
crossref_primary_10_1002_anie_202217897
crossref_primary_10_1039_D4NJ00059E
crossref_primary_10_1002_adma_202413440
crossref_primary_10_1002_anie_202302123
crossref_primary_10_1002_adma_202403328
crossref_primary_10_1002_chem_202302201
crossref_primary_10_1002_anie_202412553
crossref_primary_10_3390_nano14030256
crossref_primary_10_1002_anie_202412279
crossref_primary_10_1039_D3MH01645E
crossref_primary_10_1016_j_ccr_2022_214889
crossref_primary_10_1016_j_ccr_2023_215272
crossref_primary_10_1002_anie_202313358
crossref_primary_10_3390_w14233827
crossref_primary_10_1016_j_cej_2022_137095
crossref_primary_10_1021_acsami_1c18238
crossref_primary_10_1039_D3NA00627A
crossref_primary_10_1002_ange_202319664
crossref_primary_10_1039_D3QM00565H
crossref_primary_10_1007_s12598_023_02505_8
crossref_primary_10_1016_j_xcrp_2023_101657
crossref_primary_10_1039_D4GC05728G
crossref_primary_10_1016_j_ccr_2022_214882
crossref_primary_10_1021_acssuschemeng_3c07466
crossref_primary_10_1002_anie_202319664
crossref_primary_10_1038_s41467_025_57742_5
crossref_primary_10_1039_D3CP04297A
crossref_primary_10_1007_s00396_023_05086_1
crossref_primary_10_1039_D2QM00314G
crossref_primary_10_1186_s11671_024_04019_3
crossref_primary_10_1002_ange_202302123
crossref_primary_10_1007_s40820_023_01180_9
crossref_primary_10_1021_acs_inorgchem_3c02479
crossref_primary_10_1039_D4CC00910J
crossref_primary_10_1002_ange_202313358
crossref_primary_10_1002_smll_202208118
crossref_primary_10_1038_s41467_023_37271_9
crossref_primary_10_1002_anie_202303086
crossref_primary_10_1021_acscatal_4c02738
crossref_primary_10_1021_acs_inorgchem_4c00666
crossref_primary_10_1039_D2TA04073E
crossref_primary_10_1021_jacs_5c00686
crossref_primary_10_1049_tje2_12247
crossref_primary_10_1007_s11356_023_30258_5
crossref_primary_10_1515_revce_2024_0088
crossref_primary_10_1039_D3QM00965C
crossref_primary_10_1039_D3DT02719H
crossref_primary_10_3390_molecules29245834
crossref_primary_10_1002_ange_202410525
crossref_primary_10_3390_nano14070643
crossref_primary_10_1021_acsanm_2c00831
crossref_primary_10_3390_catal12111350
crossref_primary_10_1016_j_seppur_2023_124040
crossref_primary_10_1039_D3TA03079B
crossref_primary_10_1002_chem_202401122
crossref_primary_10_1021_acsnano_4c18724
crossref_primary_10_12677_MS_2023_133013
crossref_primary_10_1016_j_ccr_2024_215995
crossref_primary_10_1016_j_jcis_2023_12_109
crossref_primary_10_1039_D3GC00337J
crossref_primary_10_1002_ange_202303086
crossref_primary_10_1039_D2CE01296K
crossref_primary_10_1002_adfm_202207394
crossref_primary_10_1002_advs_202302109
crossref_primary_10_1002_aoc_7549
crossref_primary_10_1002_inf2_12646
crossref_primary_10_1016_j_ccr_2022_214664
crossref_primary_10_1039_D2CC06948B
crossref_primary_10_1002_elan_202300091
crossref_primary_10_1039_D2TA00198E
crossref_primary_10_1039_D3QM00188A
crossref_primary_10_1002_ange_202217897
crossref_primary_10_1002_marc_202200108
crossref_primary_10_1016_j_cej_2022_137873
crossref_primary_10_1039_D2TA06050G
crossref_primary_10_1002_ange_202212243
crossref_primary_10_1002_cey2_344
crossref_primary_10_1002_ange_202412553
crossref_primary_10_1002_adfm_202203224
crossref_primary_10_1021_acs_inorgchem_2c04471
crossref_primary_10_1002_ange_202412279
crossref_primary_10_1002_smll_202305767
crossref_primary_10_1021_acsanm_4c05747
crossref_primary_10_1002_cctc_202300414
Cites_doi 10.1002/ange.201904058
10.1039/C5TA09323F
10.1039/C6TC01762B
10.1021/acs.chemrev.6b00396
10.1016/j.apcatb.2018.02.055
10.1002/anie.202104870
10.1002/adma.201102752
10.1002/adfm.201707110
10.1021/ja308278w
10.1126/science.1062965
10.1016/j.ijhydene.2021.02.176
10.1021/acssuschemeng.8b05352
10.1002/chem.201403800
10.1038/s41929-019-0242-6
10.1002/ange.201611137
10.1021/ja4030963
10.1002/anie.201806862
10.1039/C4CS00180J
10.1039/C4NR07224C
10.1021/cr050193e
10.1021/acscatal.6b01293
10.1002/anie.202000158
10.1016/j.apcatb.2017.01.040
10.1002/anie.201603990
10.1021/jacsau.0c00082
10.1016/j.ccr.2014.12.005
10.1021/jo051580r
10.1002/anie.202008408
10.1002/ange.201602274
10.1039/C5CS00448A
10.1007/s00897990360a
10.1039/C2CS35072F
10.1002/adma.201705666
10.1038/s41557-018-0141-5
10.1002/ange.201603990
10.1002/adma.201705112
10.1016/j.apsusc.2019.03.171
10.1002/ange.201600431
10.1002/aenm.201702142
10.1002/ange.201904766
10.1021/cr500008u
10.1002/ange.201800817
10.1016/j.cej.2020.125080
10.1002/anie.202007193
10.1002/ange.201806077
10.1038/s41467-021-21527-3
10.1039/C4TA02873B
10.1002/anie.201711725
10.1073/pnas.0603395103
10.1039/C6CS00436A
10.1002/ange.202000158
10.1002/anie.201806077
10.1039/C5SC00916B
10.1002/anie.202014408
10.1002/anie.201602274
10.1021/acs.chemmater.6b01894
10.1002/ange.202008408
10.1039/C8CS00443A
10.1002/anie.201904058
10.1002/anie.201600431
10.1021/acscentsci.7b00497
10.1002/ange.202007193
10.1002/ange.202014408
10.1002/anie.201800817
10.1002/aenm.202003303
10.1002/anie.201611137
10.1021/acs.inorgchem.1c00041
10.1002/ange.201806862
10.1039/C8CS00978C
10.1039/C7CS00511C
10.1039/C9TA01942A
10.1039/C7TA00437K
10.1002/ange.201711725
10.2147/NSA.S9040
10.1039/C9SC01866B
10.1080/14686996.2017.1375376
10.1021/jacs.0c00054
10.1002/ange.202104870
10.1016/j.apcatb.2016.05.074
10.1002/anie.201904766
10.1021/ja405350u
10.1039/C9SC06500H
10.1039/D0TA03749D
10.1021/ja903726m
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202114071
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 34780112
10_1002_anie_202114071
ANIE202114071
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22001271, 21806027
– fundername: International Postdoctoral Exchange Fellowship Program
  funderid: 20180055
– fundername: Chinese Postdoctoral Science Foundation
  funderid: 2017M622866
– fundername: Division of Electrical, Communications and Cyber Systems
  funderid: ECCS-2029800
– fundername: King Saud University
  funderid: RSP-2021/79
– fundername: Welch Foundation
  funderid: B-0027
– fundername: National Natural Science Foundation of China
  grantid: 22001271, 21806027
– fundername: Welch Foundation
  grantid: B-0027
– fundername: Division of Electrical, Communications and Cyber Systems
  grantid: ECCS-2029800
– fundername: International Postdoctoral Exchange Fellowship Program
  grantid: 20180055
– fundername: King Saud University
  grantid: RSP-2021/79
– fundername: Chinese Postdoctoral Science Foundation
  grantid: 2017M622866
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3731-df6f40796ca40eb793fd56a310f749e93fdf9216f36da32fb2714b5a98a47fec3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 18:13:21 EDT 2025
Fri Jul 25 12:07:26 EDT 2025
Wed Feb 19 02:26:48 EST 2025
Thu Apr 24 23:03:06 EDT 2025
Tue Jul 01 01:18:12 EDT 2025
Wed Jan 22 16:27:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords covalent connecting junctions
hybrid materials
covalent organic frameworks
multivariate Ti-MOFs
metal-organic frameworks
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-df6f40796ca40eb793fd56a310f749e93fdf9216f36da32fb2714b5a98a47fec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1897-7069
PMID 34780112
PQID 2618160796
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2597817877
proquest_journals_2618160796
pubmed_primary_34780112
crossref_primary_10_1002_anie_202114071
crossref_citationtrail_10_1002_anie_202114071
wiley_primary_10_1002_anie_202114071_ANIE202114071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 17, 2022
PublicationDateYYYYMMDD 2022-01-17
PublicationDate_xml – month: 01
  year: 2022
  text: January 17, 2022
  day: 17
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2007; 107
2000; 5
2019; 10
2017; 46
2020 2020; 59 132
2020; 11
2019; 481
2018; 47
2017; 117
2014; 20
2020; 8
2018; 8
2001; 293
2012; 134
2018; 4
2018 2018; 57 130
2016; 198
2018; 30
2005; 70
2012; 24
2016; 45
2017; 206
2019; 7
2021; 46
2018; 28
2015; 6
2015; 3
2019; 2
2020; 142
2015; 287
2013; 42
2017 2017; 56 129
2009; 131
2011; 4
2021; 1
2015; 7
2014; 114
2019 2019; 58 131
2014; 43
2016; 4
2016; 6
2018; 231
2016 2016; 55 128
2021; 12
2021; 11
2021
2020; 395
2019; 48
2021 2021; 60 133
2013; 135
2017; 18
2016; 28
2021; 60
2018; 10
2006; 103
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_30_3
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_53_3
e_1_2_6_38_2
e_1_2_6_76_2
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_83_2
e_1_2_6_64_2
e_1_2_6_41_3
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_9_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_26_1
e_1_2_6_31_2
e_1_2_6_50_1
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_54_3
e_1_2_6_77_1
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_61_3
e_1_2_6_84_1
e_1_2_6_42_2
e_1_2_6_80_2
e_1_2_6_6_1
e_1_2_6_46_3
e_1_2_6_23_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_65_3
e_1_2_6_46_2
e_1_2_6_51_2
e_1_2_6_74_2
e_1_2_6_70_3
e_1_2_6_70_2
e_1_2_6_59_1
e_1_2_6_13_2
e_1_2_6_32_2
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_55_2
e_1_2_6_36_2
e_1_2_6_85_1
e_1_2_6_62_2
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_81_3
e_1_2_6_81_2
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_24_2
e_1_2_6_28_2
e_1_2_6_66_1
e_1_2_6_47_1
e_1_2_6_71_3
Lin C. (e_1_2_6_73_2) 2021
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_52_3
e_1_2_6_71_2
e_1_2_6_18_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_79_2
e_1_2_6_63_2
e_1_2_6_86_1
e_1_2_6_40_2
e_1_2_6_82_2
e_1_2_6_8_2
e_1_2_6_4_2
e_1_2_6_25_1
e_1_2_6_48_2
e_1_2_6_48_3
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_2
References_xml – volume: 58 131
  start-page: 10198 10304
  year: 2019 2019
  end-page: 10203 10309
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 6411 6521
  year: 2016 2016
  end-page: 6416 6526
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 287
  start-page: 1
  year: 2015
  end-page: 14
  publication-title: Coord. Chem. Rev.
– volume: 45
  start-page: 3701
  year: 2016
  end-page: 3730
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 6772
  year: 2016
  end-page: 6801
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 3988
  year: 2021
  end-page: 3995
  publication-title: Inorg. Chem.
– volume: 198
  start-page: 286
  year: 2016
  end-page: 294
  publication-title: Appl. Catal. B
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  publication-title: Chem. Soc. Rev.
– volume: 60 133
  start-page: 1869 1897
  year: 2021 2021
  end-page: 1874 1902
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 114
  start-page: 9987
  year: 2014
  end-page: 10043
  publication-title: Chem. Rev.
– volume: 7
  start-page: 11928
  year: 2019
  end-page: 11933
  publication-title: J. Mater. Chem. A
– volume: 59 132
  start-page: 19602 19770
  year: 2020 2020
  end-page: 19609 19777
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 19524
  year: 2012
  end-page: 19527
  publication-title: J. Am. Chem. Soc.
– volume: 70
  start-page: 9562
  year: 2005
  end-page: 9572
  publication-title: J. Org. Chem.
– volume: 10
  start-page: 10577
  year: 2019
  end-page: 10585
  publication-title: Chem. Sci.
– volume: 142
  start-page: 4862
  year: 2020
  end-page: 4871
  publication-title: J. Am. Chem. Soc.
– volume: 293
  start-page: 1639
  year: 2001
  end-page: 1641
  publication-title: Science
– volume: 43
  start-page: 6920
  year: 2014
  end-page: 6937
  publication-title: Chem. Soc. Rev.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 56 129
  start-page: 816 834
  year: 2017 2017
  end-page: 820 838
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 15245
  year: 2020
  end-page: 15270
  publication-title: J. Mater. Chem. A
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 11854
  year: 2017
  end-page: 11863
  publication-title: J. Mater. Chem. A
– volume: 60 133
  start-page: 19797 19950
  year: 2021 2021
  end-page: 19803 19956
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 35
  year: 2011
  end-page: 65
  publication-title: Nanotechnol. Sci. Appl.
– volume: 55 128
  start-page: 6471 6581
  year: 2016 2016
  end-page: 6475 6585
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 49
  year: 2000
  end-page: 53
  publication-title: Chem. Educ.
– volume: 46
  start-page: 603
  year: 2017
  end-page: 631
  publication-title: Chem. Soc. Rev.
– volume: 206
  start-page: 426
  year: 2017
  end-page: 433
  publication-title: Appl. Catal. B
– volume: 7
  start-page: 4868
  year: 2019
  end-page: 4877
  publication-title: ACS Sustainable Chem. Eng.
– volume: 47
  start-page: 404
  year: 2018
  end-page: 421
  publication-title: Chem. Soc. Rev.
– volume: 47
  start-page: 8203
  year: 2018
  end-page: 8237
  publication-title: Chem. Soc. Rev.
– volume: 395
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 55 128
  start-page: 9389 9535
  year: 2016 2016
  end-page: 9393 9539
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 9512 9612
  year: 2019 2019
  end-page: 9516 9616
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 3493 3551
  year: 2018 2018
  end-page: 3498 3556
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 212
  year: 2021
  end-page: 220
  publication-title: JACS Au
– volume: 46
  start-page: 17666
  year: 2021
  end-page: 17676
  publication-title: Int. J. Hydrogen Energy
– volume: 24
  start-page: 229
  year: 2012
  end-page: 251
  publication-title: Adv. Mater.
– volume: 135
  start-page: 10942
  year: 2013
  end-page: 10945
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 5191
  year: 2016
  end-page: 5204
  publication-title: Chem. Mater.
– volume: 6
  start-page: 5359
  year: 2016
  end-page: 5365
  publication-title: ACS Catal.
– volume: 18
  start-page: 705
  year: 2017
  end-page: 723
  publication-title: Sci. Technol. Adv. Mater.
– volume: 28
  start-page: 1707110
  year: 2018
  end-page: 1707116
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1180
  year: 2018
  end-page: 1189
  publication-title: Nat. Chem.
– volume: 30
  start-page: 1705112
  year: 2018
  end-page: 1705118
  publication-title: Adv. Mater.
– volume: 59 132
  start-page: 13468 13570
  year: 2020 2020
  end-page: 13472 13574
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 21591 21775
  year: 2020 2020
  end-page: 21596 21780
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 3903
  year: 2019
  end-page: 3945
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 10206
  year: 2013
  end-page: 10209
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 3748
  year: 2015
  end-page: 3756
  publication-title: J. Mater. Chem. A
– volume: 107
  start-page: 4022
  year: 2007
  end-page: 4047
  publication-title: Chem. Rev.
– volume: 481
  start-page: 669
  year: 2019
  end-page: 677
  publication-title: Appl. Surf. Sci.
– volume: 103
  start-page: 15729
  year: 2006
  end-page: 15735
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 57 130
  start-page: 12106 12282
  year: 2018 2018
  end-page: 12110 12286
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 387
  year: 2019
  end-page: 399
  publication-title: Nat. Catal.
– volume: 131
  start-page: 10857
  year: 2009
  end-page: 10859
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 9864 10012
  year: 2018 2018
  end-page: 9869 10017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 1354
  year: 2021
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3978
  year: 2020
  end-page: 3985
  publication-title: Chem. Sci.
– volume: 57 130
  start-page: 1103 1115
  year: 2018 2018
  end-page: 1107 1119
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 1445
  year: 2017
  end-page: 1514
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 105
  year: 2018
  end-page: 111
  publication-title: ACS Cent. Sci.
– volume: 4
  start-page: 9581
  year: 2016
  end-page: 9587
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 3926
  year: 2015
  end-page: 3930
  publication-title: Chem. Sci.
– volume: 7
  start-page: 8187
  year: 2015
  end-page: 8208
  publication-title: Nanoscale
– volume: 231
  start-page: 173
  year: 2018
  end-page: 181
  publication-title: Appl. Catal. B
– volume: 20
  start-page: 15961
  year: 2014
  end-page: 15965
  publication-title: Chem. Eur. J.
– ident: e_1_2_6_61_3
  doi: 10.1002/ange.201904058
– ident: e_1_2_6_23_2
  doi: 10.1039/C5TA09323F
– ident: e_1_2_6_62_2
  doi: 10.1039/C6TC01762B
– ident: e_1_2_6_8_2
  doi: 10.1021/acs.chemrev.6b00396
– ident: e_1_2_6_29_1
– ident: e_1_2_6_60_2
  doi: 10.1016/j.apcatb.2018.02.055
– ident: e_1_2_6_70_2
  doi: 10.1002/anie.202104870
– ident: e_1_2_6_59_1
– ident: e_1_2_6_13_2
  doi: 10.1002/adma.201102752
– ident: e_1_2_6_51_2
  doi: 10.1002/adfm.201707110
– ident: e_1_2_6_76_2
  doi: 10.1021/ja308278w
– ident: e_1_2_6_11_2
  doi: 10.1126/science.1062965
– ident: e_1_2_6_44_1
– ident: e_1_2_6_82_2
  doi: 10.1016/j.ijhydene.2021.02.176
– ident: e_1_2_6_35_2
  doi: 10.1021/acssuschemeng.8b05352
– ident: e_1_2_6_74_2
  doi: 10.1002/chem.201403800
– ident: e_1_2_6_47_1
– ident: e_1_2_6_2_2
  doi: 10.1038/s41929-019-0242-6
– ident: e_1_2_6_30_3
  doi: 10.1002/ange.201611137
– ident: e_1_2_6_14_2
  doi: 10.1021/ja4030963
– ident: e_1_2_6_52_2
  doi: 10.1002/anie.201806862
– ident: e_1_2_6_24_2
  doi: 10.1039/C4CS00180J
– ident: e_1_2_6_50_1
– ident: e_1_2_6_9_1
– ident: e_1_2_6_85_1
  doi: 10.1039/C4NR07224C
– ident: e_1_2_6_10_2
  doi: 10.1021/cr050193e
– ident: e_1_2_6_18_2
  doi: 10.1021/acscatal.6b01293
– ident: e_1_2_6_41_2
  doi: 10.1002/anie.202000158
– ident: e_1_2_6_58_2
  doi: 10.1016/j.apcatb.2017.01.040
– ident: e_1_2_6_84_1
  doi: 10.1002/anie.201603990
– ident: e_1_2_6_12_1
– ident: e_1_2_6_80_2
  doi: 10.1021/jacsau.0c00082
– ident: e_1_2_6_19_2
  doi: 10.1016/j.ccr.2014.12.005
– ident: e_1_2_6_63_2
  doi: 10.1021/jo051580r
– ident: e_1_2_6_34_1
– ident: e_1_2_6_54_2
  doi: 10.1002/anie.202008408
– ident: e_1_2_6_77_2
  doi: 10.1002/ange.201602274
– ident: e_1_2_6_33_2
  doi: 10.1039/C5CS00448A
– ident: e_1_2_6_86_1
  doi: 10.1007/s00897990360a
– ident: e_1_2_6_67_2
  doi: 10.1039/C2CS35072F
– ident: e_1_2_6_21_2
  doi: 10.1002/adma.201705666
– ident: e_1_2_6_69_2
  doi: 10.1038/s41557-018-0141-5
– ident: e_1_2_6_84_2
  doi: 10.1002/ange.201603990
– ident: e_1_2_6_56_1
– ident: e_1_2_6_64_2
  doi: 10.1002/adma.201705112
– ident: e_1_2_6_16_2
  doi: 10.1016/j.apsusc.2019.03.171
– ident: e_1_2_6_81_3
  doi: 10.1002/ange.201600431
– ident: e_1_2_6_78_1
– ident: e_1_2_6_17_1
– ident: e_1_2_6_31_2
  doi: 10.1002/aenm.201702142
– ident: e_1_2_6_53_3
  doi: 10.1002/ange.201904766
– ident: e_1_2_6_22_2
  doi: 10.1021/cr500008u
– ident: e_1_2_6_65_3
  doi: 10.1002/ange.201800817
– ident: e_1_2_6_42_2
  doi: 10.1016/j.cej.2020.125080
– ident: e_1_2_6_48_2
  doi: 10.1002/anie.202007193
– ident: e_1_2_6_46_3
  doi: 10.1002/ange.201806077
– ident: e_1_2_6_72_2
  doi: 10.1038/s41467-021-21527-3
– ident: e_1_2_6_28_2
  doi: 10.1039/C4TA02873B
– ident: e_1_2_6_55_1
  doi: 10.1002/anie.201711725
– ident: e_1_2_6_3_2
  doi: 10.1073/pnas.0603395103
– ident: e_1_2_6_7_2
  doi: 10.1039/C6CS00436A
– year: 2021
  ident: e_1_2_6_73_2
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_6_41_3
  doi: 10.1002/ange.202000158
– ident: e_1_2_6_46_2
  doi: 10.1002/anie.201806077
– ident: e_1_2_6_49_2
  doi: 10.1039/C5SC00916B
– ident: e_1_2_6_71_2
  doi: 10.1002/anie.202014408
– ident: e_1_2_6_77_1
  doi: 10.1002/anie.201602274
– ident: e_1_2_6_15_2
  doi: 10.1021/acs.chemmater.6b01894
– ident: e_1_2_6_54_3
  doi: 10.1002/ange.202008408
– ident: e_1_2_6_66_1
– ident: e_1_2_6_4_2
  doi: 10.1039/C8CS00443A
– ident: e_1_2_6_61_2
  doi: 10.1002/anie.201904058
– ident: e_1_2_6_81_2
  doi: 10.1002/anie.201600431
– ident: e_1_2_6_6_1
– ident: e_1_2_6_36_2
  doi: 10.1021/acscentsci.7b00497
– ident: e_1_2_6_20_1
– ident: e_1_2_6_26_1
– ident: e_1_2_6_48_3
  doi: 10.1002/ange.202007193
– ident: e_1_2_6_71_3
  doi: 10.1002/ange.202014408
– ident: e_1_2_6_1_1
– ident: e_1_2_6_65_2
  doi: 10.1002/anie.201800817
– ident: e_1_2_6_5_2
  doi: 10.1002/aenm.202003303
– ident: e_1_2_6_30_2
  doi: 10.1002/anie.201611137
– ident: e_1_2_6_83_2
  doi: 10.1021/acs.inorgchem.1c00041
– ident: e_1_2_6_52_3
  doi: 10.1002/ange.201806862
– ident: e_1_2_6_68_2
  doi: 10.1039/C8CS00978C
– ident: e_1_2_6_43_1
  doi: 10.1039/C7CS00511C
– ident: e_1_2_6_40_2
  doi: 10.1039/C9TA01942A
– ident: e_1_2_6_57_2
  doi: 10.1039/C7TA00437K
– ident: e_1_2_6_55_2
  doi: 10.1002/ange.201711725
– ident: e_1_2_6_25_1
  doi: 10.2147/NSA.S9040
– ident: e_1_2_6_79_2
  doi: 10.1039/C9SC01866B
– ident: e_1_2_6_27_2
  doi: 10.1080/14686996.2017.1375376
– ident: e_1_2_6_75_2
  doi: 10.1021/jacs.0c00054
– ident: e_1_2_6_70_3
  doi: 10.1002/ange.202104870
– ident: e_1_2_6_32_2
  doi: 10.1016/j.apcatb.2016.05.074
– ident: e_1_2_6_53_2
  doi: 10.1002/anie.201904766
– ident: e_1_2_6_45_2
  doi: 10.1021/ja405350u
– ident: e_1_2_6_39_2
  doi: 10.1039/C9SC06500H
– ident: e_1_2_6_38_2
  doi: 10.1039/D0TA03749D
– ident: e_1_2_6_37_2
  doi: 10.1021/ja903726m
SSID ssj0028806
Score 2.6667244
Snippet Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy...
Titanium metal-organic frameworks (Ti-MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202114071
SubjectTerms Catalytic activity
Composite materials
covalent connecting junctions
covalent organic frameworks
Energy conversion
Evolution
hybrid materials
Hydrogen evolution
Hydrogen production
Metal-organic frameworks
Multivariate analysis
multivariate Ti-MOFs
Photocatalysis
Photocatalysts
Photovoltaic cells
Solar energy
Solar energy conversion
Titanium
Titanium dioxide
Title Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Ti‐MOF/COF Composites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202114071
https://www.ncbi.nlm.nih.gov/pubmed/34780112
https://www.proquest.com/docview/2618160796
https://www.proquest.com/docview/2597817877
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFA7ii764Xnbd8UYEYZ_iNJem00cZZhgFL4iCbyVpk1WUVpwZQZ_8Cf5Gf4nntNPqKIuwPpYmJM255DtpzncI2fHKhNxbCEtS45nKUsds4AIGm7fxWZZyU3J3Hh7pwbk6uAgv3mXxV_wQzYEbWkbpr9HAjR2230hDMQMb4jsIYDAmASeMF7YQFZ02_FEClLNKL5KSYRX6mrUxEO3p7tO70ieoOY1cy62n_4OYetLVjZPr3fHI7qaPH_gcv_NVi2RhgkvpXqVIS2TG5ctkrluXg1sht738Erk58r_05LIYFeW5zwO0poOH7K4APaQnFXssSJreXxkK0JJiPdCaoZYWnp4Wdjwc0TLt9x7CdEC69Ozq5en58Ljf7h73KfonvEfmhj_Jeb931h2wSbkGlspIcpZ57WHSMUhdBc6C4fss1Abwo49U7PDRx4JrL3VmpPBWRFzZ0MQdoyLvUvmLzOZF7n4TqrlDwlytjbDKWNcBUCKVcxEAKKekbhFWiytJJ1zmWFLjJqlYmEWC65g069gif5r2txWLxz9bbtTSTybWPEwgyuwgEV8MA283r2H98eeKyV0xhjYhsoeB-4taZLXSmmYoqSIAAly0iChl_8Uckr2j_V7ztPY_ndbJvMA8jYAzHm2QWZC02wT0NLJbpYW8AsHyElw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8WChgJxCndxHaSzYFDtd3VLu1uq2or9RbsxKZVq6Ris0XLiUfgVXgVHoEnYSZ_aEEICakHjlbs2PHM2N84nm8AXlqpfM9qdEsSZR2ZJsbRrnEd3LyVTdPEUyV352QajI7k22P_eA2-NrEwFT9Ee-BGllGu12TgdCDd_ckaSiHY6OChB0NOSX2vctcsP6LXNn8z3kERv-J8OJj1R06dWMBJRCg8J7WBxTYRjk-6RqOK2tQPFCIdG8rIUNFG3AusCFIluNU89KT2VdRTMrQmEfjea3Cd0ogTXf_OYctYxdEcqoAmIRzKe9_wRLq8uzre1X3wN3C7ipXLzW54C74101TdcTnbWhR6K_n0C4PkfzWPt-FmDb3ZdmUrd2DNZHdho99kvLsHF4PshOhHsvfs4CQv8vJoa4m12WiZfsjR1NhBRZCLyswuTxVD9Mwo5WlDwstyyw5zvZgXrIxsvlRo34Vhs9Pvn79M9ofd_v6Q0RJMV-XM_D4cXckHP4D1LM_MI2CBZ4gTOAgU11Jp00PcJaQxIWJEI0XQAafRjzip6dopa8h5XBFN85jkFrdy68Drtv5FRVTyx5qbjbrF9YI1j9GR7hHXYIQdv2gf4_zT_yOVmXyBdXwiSMMVPuzAw0pN266EDBHreLwDvFS2v4wh3p6OB23p8b80eg4bo9lkL94bT3efwA1OYSmu53jhJqyj1M1TBIuFflaaJ4N3V63HPwBF5XD1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVgIuUP4XChgJxCndxHaczYFDtbvRLqXbVdVKvaV2YtMKlKzYbKvtiUfgUXgVXoEnYZw_tCCEhNQDRyt27Hhm7G8czzcALw2XvmcUuiWJNA5PE-0oV7sObt7SpGniyZK7c28iRkf87bF_vAZfm1iYih-iPXCzllGu19bAZ6np_iQNtRHY6N-hA2N9kvpa5a5eXqDTNn8zHqCEX1EaDQ_7I6fOK-AkLGCekxphsE2Iw-OuVqihJvWFRKBjAh5qWzQh9YRhIpWMGkUDjytfhj3JA6MThu-9BhtcuKFNFjE4aAmrKFpDFc_EmGPT3jc0kS7tro53dRv8DduuQuVyr4tuw7dmlqorLh-2F4XaTi5_IZD8n6ZxE27VwJvsVJZyB9Z0dhdu9Jt8d_dgNsxOLflI9p5MT_MiLw-2llibjJbppxwNjUwrelxUZXJ-JgliZ2ITnjYUvCQ35CBXi3lByrjmc4nWXWhyePb985e9_ajb34-IXYDtRTk9vw9HV_LBD2A9yzP9CIjwtGUEFkJSxaXSPURdjGsdIELUnIkOOI16xElN1m5zhnyMK5ppGlu5xa3cOvC6rT-raEr-WHOr0ba4Xq7mMbrRPcs0GGLHL9rHOP_275HMdL7AOr6lR8P1PejAw0pL264YDxDpeLQDtNS1v4wh3pmMh23p8b80eg7Xp4Mofjee7D6Bm9TGpLie4wVbsI5C108RKRbqWWmcBE6uWo1_AGefb6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Photocatalytic+Hydrogen+Production+via+the+Construction+of+Robust+Multivariate+Ti-MOF%2FCOF+Composites&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Cheng-Xia&rft.au=Xiong%2C+Yang-Yang&rft.au=Zhong%2C+Xin&rft.au=Lan%2C+Pui+Ching&rft.date=2022-01-17&rft.eissn=1521-3773&rft.volume=61&rft.issue=3&rft.spage=e202114071&rft_id=info:doi/10.1002%2Fanie.202114071&rft_id=info%3Apmid%2F34780112&rft.externalDocID=34780112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon