Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme‐Mimicking Activity of Nanomaterials

Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme‐mimicking activity. Localized surface plasmon resonance (LSPR), a nano...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 49; pp. e2204131 - n/a
Main Authors Xu, Guopeng, Du, Xuancheng, Wang, Weijie, Qu, Yuanyuan, Liu, Xiangdong, Zhao, Mingwen, Li, Weifeng, Li, Yong‐Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme‐mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme‐mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near‐field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme‐mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications. Plasmonic nanozymes (PNzymes), the “beautiful and incredible” encounter between nanozymes and localized surface plasmon resonance effects, and their catalytic mechanisms, bioapplications as well as current challenges and further perspectives are systematically summarized and discussed. It is anticipated that this review will provide new insights into the design of powerful nanocatalysts for biomedical applications.
AbstractList Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme‐mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme‐mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near‐field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme‐mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications.
Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme‐mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme‐mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near‐field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme‐mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications. Plasmonic nanozymes (PNzymes), the “beautiful and incredible” encounter between nanozymes and localized surface plasmon resonance effects, and their catalytic mechanisms, bioapplications as well as current challenges and further perspectives are systematically summarized and discussed. It is anticipated that this review will provide new insights into the design of powerful nanocatalysts for biomedical applications.
Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme-mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme-mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near-field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme-mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications.Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme-mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme-mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near-field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme-mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications.
Author Liu, Xiangdong
Li, Yong‐Qiang
Zhao, Mingwen
Xu, Guopeng
Du, Xuancheng
Qu, Yuanyuan
Wang, Weijie
Li, Weifeng
Author_xml – sequence: 1
  givenname: Guopeng
  surname: Xu
  fullname: Xu, Guopeng
  organization: Shandong University
– sequence: 2
  givenname: Xuancheng
  surname: Du
  fullname: Du, Xuancheng
  organization: Shandong University
– sequence: 3
  givenname: Weijie
  surname: Wang
  fullname: Wang, Weijie
  organization: Shandong University
– sequence: 4
  givenname: Yuanyuan
  surname: Qu
  fullname: Qu, Yuanyuan
  organization: Shandong University
– sequence: 5
  givenname: Xiangdong
  surname: Liu
  fullname: Liu, Xiangdong
  organization: Shandong University
– sequence: 6
  givenname: Mingwen
  surname: Zhao
  fullname: Zhao, Mingwen
  organization: Shandong University
– sequence: 7
  givenname: Weifeng
  surname: Li
  fullname: Li, Weifeng
  organization: Shandong University
– sequence: 8
  givenname: Yong‐Qiang
  orcidid: 0000-0003-1551-3020
  surname: Li
  fullname: Li, Yong‐Qiang
  email: yqli@sdu.edu.cn
  organization: Shandong Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36161698$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNU7IfeeikBb7zZNR-zMxPvaqkfMFWxvR_OZk5qaiapSaayBcGf4G_0l5h11xUK4tU5JM9zTsh7SPZ88EjIY87mnDHxPI3OzQUTglVc8nvkgNdczupWqL1dz9k-OUzpijHJRdU8IPuyLle1ag_Itw8O0hi81fQd-HC7GjG9oB3eYIRL6y9pFzQ4e4sDPZ-iAY10a9CPmIIHX05yoC9DSJnmT0hP_XrIz-8_zuxo9ef1jGOd7Y3NKxrM7y0jZIwWXHpI7ptS8NG2HpGLV6cXJ29m3fvXb0-Ou5mWjeSzQavWVMMADV-CKp3SwPXAlwKRGwZqoQbUDQcFC9OCwaVkymCFAzNtq-URebYZex3DlwlT7kebNDoHHsOUetHwtpZKCV7Qp3fQqzBFXx5XqKpRTbVgi0I92VLTcsShv452hLjq__xrAeYbQMeQUkSzQzjr18H16-D6XXBFqO4I2mbINvgcwbp_a2qjfbUOV_9Z0p-fdd1f9xf1r7Fb
CitedBy_id crossref_primary_10_1002_advs_202207342
crossref_primary_10_1002_smll_202304082
crossref_primary_10_1016_j_inoche_2024_112173
crossref_primary_10_1039_D3TB00803G
crossref_primary_10_1021_acs_analchem_4c06134
crossref_primary_10_1016_j_bios_2025_117258
crossref_primary_10_1002_adma_202301810
crossref_primary_10_1021_acsnano_3c12201
crossref_primary_10_1021_acs_analchem_4c04651
crossref_primary_10_1021_acsami_3c03332
crossref_primary_10_1016_j_bios_2024_116847
crossref_primary_10_1016_j_actbio_2023_08_055
crossref_primary_10_1021_acs_analchem_3c02366
crossref_primary_10_1039_D3NR03327A
crossref_primary_10_1016_j_cej_2024_155533
crossref_primary_10_1016_j_cej_2025_160108
crossref_primary_10_1007_s12274_023_6110_3
crossref_primary_10_1002_adfm_202312753
crossref_primary_10_1002_smll_202302023
crossref_primary_10_1016_j_snb_2024_136012
crossref_primary_10_1002_adfm_202300818
crossref_primary_10_3389_fbioe_2023_1168750
crossref_primary_10_1039_D3NR05592B
crossref_primary_10_1002_adom_202401318
crossref_primary_10_3390_photonics11030235
crossref_primary_10_1007_s11468_023_02109_z
crossref_primary_10_1021_acsanm_4c02446
crossref_primary_10_1016_j_cej_2023_142961
crossref_primary_10_1016_j_cej_2023_146329
crossref_primary_10_1038_s41467_024_50344_7
crossref_primary_10_1016_j_aca_2024_342892
crossref_primary_10_1021_acs_est_3c05922
crossref_primary_10_1002_adhm_202401179
crossref_primary_10_1021_acsbiomaterials_4c00929
crossref_primary_10_1021_acsnano_2c11550
crossref_primary_10_1016_j_jmrt_2023_12_100
crossref_primary_10_1016_j_optlastec_2025_112636
crossref_primary_10_1021_acsnano_3c04134
crossref_primary_10_1016_j_chphi_2023_100414
crossref_primary_10_3390_molecules29143376
crossref_primary_10_1016_j_ijbiomac_2025_139704
crossref_primary_10_1002_cssc_202402436
crossref_primary_10_1016_j_microc_2024_111682
crossref_primary_10_1021_acsami_4c03105
crossref_primary_10_1360_SSC_2024_0042
crossref_primary_10_1016_j_snb_2025_137378
crossref_primary_10_1002_smm2_1243
Cites_doi 10.1038/s41563-020-00858-4
10.1002/smll.201602366
10.1016/j.nantod.2020.101005
10.1039/D0CC06925F
10.1021/acs.accounts.1c00682
10.1016/j.ijhydene.2021.06.142
10.1016/j.trac.2018.05.012
10.1002/adma.202107088
10.1002/anie.201908289
10.1039/C9CS00313D
10.1038/s41467-020-16544-7
10.1038/ncomms6301
10.1021/acs.analchem.9b00512
10.1021/cm802753j
10.1021/acsami.1c01943
10.1039/C8CS00457A
10.1146/annurev.physchem.58.032806.104607
10.1016/j.bioactmat.2021.04.024
10.1002/lpor.200810003
10.1002/anie.201905645
10.1039/C7CS00471K
10.1021/ar800028j
10.1080/01442350050034180
10.1021/acs.chemrev.7b00613
10.1002/adfm.201503670
10.1021/acs.nanolett.9b01595
10.1002/adma.202002439
10.1002/smll.202102342
10.1038/nnano.2007.260
10.1007/s40820-021-00752-x
10.1016/j.biomaterials.2021.121088
10.1021/ar400250z
10.1021/acscatal.1c00164
10.1016/j.ccr.2019.213092
10.1021/acsami.1c07181
10.1016/j.cej.2021.130639
10.1039/D0AN00389A
10.1021/ar400086e
10.1039/C6CS00450D
10.1016/j.nantod.2020.100920
10.1039/c3gc40450a
10.1021/acsnano.8b05200
10.1016/j.jiec.2022.01.030
10.1002/anie.202101924
10.1021/acs.chemmater.8b02365
10.1021/nl104005n
10.1007/s12274-020-2818-5
10.1016/j.nantod.2020.100935
10.1016/j.bios.2021.113327
10.1039/D0MH01535K
10.1021/acs.nanolett.7b00992
10.1038/s41467-018-03617-x
10.1002/andp.19123420503
10.1016/j.ccr.2021.213934
10.1039/D1CS00237F
10.1002/chem.201002665
10.1039/D1BM01406D
10.1016/j.snb.2019.02.065
10.1039/D1SC01760H
10.1002/anie.201712469
10.1063/1.1462610
10.1002/adma.202107351
10.1016/j.biomaterials.2021.121308
10.1021/acs.accounts.1c00093
10.1039/C6CS00919K
10.1021/acs.accounts.8b00011
10.1021/acsami.9b16286
10.1002/anie.202012487
10.7150/thno.19738
10.1186/s12951-021-01215-6
10.1002/adfm.202104100
10.1038/s42254-020-0171-y
10.1038/nmat3151
10.1021/acsnano.0c10388
10.1021/acs.accounts.0c00378
10.1021/acs.chemrev.8b00672
10.1038/nnano.2014.311
10.1038/s41467-018-03903-8
10.1002/chem.201605380
10.1016/j.cej.2021.130356
10.1002/anie.201906758
10.1021/acs.jpclett.1c03804
10.1126/scirobotics.abd2823
10.1016/j.jcis.2005.04.034
10.1016/j.apcatb.2021.120317
10.1021/jp9095387
10.1038/s41467-019-08731-y
10.1021/ja057254a
10.1038/s41929-021-00609-x
10.1038/s41467-022-29082-1
10.1016/j.ccr.2020.213751
10.1039/c3cs35486e
10.1039/C8CS00479J
10.1021/acs.chemrev.9b00187
10.1039/C8GC01317A
10.1039/C4CS00145A
10.1002/anie.201904751
10.1021/cr1002547
10.1039/c3nr02257a
10.1016/j.cogsc.2018.10.002
10.1002/adma.201400238
10.1016/j.ccr.2020.213652
10.1002/adhm.202101331
10.1039/C9CC08223A
10.1021/acsami.0c04987
10.1002/adma.202008540
10.1016/j.chempr.2019.05.023
10.1038/s41467-021-22286-x
10.1021/acsnano.1c10732
10.1016/j.nantod.2021.101076
10.1002/anie.202017152
10.1021/acs.accounts.9b00287
10.1021/acs.chemmater.1c03952
10.1080/10408398.2022.2065660
10.1021/ja047697z
10.1002/adma.202100556
10.1021/cr100313v
10.1002/adma.202008145
10.1021/acs.chemrev.0c00999
10.1002/adma.202106996
10.1002/adfm.202112683
10.1016/j.nantod.2017.08.008
10.2116/analsci.19P004
10.1007/s00604-018-2981-5
10.1016/j.biomaterials.2021.121325
10.1021/acs.analchem.2c00036
10.1016/j.cej.2021.132330
10.1021/acs.jpclett.0c02640
10.1021/acs.nanolett.9b00725
10.1002/adma.201704528
10.1007/s40820-020-00532-z
10.1007/s40820-021-00674-8
10.1021/ar200061q
10.1021/acs.nanolett.9b02242
10.1002/anie.201700968
10.1002/asia.202100337
10.1021/jp074902z
10.1038/s41467-019-14199-7
10.1126/scirobotics.aam6431
10.1016/j.bioactmat.2021.10.023
10.1002/andp.19003060312
10.1016/j.colsurfa.2004.06.027
10.1016/j.ccr.2020.213376
10.1021/acs.accounts.9b00140
10.1021/acs.analchem.9b01655
10.1039/C3CS60265F
10.1016/j.snb.2022.131653
10.1039/b604038c
10.1039/C8CS00718G
10.1021/jacs.9b12873
10.1021/jacs.1c03510
10.1021/acsnano.6b08415
10.1016/j.physrep.2017.01.003
10.1039/D0CS00357C
10.1038/s41586-021-03986-2
10.1021/acssuschemeng.9b07009
10.1002/anie.202107712
10.1021/acsami.1c10656
10.7150/thno.39827
10.1002/adfm.202008420
10.1002/andp.19083300302
10.1021/acsami.8b15443
10.1002/adfm.201908598
10.1021/cr100275d
10.1016/j.talanta.2018.07.073
10.1038/s41467-021-20965-3
10.1021/acsnano.8b09501
10.1039/C6CS00885B
10.1021/jacs.7b00601
10.1002/anie.202106750
10.1016/j.mattod.2020.08.020
10.1002/adhm.202100601
10.1016/j.jcis.2022.05.037
10.1002/anie.200460649
10.1016/j.apcatb.2021.120826
10.1021/acs.nanolett.0c01654
10.1016/j.chempr.2019.07.022
10.1039/D1TB02141A
10.1002/adma.202001862
10.1021/acsnano.1c01248
10.1016/j.jiec.2021.08.011
10.1002/advs.202105252
10.1039/C3CS60417A
10.1016/j.snb.2014.01.056
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202204131
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36161698
10_1002_smll_202204131
SMLL202204131
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Youth Cross‐Scientific Innovation Group of Shandong University
– fundername: Cyrus Tang Foundation
– fundername: Taishan Scholars Program for Young Expert of Shandong Province
  funderid: tsqn201909021
– fundername: Program of Qilu Young Scholars of Shandong University
– fundername: National Natural Science Foundation of China
  funderid: 31500802; 11874238
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20190097
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3731-dc98f4dda71ba9f4d9ca1cd1b2ee1f0a959dec71a9a5f8afeb309fe4ed0f88c3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 10:17:34 EDT 2025
Fri Jul 25 12:09:57 EDT 2025
Wed Feb 19 02:26:29 EST 2025
Thu Apr 24 23:05:11 EDT 2025
Tue Jul 01 02:54:18 EDT 2025
Wed Jan 22 16:22:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords nanozymes
enzyme-mimicking activity
plasmonic nanoparticles
localized surface plasmon resonance
biocatalysis
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-dc98f4dda71ba9f4d9ca1cd1b2ee1f0a959dec71a9a5f8afeb309fe4ed0f88c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1551-3020
PMID 36161698
PQID 2747974505
PQPubID 1046358
PageCount 26
ParticipantIDs proquest_miscellaneous_2718639921
proquest_journals_2747974505
pubmed_primary_36161698
crossref_primary_10_1002_smll_202204131
crossref_citationtrail_10_1002_smll_202204131
wiley_primary_10_1002_smll_202204131_SMLL202204131
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2005; 290
2019; 91
2006; 30
2010; 16
2020; 20
2021; 442
2019; 11
2019; 10
2019; 13
1908; 25
2019; 15
2014; 26
2019; 19
2020; 13
2020; 12
2022; 20
2020; 11
2020; 10
2013; 5
2017; 674
2011; 111
2019; 288
2018; 47
2018; 9
2000; 19
2022; 281
2021; 432
2022; 280
2021; 277
2010; 114
2022; 34
2018; 30
2007; 2
2022; 32
2016; 45
2004; 43
2021; 429
2021; 46
2018; 185
2019; 5
2020; 41
2018; 105
2022; 94
2020; 142
2019; 35
2021; 425
2021; 424
2014; 47
2020; 35
2020; 145
2020; 32
2021; 143
2021; 50
2018; 20
2018; 190
2014; 43
2016; 12
2017; 139
2021; 57
2021; 54
2020; 30
2018; 118
2019; 48
2022; 9
2017; 56
2022; 12
2022; 13
1900; 306
2022; 14
2008; 41
2022; 10
2022; 108
2018; 12
2021; 60
2018; 10
2022; 623
2016; 26
2022; 16
2004; 244
2017; 7
2021; 20
2017; 2
2004; 126
2019; 52
2020; 120
2017; 46
2019; 58
2020; 126
2020; 59
2011; 11
2011; 10
2002; 116
2020; 403
2020; 56
2008; 2
2019; 120
2020; 8
2022; 122
2020; 7
2021; 37
2013; 15
2022; 360
2014; 5
2021; 31
2020; 2
2021; 33
2020; 53
2021; 599
2020; 49
2019; 119
2006; 128
2020; 418
2021; 9
2021; 6
2021; 4
2009; 21
2021; 104
2013; 42
2015; 10
2017; 23
2014; 195
2021; 187
2007; 58
2021; 13
2021; 16
2021; 15
2021; 10
1912; 37
2021; 12
2021; 11
2022
2017; 17
2017; 16
2017; 11
2007; 111
2021; 17
2011; 44
2018; 51
2021; 295
2022; 429
2022; 55
2018; 57
2022; 301
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
Wang W. Z. (e_1_2_8_16_1) 2020; 126
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
Li X. (e_1_2_8_13_1) 2019; 120
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_171_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_172_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_176_1
e_1_2_8_17_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_183_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_187_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_173_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_177_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
e_1_2_8_188_1
References_xml – volume: 145
  start-page: 4388
  year: 2020
  publication-title: Analyst
– volume: 47
  start-page: 7783
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 21
  start-page: 433
  year: 2009
  publication-title: Chem. Mater.
– volume: 12
  start-page: 2002
  year: 2021
  publication-title: Nat. Commun.
– volume: 14
  start-page: 2
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 3752
  year: 2017
  publication-title: ACS Nano
– volume: 2
  start-page: 136
  year: 2008
  publication-title: Laser Photonics Rev.
– volume: 46
  start-page: 5289
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 246
  year: 2022
  publication-title: Bioact Mater
– volume: 34
  start-page: 1356
  year: 2022
  publication-title: Chem. Mater.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 118
  start-page: 3121
  year: 2018
  publication-title: Chem. Rev.
– volume: 56
  start-page: 6767
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 306
  start-page: 566
  year: 1900
  publication-title: Ann. Phys.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 114
  start-page: 7378
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 52
  start-page: 2516
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 288
  start-page: 120
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 429
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 41
  start-page: 81
  year: 2020
  publication-title: Mater. Today
– volume: 5
  start-page: 2378
  year: 2019
  publication-title: Chem
– volume: 187
  year: 2021
  publication-title: Biosens. Bioelectron.
– volume: 122
  start-page: 5365
  year: 2022
  publication-title: Chem. Rev.
– volume: 5
  start-page: 2879
  year: 2019
  publication-title: Chem
– volume: 142
  start-page: 5177
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 2115
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 4389
  year: 2021
  publication-title: Bioact Mater
– volume: 126
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 418
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 10
  start-page: 687
  year: 2020
  publication-title: Theranostics
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 1814
  year: 2013
  publication-title: Green Chem.
– volume: 424
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 119
  start-page: 4357
  year: 2019
  publication-title: Chem. Rev.
– volume: 195
  start-page: 332
  year: 2014
  publication-title: Sens. Actuators, B
– volume: 17
  start-page: 3710
  year: 2017
  publication-title: Nano Lett.
– volume: 20
  start-page: 12
  year: 2022
  publication-title: J. Nanobiotechnol.
– volume: 111
  start-page: 3858
  year: 2011
  publication-title: Chem. Rev.
– volume: 12
  start-page: 5622
  year: 2016
  publication-title: Small
– volume: 51
  start-page: 789
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 25
  start-page: 377
  year: 1908
  publication-title: Ann. Phys.
– volume: 55
  start-page: 831
  year: 2022
  publication-title: Acc. Chem. Res.
– volume: 442
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 5
  year: 2013
  publication-title: Nanoscale
– volume: 30
  start-page: 7027
  year: 2018
  publication-title: Chem. Mater.
– volume: 116
  start-page: 6755
  year: 2002
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 1209
  year: 2018
  publication-title: Nat. Commun.
– volume: 91
  year: 2019
  publication-title: Anal. Chem.
– volume: 60
  start-page: 3469
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 253
  year: 2020
  publication-title: Nat Rev Phys
– volume: 429
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 599
  start-page: 120
  year: 2021
  publication-title: Nature
– volume: 623
  start-page: 155
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 3207
  year: 2017
  publication-title: Theranostics
– volume: 11
  start-page: 1111
  year: 2011
  publication-title: Nano Lett.
– volume: 12
  start-page: 745
  year: 2021
  publication-title: Nat. Commun.
– volume: 13
  start-page: 10
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 360
  year: 2022
  publication-title: Sens. Actuators, B
– volume: 49
  start-page: 1887
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 120
  start-page: 986
  year: 2020
  publication-title: Chem. Rev.
– volume: 281
  year: 2022
  publication-title: Biomaterials
– volume: 104
  start-page: 106
  year: 2021
  publication-title: J Ind Eng Chem
– volume: 16
  start-page: 61
  year: 2017
  publication-title: Nano Today
– volume: 185
  start-page: 445
  year: 2018
  publication-title: Microchim. Acta
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 403
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 13
  start-page: 2118
  year: 2020
  publication-title: Nano Res.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 280
  year: 2022
  publication-title: Biomaterials
– volume: 46
  year: 2021
  publication-title: Int. J. Hydrogen Energy
– volume: 11
  start-page: 3801
  year: 2021
  publication-title: ACS Catal.
– volume: 43
  start-page: 3908
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 341
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 4200
  year: 2014
  publication-title: Adv. Mater.
– volume: 45
  start-page: 5672
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 1784
  year: 2020
  publication-title: Chem. Commun.
– volume: 2
  year: 2017
  publication-title: Sci. Rob.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 48
  start-page: 1004
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 47
  start-page: 1097
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 46
  start-page: 6710
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 91
  start-page: 8170
  year: 2019
  publication-title: Anal. Chem.
– volume: 16
  year: 2010
  publication-title: Chem. ‐ Eur. J.
– volume: 13
  start-page: 154
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 11
  start-page: 2788
  year: 2020
  publication-title: Nat. Commun.
– volume: 59
  start-page: 2565
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 9606
  year: 2021
  publication-title: J. Mater. Chem. B
– volume: 13
  start-page: 1298
  year: 2022
  publication-title: Nat. Commun.
– volume: 94
  start-page: 4484
  year: 2022
  publication-title: Anal. Chem.
– volume: 10
  start-page: 216
  year: 2022
  publication-title: Biomater. Sci.
– volume: 57
  start-page: 9224
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 911
  year: 2011
  publication-title: Nat. Mater.
– volume: 16
  start-page: 3105
  year: 2022
  publication-title: ACS Nano
– volume: 42
  start-page: 6060
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 111
  start-page: 3828
  year: 2011
  publication-title: Chem. Rev.
– volume: 120
  year: 2019
  publication-title: Anal Chem
– volume: 16
  start-page: 1603
  year: 2021
  publication-title: Chem Asian J
– volume: 244
  start-page: 149
  year: 2004
  publication-title: Colloids Surf., A
– volume: 10
  start-page: 25
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 357
  year: 2020
  publication-title: Nat. Commun.
– volume: 2
  start-page: 577
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 126
  year: 2020
  publication-title: Anal Chem
– volume: 60
  start-page: 9480
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 277
  year: 2021
  publication-title: Biomaterials
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 111
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 190
  start-page: 103
  year: 2018
  publication-title: Talanta
– volume: 30
  start-page: 1121
  year: 2006
  publication-title: New J. Chem.
– volume: 37
  start-page: 881
  year: 1912
  publication-title: Ann. Phys.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 15
  start-page: 5189
  year: 2021
  publication-title: ACS Nano
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– volume: 35
  start-page: 691
  year: 2019
  publication-title: Anal. Sci.
– volume: 20
  start-page: 4051
  year: 2020
  publication-title: Nano Lett.
– volume: 11
  start-page: 9321
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 57
  start-page: 1133
  year: 2021
  publication-title: Chem. Commun.
– volume: 48
  start-page: 3683
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 312
  year: 2022
  publication-title: J. Phys. Chem. Lett.
– volume: 47
  start-page: 138
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 108
  start-page: 501
  year: 2022
  publication-title: J Ind Eng Chem
– volume: 58
  start-page: 267
  year: 2007
  publication-title: Annu. Rev. Phys. Chem.
– volume: 432
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 425
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 5222
  year: 2019
  publication-title: ACS Nano
– year: 2022
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 52
  start-page: 2190
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 19
  start-page: 3214
  year: 2019
  publication-title: Nano Lett.
– volume: 105
  start-page: 218
  year: 2018
  publication-title: TrAC, Trends Anal. Chem.
– volume: 10
  start-page: 940
  year: 2019
  publication-title: Nat. Commun.
– volume: 19
  start-page: 409
  year: 2000
  publication-title: Int. Rev. Phys. Chem.
– volume: 54
  start-page: 2477
  year: 2021
  publication-title: Acc. Chem. Res.
– volume: 41
  start-page: 1710
  year: 2008
  publication-title: Acc. Chem. Res.
– volume: 15
  start-page: 60
  year: 2019
  publication-title: Curr. Opin. Green Sustainable Chem.
– volume: 290
  start-page: 117
  year: 2005
  publication-title: J. Colloid Interface Sci.
– volume: 5
  start-page: 5301
  year: 2014
  publication-title: Nat. Commun.
– volume: 37
  year: 2021
  publication-title: Nano Today
– volume: 674
  start-page: 1
  year: 2017
  publication-title: Phys Rep
– volume: 44
  start-page: 914
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 53
  start-page: 1773
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 6
  year: 2021
  publication-title: Sci. Rob.
– volume: 139
  start-page: 5412
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 916
  year: 2021
  publication-title: Nat. Mater.
– volume: 43
  start-page: 3957
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 3291
  year: 2020
  publication-title: Mater. Horiz.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 295
  year: 2021
  publication-title: Appl. Catal. B
– volume: 8
  start-page: 5076
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 23
  start-page: 6717
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 12
  year: 2021
  publication-title: Chem. Sci.
– volume: 15
  start-page: 5735
  year: 2021
  publication-title: ACS Nano
– volume: 43
  start-page: 7188
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 407
  year: 2021
  publication-title: Nat. Catal.
– volume: 143
  start-page: 8855
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 50
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 301
  year: 2022
  publication-title: Appl. Catal. B
– volume: 111
  start-page: 3669
  year: 2011
  publication-title: Chem. Rev.
– volume: 19
  start-page: 7645
  year: 2019
  publication-title: Nano Lett.
– volume: 9
  start-page: 1440
  year: 2018
  publication-title: Nat. Commun.
– volume: 47
  start-page: 1938
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 4067
  year: 2018
  publication-title: Green Chem.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 4134
  year: 2019
  publication-title: Nano Lett.
– volume: 35
  year: 2020
  publication-title: Nano Today
– volume: 43
  start-page: 6165
  year: 2004
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  start-page: 2173
  year: 2021
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_8_97_1
  doi: 10.1038/s41563-020-00858-4
– ident: e_1_2_8_106_1
  doi: 10.1002/smll.201602366
– ident: e_1_2_8_60_1
  doi: 10.1016/j.nantod.2020.101005
– ident: e_1_2_8_133_1
  doi: 10.1039/D0CC06925F
– ident: e_1_2_8_77_1
  doi: 10.1021/acs.accounts.1c00682
– ident: e_1_2_8_139_1
  doi: 10.1016/j.ijhydene.2021.06.142
– ident: e_1_2_8_147_1
  doi: 10.1016/j.trac.2018.05.012
– ident: e_1_2_8_175_1
  doi: 10.1002/adma.202107088
– ident: e_1_2_8_164_1
  doi: 10.1002/anie.201908289
– ident: e_1_2_8_44_1
  doi: 10.1039/C9CS00313D
– ident: e_1_2_8_168_1
  doi: 10.1038/s41467-020-16544-7
– ident: e_1_2_8_169_1
  doi: 10.1038/ncomms6301
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.analchem.9b00512
– ident: e_1_2_8_86_1
  doi: 10.1021/cm802753j
– ident: e_1_2_8_187_1
  doi: 10.1021/acsami.1c01943
– ident: e_1_2_8_28_1
  doi: 10.1039/C8CS00457A
– volume: 126
  year: 2020
  ident: e_1_2_8_16_1
  publication-title: Anal Chem
– ident: e_1_2_8_70_1
  doi: 10.1146/annurev.physchem.58.032806.104607
– ident: e_1_2_8_123_1
  doi: 10.1016/j.bioactmat.2021.04.024
– ident: e_1_2_8_90_1
  doi: 10.1002/lpor.200810003
– ident: e_1_2_8_8_1
  doi: 10.1002/anie.201905645
– ident: e_1_2_8_152_1
  doi: 10.1039/C7CS00471K
– ident: e_1_2_8_105_1
  doi: 10.1021/ar800028j
– ident: e_1_2_8_80_1
  doi: 10.1080/01442350050034180
– ident: e_1_2_8_178_1
  doi: 10.1021/acs.chemrev.7b00613
– ident: e_1_2_8_132_1
  doi: 10.1002/adfm.201503670
– ident: e_1_2_8_103_1
  doi: 10.1021/acs.nanolett.9b01595
– ident: e_1_2_8_157_1
  doi: 10.1002/adma.202002439
– ident: e_1_2_8_116_1
  doi: 10.1002/smll.202102342
– ident: e_1_2_8_3_1
  doi: 10.1038/nnano.2007.260
– ident: e_1_2_8_117_1
  doi: 10.1007/s40820-021-00752-x
– ident: e_1_2_8_131_1
  doi: 10.1016/j.biomaterials.2021.121088
– ident: e_1_2_8_5_1
  doi: 10.1021/ar400250z
– ident: e_1_2_8_101_1
  doi: 10.1021/acscatal.1c00164
– ident: e_1_2_8_115_1
  doi: 10.1016/j.ccr.2019.213092
– ident: e_1_2_8_129_1
  doi: 10.1021/acsami.1c07181
– ident: e_1_2_8_143_1
  doi: 10.1016/j.cej.2021.130639
– ident: e_1_2_8_36_1
  doi: 10.1039/D0AN00389A
– ident: e_1_2_8_61_1
  doi: 10.1021/ar400086e
– ident: e_1_2_8_75_1
  doi: 10.1039/C6CS00450D
– ident: e_1_2_8_14_1
  doi: 10.1016/j.nantod.2020.100920
– ident: e_1_2_8_91_1
  doi: 10.1039/c3gc40450a
– ident: e_1_2_8_188_1
  doi: 10.1021/acsnano.8b05200
– ident: e_1_2_8_145_1
  doi: 10.1016/j.jiec.2022.01.030
– ident: e_1_2_8_154_1
  doi: 10.1002/anie.202101924
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.chemmater.8b02365
– ident: e_1_2_8_98_1
  doi: 10.1021/nl104005n
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.202107088
– ident: e_1_2_8_137_1
  doi: 10.1007/s12274-020-2818-5
– ident: e_1_2_8_171_1
  doi: 10.1016/j.nantod.2020.100935
– ident: e_1_2_8_112_1
  doi: 10.1016/j.bios.2021.113327
– ident: e_1_2_8_177_1
  doi: 10.1039/D0MH01535K
– ident: e_1_2_8_99_1
  doi: 10.1021/acs.nanolett.7b00992
– ident: e_1_2_8_34_1
  doi: 10.1038/s41467-018-03617-x
– ident: e_1_2_8_81_1
  doi: 10.1002/andp.19123420503
– ident: e_1_2_8_74_1
  doi: 10.1016/j.ccr.2021.213934
– ident: e_1_2_8_51_1
  doi: 10.1039/D1CS00237F
– ident: e_1_2_8_92_1
  doi: 10.1002/chem.201002665
– ident: e_1_2_8_114_1
  doi: 10.1039/D1BM01406D
– ident: e_1_2_8_136_1
  doi: 10.1016/j.snb.2019.02.065
– ident: e_1_2_8_111_1
  doi: 10.1039/D1SC01760H
– ident: e_1_2_8_6_1
  doi: 10.1002/anie.201712469
– ident: e_1_2_8_88_1
  doi: 10.1063/1.1462610
– ident: e_1_2_8_96_1
  doi: 10.1002/adma.202107351
– ident: e_1_2_8_43_1
  doi: 10.1016/j.biomaterials.2021.121308
– ident: e_1_2_8_94_1
  doi: 10.1021/acs.accounts.1c00093
– ident: e_1_2_8_73_1
  doi: 10.1039/C6CS00919K
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.accounts.8b00011
– ident: e_1_2_8_124_1
  doi: 10.1021/acsami.9b16286
– ident: e_1_2_8_176_1
  doi: 10.1002/anie.202012487
– ident: e_1_2_8_11_1
  doi: 10.7150/thno.19738
– ident: e_1_2_8_161_1
  doi: 10.1186/s12951-021-01215-6
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.202104100
– ident: e_1_2_8_76_1
  doi: 10.1038/s42254-020-0171-y
– ident: e_1_2_8_45_1
  doi: 10.1038/nmat3151
– ident: e_1_2_8_53_1
  doi: 10.1021/acsnano.0c10388
– ident: e_1_2_8_66_1
  doi: 10.1021/acs.accounts.0c00378
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.chemrev.8b00672
– volume: 120
  year: 2019
  ident: e_1_2_8_13_1
  publication-title: Anal Chem
– ident: e_1_2_8_50_1
  doi: 10.1038/nnano.2014.311
– ident: e_1_2_8_165_1
  doi: 10.1038/s41467-018-03903-8
– ident: e_1_2_8_52_1
  doi: 10.1002/chem.201605380
– ident: e_1_2_8_128_1
  doi: 10.1016/j.cej.2021.130356
– ident: e_1_2_8_134_1
  doi: 10.1002/anie.201906758
– ident: e_1_2_8_121_1
  doi: 10.1021/acs.jpclett.1c03804
– ident: e_1_2_8_184_1
  doi: 10.1126/scirobotics.abd2823
– ident: e_1_2_8_84_1
  doi: 10.1016/j.jcis.2005.04.034
– ident: e_1_2_8_54_1
  doi: 10.1016/j.apcatb.2021.120317
– ident: e_1_2_8_93_1
  doi: 10.1021/jp9095387
– ident: e_1_2_8_33_1
  doi: 10.1038/s41467-019-08731-y
– ident: e_1_2_8_89_1
  doi: 10.1021/ja057254a
– ident: e_1_2_8_146_1
  doi: 10.1038/s41929-021-00609-x
– ident: e_1_2_8_167_1
  doi: 10.1038/s41467-022-29082-1
– ident: e_1_2_8_18_1
  doi: 10.1016/j.ccr.2020.213751
– ident: e_1_2_8_1_1
  doi: 10.1039/c3cs35486e
– ident: e_1_2_8_48_1
  doi: 10.1039/C8CS00479J
– ident: e_1_2_8_49_1
  doi: 10.1021/acs.chemrev.9b00187
– ident: e_1_2_8_102_1
  doi: 10.1039/C8GC01317A
– ident: e_1_2_8_47_1
  doi: 10.1039/C4CS00145A
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.201904751
– ident: e_1_2_8_82_1
  doi: 10.1021/cr1002547
– ident: e_1_2_8_69_1
  doi: 10.1039/c3nr02257a
– ident: e_1_2_8_65_1
  doi: 10.1016/j.cogsc.2018.10.002
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201400238
– ident: e_1_2_8_10_1
  doi: 10.1016/j.ccr.2020.213652
– ident: e_1_2_8_64_1
  doi: 10.1002/adhm.202101331
– ident: e_1_2_8_110_1
  doi: 10.1039/C9CC08223A
– ident: e_1_2_8_130_1
  doi: 10.1021/acsami.0c04987
– ident: e_1_2_8_107_1
  doi: 10.1002/adma.202008540
– ident: e_1_2_8_151_1
  doi: 10.1016/j.chempr.2019.05.023
– ident: e_1_2_8_170_1
  doi: 10.1038/s41467-021-22286-x
– ident: e_1_2_8_125_1
  doi: 10.1021/acsnano.1c10732
– ident: e_1_2_8_9_1
  doi: 10.1016/j.nantod.2021.101076
– ident: e_1_2_8_159_1
  doi: 10.1002/anie.202017152
– ident: e_1_2_8_59_1
  doi: 10.1021/acs.accounts.9b00287
– ident: e_1_2_8_57_1
  doi: 10.1021/acs.chemmater.1c03952
– ident: e_1_2_8_163_1
  doi: 10.1080/10408398.2022.2065660
– ident: e_1_2_8_183_1
  doi: 10.1021/ja047697z
– ident: e_1_2_8_158_1
  doi: 10.1002/adma.202100556
– ident: e_1_2_8_46_1
  doi: 10.1021/cr100313v
– ident: e_1_2_8_63_1
  doi: 10.1002/adma.202008145
– ident: e_1_2_8_185_1
  doi: 10.1021/acs.chemrev.0c00999
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.202106996
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.202112683
– ident: e_1_2_8_68_1
  doi: 10.1016/j.nantod.2017.08.008
– ident: e_1_2_8_119_1
  doi: 10.2116/analsci.19P004
– ident: e_1_2_8_148_1
  doi: 10.1007/s00604-018-2981-5
– ident: e_1_2_8_42_1
  doi: 10.1016/j.biomaterials.2021.121325
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.analchem.2c00036
– ident: e_1_2_8_118_1
  doi: 10.1016/j.cej.2021.132330
– ident: e_1_2_8_41_1
  doi: 10.1002/anie.201904751
– ident: e_1_2_8_108_1
  doi: 10.1021/acs.jpclett.0c02640
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.nanolett.9b00725
– ident: e_1_2_8_83_1
  doi: 10.1002/adma.201704528
– ident: e_1_2_8_24_1
  doi: 10.1007/s40820-020-00532-z
– ident: e_1_2_8_26_1
  doi: 10.1007/s40820-021-00674-8
– ident: e_1_2_8_62_1
  doi: 10.1021/ar200061q
– ident: e_1_2_8_174_1
  doi: 10.1021/acs.nanolett.9b02242
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.201700968
– ident: e_1_2_8_120_1
  doi: 10.1002/asia.202100337
– ident: e_1_2_8_87_1
  doi: 10.1021/jp074902z
– ident: e_1_2_8_155_1
  doi: 10.1038/s41467-019-14199-7
– ident: e_1_2_8_181_1
  doi: 10.1126/scirobotics.aam6431
– ident: e_1_2_8_39_1
  doi: 10.1016/j.bioactmat.2021.10.023
– ident: e_1_2_8_72_1
  doi: 10.1002/andp.19003060312
– ident: e_1_2_8_85_1
  doi: 10.1016/j.colsurfa.2004.06.027
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ccr.2020.213376
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.accounts.9b00140
– ident: e_1_2_8_138_1
  doi: 10.1021/acs.analchem.9b01655
– ident: e_1_2_8_40_1
  doi: 10.1002/anie.202101924
– ident: e_1_2_8_58_1
  doi: 10.1039/C3CS60265F
– ident: e_1_2_8_150_1
  doi: 10.1016/j.snb.2022.131653
– ident: e_1_2_8_71_1
  doi: 10.1039/b604038c
– ident: e_1_2_8_19_1
  doi: 10.1039/C8CS00718G
– ident: e_1_2_8_153_1
  doi: 10.1021/jacs.9b12873
– ident: e_1_2_8_141_1
  doi: 10.1021/jacs.1c03510
– ident: e_1_2_8_144_1
  doi: 10.1021/acsnano.6b08415
– ident: e_1_2_8_179_1
  doi: 10.1016/j.physrep.2017.01.003
– ident: e_1_2_8_95_1
  doi: 10.1039/D0CS00357C
– ident: e_1_2_8_162_1
  doi: 10.1038/s41586-021-03986-2
– ident: e_1_2_8_109_1
  doi: 10.1021/acssuschemeng.9b07009
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.202107712
– ident: e_1_2_8_127_1
  doi: 10.1021/acsami.1c10656
– ident: e_1_2_8_15_1
  doi: 10.7150/thno.39827
– ident: e_1_2_8_38_1
  doi: 10.1002/adfm.202008420
– ident: e_1_2_8_79_1
  doi: 10.1002/andp.19083300302
– ident: e_1_2_8_104_1
  doi: 10.1021/acsami.8b15443
– ident: e_1_2_8_156_1
  doi: 10.1002/adfm.201908598
– ident: e_1_2_8_67_1
  doi: 10.1021/cr100275d
– ident: e_1_2_8_149_1
  doi: 10.1016/j.talanta.2018.07.073
– ident: e_1_2_8_166_1
  doi: 10.1038/s41467-021-20965-3
– ident: e_1_2_8_21_1
  doi: 10.1021/acsnano.8b09501
– ident: e_1_2_8_182_1
  doi: 10.1039/C6CS00885B
– ident: e_1_2_8_186_1
  doi: 10.1021/jacs.7b00601
– ident: e_1_2_8_140_1
  doi: 10.1002/anie.202106750
– ident: e_1_2_8_27_1
  doi: 10.1016/j.mattod.2020.08.020
– ident: e_1_2_8_135_1
  doi: 10.1002/adhm.202100601
– ident: e_1_2_8_142_1
  doi: 10.1016/j.jcis.2022.05.037
– ident: e_1_2_8_2_1
  doi: 10.1002/anie.200460649
– ident: e_1_2_8_172_1
  doi: 10.1016/j.apcatb.2021.120826
– ident: e_1_2_8_189_1
  doi: 10.1021/acs.nanolett.0c01654
– ident: e_1_2_8_100_1
  doi: 10.1016/j.chempr.2019.07.022
– ident: e_1_2_8_122_1
  doi: 10.1039/D1TB02141A
– ident: e_1_2_8_126_1
  doi: 10.1002/adma.202001862
– ident: e_1_2_8_173_1
  doi: 10.1021/acsnano.1c01248
– ident: e_1_2_8_113_1
  doi: 10.1016/j.jiec.2021.08.011
– ident: e_1_2_8_160_1
  doi: 10.1002/advs.202105252
– ident: e_1_2_8_180_1
  doi: 10.1039/C3CS60417A
– ident: e_1_2_8_78_1
  doi: 10.1016/j.snb.2014.01.056
SSID ssj0031247
Score 2.600263
SecondaryResourceType review_article
Snippet Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2204131
SubjectTerms biocatalysis
Biomedical materials
Enzymes
enzyme‐mimicking activity
Free electrons
Light irradiation
localized surface plasmon resonance
Nanomaterials
Nanoparticles
Nanotechnology
nanozymes
plasmonic nanoparticles
Plasmonics
Surface Plasmon Resonance
Title Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme‐Mimicking Activity of Nanomaterials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202204131
https://www.ncbi.nlm.nih.gov/pubmed/36161698
https://www.proquest.com/docview/2747974505
https://www.proquest.com/docview/2718639921
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB5Kn9oHtV5XWxlB8Cltkkk2M32rpaXIroit0LdwMjkDS7uJNNkHFwR_gr-xv8RzMtnYVUTQt4TMLZNz-c7M5DtCvIbMKltGJoAUKUAx6IJCOQpWMqdVCNqFHZfe9P347FPy7jK9vPMXv-eHGBbcWDM6e80KDkVz8JM0tJlf89ZBHIdkhzn-4QNbjIo-DvxRipxXl12FfFbAxFsr1sYwPlivvu6VfoOa68i1cz2n9wWsBu1PnFztL9pi3y5_4XP8n7d6IO71uFQeeUHaERtYPRTbd9gKH4mvHwhpz5lKV5JNrpdf5tgcygmSMnSpjuSE_eJsiaU8X9w4sCj7GpI3CZjZA2Vby7d13bSSgKc8qbiR22_fp7P5zPKivTyyPp2FrF3XCwFqryOPxcXpycXxWdBnbwisylQUlNZol5QlZFEBhq6MhYjEoogRIxeCSU2JNovAQOo0OIrqQ-MwwTJ0Wlv1RGxWdYXPhHSFjhUmDtjeYAJAoIqAmQOXJgUhxpEIVh8vtz2zOSfYuM49J3Oc86zmw6yOxJuh_GfP6fHHkrsrWch73W5yjuMpCiPoOBKvhseklbzVAhXWCy4TacZ-MTXx1MvQ0JUakzyOjR6JuJOEv4whP59OJsPd83-p9EJs8bU_hbMrNtubBe4RlmqLl52-_AAh6hon
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZQEseD8GSjESiFXaxEkmMRKL0oemNFMhOkjdWY5jSyM6CWoyQh0JiU_gU_gVfoEv4d68YEAICakLdnk4thPfx7m2cy7AExVpX2eecFRoMEARxjqpbzFYiWzsuyq2bs2lNz4cjt4Gr47D4xX40v0L0_BD9BNupBm1vSYFpwnpzR-soeXshNYOOHfREHvtvsoDc_YBo7byxf4ODvFTzvd2J9sjp00s4Gg_8j0n0yK2QZapyEuVwCOhlYc9TrkxnnWVCEVmdOQpoUIbK4sBpyusCUzm2jjWPlZ7AS5SFnFi69950xNW-egt63Qu6CQdYvrqaCJdvrnc3WU3-Bu2XYbKta_buwZfu6_UbHF5tzGv0g29-IVA8n_6jNfhagu82VajKTdgxeQ34cpPdIy34ONrDCVmxBXM0OkUi7OZKZ-zxKC217mcWEKOf7owGTuan1qlDWufYLQKQtQlhlUFe1kUZcUQWbPdnCr59unzeDqbalqVYFu6ydfBClu3ghFDYwRuw-Q8Xv8OrOZFbu4Bs2nMfRNYRQbVBEohakTkaZUNgxQh8QCcTlikbqnbKYPIiWxIp7mkQZT9IA7gWV_-fUNa8seSa53sydZ4lZImKjDMRGw8gMf9bTQ7tJakclPMqYwXE7jlWMXdRmb7pvwhyv9QxAPgteT9pQ_yaJwk_dn9f3noEVwaTcaJTPYPDx7AZbrebDlag9XqdG4eInCs0vVaVxnIcxbq746DfRM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UCqIP3i-rVUdQfEqbTJJNRvChul1amy3FVujbMJnMwGI3KU0W6YLgT_Cf-Ff8Df4Sz8lNVxFB6INvucxMJjPn8p3M5DsAT1WkfZ15wlGhwQBFGOukvsVgJbKx76rYujWX3mRvuP0ueHMUHq3Al-5fmIYfov_gRppR22tS8JPMbvwgDS1nx7R0wLmLdthrt1XumrMPGLSVL3dGOMPPOB9vHb7edtq8Ao72I99zMi1iG2SZirxUCTwSWnnY4ZQb41lXiVBkRkeeEiq0sbIYb7rCmsBkro1j7WOzF-BiMHQF5YoYve35qnx0lnU2F_SRDhF9dSyRLt9Y7u6yF_wN2i4j5drVja_B126Qmh0u79fnVbquF7_wR_5Ho3gdrrawm202enIDVkx-E678RMZ4Cz7uYyAxI6Zghi6nWJzNTPmCJQZ1vc7kxBJy-9OFydjB_NQqbVhbg9EaCBGXGFYV7FVRlBVDXM22cmrk26fPk-lsqmlNgm3qJlsHK2z9FIwXGhNwGw7P4_XvwGpe5OYeMJvG3DeBVWROTaAUYkbEnVbZMEgREA_A6WRF6pa4nfKHHMuGcppLmkTZT-IAnvflTxrKkj-WXOtET7amq5T0mQKDTETGA3jS30ajQytJKjfFnMp4MUFbjk3cbUS2f5Q_RPEfingAvBa8v_RBHkySpD-7_y-VHsOl_dFYJjt7uw_gMl1u9hutwWp1OjcPETVW6aNaUxnIc5bp75rZe8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmonic+Nanozymes%3A+Leveraging+Localized+Surface+Plasmon+Resonance+to+Boost+the+Enzyme%E2%80%90Mimicking+Activity+of+Nanomaterials&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xu%2C+Guopeng&rft.au=Du%2C+Xuancheng&rft.au=Wang%2C+Weijie&rft.au=Qu%2C+Yuanyuan&rft.date=2022-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=49&rft_id=info:doi/10.1002%2Fsmll.202204131&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon