Entropy‐Driven Ultrafast Ion Conduction Via Confining Organic Plastic Crystals in Ordered Nanochannels of Covalent Organic Frameworks

Low conductivity over a wide temperature region due to ultra‐slow ion migration dynamics is a key issue in the field of solid‐state electrolytes (SSE), which needs to be solved and improved. Covalent organic frameworks (COFs), a rapidly growing class of porous crystalline materials, emerge as a new...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 17; pp. e2207831 - n/a
Main Authors Wang, Jing, Liu, Lili, Liu, Yukun, Zhang, Xian‐Ming, Li, Juan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low conductivity over a wide temperature region due to ultra‐slow ion migration dynamics is a key issue in the field of solid‐state electrolytes (SSE), which needs to be solved and improved. Covalent organic frameworks (COFs), a rapidly growing class of porous crystalline materials, emerge as a new research hotspot in the field of SSEs. This is due to their homogeneously dispersed sites and well‐defined pathways for ion diffusion, demonstrating great advantages over conventional non‐porous solids. Herein, a composite solid electrolyte by confining organic ionic plastic crystal (OIPC) in the 1D ordered nanochannels of COFs as the host matrix for solid‐state lithium‐ion conduction, is reported. Due to the loss of coupling between PBu4+ cations and TFSI− anions, the cation–anion interaction is weakened; and thus, the lithium‐ion transportation is facilitated. As a result, the COF‐confining OIPC SSEs show ultra‐high lithium‐ion conductivity of 0.048 S cm−1 at 30 °C and 0.021 S cm−1 at the extremely low temperature of −30 °C. The dynamic origin of this fast ion conduction is characterized by differential scanning calorimetry (DSC), X‐ray photoelectron spectroscopy (XPS), and variable temperature solid‐state nuclear magnetic resonance (NMR) spectroscopy. Entropy‐driven ultrafast ion conduction is achieved. Via confinement effect of the nanochannels of covalent organic frameworks, organic ionic plastic crystals (OIPCs) exhibit higher entropy and lower enthalpy of solid–solid phase transition than bulky OIPCs, giving lithium, sodium, and potassium ions a material basis for their highly flexible migration.
AbstractList Low conductivity over a wide temperature region due to ultra‐slow ion migration dynamics is a key issue in the field of solid‐state electrolytes (SSE), which needs to be solved and improved. Covalent organic frameworks (COFs), a rapidly growing class of porous crystalline materials, emerge as a new research hotspot in the field of SSEs. This is due to their homogeneously dispersed sites and well‐defined pathways for ion diffusion, demonstrating great advantages over conventional non‐porous solids. Herein, a composite solid electrolyte by confining organic ionic plastic crystal (OIPC) in the 1D ordered nanochannels of COFs as the host matrix for solid‐state lithium‐ion conduction, is reported. Due to the loss of coupling between PBu4+ cations and TFSI− anions, the cation–anion interaction is weakened; and thus, the lithium‐ion transportation is facilitated. As a result, the COF‐confining OIPC SSEs show ultra‐high lithium‐ion conductivity of 0.048 S cm−1 at 30 °C and 0.021 S cm−1 at the extremely low temperature of −30 °C. The dynamic origin of this fast ion conduction is characterized by differential scanning calorimetry (DSC), X‐ray photoelectron spectroscopy (XPS), and variable temperature solid‐state nuclear magnetic resonance (NMR) spectroscopy.
Abstract Low conductivity over a wide temperature region due to ultra‐slow ion migration dynamics is a key issue in the field of solid‐state electrolytes (SSE), which needs to be solved and improved. Covalent organic frameworks (COFs), a rapidly growing class of porous crystalline materials, emerge as a new research hotspot in the field of SSEs. This is due to their homogeneously dispersed sites and well‐defined pathways for ion diffusion, demonstrating great advantages over conventional non‐porous solids. Herein, a composite solid electrolyte by confining organic ionic plastic crystal (OIPC) in the 1D ordered nanochannels of COFs as the host matrix for solid‐state lithium‐ion conduction, is reported. Due to the loss of coupling between PBu 4 + cations and TFSI − anions, the cation–anion interaction is weakened; and thus, the lithium‐ion transportation is facilitated. As a result, the COF‐confining OIPC SSEs show ultra‐high lithium‐ion conductivity of 0.048 S cm −1 at 30 °C and 0.021 S cm −1 at the extremely low temperature of −30 °C. The dynamic origin of this fast ion conduction is characterized by differential scanning calorimetry (DSC), X‐ray photoelectron spectroscopy (XPS), and variable temperature solid‐state nuclear magnetic resonance (NMR) spectroscopy.
Low conductivity over a wide temperature region due to ultra-slow ion migration dynamics is a key issue in the field of solid-state electrolytes (SSE), which needs to be solved and improved. Covalent organic frameworks (COFs), a rapidly growing class of porous crystalline materials, emerge as a new research hotspot in the field of SSEs. This is due to their homogeneously dispersed sites and well-defined pathways for ion diffusion, demonstrating great advantages over conventional non-porous solids. Herein, a composite solid electrolyte by confining organic ionic plastic crystal (OIPC) in the 1D ordered nanochannels of COFs as the host matrix for solid-state lithium-ion conduction, is reported. Due to the loss of coupling between PBu cations and TFSI anions, the cation-anion interaction is weakened; and thus, the lithium-ion transportation is facilitated. As a result, the COF-confining OIPC SSEs show ultra-high lithium-ion conductivity of 0.048 S cm at 30 °C and 0.021 S cm at the extremely low temperature of -30 °C. The dynamic origin of this fast ion conduction is characterized by differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), and variable temperature solid-state nuclear magnetic resonance (NMR) spectroscopy.
Low conductivity over a wide temperature region due to ultra‐slow ion migration dynamics is a key issue in the field of solid‐state electrolytes (SSE), which needs to be solved and improved. Covalent organic frameworks (COFs), a rapidly growing class of porous crystalline materials, emerge as a new research hotspot in the field of SSEs. This is due to their homogeneously dispersed sites and well‐defined pathways for ion diffusion, demonstrating great advantages over conventional non‐porous solids. Herein, a composite solid electrolyte by confining organic ionic plastic crystal (OIPC) in the 1D ordered nanochannels of COFs as the host matrix for solid‐state lithium‐ion conduction, is reported. Due to the loss of coupling between PBu4+ cations and TFSI− anions, the cation–anion interaction is weakened; and thus, the lithium‐ion transportation is facilitated. As a result, the COF‐confining OIPC SSEs show ultra‐high lithium‐ion conductivity of 0.048 S cm−1 at 30 °C and 0.021 S cm−1 at the extremely low temperature of −30 °C. The dynamic origin of this fast ion conduction is characterized by differential scanning calorimetry (DSC), X‐ray photoelectron spectroscopy (XPS), and variable temperature solid‐state nuclear magnetic resonance (NMR) spectroscopy. Entropy‐driven ultrafast ion conduction is achieved. Via confinement effect of the nanochannels of covalent organic frameworks, organic ionic plastic crystals (OIPCs) exhibit higher entropy and lower enthalpy of solid–solid phase transition than bulky OIPCs, giving lithium, sodium, and potassium ions a material basis for their highly flexible migration.
Author Li, Juan
Wang, Jing
Zhang, Xian‐Ming
Liu, Yukun
Liu, Lili
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0001-7371-3974
  surname: Wang
  fullname: Wang, Jing
  organization: Shanxi University
– sequence: 2
  givenname: Lili
  surname: Liu
  fullname: Liu, Lili
  organization: Shanxi University
– sequence: 3
  givenname: Yukun
  orcidid: 0000-0002-5604-3988
  surname: Liu
  fullname: Liu, Yukun
  organization: Shanxi University
– sequence: 4
  givenname: Xian‐Ming
  surname: Zhang
  fullname: Zhang, Xian‐Ming
  organization: Shanxi University
– sequence: 5
  givenname: Juan
  orcidid: 0000-0002-1557-3712
  surname: Li
  fullname: Li, Juan
  email: lj0511@sxu.edu.cn
  organization: Shanxi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36670085$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1vFDEQhi0URD6gpUQr0dDcZfyx670SHQlEuhAkCK3l9Y6Dg9c-7N1E19HR8hv5Jfh04ZBoqGZsP-8rz7zH5CDEgIQ8pzCnAOw0D97PGTAGsuX0ETmiDeWzpmWLg31P4ZAc53wLwCkT8gk55E0jAdr6iPw4C2OK682v7z_fJHeHobr2Y9JW57G6iKFaxtBPZnSl_ez09mhdcOGmuko3OjhTffAFLXWZNnnUPlculLceE_bVex2i-aJDwHIfbVHfaY9h3IvPkx7wPqav-Sl5bIsanz3UE3J9fvZp-W62unp7sXy9mhkuOZ2ZflEbzlB2PYWuRyEXDRVG1HUHFoCKWkvRWeSAFMu0shO201bQVuumh5qfkFc733WK3ybMoxpcNui9DhinrJgsuxOC1VDQl_-gt3FKofxOsRYawRkVvFDzHWVSzDmhVevkBp02ioLaRqS2Eal9REXw4sF26gbs9_ifTAqw2AH3zuPmP3bq4-Vq9df8NxyGodE
CitedBy_id crossref_primary_10_1002_aenm_202304285
crossref_primary_10_1002_aenm_202303672
Cites_doi 10.1002/adma.201700007
10.1021/jacs.7b12292
10.1038/ncomms1091
10.1039/D0CS01569E
10.1038/35102535
10.1038/s41578-020-00268-7
10.1002/aenm.201702657
10.1039/c0cs00081g
10.1021/jacs.8b03814
10.1021/acs.accounts.7b00450
10.1021/jacs.6b05568
10.1021/acsami.2c09503
10.1038/s41467-020-14627-z
10.1016/j.enchem.2020.100048
10.1103/PhysRevApplied.4.054008
10.1038/natrevmats.2015.5
10.1016/j.ccr.2021.214152
10.1002/aenm.201702675
10.1021/acs.jpclett.8b01500
10.1021/acs.jpcc.5b06308
10.1002/chem.201803616
10.1039/C8EE01991F
10.1007/s12551-021-00875-w
10.1002/adma.201901640
10.1021/jacs.8b13551
10.1039/D0EE03181J
10.1002/aenm.201601250
10.1039/D0CC00454E
10.1126/science.abj0890
10.1016/S0013-4686(03)00209-3
10.1002/adma.201800561
10.1002/adma.200401286
10.1038/s41560-017-0047-2
10.1021/jacs.9b00543
10.1002/anie.202101400
10.1039/D0EE00153H
10.1021/ja301175v
10.1039/C8EE01053F
10.1021/jacs.9b02448
10.1021/cm901452z
10.1002/ange.201913380
10.1002/aenm.202102300
10.1002/adfm.202100505
10.1038/nmat4611
10.1016/0167-2738(80)90003-X
10.1039/D0CS00620C
10.1016/S0038-1098(01)00386-6
10.1002/ange.202015130
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202207831
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202207831
36670085
SMLL202207831
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shanxi Province
  funderid: 202203021211289
– fundername: Research Project Supported by Shanxi Scholarship Council of China
  funderid: 2022‐004
– fundername: National Natural Science Foundation of China
  funderid: 21805173; 52273208
– fundername: National Natural Science Foundation of China
  grantid: 52273208
– fundername: Research Project Supported by Shanxi Scholarship Council of China
  grantid: 2022-004
– fundername: Natural Science Foundation of Shanxi Province
  grantid: 202203021211289
– fundername: National Natural Science Foundation of China
  grantid: 21805173
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
EJD
FEDTE
GODZA
HVGLF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3731-cd95c32e7bd10bde479614c455b0f00145a74bfe30e1e3127b4fbaf418aa6d053
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Aug 16 09:13:04 EDT 2024
Thu Oct 10 20:50:15 EDT 2024
Wed Oct 09 16:47:10 EDT 2024
Sat Sep 28 08:15:48 EDT 2024
Sat Aug 24 01:21:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords organic ionic plastic crystals
covalent organic frameworks
solid state electrolytes
lithium ion conductors
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-cd95c32e7bd10bde479614c455b0f00145a74bfe30e1e3127b4fbaf418aa6d053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7371-3974
0000-0002-1557-3712
0000-0002-5604-3988
PMID 36670085
PQID 2806432143
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2768244250
proquest_journals_2806432143
crossref_primary_10_1002_smll_202207831
pubmed_primary_36670085
wiley_primary_10_1002_smll_202207831_SMLL202207831
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 9
2018 2010 2017 2021 2018 2017 2011 2018; 3 22 29 447 30 50 40 11
2021 2001 2021; 13 414 6
2012 2016; 134 1
2018; 140
2010; 1
2015; 4
2001; 120
2021 2021 2022 2021 2021 2021; 50 11 14 50 14 31
2020; 132
2019 2019 2020; 141 141 56
1980; 1
2018 2019 2016 2021; 8 31 6 3
2019 2021; 141 133
2003; 48
2020; 13
2015; 119
2016; 138
2020; 11
2021; 374
2021; 60
2005; 17
2016; 15
2018 2018 2018; 8 24 11
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_9_4
e_1_2_8_1_3
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_1_5
e_1_2_8_4_2
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_1_7
e_1_2_8_4_4
e_1_2_8_7_1
e_1_2_8_1_6
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_4_6
e_1_2_8_9_1
e_1_2_8_1_8
e_1_2_8_4_5
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_14_1
e_1_2_8_13_3
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_11_1
e_1_2_8_10_3
e_1_2_8_11_2
e_1_2_8_12_1
References_xml – volume: 140
  start-page: 7429
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 120
  start-page: 295
  year: 2001
  publication-title: Solid State Commun.
– volume: 11
  start-page: 843
  year: 2020
  publication-title: Nat. Commun.
– volume: 374
  start-page: 454
  year: 2021
  publication-title: Science
– volume: 134 1
  start-page: 9688
  year: 2012 2016
  publication-title: J. Am. Chem. Soc. Nat. Rev. Mater.
– volume: 3 22 29 447 30 50 40 11
  start-page: 16 587 2895 2525 3075
  year: 2018 2010 2017 2021 2018 2017 2011 2018
  publication-title: Nat. Energy Chem. Mater. Adv. Mater. Coord. Chem. Rev. Adv. Mater. Acc. Chem. Res. Chem. Soc. Rev. Energy Environ. Sci.
– volume: 9
  start-page: 3904
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 50 11 14 50 14 31
  start-page: 120 6871 1835
  year: 2021 2021 2022 2021 2021 2021
  publication-title: Chem. Soc. Rev. Adv. Energy Mater. ACS Appl. Mater. Interfaces Chem. Soc. Rev. Energy Environ. Sci. Adv. Funct. Mater.
– volume: 141 133
  start-page: 1923 5423
  year: 2019 2021
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 8 24 11
  start-page: 1945
  year: 2018 2018 2018
  publication-title: Adv. Energy Mater. Chemistry Energy Environ. Sci.
– volume: 13
  start-page: 2386
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 722
  year: 2016
  publication-title: Nat. Mater.
– volume: 4
  year: 2015
  publication-title: Phys. Rev. Appl.
– volume: 1
  start-page: 187
  year: 1980
  publication-title: Solid State Ionics
– volume: 13 414 6
  start-page: 839 188 294
  year: 2021 2001 2021
  publication-title: Biophys. Rev. Nature Nat. Rev. Mater.
– volume: 140
  start-page: 896
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 141 141 56
  start-page: 7518 5880 2747
  year: 2019 2019 2020
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Chem. Commun.
– volume: 1
  start-page: 83
  year: 2010
  publication-title: Nat. Commun.
– volume: 17
  start-page: 918
  year: 2005
  publication-title: Adv. Mater.
– volume: 132
  start-page: 779
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 8 31 6 3
  year: 2018 2019 2016 2021
  publication-title: Adv. Energy Mater. Adv. Mater. Adv. Energy Mater. Energy Chem.
– volume: 138
  start-page: 9767
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 2227
  year: 2003
  publication-title: Electrochim. Acta
– ident: e_1_2_8_1_3
  doi: 10.1002/adma.201700007
– ident: e_1_2_8_25_1
  doi: 10.1021/jacs.7b12292
– ident: e_1_2_8_12_1
  doi: 10.1038/ncomms1091
– ident: e_1_2_8_4_4
  doi: 10.1039/D0CS01569E
– ident: e_1_2_8_13_2
  doi: 10.1038/35102535
– ident: e_1_2_8_13_3
  doi: 10.1038/s41578-020-00268-7
– ident: e_1_2_8_2_1
  doi: 10.1002/aenm.201702657
– ident: e_1_2_8_1_7
  doi: 10.1039/c0cs00081g
– ident: e_1_2_8_7_1
  doi: 10.1021/jacs.8b03814
– ident: e_1_2_8_1_6
  doi: 10.1021/acs.accounts.7b00450
– ident: e_1_2_8_23_1
  doi: 10.1021/jacs.6b05568
– ident: e_1_2_8_4_3
  doi: 10.1021/acsami.2c09503
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-020-14627-z
– ident: e_1_2_8_9_4
  doi: 10.1016/j.enchem.2020.100048
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevApplied.4.054008
– ident: e_1_2_8_18_2
  doi: 10.1038/natrevmats.2015.5
– ident: e_1_2_8_1_4
  doi: 10.1016/j.ccr.2021.214152
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.201702675
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.jpclett.8b01500
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.jpcc.5b06308
– ident: e_1_2_8_2_2
  doi: 10.1002/chem.201803616
– ident: e_1_2_8_1_8
  doi: 10.1039/C8EE01991F
– ident: e_1_2_8_13_1
  doi: 10.1007/s12551-021-00875-w
– ident: e_1_2_8_9_2
  doi: 10.1002/adma.201901640
– ident: e_1_2_8_11_1
  doi: 10.1021/jacs.8b13551
– ident: e_1_2_8_4_5
  doi: 10.1039/D0EE03181J
– ident: e_1_2_8_9_3
  doi: 10.1002/aenm.201601250
– ident: e_1_2_8_10_3
  doi: 10.1039/D0CC00454E
– ident: e_1_2_8_14_1
  doi: 10.1126/science.abj0890
– ident: e_1_2_8_24_1
  doi: 10.1016/S0013-4686(03)00209-3
– ident: e_1_2_8_1_5
  doi: 10.1002/adma.201800561
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.200401286
– ident: e_1_2_8_1_1
  doi: 10.1038/s41560-017-0047-2
– ident: e_1_2_8_10_2
  doi: 10.1021/jacs.9b00543
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.202101400
– ident: e_1_2_8_3_1
  doi: 10.1039/D0EE00153H
– ident: e_1_2_8_18_1
  doi: 10.1021/ja301175v
– ident: e_1_2_8_2_3
  doi: 10.1039/C8EE01053F
– ident: e_1_2_8_10_1
  doi: 10.1021/jacs.9b02448
– ident: e_1_2_8_1_2
  doi: 10.1021/cm901452z
– ident: e_1_2_8_8_1
  doi: 10.1002/ange.201913380
– ident: e_1_2_8_4_2
  doi: 10.1002/aenm.202102300
– ident: e_1_2_8_4_6
  doi: 10.1002/adfm.202100505
– ident: e_1_2_8_6_1
  doi: 10.1038/nmat4611
– ident: e_1_2_8_17_1
  doi: 10.1016/0167-2738(80)90003-X
– ident: e_1_2_8_4_1
  doi: 10.1039/D0CS00620C
– ident: e_1_2_8_20_1
  doi: 10.1016/S0038-1098(01)00386-6
– ident: e_1_2_8_11_2
  doi: 10.1002/ange.202015130
SSID ssj0031247
Score 2.4768536
Snippet Low conductivity over a wide temperature region due to ultra‐slow ion migration dynamics is a key issue in the field of solid‐state electrolytes (SSE), which...
Low conductivity over a wide temperature region due to ultra-slow ion migration dynamics is a key issue in the field of solid-state electrolytes (SSE), which...
Abstract Low conductivity over a wide temperature region due to ultra‐slow ion migration dynamics is a key issue in the field of solid‐state electrolytes...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2207831
SubjectTerms Anions
Cations
Confining
covalent organic frameworks
Ion diffusion
Ion migration
Ions
Lithium
lithium ion conductors
Low conductivity
Low temperature
Molten salt electrolytes
Nanochannels
Nanotechnology
NMR
NMR spectroscopy
Nuclear magnetic resonance
organic ionic plastic crystals
Photoelectrons
Porous materials
Solid electrolytes
solid state electrolytes
Spectrum analysis
X ray photoelectron spectroscopy
Title Entropy‐Driven Ultrafast Ion Conduction Via Confining Organic Plastic Crystals in Ordered Nanochannels of Covalent Organic Frameworks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202207831
https://www.ncbi.nlm.nih.gov/pubmed/36670085
https://www.proquest.com/docview/2806432143
https://search.proquest.com/docview/2768244250
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPbUHaCmP9IFcCYlT2iS2N8kRbbsqqK0QsKi3yHZsqWJJqk320J64ceU38kuYiTehCwckeotjO3Zsj-cbP74BeDUqo9IZI8MM4XQo0kiEKjYKrdY8Gzl8KTUt6F9cjs6m4t2VvLp3i9_zQwwLbiQZ3XxNAq50c_ybNLT5OqOtgyShjSiyf4hNj1DRh4E_iqPy6ryroM4KiXirZ22MkuPV7Kta6S-ouYpcO9UzeQyqr7Q_cfLlaNHqI3P3B5_jQ_5qCx4tcSl74wfSNqzZ6gls3mMr3IHvp3Sq_eb257cfJ3OaJNl01s6VU03L3tYVG9dV6blo2edrRUHXeZ9g_r6nYe8RqePn2Xh-i5h01rDrCuM6b6EMZ_maLiFj_RtWO8yNIoAKccg86U-RNU9hOjn9ND4Ll34cQsNTHoemzKXhiU11GUe6tCLNERQYIaWOHNloUqVCO8sjG1vss1QLp5UTcaYUjiXJn8F6VVf2BbBYYbpcZQi7hDAqzyKEe9yhmeDizHAVwOu-H4sbT9dReGLmpKCmLYamDWC_7-ZiKbZNQdvMglw38QAOh2gUONpFUZWtF5gGDTQsHKFjAM_98BiK4iO69ZTJAJKuk_9Rh-Ljxfn5ENr9n0x7sIHP3J8l2of1dr6wBwiTWv2yE4VfK1oL2g
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hcgAO5RtSChgJiVPaJLY3yRFtu9rCboWgi7hFtmNLFUtSbbKHcuLGld_IL2Em3gQWDkhwTBzHTuzxvLFn3gA8H5VR6YyRYYZwOhRpJEIVG4VWa56NHN6Umjb056ej6UK8-iB7b0KKhfH8EMOGG0lGt16TgNOG9OFP1tDm05LODpKETqLQALqKMi9JNo_eDgxSHNVXl18FtVZI1Fs9b2OUHG7X39ZLf4DNbezaKZ_JTdB9t73PyceDdasPzOffGB3_67tuwe4GmrKXfi7dhiu2ugM3fiEsvAtfj8mx_eLy-5dvRytaJ9li2a6UU03LTuqKjeuq9HS07P25okvXJaBgPuTTsDcI1vH1bLy6RFi6bNh5hWVdwlCGC31Nccj4AQ2rHdZGKUCdOFSe9I5kzT1YTI7PxtNwk8ohNDzlcWjKXBqe2FSXcaRLK9IccYERUurIkZkmVSq0szyyscVBS7VwWjkRZ0rhdJL8PuxUdWUfAosVPperDJGXEEblWYSIjzu0FFycGa4CeNEPZHHhGTsKz82cFPRri-HXBrDfj3OxkdymoJNmQdmbeADPhmKUOTpIUZWt1_gM2mjYOKLHAB74-TE0xUcU-JTJAJJulP_Sh-LdfDYbrvb-pdJTuDY9m8-K2cnp60dwHe9z71q0Dzvtam0fI2pq9ZNOLn4A7EkP-g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRUJwgPIOfWAkJE5pk9jO41jtdtXCtqqARb1FtmNLFUuy2mQP5cSt1_7G_pKO403apQckOPoVO7bH840f3wB8iIugMEpxP0U47bMkYL4IlUCrNUtjg5Fc2g3945P4cMI-nfGzO6_4HT9Ev-FmJaNdr62Azwqzd0saWv-c2qODKLIHUWj_PGAxjaz5NfzSE0hR1F6texVUWr5l3upoG4Nob7X8qlq6hzVXoWure0ZPQXStdldOfuwuGrmrfv1B6Pg_v7UBT5bAlOy7mfQM1nT5HB7foSt8AZcH9lr77OL699VwbldJMpk2c2FE3ZCjqiSDqiwcGS35fi5s0LTuJ4h78KnIKUJ1_DwZzC8QlE5rcl5iWusulOAyX9lXyNj-mlQGS6MMoEbsC4-6a2T1S5iMDr4NDv2lIwdf0YSGvioyrmikE1mEgSw0SzJEBYpxLgNjjTQuEiaNpoEONY5ZIpmRwrAwFQInE6evYL2sSv0GSCgwXyZSxF2MKZGlAeI9atBOMGGqqPDgYzeO-czxdeSOmTnKbdfmfdd6sNUNc76U2zq358zM-m6iHrzvk1Hi7DGKKHW1wDxooWHliB09eO2mR18Vje2zp5R7ELWD_Jc25F-Px-M-9PZfCr2Dh6fDUT4-Ovm8CY8wmrp7RVuw3swXehshUyN3Wqm4AbF2Dqk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy%E2%80%90Driven+Ultrafast+Ion+Conduction+Via+Confining+Organic+Plastic+Crystals+in+Ordered+Nanochannels+of+Covalent+Organic+Frameworks&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Jing&rft.au=Liu%2C+Lili&rft.au=Liu%2C+Yukun&rft.au=Zhang%2C+Xian%E2%80%90Ming&rft.date=2023-04-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202207831&rft.externalDBID=10.1002%252Fsmll.202207831&rft.externalDocID=SMLL202207831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon