Van der Waals Epitaxy Growth of 2D Single‐Element Room‐Temperature Ferromagnet

2D single‐element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time‐consuming material‐optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 19; pp. e2211701 - n/a
Main Authors Jiang, Jian, Cheng, Ruiqing, Feng, Wenyong, Yin, Lei, Wen, Yao, Wang, Yanrong, Cai, Yuchen, Liu, Yong, Wang, Hao, Zhai, Baoxing, Liu, Chuansheng, He, Jun, Wang, Zhenxing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2023
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202211701

Cover

Abstract 2D single‐element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time‐consuming material‐optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single‐crystalline nanosheets with a sub‐millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in‐plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room‐temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics. The synthesis of 2D single‐element cobalt nanosheets with a sub‐millimeter scale via van der Waals epitaxy is demonstrated for the first time, which is guaranteed by the synergistic effect between van der Waals interactions and surface energy minimization. Cobalt nanosheets exhibit significant in‐plane magnetic anisotropy and magnetoresistance effects, opening up exciting opportunities for the exploration of 2D single‐element magnetism.
AbstractList 2D single‐element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time‐consuming material‐optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single‐crystalline nanosheets with a sub‐millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in‐plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room‐temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics.
2D single-element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time-consuming material-optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single-crystalline nanosheets with a sub-millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in-plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room-temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics.
2D single-element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time-consuming material-optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single-crystalline nanosheets with a sub-millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in-plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room-temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics.2D single-element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time-consuming material-optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single-crystalline nanosheets with a sub-millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in-plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room-temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics.
2D single‐element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time‐consuming material‐optimization process and circumvent the impure phase, bringing about opportunities to explore new physics and applications. Herein, for the first time, the synthesis of ultrathin cobalt single‐crystalline nanosheets with a sub‐millimeter scale via van der Waals epitaxy is demonstrated. The thickness can be as low as ≈6 nm. Theoretical calculations reveal their intrinsic ferromagnetic nature and epitaxial mechanism: that is, the synergistic effect between van der Waals interactions and surface energy minimization dominates the growth process. Cobalt nanosheets exhibit ultrahigh blocking temperatures above 710 K and in‐plane magnetic anisotropy. Electrical transport measurements further reveal that cobalt nanosheets have significant magnetoresistance (MR) effect, and can realize a unique coexistence of positive MR and negative MR under different magnetic field configurations, which can be attributed to the competition and cooperation effect among ferromagnetic interaction, orbital scattering, and electronic correlation. These results provide a valuable case for synthesizing 2D elementary metal crystals with pure phase and room‐temperature ferromagnetism and pave the way for investigating new physics and related applications in spintronics. The synthesis of 2D single‐element cobalt nanosheets with a sub‐millimeter scale via van der Waals epitaxy is demonstrated for the first time, which is guaranteed by the synergistic effect between van der Waals interactions and surface energy minimization. Cobalt nanosheets exhibit significant in‐plane magnetic anisotropy and magnetoresistance effects, opening up exciting opportunities for the exploration of 2D single‐element magnetism.
Author Wang, Yanrong
Feng, Wenyong
Wang, Zhenxing
He, Jun
Cai, Yuchen
Zhai, Baoxing
Cheng, Ruiqing
Yin, Lei
Liu, Chuansheng
Jiang, Jian
Liu, Yong
Wen, Yao
Wang, Hao
Author_xml – sequence: 1
  givenname: Jian
  surname: Jiang
  fullname: Jiang, Jian
  organization: Wuhan University
– sequence: 2
  givenname: Ruiqing
  surname: Cheng
  fullname: Cheng, Ruiqing
  organization: National Center for Nanoscience and Technology
– sequence: 3
  givenname: Wenyong
  surname: Feng
  fullname: Feng, Wenyong
  organization: Sun Yat‐Sen University
– sequence: 4
  givenname: Lei
  surname: Yin
  fullname: Yin, Lei
  organization: Wuhan University
– sequence: 5
  givenname: Yao
  surname: Wen
  fullname: Wen, Yao
  organization: Wuhan University
– sequence: 6
  givenname: Yanrong
  surname: Wang
  fullname: Wang, Yanrong
  organization: National Center for Nanoscience and Technology
– sequence: 7
  givenname: Yuchen
  surname: Cai
  fullname: Cai, Yuchen
  organization: National Center for Nanoscience and Technology
– sequence: 8
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
  organization: Wuhan University
– sequence: 9
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: Wuhan University
– sequence: 10
  givenname: Baoxing
  surname: Zhai
  fullname: Zhai, Baoxing
  organization: Wuhan University
– sequence: 11
  givenname: Chuansheng
  surname: Liu
  fullname: Liu, Chuansheng
  organization: Wuhan University
– sequence: 12
  givenname: Jun
  orcidid: 0000-0002-2355-7579
  surname: He
  fullname: He, Jun
  email: hej@nanoctr.cn
  organization: Wuhan Institute of Quantum Technology
– sequence: 13
  givenname: Zhenxing
  surname: Wang
  fullname: Wang, Zhenxing
  email: wangzx@nanoctr.cn
  organization: National Center for Nanoscience and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36807945$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaTZJrz0WQS-5eKuRbMk6LsnmAxIKadIexcQapw62tJVt0r31J_Q39pfEyyYtBEpPw8DzPgzz7rGdEAMx9g7EHISQH9F3OJdCSgAj4BWbQSEhy4UtdthMWFVkVuflLtvr-3shhNVCv2G7SpfC2LyYsasvGLinxL8itj1frpoBf6z5aYoPwzceay6P-ecm3LX0--evZUsdhYFfxdhN6zV1K0o4jIn4CaUUO7wLNByw1_XkordPc5_dnCyvj86yi0-n50eLi6xSRkHmASGXWJrcKmErXym00hhf5YXB0hYFCU_6FrzWRmsEtNYr0nVVl6gIlNpnh1vvKsXvI_WD65q-orbFQHHs3SQrrdHS6gn98AK9j2MK03VOlgAl2CLfCN8_UeNtR96tUtNhWrvnb01AvgWqFPs-Ue2q6V1DE8OQsGkdCLcpxW1KcX9KmWLzF7Fn8z8Ddht4aFpa_4d2i-PLxd_sI36Intc
CitedBy_id crossref_primary_10_1007_s11426_023_1767_2
crossref_primary_10_1093_nsr_nwae430
crossref_primary_10_1002_apxr_202400169
crossref_primary_10_1038_s41928_024_01202_3
crossref_primary_10_1002_adma_202305044
Cites_doi 10.1038/s41563-022-01291-5
10.1021/jacs.1c06877
10.1021/nl504258m
10.1103/PhysRevLett.77.3865
10.1007/s40843-021-1765-x
10.1016/j.infrared.2022.104033
10.1002/adfm.201706589
10.1126/science.abj7478
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.59.1196
10.1016/S0038-1098(03)00189-3
10.1021/acsnano.2c02214
10.1021/nl501018z
10.1038/s41467-020-18521-6
10.1063/1.93463
10.1126/science.275.5303.1102
10.1038/s41563-021-00927-2
10.1016/j.ceramint.2020.03.143
10.1103/PhysRevB.48.13115
10.1016/j.jmmm.2009.04.040
10.1016/0166-9834(91)85115-C
10.1088/0957-4484/17/6/042
10.1093/nsr/nwab142
10.1126/science.abi6332
10.1016/j.scib.2022.07.005
10.1038/s41467-021-24247-w
10.1021/ja064778h
10.1002/(SICI)1521-4095(199802)10:3<259::AID-ADMA259>3.0.CO;2-R
10.1021/jacs.1c09607
10.1038/s41467-022-33017-1
10.1039/C7QM00548B
10.1016/j.mtadv.2020.100092
10.1039/D1NR04862G
10.1021/nl0806163
10.1021/acs.nanolett.6b04194
10.1103/PhysRevB.50.17953
10.1038/s41586-018-0626-9
10.1002/adfm.201706437
10.1103/PhysRevB.53.12166
10.1126/science.1082857
10.1038/s41928-020-0427-7
10.1021/acsnano.0c03863
10.1021/cg060593a
10.1126/science.1245273
10.1021/jp982755m
10.1038/ncomms4313
10.1103/PhysRevLett.64.1059
10.1021/acs.chemrev.7b00727
10.1103/PhysRevLett.115.057201
10.1002/adma.202108313
10.1038/s41467-021-27218-3
10.1002/adma.202008456
10.1016/j.matt.2021.11.029
10.1002/adma.201703122
10.1103/PhysRevB.13.5188
10.1021/la0526885
10.1063/5.0039979
10.1021/nn5003858
10.1021/acs.nanolett.0c01082
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202211701
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36807945
10_1002_adma_202211701
ADMA202211701
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 91964203; 62274121; 62104171; 62104172; 62004142
– fundername: Natural Science Foundation of Hubei Province, China
  funderid: 2021CFB037
– fundername: Special Fund of Hubei Luojia Laboratory
– fundername: National Key R&D Program of China
  funderid: 2018YFA0703700
– fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  funderid: XDB44000000
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2042021kf0067
– fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  grantid: XDB44000000
– fundername: National Natural Science Foundation of China
  grantid: 91964203
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2042021kf0067
– fundername: National Natural Science Foundation of China
  grantid: 62004142
– fundername: Natural Science Foundation of Hubei Province, China
  grantid: 2021CFB037
– fundername: National Natural Science Foundation of China
  grantid: 62274121
– fundername: National Natural Science Foundation of China
  grantid: 62104172
– fundername: National Natural Science Foundation of China
  grantid: 62104171
– fundername: National Key R&D Program of China
  grantid: 2018YFA0703700
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3731-d1a142a8749309cdc3a9277dc457a8955e0de6b1d66766a1a99d3e6fcf8a3e133
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 11:55:47 EDT 2025
Fri Jul 25 02:38:53 EDT 2025
Mon Jul 21 06:05:49 EDT 2025
Tue Jul 01 02:33:29 EDT 2025
Thu Apr 24 22:54:06 EDT 2025
Wed Jan 22 16:21:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords dihalides reductions
2D cobalt nanosheets
room-temperature ferromagnetisms
2D magnetism
van der Waals epitaxy
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-d1a142a8749309cdc3a9277dc457a8955e0de6b1d66766a1a99d3e6fcf8a3e133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2355-7579
PMID 36807945
PQID 2811819543
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2778976296
proquest_journals_2811819543
pubmed_primary_36807945
crossref_citationtrail_10_1002_adma_202211701
crossref_primary_10_1002_adma_202211701
wiley_primary_10_1002_adma_202211701_ADMA202211701
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2008 1997; 8 275
2018 2022 2020; 2 9 8
2018; 28
2021; 65
2020; 20
2006; 17
2022; 67
1994 1993 1996; 50 48 54
2020; 14
1999 2006 1998 2003; 103 22 10 126
2021; 143
1996; 53
1996; 77
2014 1982 2015; 14 41 115
1990; 64
2022; 121
2014; 5
2022 2022; 34 13
1976; 13
2021; 33
2022
2022; 5
2018; 118
1999; 59
2021 2020 2021 2018; 12 3 20 563
2009; 321
2007; 7
2017 2006; 17 128
2015 2017; 15 29
2021; 374
2003 2018; 300 28
2014; 8
2021 2022 2021 2020 2021; 12 16 13 11 8
2020 1991; 46 73
2014; 343
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_28_3
e_1_2_8_28_4
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_26_2
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_3_5
e_1_2_8_7_1
e_1_2_8_3_4
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_32_2
e_1_2_8_30_1
e_1_2_8_27_2
e_1_2_8_27_3
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_35_2
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_35_3
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_2
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 53
  year: 1996
  publication-title: Phys. Rev. B
– volume: 12 16 13 11 8
  start-page: 3952 4806
  year: 2021 2022 2021 2020 2021
  publication-title: Nat. Commun. ACS Nano Nanoscale Nat. Commun. Appl. Phys. Rev.
– volume: 7
  start-page: 1904
  year: 2007
  publication-title: Cryst. Growth Des.
– volume: 121
  year: 2022
  publication-title: Infrared Phys. Techn.
– volume: 300 28
  start-page: 1130
  year: 2003 2018
  publication-title: Science Adv. Funct. Mater.
– volume: 20
  start-page: 4354
  year: 2020
  publication-title: Nano Lett.
– volume: 59
  start-page: 1196
  year: 1999
  publication-title: Phys. Rev. B
– volume: 321
  start-page: 2890
  year: 2009
  publication-title: J. Magn. Magn. Mater.
– volume: 8
  start-page: 3715
  year: 2014
  publication-title: ACS Nano
– volume: 374
  start-page: 1140
  year: 2021
  publication-title: Science
– volume: 5
  start-page: 3313
  year: 2014
  publication-title: Nat. Commun.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 374
  start-page: 1390
  year: 2021
  publication-title: Science
– volume: 2 9 8
  start-page: 456
  year: 2018 2022 2020
  publication-title: Mater. Chem. Front. Nat. Sci. Rev. Mater. Today Adv.
– volume: 34 13
  start-page: 5241
  year: 2022 2022
  publication-title: Adv. Mater. Nat. Commun.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 343
  start-page: 1228
  year: 2014
  publication-title: Science
– volume: 5
  start-page: 291
  year: 2022
  publication-title: Matter
– volume: 17 128
  start-page: 878
  year: 2017 2006
  publication-title: Nano Lett. J. Am. Chem. Soc.
– volume: 8 275
  start-page: 1923 1102
  year: 2008 1997
  publication-title: Nano Lett. Science
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 67
  start-page: 1659
  year: 2022
  publication-title: Sci. Bull
– volume: 103 22 10 126
  start-page: 1805 1455 259 385
  year: 1999 2006 1998 2003
  publication-title: J. Phys. Chem. B Langmuir Adv. Mater. Solid State Commun.
– volume: 12 3 20 563
  start-page: 6874 460 818 94
  year: 2021 2020 2021 2018
  publication-title: Nat. Commun. Nat. Electron. Nat. Mater. Nature
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 14 41 115
  start-page: 3481 205
  year: 2014 1982 2015
  publication-title: Nano Lett. Appl. Phys. Lett. Phys. Rev. Lett.
– volume: 15 29
  start-page: 1183
  year: 2015 2017
  publication-title: Nano Lett. Adv. Mater.
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 65
  start-page: 780
  year: 2021
  publication-title: Sc. China Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 64
  start-page: 1059
  year: 1990
  publication-title: Phys. Rev. Lett.
– volume: 50 48 54
  year: 1994 1993 1996
  publication-title: Phys. Rev. B Phys. Rev. B Phys. Rev. B
– volume: 118
  start-page: 6409
  year: 2018
  publication-title: Chem. Rev.
– volume: 17
  start-page: 1797
  year: 2006
  publication-title: Nanotechnology
– year: 2022
  publication-title: Nat. Mater.
– volume: 46 73
  start-page: 97
  year: 2020 1991
  publication-title: Ceram. Int. Appl. Catal.
– ident: e_1_2_8_4_1
  doi: 10.1038/s41563-022-01291-5
– ident: e_1_2_8_29_1
  doi: 10.1021/jacs.1c06877
– ident: e_1_2_8_26_1
  doi: 10.1021/nl504258m
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_31_1
  doi: 10.1007/s40843-021-1765-x
– ident: e_1_2_8_24_1
  doi: 10.1016/j.infrared.2022.104033
– ident: e_1_2_8_33_2
  doi: 10.1002/adfm.201706589
– ident: e_1_2_8_2_1
  doi: 10.1126/science.abj7478
– ident: e_1_2_8_35_3
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_21_1
  doi: 10.1103/PhysRevB.59.1196
– ident: e_1_2_8_28_4
  doi: 10.1016/S0038-1098(03)00189-3
– ident: e_1_2_8_3_2
  doi: 10.1021/acsnano.2c02214
– ident: e_1_2_8_27_1
  doi: 10.1021/nl501018z
– ident: e_1_2_8_3_4
  doi: 10.1038/s41467-020-18521-6
– ident: e_1_2_8_27_2
  doi: 10.1063/1.93463
– ident: e_1_2_8_8_2
  doi: 10.1126/science.275.5303.1102
– ident: e_1_2_8_1_3
  doi: 10.1038/s41563-021-00927-2
– ident: e_1_2_8_14_1
  doi: 10.1016/j.ceramint.2020.03.143
– ident: e_1_2_8_35_2
  doi: 10.1103/PhysRevB.48.13115
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jmmm.2009.04.040
– ident: e_1_2_8_14_2
  doi: 10.1016/0166-9834(91)85115-C
– ident: e_1_2_8_16_1
  doi: 10.1088/0957-4484/17/6/042
– ident: e_1_2_8_9_2
  doi: 10.1093/nsr/nwab142
– ident: e_1_2_8_5_1
  doi: 10.1126/science.abi6332
– ident: e_1_2_8_11_1
  doi: 10.1016/j.scib.2022.07.005
– ident: e_1_2_8_3_1
  doi: 10.1038/s41467-021-24247-w
– ident: e_1_2_8_32_2
  doi: 10.1021/ja064778h
– ident: e_1_2_8_28_3
  doi: 10.1002/(SICI)1521-4095(199802)10:3<259::AID-ADMA259>3.0.CO;2-R
– ident: e_1_2_8_34_1
  doi: 10.1021/jacs.1c09607
– ident: e_1_2_8_25_2
  doi: 10.1038/s41467-022-33017-1
– ident: e_1_2_8_9_1
  doi: 10.1039/C7QM00548B
– ident: e_1_2_8_9_3
  doi: 10.1016/j.mtadv.2020.100092
– ident: e_1_2_8_3_3
  doi: 10.1039/D1NR04862G
– ident: e_1_2_8_8_1
  doi: 10.1021/nl0806163
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.nanolett.6b04194
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_1_4
  doi: 10.1038/s41586-018-0626-9
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.201706437
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRevB.53.12166
– ident: e_1_2_8_33_1
  doi: 10.1126/science.1082857
– ident: e_1_2_8_1_2
  doi: 10.1038/s41928-020-0427-7
– ident: e_1_2_8_15_1
  doi: 10.1021/acsnano.0c03863
– ident: e_1_2_8_17_1
  doi: 10.1021/cg060593a
– ident: e_1_2_8_19_1
  doi: 10.1126/science.1245273
– ident: e_1_2_8_28_1
  doi: 10.1021/jp982755m
– ident: e_1_2_8_7_1
  doi: 10.1038/ncomms4313
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevLett.64.1059
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.chemrev.7b00727
– ident: e_1_2_8_27_3
  doi: 10.1103/PhysRevLett.115.057201
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.202108313
– ident: e_1_2_8_1_1
  doi: 10.1038/s41467-021-27218-3
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.202008456
– ident: e_1_2_8_20_1
  doi: 10.1016/j.matt.2021.11.029
– ident: e_1_2_8_26_2
  doi: 10.1002/adma.201703122
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_2_8_28_2
  doi: 10.1021/la0526885
– ident: e_1_2_8_3_5
  doi: 10.1063/5.0039979
– ident: e_1_2_8_12_1
  doi: 10.1021/nn5003858
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.nanolett.0c01082
SSID ssj0009606
Score 2.5828023
Snippet 2D single‐element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time‐consuming material‐optimization process and...
2D single-element materials, which are pure and intrinsically homogeneous on the nanometer scale, can cut the time-consuming material-optimization process and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2211701
SubjectTerms 2D cobalt nanosheets
2D magnetism
Cobalt
dihalides reductions
Epitaxial growth
Ferromagnetism
Magnetic anisotropy
Magnetic field configurations
Magnetoresistance
Magnetoresistivity
Materials science
Metal crystals
Nanostructure
Optimization
Orbital scattering
room‐temperature ferromagnetisms
Spintronics
Surface energy
Synergistic effect
van der Waals epitaxy
Title Van der Waals Epitaxy Growth of 2D Single‐Element Room‐Temperature Ferromagnet
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202211701
https://www.ncbi.nlm.nih.gov/pubmed/36807945
https://www.proquest.com/docview/2811819543
https://www.proquest.com/docview/2778976296
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4ED70egVEZC4pQ2sePXccXuUiHKYdtCb5Fjj4tEyaJtVqI99SfwG_kljJNs2gUhJLjFylhxPDP2N8n4G0JeQpaF3Pkcw5IQ0sJUMq2YsClwzQLCc-BtjaX993LvqHh7LI6vneLv-CGGD27RM9r1Ojq4rc52r0hDrW95gxiLtVNi_JNzGcnzx7Mr_qgIz1uyPS5SIwu9Ym3M2O569_Vd6TeouY5c261neofY1aC7jJPPO8um2nEXv_A5_s9b3SW3e1xKR50h3SM3oL5Pbl1jK3xAZh9sTT0s6EeLNksnsd7It3P6BgP55hOdB8rG9AAlT-HH5fdJl5ZOZwjMsXkICM87-mY6hcVi_sWe1NA8JEfTyeHrvbQvyZA6rnie-tzmBbNaFYZnxnnHrWFKeVcIZbURAjIPssp9TJ2VNrfGeA4yuKAtB4yHH5GNel7DE0IVVFoEARjRhAK3SMOcUyJ3wBFiZaJKSLpSSel6vvJYNuO07JiWWRnnqhzmKiGvBvmvHVPHHyW3Vhoue489K5mOR3CNKHhCXgy30dfiDxRbw3yJMkpphG_MyIQ87ixjeBSXOsO1TSSEtfr9yxjK0Xh_NLSe_kunZ-QmXvfZl1tko1ks4TkipKbaJpso-e5gu_WGnydeCCU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQcgAOy5sNLGAkJE7ZTfyI42NFWwps91C6wC1y7DFILCkqqQSc-An8Rn4J47yWghASHJ2MFT9m7G-c8TeEPIQk8al1Kbol3sdCl1lcMmli4DnzCM-BNzmW5sfZ7EQ8ey37aMJwF6blhxgO3IJlNOt1MPBwIH14xhpqXEMcxFhInoIO0HmBaCP4X-PFGYNUAOgN3R6Xsc5E3vM2Juxwu_72vvQb2NzGrs3mM71Myr7ZbczJu4NNXR7YL78wOv5Xv66Q3Q6a0lGrS1fJOaiukUs_ERZeJ4uXpqIO1vSVQbWlk5By5NNn-gR9-fotXXnKxvQFSp7C96_fJm1kOl0gNsfiEhChtwzOdArr9eq9eVNBfYOcTCfLx7O4y8oQW654GrvUpIKZXAnNE22d5UYzpZwVUplcSwmJg6xMXYiezUxqtHYcMm99bjigS3yT7FSrCvYIVVDm0ktAp8YL3CU1s1bJ1AJHlJXIMiJxPyeF7SjLQ-aM06IlW2ZFGKtiGKuIPBrkP7RkHX-U3O-nuOiM9mPB8nALV0vBI_JgeI3mFv6hmApWG5RRKkcEx3QWkVutagyf4lme4PImI8KaCf5LG4rReD4aSrf_pdJ9cmG2nB8VR0-Pn98hF_F5F4y5T3bq9QbuImCqy3uNSfwAZCwKsA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAceFMCBYyExClt4md8XLG7lEcrtLTQW-TYY5Ao2WrJSsCJn8Bv5JcwTrJpF4SQ4OhkrDieGfubZPwNIY8gy0LufI5hSQipMJVKKyZtCrxgAeE58LbG0t6-2j0Uz4_k0ZlT_B0_xPDBLXpGu15HBz_xYeeUNNT6ljeIsVg7BeOf80IhnIiwaHZKIBXxecu2x2VqlChWtI0Z21nvv74t_YY116Fru_dMrxC7GnWXcvJhe9lU2-7rL4SO__NaV8nlHpjSUWdJ18g5qK-TS2foCm-Q2RtbUw8L-tai0dJJLDjy-Qt9ipF8857OA2Vj-holj-HHt--TLi-dzhCZY_MAEJ93_M10CovF_KN9V0NzkxxOJwdPdtO-JkPquOZ56nObC2YLLQzPjPOOW8O09k5IbQsjJWQeVJX7mDurbG6N8RxUcKGwHDAgvkU26nkNtwnVUBUySMCQJgjcIw1zTsvcAUeMlckqIelKJaXrCctj3YzjsqNaZmWcq3KYq4Q8HuRPOqqOP0purTRc9i77qWRFPINrpOAJeTjcRmeLf1BsDfMlymhdIH5jRiVks7OM4VFcFRkubjIhrNXvX8ZQjsZ7o6F15186PSAXXo2n5ctn-y_ukot4uc_E3CIbzWIJ9xAtNdX91iF-AjMjCV8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Van+der+Waals+Epitaxy+Growth+of+2D+Single%E2%80%90Element+Room%E2%80%90Temperature+Ferromagnet&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jiang%2C+Jian&rft.au=Cheng%2C+Ruiqing&rft.au=Feng%2C+Wenyong&rft.au=Yin%2C+Lei&rft.date=2023-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=19&rft_id=info:doi/10.1002%2Fadma.202211701&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202211701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon