Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme‐Mimicking Activity of Nanomaterials
Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme‐mimicking activity. Localized surface plasmon resonance (LSPR), a nano...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 49; pp. e2204131 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme‐mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme‐mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near‐field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme‐mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications.
Plasmonic nanozymes (PNzymes), the “beautiful and incredible” encounter between nanozymes and localized surface plasmon resonance effects, and their catalytic mechanisms, bioapplications as well as current challenges and further perspectives are systematically summarized and discussed. It is anticipated that this review will provide new insights into the design of powerful nanocatalysts for biomedical applications. |
---|---|
AbstractList | Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme‐mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme‐mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near‐field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme‐mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications. Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme‐mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme‐mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near‐field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme‐mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications. Plasmonic nanozymes (PNzymes), the “beautiful and incredible” encounter between nanozymes and localized surface plasmon resonance effects, and their catalytic mechanisms, bioapplications as well as current challenges and further perspectives are systematically summarized and discussed. It is anticipated that this review will provide new insights into the design of powerful nanocatalysts for biomedical applications. Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme-mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme-mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near-field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme-mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications.Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme-mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme-mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near-field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme-mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications. |
Author | Liu, Xiangdong Li, Yong‐Qiang Zhao, Mingwen Xu, Guopeng Du, Xuancheng Qu, Yuanyuan Wang, Weijie Li, Weifeng |
Author_xml | – sequence: 1 givenname: Guopeng surname: Xu fullname: Xu, Guopeng organization: Shandong University – sequence: 2 givenname: Xuancheng surname: Du fullname: Du, Xuancheng organization: Shandong University – sequence: 3 givenname: Weijie surname: Wang fullname: Wang, Weijie organization: Shandong University – sequence: 4 givenname: Yuanyuan surname: Qu fullname: Qu, Yuanyuan organization: Shandong University – sequence: 5 givenname: Xiangdong surname: Liu fullname: Liu, Xiangdong organization: Shandong University – sequence: 6 givenname: Mingwen surname: Zhao fullname: Zhao, Mingwen organization: Shandong University – sequence: 7 givenname: Weifeng surname: Li fullname: Li, Weifeng organization: Shandong University – sequence: 8 givenname: Yong‐Qiang orcidid: 0000-0003-1551-3020 surname: Li fullname: Li, Yong‐Qiang email: yqli@sdu.edu.cn organization: Shandong Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36161698$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEUhoNU7IfeeikBb7zZNR-zMxPvaqkfMFWxvR_OZk5qaiapSaayBcGf4G_0l5h11xUK4tU5JM9zTsh7SPZ88EjIY87mnDHxPI3OzQUTglVc8nvkgNdczupWqL1dz9k-OUzpijHJRdU8IPuyLle1ag_Itw8O0hi81fQd-HC7GjG9oB3eYIRL6y9pFzQ4e4sDPZ-iAY10a9CPmIIHX05yoC9DSJnmT0hP_XrIz-8_zuxo9ef1jGOd7Y3NKxrM7y0jZIwWXHpI7ptS8NG2HpGLV6cXJ29m3fvXb0-Ou5mWjeSzQavWVMMADV-CKp3SwPXAlwKRGwZqoQbUDQcFC9OCwaVkymCFAzNtq-URebYZex3DlwlT7kebNDoHHsOUetHwtpZKCV7Qp3fQqzBFXx5XqKpRTbVgi0I92VLTcsShv452hLjq__xrAeYbQMeQUkSzQzjr18H16-D6XXBFqO4I2mbINvgcwbp_a2qjfbUOV_9Z0p-fdd1f9xf1r7Fb |
CitedBy_id | crossref_primary_10_1002_advs_202207342 crossref_primary_10_1002_smll_202304082 crossref_primary_10_1016_j_inoche_2024_112173 crossref_primary_10_1039_D3TB00803G crossref_primary_10_1021_acs_analchem_4c06134 crossref_primary_10_1016_j_bios_2025_117258 crossref_primary_10_1002_adma_202301810 crossref_primary_10_1021_acsnano_3c12201 crossref_primary_10_1021_acs_analchem_4c04651 crossref_primary_10_1021_acsami_3c03332 crossref_primary_10_1016_j_bios_2024_116847 crossref_primary_10_1016_j_actbio_2023_08_055 crossref_primary_10_1021_acs_analchem_3c02366 crossref_primary_10_1039_D3NR03327A crossref_primary_10_1016_j_cej_2024_155533 crossref_primary_10_1016_j_cej_2025_160108 crossref_primary_10_1007_s12274_023_6110_3 crossref_primary_10_1002_adfm_202312753 crossref_primary_10_1002_smll_202302023 crossref_primary_10_1016_j_snb_2024_136012 crossref_primary_10_1002_adfm_202300818 crossref_primary_10_3389_fbioe_2023_1168750 crossref_primary_10_1039_D3NR05592B crossref_primary_10_1002_adom_202401318 crossref_primary_10_3390_photonics11030235 crossref_primary_10_1007_s11468_023_02109_z crossref_primary_10_1021_acsanm_4c02446 crossref_primary_10_1016_j_cej_2023_142961 crossref_primary_10_1016_j_cej_2023_146329 crossref_primary_10_1038_s41467_024_50344_7 crossref_primary_10_1016_j_aca_2024_342892 crossref_primary_10_1021_acs_est_3c05922 crossref_primary_10_1002_adhm_202401179 crossref_primary_10_1021_acsbiomaterials_4c00929 crossref_primary_10_1021_acsnano_2c11550 crossref_primary_10_1016_j_jmrt_2023_12_100 crossref_primary_10_1016_j_optlastec_2025_112636 crossref_primary_10_1021_acsnano_3c04134 crossref_primary_10_1016_j_chphi_2023_100414 crossref_primary_10_3390_molecules29143376 crossref_primary_10_1016_j_ijbiomac_2025_139704 crossref_primary_10_1002_cssc_202402436 crossref_primary_10_1016_j_microc_2024_111682 crossref_primary_10_1021_acsami_4c03105 crossref_primary_10_1360_SSC_2024_0042 crossref_primary_10_1016_j_snb_2025_137378 crossref_primary_10_1002_smm2_1243 |
Cites_doi | 10.1038/s41563-020-00858-4 10.1002/smll.201602366 10.1016/j.nantod.2020.101005 10.1039/D0CC06925F 10.1021/acs.accounts.1c00682 10.1016/j.ijhydene.2021.06.142 10.1016/j.trac.2018.05.012 10.1002/adma.202107088 10.1002/anie.201908289 10.1039/C9CS00313D 10.1038/s41467-020-16544-7 10.1038/ncomms6301 10.1021/acs.analchem.9b00512 10.1021/cm802753j 10.1021/acsami.1c01943 10.1039/C8CS00457A 10.1146/annurev.physchem.58.032806.104607 10.1016/j.bioactmat.2021.04.024 10.1002/lpor.200810003 10.1002/anie.201905645 10.1039/C7CS00471K 10.1021/ar800028j 10.1080/01442350050034180 10.1021/acs.chemrev.7b00613 10.1002/adfm.201503670 10.1021/acs.nanolett.9b01595 10.1002/adma.202002439 10.1002/smll.202102342 10.1038/nnano.2007.260 10.1007/s40820-021-00752-x 10.1016/j.biomaterials.2021.121088 10.1021/ar400250z 10.1021/acscatal.1c00164 10.1016/j.ccr.2019.213092 10.1021/acsami.1c07181 10.1016/j.cej.2021.130639 10.1039/D0AN00389A 10.1021/ar400086e 10.1039/C6CS00450D 10.1016/j.nantod.2020.100920 10.1039/c3gc40450a 10.1021/acsnano.8b05200 10.1016/j.jiec.2022.01.030 10.1002/anie.202101924 10.1021/acs.chemmater.8b02365 10.1021/nl104005n 10.1007/s12274-020-2818-5 10.1016/j.nantod.2020.100935 10.1016/j.bios.2021.113327 10.1039/D0MH01535K 10.1021/acs.nanolett.7b00992 10.1038/s41467-018-03617-x 10.1002/andp.19123420503 10.1016/j.ccr.2021.213934 10.1039/D1CS00237F 10.1002/chem.201002665 10.1039/D1BM01406D 10.1016/j.snb.2019.02.065 10.1039/D1SC01760H 10.1002/anie.201712469 10.1063/1.1462610 10.1002/adma.202107351 10.1016/j.biomaterials.2021.121308 10.1021/acs.accounts.1c00093 10.1039/C6CS00919K 10.1021/acs.accounts.8b00011 10.1021/acsami.9b16286 10.1002/anie.202012487 10.7150/thno.19738 10.1186/s12951-021-01215-6 10.1002/adfm.202104100 10.1038/s42254-020-0171-y 10.1038/nmat3151 10.1021/acsnano.0c10388 10.1021/acs.accounts.0c00378 10.1021/acs.chemrev.8b00672 10.1038/nnano.2014.311 10.1038/s41467-018-03903-8 10.1002/chem.201605380 10.1016/j.cej.2021.130356 10.1002/anie.201906758 10.1021/acs.jpclett.1c03804 10.1126/scirobotics.abd2823 10.1016/j.jcis.2005.04.034 10.1016/j.apcatb.2021.120317 10.1021/jp9095387 10.1038/s41467-019-08731-y 10.1021/ja057254a 10.1038/s41929-021-00609-x 10.1038/s41467-022-29082-1 10.1016/j.ccr.2020.213751 10.1039/c3cs35486e 10.1039/C8CS00479J 10.1021/acs.chemrev.9b00187 10.1039/C8GC01317A 10.1039/C4CS00145A 10.1002/anie.201904751 10.1021/cr1002547 10.1039/c3nr02257a 10.1016/j.cogsc.2018.10.002 10.1002/adma.201400238 10.1016/j.ccr.2020.213652 10.1002/adhm.202101331 10.1039/C9CC08223A 10.1021/acsami.0c04987 10.1002/adma.202008540 10.1016/j.chempr.2019.05.023 10.1038/s41467-021-22286-x 10.1021/acsnano.1c10732 10.1016/j.nantod.2021.101076 10.1002/anie.202017152 10.1021/acs.accounts.9b00287 10.1021/acs.chemmater.1c03952 10.1080/10408398.2022.2065660 10.1021/ja047697z 10.1002/adma.202100556 10.1021/cr100313v 10.1002/adma.202008145 10.1021/acs.chemrev.0c00999 10.1002/adma.202106996 10.1002/adfm.202112683 10.1016/j.nantod.2017.08.008 10.2116/analsci.19P004 10.1007/s00604-018-2981-5 10.1016/j.biomaterials.2021.121325 10.1021/acs.analchem.2c00036 10.1016/j.cej.2021.132330 10.1021/acs.jpclett.0c02640 10.1021/acs.nanolett.9b00725 10.1002/adma.201704528 10.1007/s40820-020-00532-z 10.1007/s40820-021-00674-8 10.1021/ar200061q 10.1021/acs.nanolett.9b02242 10.1002/anie.201700968 10.1002/asia.202100337 10.1021/jp074902z 10.1038/s41467-019-14199-7 10.1126/scirobotics.aam6431 10.1016/j.bioactmat.2021.10.023 10.1002/andp.19003060312 10.1016/j.colsurfa.2004.06.027 10.1016/j.ccr.2020.213376 10.1021/acs.accounts.9b00140 10.1021/acs.analchem.9b01655 10.1039/C3CS60265F 10.1016/j.snb.2022.131653 10.1039/b604038c 10.1039/C8CS00718G 10.1021/jacs.9b12873 10.1021/jacs.1c03510 10.1021/acsnano.6b08415 10.1016/j.physrep.2017.01.003 10.1039/D0CS00357C 10.1038/s41586-021-03986-2 10.1021/acssuschemeng.9b07009 10.1002/anie.202107712 10.1021/acsami.1c10656 10.7150/thno.39827 10.1002/adfm.202008420 10.1002/andp.19083300302 10.1021/acsami.8b15443 10.1002/adfm.201908598 10.1021/cr100275d 10.1016/j.talanta.2018.07.073 10.1038/s41467-021-20965-3 10.1021/acsnano.8b09501 10.1039/C6CS00885B 10.1021/jacs.7b00601 10.1002/anie.202106750 10.1016/j.mattod.2020.08.020 10.1002/adhm.202100601 10.1016/j.jcis.2022.05.037 10.1002/anie.200460649 10.1016/j.apcatb.2021.120826 10.1021/acs.nanolett.0c01654 10.1016/j.chempr.2019.07.022 10.1039/D1TB02141A 10.1002/adma.202001862 10.1021/acsnano.1c01248 10.1016/j.jiec.2021.08.011 10.1002/advs.202105252 10.1039/C3CS60417A 10.1016/j.snb.2014.01.056 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202204131 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36161698 10_1002_smll_202204131 SMLL202204131 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Youth Cross‐Scientific Innovation Group of Shandong University – fundername: Cyrus Tang Foundation – fundername: Taishan Scholars Program for Young Expert of Shandong Province funderid: tsqn201909021 – fundername: Program of Qilu Young Scholars of Shandong University – fundername: National Natural Science Foundation of China funderid: 31500802; 11874238 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20190097 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3731-dc98f4dda71ba9f4d9ca1cd1b2ee1f0a959dec71a9a5f8afeb309fe4ed0f88c3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 10:17:34 EDT 2025 Fri Jul 25 12:09:57 EDT 2025 Wed Feb 19 02:26:29 EST 2025 Thu Apr 24 23:05:11 EDT 2025 Tue Jul 01 02:54:18 EDT 2025 Wed Jan 22 16:22:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | nanozymes enzyme-mimicking activity plasmonic nanoparticles localized surface plasmon resonance biocatalysis |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-dc98f4dda71ba9f4d9ca1cd1b2ee1f0a959dec71a9a5f8afeb309fe4ed0f88c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1551-3020 |
PMID | 36161698 |
PQID | 2747974505 |
PQPubID | 1046358 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_2718639921 proquest_journals_2747974505 pubmed_primary_36161698 crossref_primary_10_1002_smll_202204131 crossref_citationtrail_10_1002_smll_202204131 wiley_primary_10_1002_smll_202204131_SMLL202204131 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2005; 290 2019; 91 2006; 30 2010; 16 2020; 20 2021; 442 2019; 11 2019; 10 2019; 13 1908; 25 2019; 15 2014; 26 2019; 19 2020; 13 2020; 12 2022; 20 2020; 11 2020; 10 2013; 5 2017; 674 2011; 111 2019; 288 2018; 47 2018; 9 2000; 19 2022; 281 2021; 432 2022; 280 2021; 277 2010; 114 2022; 34 2018; 30 2007; 2 2022; 32 2016; 45 2004; 43 2021; 429 2021; 46 2018; 185 2019; 5 2020; 41 2018; 105 2022; 94 2020; 142 2019; 35 2021; 425 2021; 424 2014; 47 2020; 35 2020; 145 2020; 32 2021; 143 2021; 50 2018; 20 2018; 190 2014; 43 2016; 12 2017; 139 2021; 57 2021; 54 2020; 30 2018; 118 2019; 48 2022; 9 2017; 56 2022; 12 2022; 13 1900; 306 2022; 14 2008; 41 2022; 10 2022; 108 2018; 12 2021; 60 2018; 10 2022; 623 2016; 26 2022; 16 2004; 244 2017; 7 2021; 20 2017; 2 2004; 126 2019; 52 2020; 120 2017; 46 2019; 58 2020; 126 2020; 59 2011; 11 2011; 10 2002; 116 2020; 403 2020; 56 2008; 2 2019; 120 2020; 8 2022; 122 2020; 7 2021; 37 2013; 15 2022; 360 2014; 5 2021; 31 2020; 2 2021; 33 2020; 53 2021; 599 2020; 49 2019; 119 2006; 128 2020; 418 2021; 9 2021; 6 2021; 4 2009; 21 2021; 104 2013; 42 2015; 10 2017; 23 2014; 195 2021; 187 2007; 58 2021; 13 2021; 16 2021; 15 2021; 10 1912; 37 2021; 12 2021; 11 2022 2017; 17 2017; 16 2017; 11 2007; 111 2021; 17 2011; 44 2018; 51 2021; 295 2022; 429 2022; 55 2018; 57 2022; 301 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 Wang W. Z. (e_1_2_8_16_1) 2020; 126 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 Li X. (e_1_2_8_13_1) 2019; 120 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_171_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_172_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_176_1 e_1_2_8_17_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_183_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_187_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_173_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_177_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 e_1_2_8_188_1 |
References_xml | – volume: 145 start-page: 4388 year: 2020 publication-title: Analyst – volume: 47 start-page: 7783 year: 2018 publication-title: Chem. Soc. Rev. – volume: 21 start-page: 433 year: 2009 publication-title: Chem. Mater. – volume: 12 start-page: 2002 year: 2021 publication-title: Nat. Commun. – volume: 14 start-page: 2 year: 2022 publication-title: Nano‐Micro Lett. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 3752 year: 2017 publication-title: ACS Nano – volume: 2 start-page: 136 year: 2008 publication-title: Laser Photonics Rev. – volume: 46 start-page: 5289 year: 2017 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 246 year: 2022 publication-title: Bioact Mater – volume: 34 start-page: 1356 year: 2022 publication-title: Chem. Mater. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 118 start-page: 3121 year: 2018 publication-title: Chem. Rev. – volume: 56 start-page: 6767 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 306 start-page: 566 year: 1900 publication-title: Ann. Phys. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 114 start-page: 7378 year: 2010 publication-title: J. Phys. Chem. C – volume: 52 start-page: 2516 year: 2019 publication-title: Acc. Chem. Res. – volume: 288 start-page: 120 year: 2019 publication-title: Sens. Actuators, B – volume: 429 year: 2021 publication-title: Coord. Chem. Rev. – volume: 41 start-page: 81 year: 2020 publication-title: Mater. Today – volume: 5 start-page: 2378 year: 2019 publication-title: Chem – volume: 187 year: 2021 publication-title: Biosens. Bioelectron. – volume: 122 start-page: 5365 year: 2022 publication-title: Chem. Rev. – volume: 5 start-page: 2879 year: 2019 publication-title: Chem – volume: 142 start-page: 5177 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 2115 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 4389 year: 2021 publication-title: Bioact Mater – volume: 126 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 418 year: 2020 publication-title: Coord. Chem. Rev. – volume: 10 start-page: 687 year: 2020 publication-title: Theranostics – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 1814 year: 2013 publication-title: Green Chem. – volume: 424 year: 2021 publication-title: Chem. Eng. J. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 119 start-page: 4357 year: 2019 publication-title: Chem. Rev. – volume: 195 start-page: 332 year: 2014 publication-title: Sens. Actuators, B – volume: 17 start-page: 3710 year: 2017 publication-title: Nano Lett. – volume: 20 start-page: 12 year: 2022 publication-title: J. Nanobiotechnol. – volume: 111 start-page: 3858 year: 2011 publication-title: Chem. Rev. – volume: 12 start-page: 5622 year: 2016 publication-title: Small – volume: 51 start-page: 789 year: 2018 publication-title: Acc. Chem. Res. – volume: 25 start-page: 377 year: 1908 publication-title: Ann. Phys. – volume: 55 start-page: 831 year: 2022 publication-title: Acc. Chem. Res. – volume: 442 year: 2021 publication-title: Coord. Chem. Rev. – volume: 5 year: 2013 publication-title: Nanoscale – volume: 30 start-page: 7027 year: 2018 publication-title: Chem. Mater. – volume: 116 start-page: 6755 year: 2002 publication-title: J. Chem. Phys. – volume: 9 start-page: 1209 year: 2018 publication-title: Nat. Commun. – volume: 91 year: 2019 publication-title: Anal. Chem. – volume: 60 start-page: 3469 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 253 year: 2020 publication-title: Nat Rev Phys – volume: 429 year: 2022 publication-title: Chem. Eng. J. – volume: 599 start-page: 120 year: 2021 publication-title: Nature – volume: 623 start-page: 155 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 3207 year: 2017 publication-title: Theranostics – volume: 11 start-page: 1111 year: 2011 publication-title: Nano Lett. – volume: 12 start-page: 745 year: 2021 publication-title: Nat. Commun. – volume: 13 start-page: 10 year: 2021 publication-title: Nano‐Micro Lett. – volume: 17 year: 2021 publication-title: Small – volume: 360 year: 2022 publication-title: Sens. Actuators, B – volume: 49 start-page: 1887 year: 2020 publication-title: Chem. Soc. Rev. – volume: 120 start-page: 986 year: 2020 publication-title: Chem. Rev. – volume: 281 year: 2022 publication-title: Biomaterials – volume: 104 start-page: 106 year: 2021 publication-title: J Ind Eng Chem – volume: 16 start-page: 61 year: 2017 publication-title: Nano Today – volume: 185 start-page: 445 year: 2018 publication-title: Microchim. Acta – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 403 year: 2020 publication-title: Coord. Chem. Rev. – volume: 13 start-page: 2118 year: 2020 publication-title: Nano Res. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 280 year: 2022 publication-title: Biomaterials – volume: 46 year: 2021 publication-title: Int. J. Hydrogen Energy – volume: 11 start-page: 3801 year: 2021 publication-title: ACS Catal. – volume: 43 start-page: 3908 year: 2014 publication-title: Chem. Soc. Rev. – volume: 26 start-page: 341 year: 2016 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 4200 year: 2014 publication-title: Adv. Mater. – volume: 45 start-page: 5672 year: 2016 publication-title: Chem. Soc. Rev. – volume: 56 start-page: 1784 year: 2020 publication-title: Chem. Commun. – volume: 2 year: 2017 publication-title: Sci. Rob. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 48 start-page: 1004 year: 2019 publication-title: Chem. Soc. Rev. – volume: 47 start-page: 1097 year: 2014 publication-title: Acc. Chem. Res. – volume: 46 start-page: 6710 year: 2017 publication-title: Chem. Soc. Rev. – volume: 91 start-page: 8170 year: 2019 publication-title: Anal. Chem. – volume: 16 year: 2010 publication-title: Chem. ‐ Eur. J. – volume: 13 start-page: 154 year: 2021 publication-title: Nano‐Micro Lett. – volume: 11 start-page: 2788 year: 2020 publication-title: Nat. Commun. – volume: 59 start-page: 2565 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 9606 year: 2021 publication-title: J. Mater. Chem. B – volume: 13 start-page: 1298 year: 2022 publication-title: Nat. Commun. – volume: 94 start-page: 4484 year: 2022 publication-title: Anal. Chem. – volume: 10 start-page: 216 year: 2022 publication-title: Biomater. Sci. – volume: 57 start-page: 9224 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 911 year: 2011 publication-title: Nat. Mater. – volume: 16 start-page: 3105 year: 2022 publication-title: ACS Nano – volume: 42 start-page: 6060 year: 2013 publication-title: Chem. Soc. Rev. – volume: 111 start-page: 3828 year: 2011 publication-title: Chem. Rev. – volume: 120 year: 2019 publication-title: Anal Chem – volume: 16 start-page: 1603 year: 2021 publication-title: Chem Asian J – volume: 244 start-page: 149 year: 2004 publication-title: Colloids Surf., A – volume: 10 start-page: 25 year: 2015 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 357 year: 2020 publication-title: Nat. Commun. – volume: 2 start-page: 577 year: 2007 publication-title: Nat. Nanotechnol. – volume: 126 year: 2020 publication-title: Anal Chem – volume: 60 start-page: 9480 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 277 year: 2021 publication-title: Biomaterials – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 111 year: 2007 publication-title: J. Phys. Chem. C – volume: 190 start-page: 103 year: 2018 publication-title: Talanta – volume: 30 start-page: 1121 year: 2006 publication-title: New J. Chem. – volume: 37 start-page: 881 year: 1912 publication-title: Ann. Phys. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 15 start-page: 5189 year: 2021 publication-title: ACS Nano – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater. – volume: 35 start-page: 691 year: 2019 publication-title: Anal. Sci. – volume: 20 start-page: 4051 year: 2020 publication-title: Nano Lett. – volume: 11 start-page: 9321 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 57 start-page: 1133 year: 2021 publication-title: Chem. Commun. – volume: 48 start-page: 3683 year: 2019 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 312 year: 2022 publication-title: J. Phys. Chem. Lett. – volume: 47 start-page: 138 year: 2014 publication-title: Acc. Chem. Res. – volume: 108 start-page: 501 year: 2022 publication-title: J Ind Eng Chem – volume: 58 start-page: 267 year: 2007 publication-title: Annu. Rev. Phys. Chem. – volume: 432 year: 2021 publication-title: Coord. Chem. Rev. – volume: 425 year: 2021 publication-title: Chem. Eng. J. – volume: 13 start-page: 5222 year: 2019 publication-title: ACS Nano – year: 2022 publication-title: Crit. Rev. Food Sci. Nutr. – volume: 52 start-page: 2190 year: 2019 publication-title: Acc. Chem. Res. – volume: 19 start-page: 3214 year: 2019 publication-title: Nano Lett. – volume: 105 start-page: 218 year: 2018 publication-title: TrAC, Trends Anal. Chem. – volume: 10 start-page: 940 year: 2019 publication-title: Nat. Commun. – volume: 19 start-page: 409 year: 2000 publication-title: Int. Rev. Phys. Chem. – volume: 54 start-page: 2477 year: 2021 publication-title: Acc. Chem. Res. – volume: 41 start-page: 1710 year: 2008 publication-title: Acc. Chem. Res. – volume: 15 start-page: 60 year: 2019 publication-title: Curr. Opin. Green Sustainable Chem. – volume: 290 start-page: 117 year: 2005 publication-title: J. Colloid Interface Sci. – volume: 5 start-page: 5301 year: 2014 publication-title: Nat. Commun. – volume: 37 year: 2021 publication-title: Nano Today – volume: 674 start-page: 1 year: 2017 publication-title: Phys Rep – volume: 44 start-page: 914 year: 2011 publication-title: Acc. Chem. Res. – volume: 53 start-page: 1773 year: 2020 publication-title: Acc. Chem. Res. – volume: 6 year: 2021 publication-title: Sci. Rob. – volume: 139 start-page: 5412 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 916 year: 2021 publication-title: Nat. Mater. – volume: 43 start-page: 3957 year: 2014 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 3291 year: 2020 publication-title: Mater. Horiz. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 295 year: 2021 publication-title: Appl. Catal. B – volume: 8 start-page: 5076 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 23 start-page: 6717 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 12 year: 2021 publication-title: Chem. Sci. – volume: 15 start-page: 5735 year: 2021 publication-title: ACS Nano – volume: 43 start-page: 7188 year: 2014 publication-title: Chem. Soc. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 407 year: 2021 publication-title: Nat. Catal. – volume: 143 start-page: 8855 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 50 year: 2021 publication-title: Chem. Soc. Rev. – volume: 301 year: 2022 publication-title: Appl. Catal. B – volume: 111 start-page: 3669 year: 2011 publication-title: Chem. Rev. – volume: 19 start-page: 7645 year: 2019 publication-title: Nano Lett. – volume: 9 start-page: 1440 year: 2018 publication-title: Nat. Commun. – volume: 47 start-page: 1938 year: 2018 publication-title: Chem. Soc. Rev. – volume: 20 start-page: 4067 year: 2018 publication-title: Green Chem. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 4134 year: 2019 publication-title: Nano Lett. – volume: 35 year: 2020 publication-title: Nano Today – volume: 43 start-page: 6165 year: 2004 publication-title: Angew. Chem., Int. Ed. – volume: 50 start-page: 2173 year: 2021 publication-title: Chem. Soc. Rev. – ident: e_1_2_8_97_1 doi: 10.1038/s41563-020-00858-4 – ident: e_1_2_8_106_1 doi: 10.1002/smll.201602366 – ident: e_1_2_8_60_1 doi: 10.1016/j.nantod.2020.101005 – ident: e_1_2_8_133_1 doi: 10.1039/D0CC06925F – ident: e_1_2_8_77_1 doi: 10.1021/acs.accounts.1c00682 – ident: e_1_2_8_139_1 doi: 10.1016/j.ijhydene.2021.06.142 – ident: e_1_2_8_147_1 doi: 10.1016/j.trac.2018.05.012 – ident: e_1_2_8_175_1 doi: 10.1002/adma.202107088 – ident: e_1_2_8_164_1 doi: 10.1002/anie.201908289 – ident: e_1_2_8_44_1 doi: 10.1039/C9CS00313D – ident: e_1_2_8_168_1 doi: 10.1038/s41467-020-16544-7 – ident: e_1_2_8_169_1 doi: 10.1038/ncomms6301 – ident: e_1_2_8_35_1 doi: 10.1021/acs.analchem.9b00512 – ident: e_1_2_8_86_1 doi: 10.1021/cm802753j – ident: e_1_2_8_187_1 doi: 10.1021/acsami.1c01943 – ident: e_1_2_8_28_1 doi: 10.1039/C8CS00457A – volume: 126 year: 2020 ident: e_1_2_8_16_1 publication-title: Anal Chem – ident: e_1_2_8_70_1 doi: 10.1146/annurev.physchem.58.032806.104607 – ident: e_1_2_8_123_1 doi: 10.1016/j.bioactmat.2021.04.024 – ident: e_1_2_8_90_1 doi: 10.1002/lpor.200810003 – ident: e_1_2_8_8_1 doi: 10.1002/anie.201905645 – ident: e_1_2_8_152_1 doi: 10.1039/C7CS00471K – ident: e_1_2_8_105_1 doi: 10.1021/ar800028j – ident: e_1_2_8_80_1 doi: 10.1080/01442350050034180 – ident: e_1_2_8_178_1 doi: 10.1021/acs.chemrev.7b00613 – ident: e_1_2_8_132_1 doi: 10.1002/adfm.201503670 – ident: e_1_2_8_103_1 doi: 10.1021/acs.nanolett.9b01595 – ident: e_1_2_8_157_1 doi: 10.1002/adma.202002439 – ident: e_1_2_8_116_1 doi: 10.1002/smll.202102342 – ident: e_1_2_8_3_1 doi: 10.1038/nnano.2007.260 – ident: e_1_2_8_117_1 doi: 10.1007/s40820-021-00752-x – ident: e_1_2_8_131_1 doi: 10.1016/j.biomaterials.2021.121088 – ident: e_1_2_8_5_1 doi: 10.1021/ar400250z – ident: e_1_2_8_101_1 doi: 10.1021/acscatal.1c00164 – ident: e_1_2_8_115_1 doi: 10.1016/j.ccr.2019.213092 – ident: e_1_2_8_129_1 doi: 10.1021/acsami.1c07181 – ident: e_1_2_8_143_1 doi: 10.1016/j.cej.2021.130639 – ident: e_1_2_8_36_1 doi: 10.1039/D0AN00389A – ident: e_1_2_8_61_1 doi: 10.1021/ar400086e – ident: e_1_2_8_75_1 doi: 10.1039/C6CS00450D – ident: e_1_2_8_14_1 doi: 10.1016/j.nantod.2020.100920 – ident: e_1_2_8_91_1 doi: 10.1039/c3gc40450a – ident: e_1_2_8_188_1 doi: 10.1021/acsnano.8b05200 – ident: e_1_2_8_145_1 doi: 10.1016/j.jiec.2022.01.030 – ident: e_1_2_8_154_1 doi: 10.1002/anie.202101924 – ident: e_1_2_8_29_1 doi: 10.1021/acs.chemmater.8b02365 – ident: e_1_2_8_98_1 doi: 10.1021/nl104005n – ident: e_1_2_8_23_1 doi: 10.1002/adma.202107088 – ident: e_1_2_8_137_1 doi: 10.1007/s12274-020-2818-5 – ident: e_1_2_8_171_1 doi: 10.1016/j.nantod.2020.100935 – ident: e_1_2_8_112_1 doi: 10.1016/j.bios.2021.113327 – ident: e_1_2_8_177_1 doi: 10.1039/D0MH01535K – ident: e_1_2_8_99_1 doi: 10.1021/acs.nanolett.7b00992 – ident: e_1_2_8_34_1 doi: 10.1038/s41467-018-03617-x – ident: e_1_2_8_81_1 doi: 10.1002/andp.19123420503 – ident: e_1_2_8_74_1 doi: 10.1016/j.ccr.2021.213934 – ident: e_1_2_8_51_1 doi: 10.1039/D1CS00237F – ident: e_1_2_8_92_1 doi: 10.1002/chem.201002665 – ident: e_1_2_8_114_1 doi: 10.1039/D1BM01406D – ident: e_1_2_8_136_1 doi: 10.1016/j.snb.2019.02.065 – ident: e_1_2_8_111_1 doi: 10.1039/D1SC01760H – ident: e_1_2_8_6_1 doi: 10.1002/anie.201712469 – ident: e_1_2_8_88_1 doi: 10.1063/1.1462610 – ident: e_1_2_8_96_1 doi: 10.1002/adma.202107351 – ident: e_1_2_8_43_1 doi: 10.1016/j.biomaterials.2021.121308 – ident: e_1_2_8_94_1 doi: 10.1021/acs.accounts.1c00093 – ident: e_1_2_8_73_1 doi: 10.1039/C6CS00919K – ident: e_1_2_8_12_1 doi: 10.1021/acs.accounts.8b00011 – ident: e_1_2_8_124_1 doi: 10.1021/acsami.9b16286 – ident: e_1_2_8_176_1 doi: 10.1002/anie.202012487 – ident: e_1_2_8_11_1 doi: 10.7150/thno.19738 – ident: e_1_2_8_161_1 doi: 10.1186/s12951-021-01215-6 – ident: e_1_2_8_31_1 doi: 10.1002/adfm.202104100 – ident: e_1_2_8_76_1 doi: 10.1038/s42254-020-0171-y – ident: e_1_2_8_45_1 doi: 10.1038/nmat3151 – ident: e_1_2_8_53_1 doi: 10.1021/acsnano.0c10388 – ident: e_1_2_8_66_1 doi: 10.1021/acs.accounts.0c00378 – ident: e_1_2_8_25_1 doi: 10.1021/acs.chemrev.8b00672 – volume: 120 year: 2019 ident: e_1_2_8_13_1 publication-title: Anal Chem – ident: e_1_2_8_50_1 doi: 10.1038/nnano.2014.311 – ident: e_1_2_8_165_1 doi: 10.1038/s41467-018-03903-8 – ident: e_1_2_8_52_1 doi: 10.1002/chem.201605380 – ident: e_1_2_8_128_1 doi: 10.1016/j.cej.2021.130356 – ident: e_1_2_8_134_1 doi: 10.1002/anie.201906758 – ident: e_1_2_8_121_1 doi: 10.1021/acs.jpclett.1c03804 – ident: e_1_2_8_184_1 doi: 10.1126/scirobotics.abd2823 – ident: e_1_2_8_84_1 doi: 10.1016/j.jcis.2005.04.034 – ident: e_1_2_8_54_1 doi: 10.1016/j.apcatb.2021.120317 – ident: e_1_2_8_93_1 doi: 10.1021/jp9095387 – ident: e_1_2_8_33_1 doi: 10.1038/s41467-019-08731-y – ident: e_1_2_8_89_1 doi: 10.1021/ja057254a – ident: e_1_2_8_146_1 doi: 10.1038/s41929-021-00609-x – ident: e_1_2_8_167_1 doi: 10.1038/s41467-022-29082-1 – ident: e_1_2_8_18_1 doi: 10.1016/j.ccr.2020.213751 – ident: e_1_2_8_1_1 doi: 10.1039/c3cs35486e – ident: e_1_2_8_48_1 doi: 10.1039/C8CS00479J – ident: e_1_2_8_49_1 doi: 10.1021/acs.chemrev.9b00187 – ident: e_1_2_8_102_1 doi: 10.1039/C8GC01317A – ident: e_1_2_8_47_1 doi: 10.1039/C4CS00145A – ident: e_1_2_8_20_1 doi: 10.1002/anie.201904751 – ident: e_1_2_8_82_1 doi: 10.1021/cr1002547 – ident: e_1_2_8_69_1 doi: 10.1039/c3nr02257a – ident: e_1_2_8_65_1 doi: 10.1016/j.cogsc.2018.10.002 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201400238 – ident: e_1_2_8_10_1 doi: 10.1016/j.ccr.2020.213652 – ident: e_1_2_8_64_1 doi: 10.1002/adhm.202101331 – ident: e_1_2_8_110_1 doi: 10.1039/C9CC08223A – ident: e_1_2_8_130_1 doi: 10.1021/acsami.0c04987 – ident: e_1_2_8_107_1 doi: 10.1002/adma.202008540 – ident: e_1_2_8_151_1 doi: 10.1016/j.chempr.2019.05.023 – ident: e_1_2_8_170_1 doi: 10.1038/s41467-021-22286-x – ident: e_1_2_8_125_1 doi: 10.1021/acsnano.1c10732 – ident: e_1_2_8_9_1 doi: 10.1016/j.nantod.2021.101076 – ident: e_1_2_8_159_1 doi: 10.1002/anie.202017152 – ident: e_1_2_8_59_1 doi: 10.1021/acs.accounts.9b00287 – ident: e_1_2_8_57_1 doi: 10.1021/acs.chemmater.1c03952 – ident: e_1_2_8_163_1 doi: 10.1080/10408398.2022.2065660 – ident: e_1_2_8_183_1 doi: 10.1021/ja047697z – ident: e_1_2_8_158_1 doi: 10.1002/adma.202100556 – ident: e_1_2_8_46_1 doi: 10.1021/cr100313v – ident: e_1_2_8_63_1 doi: 10.1002/adma.202008145 – ident: e_1_2_8_185_1 doi: 10.1021/acs.chemrev.0c00999 – ident: e_1_2_8_37_1 doi: 10.1002/adma.202106996 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.202112683 – ident: e_1_2_8_68_1 doi: 10.1016/j.nantod.2017.08.008 – ident: e_1_2_8_119_1 doi: 10.2116/analsci.19P004 – ident: e_1_2_8_148_1 doi: 10.1007/s00604-018-2981-5 – ident: e_1_2_8_42_1 doi: 10.1016/j.biomaterials.2021.121325 – ident: e_1_2_8_56_1 doi: 10.1021/acs.analchem.2c00036 – ident: e_1_2_8_118_1 doi: 10.1016/j.cej.2021.132330 – ident: e_1_2_8_41_1 doi: 10.1002/anie.201904751 – ident: e_1_2_8_108_1 doi: 10.1021/acs.jpclett.0c02640 – ident: e_1_2_8_32_1 doi: 10.1021/acs.nanolett.9b00725 – ident: e_1_2_8_83_1 doi: 10.1002/adma.201704528 – ident: e_1_2_8_24_1 doi: 10.1007/s40820-020-00532-z – ident: e_1_2_8_26_1 doi: 10.1007/s40820-021-00674-8 – ident: e_1_2_8_62_1 doi: 10.1021/ar200061q – ident: e_1_2_8_174_1 doi: 10.1021/acs.nanolett.9b02242 – ident: e_1_2_8_30_1 doi: 10.1002/anie.201700968 – ident: e_1_2_8_120_1 doi: 10.1002/asia.202100337 – ident: e_1_2_8_87_1 doi: 10.1021/jp074902z – ident: e_1_2_8_155_1 doi: 10.1038/s41467-019-14199-7 – ident: e_1_2_8_181_1 doi: 10.1126/scirobotics.aam6431 – ident: e_1_2_8_39_1 doi: 10.1016/j.bioactmat.2021.10.023 – ident: e_1_2_8_72_1 doi: 10.1002/andp.19003060312 – ident: e_1_2_8_85_1 doi: 10.1016/j.colsurfa.2004.06.027 – ident: e_1_2_8_17_1 doi: 10.1016/j.ccr.2020.213376 – ident: e_1_2_8_7_1 doi: 10.1021/acs.accounts.9b00140 – ident: e_1_2_8_138_1 doi: 10.1021/acs.analchem.9b01655 – ident: e_1_2_8_40_1 doi: 10.1002/anie.202101924 – ident: e_1_2_8_58_1 doi: 10.1039/C3CS60265F – ident: e_1_2_8_150_1 doi: 10.1016/j.snb.2022.131653 – ident: e_1_2_8_71_1 doi: 10.1039/b604038c – ident: e_1_2_8_19_1 doi: 10.1039/C8CS00718G – ident: e_1_2_8_153_1 doi: 10.1021/jacs.9b12873 – ident: e_1_2_8_141_1 doi: 10.1021/jacs.1c03510 – ident: e_1_2_8_144_1 doi: 10.1021/acsnano.6b08415 – ident: e_1_2_8_179_1 doi: 10.1016/j.physrep.2017.01.003 – ident: e_1_2_8_95_1 doi: 10.1039/D0CS00357C – ident: e_1_2_8_162_1 doi: 10.1038/s41586-021-03986-2 – ident: e_1_2_8_109_1 doi: 10.1021/acssuschemeng.9b07009 – ident: e_1_2_8_22_1 doi: 10.1002/anie.202107712 – ident: e_1_2_8_127_1 doi: 10.1021/acsami.1c10656 – ident: e_1_2_8_15_1 doi: 10.7150/thno.39827 – ident: e_1_2_8_38_1 doi: 10.1002/adfm.202008420 – ident: e_1_2_8_79_1 doi: 10.1002/andp.19083300302 – ident: e_1_2_8_104_1 doi: 10.1021/acsami.8b15443 – ident: e_1_2_8_156_1 doi: 10.1002/adfm.201908598 – ident: e_1_2_8_67_1 doi: 10.1021/cr100275d – ident: e_1_2_8_149_1 doi: 10.1016/j.talanta.2018.07.073 – ident: e_1_2_8_166_1 doi: 10.1038/s41467-021-20965-3 – ident: e_1_2_8_21_1 doi: 10.1021/acsnano.8b09501 – ident: e_1_2_8_182_1 doi: 10.1039/C6CS00885B – ident: e_1_2_8_186_1 doi: 10.1021/jacs.7b00601 – ident: e_1_2_8_140_1 doi: 10.1002/anie.202106750 – ident: e_1_2_8_27_1 doi: 10.1016/j.mattod.2020.08.020 – ident: e_1_2_8_135_1 doi: 10.1002/adhm.202100601 – ident: e_1_2_8_142_1 doi: 10.1016/j.jcis.2022.05.037 – ident: e_1_2_8_2_1 doi: 10.1002/anie.200460649 – ident: e_1_2_8_172_1 doi: 10.1016/j.apcatb.2021.120826 – ident: e_1_2_8_189_1 doi: 10.1021/acs.nanolett.0c01654 – ident: e_1_2_8_100_1 doi: 10.1016/j.chempr.2019.07.022 – ident: e_1_2_8_122_1 doi: 10.1039/D1TB02141A – ident: e_1_2_8_126_1 doi: 10.1002/adma.202001862 – ident: e_1_2_8_173_1 doi: 10.1021/acsnano.1c01248 – ident: e_1_2_8_113_1 doi: 10.1016/j.jiec.2021.08.011 – ident: e_1_2_8_160_1 doi: 10.1002/advs.202105252 – ident: e_1_2_8_180_1 doi: 10.1039/C3CS60417A – ident: e_1_2_8_78_1 doi: 10.1016/j.snb.2014.01.056 |
SSID | ssj0031247 |
Score | 2.600263 |
SecondaryResourceType | review_article |
Snippet | Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2204131 |
SubjectTerms | biocatalysis Biomedical materials Enzymes enzyme‐mimicking activity Free electrons Light irradiation localized surface plasmon resonance Nanomaterials Nanoparticles Nanotechnology nanozymes plasmonic nanoparticles Plasmonics Surface Plasmon Resonance |
Title | Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme‐Mimicking Activity of Nanomaterials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202204131 https://www.ncbi.nlm.nih.gov/pubmed/36161698 https://www.proquest.com/docview/2747974505 https://www.proquest.com/docview/2718639921 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB5Kn9oHtV5XWxlB8Cltkkk2M32rpaXIroit0LdwMjkDS7uJNNkHFwR_gr-xv8RzMtnYVUTQt4TMLZNz-c7M5DtCvIbMKltGJoAUKUAx6IJCOQpWMqdVCNqFHZfe9P347FPy7jK9vPMXv-eHGBbcWDM6e80KDkVz8JM0tJlf89ZBHIdkhzn-4QNbjIo-DvxRipxXl12FfFbAxFsr1sYwPlivvu6VfoOa68i1cz2n9wWsBu1PnFztL9pi3y5_4XP8n7d6IO71uFQeeUHaERtYPRTbd9gKH4mvHwhpz5lKV5JNrpdf5tgcygmSMnSpjuSE_eJsiaU8X9w4sCj7GpI3CZjZA2Vby7d13bSSgKc8qbiR22_fp7P5zPKivTyyPp2FrF3XCwFqryOPxcXpycXxWdBnbwisylQUlNZol5QlZFEBhq6MhYjEoogRIxeCSU2JNovAQOo0OIrqQ-MwwTJ0Wlv1RGxWdYXPhHSFjhUmDtjeYAJAoIqAmQOXJgUhxpEIVh8vtz2zOSfYuM49J3Oc86zmw6yOxJuh_GfP6fHHkrsrWch73W5yjuMpCiPoOBKvhseklbzVAhXWCy4TacZ-MTXx1MvQ0JUakzyOjR6JuJOEv4whP59OJsPd83-p9EJs8bU_hbMrNtubBe4RlmqLl52-_AAh6hon |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZQEseD8GSjESiFXaxEkmMRKL0oemNFMhOkjdWY5jSyM6CWoyQh0JiU_gU_gVfoEv4d68YEAICakLdnk4thPfx7m2cy7AExVpX2eecFRoMEARxjqpbzFYiWzsuyq2bs2lNz4cjt4Gr47D4xX40v0L0_BD9BNupBm1vSYFpwnpzR-soeXshNYOOHfREHvtvsoDc_YBo7byxf4ODvFTzvd2J9sjp00s4Gg_8j0n0yK2QZapyEuVwCOhlYc9TrkxnnWVCEVmdOQpoUIbK4sBpyusCUzm2jjWPlZ7AS5SFnFi69950xNW-egt63Qu6CQdYvrqaCJdvrnc3WU3-Bu2XYbKta_buwZfu6_UbHF5tzGv0g29-IVA8n_6jNfhagu82VajKTdgxeQ34cpPdIy34ONrDCVmxBXM0OkUi7OZKZ-zxKC217mcWEKOf7owGTuan1qlDWufYLQKQtQlhlUFe1kUZcUQWbPdnCr59unzeDqbalqVYFu6ydfBClu3ghFDYwRuw-Q8Xv8OrOZFbu4Bs2nMfRNYRQbVBEohakTkaZUNgxQh8QCcTlikbqnbKYPIiWxIp7mkQZT9IA7gWV_-fUNa8seSa53sydZ4lZImKjDMRGw8gMf9bTQ7tJakclPMqYwXE7jlWMXdRmb7pvwhyv9QxAPgteT9pQ_yaJwk_dn9f3noEVwaTcaJTPYPDx7AZbrebDlag9XqdG4eInCs0vVaVxnIcxbq746DfRM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UCqIP3i-rVUdQfEqbTJJNRvChul1amy3FVujbMJnMwGI3KU0W6YLgT_Cf-Ff8Df4Sz8lNVxFB6INvucxMJjPn8p3M5DsAT1WkfZ15wlGhwQBFGOukvsVgJbKx76rYujWX3mRvuP0ueHMUHq3Al-5fmIYfov_gRppR22tS8JPMbvwgDS1nx7R0wLmLdthrt1XumrMPGLSVL3dGOMPPOB9vHb7edtq8Ao72I99zMi1iG2SZirxUCTwSWnnY4ZQb41lXiVBkRkeeEiq0sbIYb7rCmsBkro1j7WOzF-BiMHQF5YoYve35qnx0lnU2F_SRDhF9dSyRLt9Y7u6yF_wN2i4j5drVja_B126Qmh0u79fnVbquF7_wR_5Ho3gdrrawm202enIDVkx-E678RMZ4Cz7uYyAxI6Zghi6nWJzNTPmCJQZ1vc7kxBJy-9OFydjB_NQqbVhbg9EaCBGXGFYV7FVRlBVDXM22cmrk26fPk-lsqmlNgm3qJlsHK2z9FIwXGhNwGw7P4_XvwGpe5OYeMJvG3DeBVWROTaAUYkbEnVbZMEgREA_A6WRF6pa4nfKHHMuGcppLmkTZT-IAnvflTxrKkj-WXOtET7amq5T0mQKDTETGA3jS30ajQytJKjfFnMp4MUFbjk3cbUS2f5Q_RPEfingAvBa8v_RBHkySpD-7_y-VHsOl_dFYJjt7uw_gMl1u9hutwWp1OjcPETVW6aNaUxnIc5bp75rZe8I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmonic+Nanozymes%3A+Leveraging+Localized+Surface+Plasmon+Resonance+to+Boost+the+Enzyme%E2%80%90Mimicking+Activity+of+Nanomaterials&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xu%2C+Guopeng&rft.au=Du%2C+Xuancheng&rft.au=Wang%2C+Weijie&rft.au=Qu%2C+Yuanyuan&rft.date=2022-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=49&rft_id=info:doi/10.1002%2Fsmll.202204131&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |