Van der Waals Epitaxy Growth of 2D Single‐Element Room‐Temperature Ferromagnet
2D single‐element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time‐consuming material‐optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 19; pp. e2211701 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202211701 |
Cover
Abstract | 2D single‐element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time‐consuming material‐optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single‐crystalline nanosheets with a sub‐millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in‐plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room‐temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics.
The synthesis of 2D single‐element cobalt nanosheets with a sub‐millimeter scale via van der Waals epitaxy is demonstrated for the first time, which is guaranteed by the synergistic effect between van der Waals interactions and surface energy minimization. Cobalt nanosheets exhibit significant in‐plane magnetic anisotropy and magnetoresistance effects, opening up exciting opportunities for the exploration of 2D single‐element magnetism. |
---|---|
AbstractList | 2D single‐element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time‐consuming material‐optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single‐crystalline nanosheets with a sub‐millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in‐plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room‐temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics. 2D single-element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time-consuming material-optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single-crystalline nanosheets with a sub-millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in-plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room-temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics. 2D single-element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time-consuming material-optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single-crystalline nanosheets with a sub-millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in-plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room-temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics.2D single-element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time-consuming material-optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single-crystalline nanosheets with a sub-millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in-plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room-temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics. 2D single‐element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time‐consuming material‐optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single‐crystalline nanosheets with a sub‐millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in‐plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room‐temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics. The synthesis of 2D single‐element cobalt nanosheets with a sub‐millimeter scale via van der Waals epitaxy is demonstrated for the first time, which is guaranteed by the synergistic effect between van der Waals interactions and surface energy minimization. Cobalt nanosheets exhibit significant in‐plane magnetic anisotropy and magnetoresistance effects, opening up exciting opportunities for the exploration of 2D single‐element magnetism. |
Author | Wang, Yanrong Feng, Wenyong Wang, Zhenxing He, Jun Cai, Yuchen Zhai, Baoxing Cheng, Ruiqing Yin, Lei Liu, Chuansheng Jiang, Jian Liu, Yong Wen, Yao Wang, Hao |
Author_xml | – sequence: 1 givenname: Jian surname: Jiang fullname: Jiang, Jian organization: Wuhan University – sequence: 2 givenname: Ruiqing surname: Cheng fullname: Cheng, Ruiqing organization: National Center for Nanoscience and Technology – sequence: 3 givenname: Wenyong surname: Feng fullname: Feng, Wenyong organization: Sun Yat‐Sen University – sequence: 4 givenname: Lei surname: Yin fullname: Yin, Lei organization: Wuhan University – sequence: 5 givenname: Yao surname: Wen fullname: Wen, Yao organization: Wuhan University – sequence: 6 givenname: Yanrong surname: Wang fullname: Wang, Yanrong organization: National Center for Nanoscience and Technology – sequence: 7 givenname: Yuchen surname: Cai fullname: Cai, Yuchen organization: National Center for Nanoscience and Technology – sequence: 8 givenname: Yong surname: Liu fullname: Liu, Yong organization: Wuhan University – sequence: 9 givenname: Hao surname: Wang fullname: Wang, Hao organization: Wuhan University – sequence: 10 givenname: Baoxing surname: Zhai fullname: Zhai, Baoxing organization: Wuhan University – sequence: 11 givenname: Chuansheng surname: Liu fullname: Liu, Chuansheng organization: Wuhan University – sequence: 12 givenname: Jun orcidid: 0000-0002-2355-7579 surname: He fullname: He, Jun email: hej@nanoctr.cn organization: Wuhan Institute of Quantum Technology – sequence: 13 givenname: Zhenxing surname: Wang fullname: Wang, Zhenxing email: wangzx@nanoctr.cn organization: National Center for Nanoscience and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36807945$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaTZJrz0WQS-5eKuRbMk6LsnmAxIKadIexcQapw62tJVt0r31J_Q39pfEyyYtBEpPw8DzPgzz7rGdEAMx9g7EHISQH9F3OJdCSgAj4BWbQSEhy4UtdthMWFVkVuflLtvr-3shhNVCv2G7SpfC2LyYsasvGLinxL8itj1frpoBf6z5aYoPwzceay6P-ecm3LX0--evZUsdhYFfxdhN6zV1K0o4jIn4CaUUO7wLNByw1_XkordPc5_dnCyvj86yi0-n50eLi6xSRkHmASGXWJrcKmErXym00hhf5YXB0hYFCU_6FrzWRmsEtNYr0nVVl6gIlNpnh1vvKsXvI_WD65q-orbFQHHs3SQrrdHS6gn98AK9j2MK03VOlgAl2CLfCN8_UeNtR96tUtNhWrvnb01AvgWqFPs-Ue2q6V1DE8OQsGkdCLcpxW1KcX9KmWLzF7Fn8z8Ddht4aFpa_4d2i-PLxd_sI36Intc |
CitedBy_id | crossref_primary_10_1007_s11426_023_1767_2 crossref_primary_10_1093_nsr_nwae430 crossref_primary_10_1002_apxr_202400169 crossref_primary_10_1038_s41928_024_01202_3 crossref_primary_10_1002_adma_202305044 |
Cites_doi | 10.1038/s41563-022-01291-5 10.1021/jacs.1c06877 10.1021/nl504258m 10.1103/PhysRevLett.77.3865 10.1007/s40843-021-1765-x 10.1016/j.infrared.2022.104033 10.1002/adfm.201706589 10.1126/science.abj7478 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.59.1196 10.1016/S0038-1098(03)00189-3 10.1021/acsnano.2c02214 10.1021/nl501018z 10.1038/s41467-020-18521-6 10.1063/1.93463 10.1126/science.275.5303.1102 10.1038/s41563-021-00927-2 10.1016/j.ceramint.2020.03.143 10.1103/PhysRevB.48.13115 10.1016/j.jmmm.2009.04.040 10.1016/0166-9834(91)85115-C 10.1088/0957-4484/17/6/042 10.1093/nsr/nwab142 10.1126/science.abi6332 10.1016/j.scib.2022.07.005 10.1038/s41467-021-24247-w 10.1021/ja064778h 10.1002/(SICI)1521-4095(199802)10:3<259::AID-ADMA259>3.0.CO;2-R 10.1021/jacs.1c09607 10.1038/s41467-022-33017-1 10.1039/C7QM00548B 10.1016/j.mtadv.2020.100092 10.1039/D1NR04862G 10.1021/nl0806163 10.1021/acs.nanolett.6b04194 10.1103/PhysRevB.50.17953 10.1038/s41586-018-0626-9 10.1002/adfm.201706437 10.1103/PhysRevB.53.12166 10.1126/science.1082857 10.1038/s41928-020-0427-7 10.1021/acsnano.0c03863 10.1021/cg060593a 10.1126/science.1245273 10.1021/jp982755m 10.1038/ncomms4313 10.1103/PhysRevLett.64.1059 10.1021/acs.chemrev.7b00727 10.1103/PhysRevLett.115.057201 10.1002/adma.202108313 10.1038/s41467-021-27218-3 10.1002/adma.202008456 10.1016/j.matt.2021.11.029 10.1002/adma.201703122 10.1103/PhysRevB.13.5188 10.1021/la0526885 10.1063/5.0039979 10.1021/nn5003858 10.1021/acs.nanolett.0c01082 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202211701 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 36807945 10_1002_adma_202211701 ADMA202211701 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 91964203; 62274121; 62104171; 62104172; 62004142 – fundername: Natural Science Foundation of Hubei Province, China funderid: 2021CFB037 – fundername: Special Fund of Hubei Luojia Laboratory – fundername: National Key R&D Program of China funderid: 2018YFA0703700 – fundername: Strategic Priority Research Program of Chinese Academy of Sciences funderid: XDB44000000 – fundername: Fundamental Research Funds for the Central Universities funderid: 2042021kf0067 – fundername: Strategic Priority Research Program of Chinese Academy of Sciences grantid: XDB44000000 – fundername: National Natural Science Foundation of China grantid: 91964203 – fundername: Fundamental Research Funds for the Central Universities grantid: 2042021kf0067 – fundername: National Natural Science Foundation of China grantid: 62004142 – fundername: Natural Science Foundation of Hubei Province, China grantid: 2021CFB037 – fundername: National Natural Science Foundation of China grantid: 62274121 – fundername: National Natural Science Foundation of China grantid: 62104172 – fundername: National Natural Science Foundation of China grantid: 62104171 – fundername: National Key R&D Program of China grantid: 2018YFA0703700 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3731-d1a142a8749309cdc3a9277dc457a8955e0de6b1d66766a1a99d3e6fcf8a3e133 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 11:55:47 EDT 2025 Fri Jul 25 02:38:53 EDT 2025 Mon Jul 21 06:05:49 EDT 2025 Tue Jul 01 02:33:29 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 Wed Jan 22 16:21:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | dihalides reductions 2D cobalt nanosheets room-temperature ferromagnetisms 2D magnetism van der Waals epitaxy |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-d1a142a8749309cdc3a9277dc457a8955e0de6b1d66766a1a99d3e6fcf8a3e133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2355-7579 |
PMID | 36807945 |
PQID | 2811819543 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2778976296 proquest_journals_2811819543 pubmed_primary_36807945 crossref_citationtrail_10_1002_adma_202211701 crossref_primary_10_1002_adma_202211701 wiley_primary_10_1002_adma_202211701_ADMA202211701 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2008 1997; 8 275 2018 2022 2020; 2 9 8 2018; 28 2021; 65 2020; 20 2006; 17 2022; 67 1994 1993 1996; 50 48 54 2020; 14 1999 2006 1998 2003; 103 22 10 126 2021; 143 1996; 53 1996; 77 2014 1982 2015; 14 41 115 1990; 64 2022; 121 2014; 5 2022 2022; 34 13 1976; 13 2021; 33 2022 2022; 5 2018; 118 1999; 59 2021 2020 2021 2018; 12 3 20 563 2009; 321 2007; 7 2017 2006; 17 128 2015 2017; 15 29 2021; 374 2003 2018; 300 28 2014; 8 2021 2022 2021 2020 2021; 12 16 13 11 8 2020 1991; 46 73 2014; 343 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_28_3 e_1_2_8_28_4 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_26_2 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_3_5 e_1_2_8_7_1 e_1_2_8_3_4 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_32_2 e_1_2_8_30_1 e_1_2_8_27_2 e_1_2_8_27_3 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_35_2 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_35_3 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_33_2 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 53 year: 1996 publication-title: Phys. Rev. B – volume: 12 16 13 11 8 start-page: 3952 4806 year: 2021 2022 2021 2020 2021 publication-title: Nat. Commun. ACS Nano Nanoscale Nat. Commun. Appl. Phys. Rev. – volume: 7 start-page: 1904 year: 2007 publication-title: Cryst. Growth Des. – volume: 121 year: 2022 publication-title: Infrared Phys. Techn. – volume: 300 28 start-page: 1130 year: 2003 2018 publication-title: Science Adv. Funct. Mater. – volume: 20 start-page: 4354 year: 2020 publication-title: Nano Lett. – volume: 59 start-page: 1196 year: 1999 publication-title: Phys. Rev. B – volume: 321 start-page: 2890 year: 2009 publication-title: J. Magn. Magn. Mater. – volume: 8 start-page: 3715 year: 2014 publication-title: ACS Nano – volume: 374 start-page: 1140 year: 2021 publication-title: Science – volume: 5 start-page: 3313 year: 2014 publication-title: Nat. Commun. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 374 start-page: 1390 year: 2021 publication-title: Science – volume: 2 9 8 start-page: 456 year: 2018 2022 2020 publication-title: Mater. Chem. Front. Nat. Sci. Rev. Mater. Today Adv. – volume: 34 13 start-page: 5241 year: 2022 2022 publication-title: Adv. Mater. Nat. Commun. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 343 start-page: 1228 year: 2014 publication-title: Science – volume: 5 start-page: 291 year: 2022 publication-title: Matter – volume: 17 128 start-page: 878 year: 2017 2006 publication-title: Nano Lett. J. Am. Chem. Soc. – volume: 8 275 start-page: 1923 1102 year: 2008 1997 publication-title: Nano Lett. Science – volume: 14 year: 2020 publication-title: ACS Nano – volume: 67 start-page: 1659 year: 2022 publication-title: Sci. Bull – volume: 103 22 10 126 start-page: 1805 1455 259 385 year: 1999 2006 1998 2003 publication-title: J. Phys. Chem. B Langmuir Adv. Mater. Solid State Commun. – volume: 12 3 20 563 start-page: 6874 460 818 94 year: 2021 2020 2021 2018 publication-title: Nat. Commun. Nat. Electron. Nat. Mater. Nature – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 14 41 115 start-page: 3481 205 year: 2014 1982 2015 publication-title: Nano Lett. Appl. Phys. Lett. Phys. Rev. Lett. – volume: 15 29 start-page: 1183 year: 2015 2017 publication-title: Nano Lett. Adv. Mater. – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B – volume: 65 start-page: 780 year: 2021 publication-title: Sc. China Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 64 start-page: 1059 year: 1990 publication-title: Phys. Rev. Lett. – volume: 50 48 54 year: 1994 1993 1996 publication-title: Phys. Rev. B Phys. Rev. B Phys. Rev. B – volume: 118 start-page: 6409 year: 2018 publication-title: Chem. Rev. – volume: 17 start-page: 1797 year: 2006 publication-title: Nanotechnology – year: 2022 publication-title: Nat. Mater. – volume: 46 73 start-page: 97 year: 2020 1991 publication-title: Ceram. Int. Appl. Catal. – ident: e_1_2_8_4_1 doi: 10.1038/s41563-022-01291-5 – ident: e_1_2_8_29_1 doi: 10.1021/jacs.1c06877 – ident: e_1_2_8_26_1 doi: 10.1021/nl504258m – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_31_1 doi: 10.1007/s40843-021-1765-x – ident: e_1_2_8_24_1 doi: 10.1016/j.infrared.2022.104033 – ident: e_1_2_8_33_2 doi: 10.1002/adfm.201706589 – ident: e_1_2_8_2_1 doi: 10.1126/science.abj7478 – ident: e_1_2_8_35_3 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_21_1 doi: 10.1103/PhysRevB.59.1196 – ident: e_1_2_8_28_4 doi: 10.1016/S0038-1098(03)00189-3 – ident: e_1_2_8_3_2 doi: 10.1021/acsnano.2c02214 – ident: e_1_2_8_27_1 doi: 10.1021/nl501018z – ident: e_1_2_8_3_4 doi: 10.1038/s41467-020-18521-6 – ident: e_1_2_8_27_2 doi: 10.1063/1.93463 – ident: e_1_2_8_8_2 doi: 10.1126/science.275.5303.1102 – ident: e_1_2_8_1_3 doi: 10.1038/s41563-021-00927-2 – ident: e_1_2_8_14_1 doi: 10.1016/j.ceramint.2020.03.143 – ident: e_1_2_8_35_2 doi: 10.1103/PhysRevB.48.13115 – ident: e_1_2_8_18_1 doi: 10.1016/j.jmmm.2009.04.040 – ident: e_1_2_8_14_2 doi: 10.1016/0166-9834(91)85115-C – ident: e_1_2_8_16_1 doi: 10.1088/0957-4484/17/6/042 – ident: e_1_2_8_9_2 doi: 10.1093/nsr/nwab142 – ident: e_1_2_8_5_1 doi: 10.1126/science.abi6332 – ident: e_1_2_8_11_1 doi: 10.1016/j.scib.2022.07.005 – ident: e_1_2_8_3_1 doi: 10.1038/s41467-021-24247-w – ident: e_1_2_8_32_2 doi: 10.1021/ja064778h – ident: e_1_2_8_28_3 doi: 10.1002/(SICI)1521-4095(199802)10:3<259::AID-ADMA259>3.0.CO;2-R – ident: e_1_2_8_34_1 doi: 10.1021/jacs.1c09607 – ident: e_1_2_8_25_2 doi: 10.1038/s41467-022-33017-1 – ident: e_1_2_8_9_1 doi: 10.1039/C7QM00548B – ident: e_1_2_8_9_3 doi: 10.1016/j.mtadv.2020.100092 – ident: e_1_2_8_3_3 doi: 10.1039/D1NR04862G – ident: e_1_2_8_8_1 doi: 10.1021/nl0806163 – ident: e_1_2_8_32_1 doi: 10.1021/acs.nanolett.6b04194 – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_1_4 doi: 10.1038/s41586-018-0626-9 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.201706437 – ident: e_1_2_8_30_1 doi: 10.1103/PhysRevB.53.12166 – ident: e_1_2_8_33_1 doi: 10.1126/science.1082857 – ident: e_1_2_8_1_2 doi: 10.1038/s41928-020-0427-7 – ident: e_1_2_8_15_1 doi: 10.1021/acsnano.0c03863 – ident: e_1_2_8_17_1 doi: 10.1021/cg060593a – ident: e_1_2_8_19_1 doi: 10.1126/science.1245273 – ident: e_1_2_8_28_1 doi: 10.1021/jp982755m – ident: e_1_2_8_7_1 doi: 10.1038/ncomms4313 – ident: e_1_2_8_23_1 doi: 10.1103/PhysRevLett.64.1059 – ident: e_1_2_8_6_1 doi: 10.1021/acs.chemrev.7b00727 – ident: e_1_2_8_27_3 doi: 10.1103/PhysRevLett.115.057201 – ident: e_1_2_8_25_1 doi: 10.1002/adma.202108313 – ident: e_1_2_8_1_1 doi: 10.1038/s41467-021-27218-3 – ident: e_1_2_8_10_1 doi: 10.1002/adma.202008456 – ident: e_1_2_8_20_1 doi: 10.1016/j.matt.2021.11.029 – ident: e_1_2_8_26_2 doi: 10.1002/adma.201703122 – ident: e_1_2_8_37_1 doi: 10.1103/PhysRevB.13.5188 – ident: e_1_2_8_28_2 doi: 10.1021/la0526885 – ident: e_1_2_8_3_5 doi: 10.1063/5.0039979 – ident: e_1_2_8_12_1 doi: 10.1021/nn5003858 – ident: e_1_2_8_22_1 doi: 10.1021/acs.nanolett.0c01082 |
SSID | ssj0009606 |
Score | 2.5828023 |
Snippet | 2D single‐element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time‐consuming material‐optimization process and... 2D single-element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time-consuming material-optimization process and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2211701 |
SubjectTerms | 2D cobalt nanosheets 2D magnetism Cobalt dihalides reductions Epitaxial growth Ferromagnetism Magnetic anisotropy Magnetic field configurations Magnetoresistance Magnetoresistivity Materials science Metal crystals Nanostructure Optimization Orbital scattering room‐temperature ferromagnetisms Spintronics Surface energy Synergistic effect van der Waals epitaxy |
Title | Van der Waals Epitaxy Growth of 2D Single‐Element Room‐Temperature Ferromagnet |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202211701 https://www.ncbi.nlm.nih.gov/pubmed/36807945 https://www.proquest.com/docview/2811819543 https://www.proquest.com/docview/2778976296 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4ED70egVEZC4pQ2sePXccXuUiHKYdtCb5Fjj4tEyaJtVqI99SfwG_kljJNs2gUhJLjFylhxPDP2N8n4G0JeQpaF3Pkcw5IQ0sJUMq2YsClwzQLCc-BtjaX993LvqHh7LI6vneLv-CGGD27RM9r1Ojq4rc52r0hDrW95gxiLtVNi_JNzGcnzx7Mr_qgIz1uyPS5SIwu9Ym3M2O569_Vd6TeouY5c261neofY1aC7jJPPO8um2nEXv_A5_s9b3SW3e1xKR50h3SM3oL5Pbl1jK3xAZh9sTT0s6EeLNksnsd7It3P6BgP55hOdB8rG9AAlT-HH5fdJl5ZOZwjMsXkICM87-mY6hcVi_sWe1NA8JEfTyeHrvbQvyZA6rnie-tzmBbNaFYZnxnnHrWFKeVcIZbURAjIPssp9TJ2VNrfGeA4yuKAtB4yHH5GNel7DE0IVVFoEARjRhAK3SMOcUyJ3wBFiZaJKSLpSSel6vvJYNuO07JiWWRnnqhzmKiGvBvmvHVPHHyW3Vhoue489K5mOR3CNKHhCXgy30dfiDxRbw3yJMkpphG_MyIQ87ixjeBSXOsO1TSSEtfr9yxjK0Xh_NLSe_kunZ-QmXvfZl1tko1ks4TkipKbaJpso-e5gu_WGnydeCCU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQcgAOy5sNLGAkJE7ZTfyI42NFWwps91C6wC1y7DFILCkqqQSc-An8Rn4J47yWghASHJ2MFT9m7G-c8TeEPIQk8al1Kbol3sdCl1lcMmli4DnzCM-BNzmW5sfZ7EQ8ey37aMJwF6blhxgO3IJlNOt1MPBwIH14xhpqXEMcxFhInoIO0HmBaCP4X-PFGYNUAOgN3R6Xsc5E3vM2Juxwu_72vvQb2NzGrs3mM71Myr7ZbczJu4NNXR7YL78wOv5Xv66Q3Q6a0lGrS1fJOaiukUs_ERZeJ4uXpqIO1vSVQbWlk5By5NNn-gR9-fotXXnKxvQFSp7C96_fJm1kOl0gNsfiEhChtwzOdArr9eq9eVNBfYOcTCfLx7O4y8oQW654GrvUpIKZXAnNE22d5UYzpZwVUplcSwmJg6xMXYiezUxqtHYcMm99bjigS3yT7FSrCvYIVVDm0ktAp8YL3CU1s1bJ1AJHlJXIMiJxPyeF7SjLQ-aM06IlW2ZFGKtiGKuIPBrkP7RkHX-U3O-nuOiM9mPB8nALV0vBI_JgeI3mFv6hmApWG5RRKkcEx3QWkVutagyf4lme4PImI8KaCf5LG4rReD4aSrf_pdJ9cmG2nB8VR0-Pn98hF_F5F4y5T3bq9QbuImCqy3uNSfwAZCwKsA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAceFMCBYyExClt4md8XLG7lEcrtLTQW-TYY5Ao2WrJSsCJn8Bv5JcwTrJpF4SQ4OhkrDieGfubZPwNIY8gy0LufI5hSQipMJVKKyZtCrxgAeE58LbG0t6-2j0Uz4_k0ZlT_B0_xPDBLXpGu15HBz_xYeeUNNT6ljeIsVg7BeOf80IhnIiwaHZKIBXxecu2x2VqlChWtI0Z21nvv74t_YY116Fru_dMrxC7GnWXcvJhe9lU2-7rL4SO__NaV8nlHpjSUWdJ18g5qK-TS2foCm-Q2RtbUw8L-tai0dJJLDjy-Qt9ipF8857OA2Vj-holj-HHt--TLi-dzhCZY_MAEJ93_M10CovF_KN9V0NzkxxOJwdPdtO-JkPquOZ56nObC2YLLQzPjPOOW8O09k5IbQsjJWQeVJX7mDurbG6N8RxUcKGwHDAgvkU26nkNtwnVUBUySMCQJgjcIw1zTsvcAUeMlckqIelKJaXrCctj3YzjsqNaZmWcq3KYq4Q8HuRPOqqOP0purTRc9i77qWRFPINrpOAJeTjcRmeLf1BsDfMlymhdIH5jRiVks7OM4VFcFRkubjIhrNXvX8ZQjsZ7o6F15186PSAXXo2n5ctn-y_ukot4uc_E3CIbzWIJ9xAtNdX91iF-AjMjCV8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Van+der+Waals+Epitaxy+Growth+of+2D+Single%E2%80%90Element+Room%E2%80%90Temperature+Ferromagnet&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jiang%2C+Jian&rft.au=Cheng%2C+Ruiqing&rft.au=Feng%2C+Wenyong&rft.au=Yin%2C+Lei&rft.date=2023-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=19&rft_id=info:doi/10.1002%2Fadma.202211701&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202211701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |