Engineering of Charge Density at the Anode/Electrolyte Interface for Long‐Life Zn Anode in Aqueous Zinc Ion Battery

The aqueous zinc ion battery emerges as the promising candidate applied in large‐scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte i...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 18; no. 1; pp. e202401251 - n/a
Main Authors Wu, Kai, Liu, Xiaoyu, Ning, Fanghua, Subhan, Sidra, Xie, Yihua, Lu, Shigang, Xia, Yongyao, Yi, Jin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.01.2025
Subjects
Online AccessGet full text
ISSN1864-5631
1864-564X
1864-564X
DOI10.1002/cssc.202401251

Cover

Abstract The aqueous zinc ion battery emerges as the promising candidate applied in large‐scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution. In this context, the recent advancements concentrating on the strategies and mechanisms to regulate charge density at the Zn anode/electrolyte interface are summarized. Different characterization techniques for charge density distribution have been analysed, which can be applied to assess the interfacial zinc ion transport. Additionally, the charge density regulations at the Zn anode/electrolyte interface are discussed, elucidating their roles in modulating electrostatic interactions, electric field, structure of solvated zinc ion and electric double layer, respectively. Finally, the perspectives and challenges on the further research are provided to establish the stable anode/electrolyte interface by focusing on charge density modifications, which is expected to facilitate the development of aqueous zinc ion battery. The engineering of charge density at the anode/electrolyte interface can regulate electrostatic interaction, interfacial electric field, the structure of the electric double layer, and the configuration of solvated zinc ions. These charge density adjustments stabilize the Zn anode/electrolyte interface, which can facilitate uniform zinc ion transport and suppress the hydrogen evolution reaction for long‐life Zn anode.
AbstractList The aqueous zinc ion battery emerges as the promising candidate applied in large‐scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution. In this context, the recent advancements concentrating on the strategies and mechanisms to regulate charge density at the Zn anode/electrolyte interface are summarized. Different characterization techniques for charge density distribution have been analysed, which can be applied to assess the interfacial zinc ion transport. Additionally, the charge density regulations at the Zn anode/electrolyte interface are discussed, elucidating their roles in modulating electrostatic interactions, electric field, structure of solvated zinc ion and electric double layer, respectively. Finally, the perspectives and challenges on the further research are provided to establish the stable anode/electrolyte interface by focusing on charge density modifications, which is expected to facilitate the development of aqueous zinc ion battery.
The aqueous zinc ion battery emerges as the promising candidate applied in large-scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution. In this context, the recent advancements concentrating on the strategies and mechanisms to regulate charge density at the Zn anode/electrolyte interface are summarized. Different characterization techniques for charge density distribution have been analysed, which can be applied to assess the interfacial zinc ion transport. Additionally, the charge density regulations at the Zn anode/electrolyte interface are discussed, elucidating their roles in modulating electrostatic interactions, electric field, structure of solvated zinc ion and electric double layer, respectively. Finally, the perspectives and challenges on the further research are provided to establish the stable anode/electrolyte interface by focusing on charge density modifications, which is expected to facilitate the development of aqueous zinc ion battery.The aqueous zinc ion battery emerges as the promising candidate applied in large-scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution. In this context, the recent advancements concentrating on the strategies and mechanisms to regulate charge density at the Zn anode/electrolyte interface are summarized. Different characterization techniques for charge density distribution have been analysed, which can be applied to assess the interfacial zinc ion transport. Additionally, the charge density regulations at the Zn anode/electrolyte interface are discussed, elucidating their roles in modulating electrostatic interactions, electric field, structure of solvated zinc ion and electric double layer, respectively. Finally, the perspectives and challenges on the further research are provided to establish the stable anode/electrolyte interface by focusing on charge density modifications, which is expected to facilitate the development of aqueous zinc ion battery.
The aqueous zinc ion battery emerges as the promising candidate applied in large‐scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution. In this context, the recent advancements concentrating on the strategies and mechanisms to regulate charge density at the Zn anode/electrolyte interface are summarized. Different characterization techniques for charge density distribution have been analysed, which can be applied to assess the interfacial zinc ion transport. Additionally, the charge density regulations at the Zn anode/electrolyte interface are discussed, elucidating their roles in modulating electrostatic interactions, electric field, structure of solvated zinc ion and electric double layer, respectively. Finally, the perspectives and challenges on the further research are provided to establish the stable anode/electrolyte interface by focusing on charge density modifications, which is expected to facilitate the development of aqueous zinc ion battery. The engineering of charge density at the anode/electrolyte interface can regulate electrostatic interaction, interfacial electric field, the structure of the electric double layer, and the configuration of solvated zinc ions. These charge density adjustments stabilize the Zn anode/electrolyte interface, which can facilitate uniform zinc ion transport and suppress the hydrogen evolution reaction for long‐life Zn anode.
Author Wu, Kai
Liu, Xiaoyu
Ning, Fanghua
Xie, Yihua
Yi, Jin
Subhan, Sidra
Lu, Shigang
Xia, Yongyao
Author_xml – sequence: 1
  givenname: Kai
  surname: Wu
  fullname: Wu, Kai
  organization: Jiaxing University
– sequence: 2
  givenname: Xiaoyu
  surname: Liu
  fullname: Liu, Xiaoyu
  organization: Shanghai University
– sequence: 3
  givenname: Fanghua
  surname: Ning
  fullname: Ning, Fanghua
  organization: Shanghai University
– sequence: 4
  givenname: Sidra
  surname: Subhan
  fullname: Subhan, Sidra
  organization: University of Peshawar
– sequence: 5
  givenname: Yihua
  surname: Xie
  fullname: Xie, Yihua
  organization: Fudan University
– sequence: 6
  givenname: Shigang
  surname: Lu
  fullname: Lu, Shigang
  organization: Shanghai University
– sequence: 7
  givenname: Yongyao
  surname: Xia
  fullname: Xia, Yongyao
  organization: Fudan University
– sequence: 8
  givenname: Jin
  orcidid: 0000-0001-6203-1281
  surname: Yi
  fullname: Yi, Jin
  email: jin.yi@shu.edu.cn
  organization: Shanghai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39046757$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqGzEUhkVJaC7ttssi6KYbO9LoNl6mU7cxGLJICyUbodEcOQpjKZU0hNn1EfqMfZKOcS4QKF3pIL7v53D-E3QQYgCE3lEyp4RUZzZnO69IxQmtBH2Fjmkt-UxI_uPgaWb0CJ3kfEuIJAspX6MjtiBcKqGO0bAMGx8Akg8bHB1ubkzaAP4MIfsyYlNwuQF8HmIHZ8sebEmxHwvgVSiQnLGAXUx4HcPmz6_fa-8AX4c9jv00_BwgDhlf-2DxKgb8yZTJG9-gQ2f6DG8f3lP0_cvyW3MxW19-XTXn65llitGZtdYJ1womFCWOAeusIi1UjLbGUVBKdUAEmb5F3QLjtXOtk8R0C6OYaCU7RR_3uXcpTqvkorc-W-h7E3Z7aUZqTqqaczGhH16gt3FIYdpOMyooma4td4HvH6ih3UKn75LfmjTqx4NOAN8DNsWcEzhtfTHFx1CS8b2mRO9607ve9FNvkzZ_oT0m_1NY7IV738P4H1o3V1fNs_sXRP-row
CitedBy_id crossref_primary_10_1021_acsami_4c21312
crossref_primary_10_1021_acsanm_4c05108
crossref_primary_10_1002_anie_202414702
crossref_primary_10_1021_acsami_4c13058
crossref_primary_10_1002_ange_202414702
crossref_primary_10_1039_D4EE03209H
crossref_primary_10_1002_cssc_202402101
crossref_primary_10_1021_acsaem_4c02966
Cites_doi 10.1016/j.matre.2024.100268
10.1016/j.scib.2024.01.029
10.1002/adfm.202001317
10.1021/jacs.8b08963
10.1002/aenm.202203766
10.1039/D3EE04292H
10.1039/D2EE03793A
10.1038/s41563-019-0449-6
10.1002/smll.202207502
10.1038/s41563-020-0673-0
10.1021/jacs.3c06523
10.1039/D2EE02416K
10.1002/adfm.202112936
10.1021/jacs.9b00617
10.1002/adfm.201908528
10.1002/adma.202308639
10.1039/D3EE00982C
10.1002/aenm.202300250
10.1002/adfm.202003932
10.1021/acs.nanolett.0c04519
10.1002/admi.201800848
10.1002/adma.201908121
10.1016/j.ensm.2020.03.011
10.1002/aenm.202204388
10.1016/j.matre.2022.100096
10.1021/acsnano.7b09003
10.1002/aenm.202301999
10.1126/sciadv.ade2217
10.1002/adma.202300019
10.1016/j.mtener.2024.101509
10.1016/j.surfin.2022.101972
10.1002/adma.202205175
10.1039/C8TA08314B
10.1002/anie.202310290
10.1002/adma.202102415
10.1016/j.matre.2023.100213
10.1021/acsnano.2c10819
10.1002/advs.202104832
10.1007/s40820-022-00835-3
10.1021/acsenergylett.0c02371
10.1002/chem.202303211
10.1038/s41467-023-40462-z
10.1002/aenm.202101158
10.1038/s41563-018-0063-z
10.1021/acsenergylett.2c01960
10.1038/s41586-019-1649-6
10.1021/acsenergylett.0c01792
10.1002/aenm.201903977
10.1038/ncomms15631
10.1002/adfm.201903605
10.1021/jacs.0c09794
10.1002/smll.202304901
10.1002/anie.202401441
10.1002/adma.202308086
10.1007/s40820-021-00599-2
10.1021/acsami.2c05887
10.1016/j.cej.2022.138772
10.1002/aenm.202101518
10.1039/b905441n
10.1002/anie.202308068
10.1002/aenm.202000035
10.1021/acsnano.0c07957
10.1016/j.ensm.2023.01.013
10.1016/j.jechem.2022.01.037
10.1038/nature08879
10.1002/advs.202102612
10.1093/nsr/nwac051
10.1002/ange.202312585
10.1038/s41467-018-04060-8
10.1038/s41467-022-30939-8
10.1039/C1CC15463J
10.1021/acsami.6b16560
10.1002/adma.202106937
10.1021/acs.nanolett.1c03792
10.1007/s40820-024-01337-0
10.1021/acsnano.3c10394
10.1039/D3EE03584K
10.1016/j.jpowsour.2020.228808
10.1007/s12274-022-4419-y
10.1093/nsr/nwad220
10.1039/D3EE02164E
10.1002/adma.202203104
10.1021/jacs.9b05029
10.1038/s41467-023-39634-8
10.1002/adfm.202203595
10.1021/acsenergylett.3c01017
10.1007/s40820-021-00782-5
10.1002/anie.202312193
10.1016/j.ensm.2022.07.036
10.1021/acsenergylett.1c01418
10.1038/s41467-020-19726-5
10.1021/acsnano.2c05285
10.1038/s41578-024-00672-3
10.1002/anie.202316841
10.1002/anie.202109682
10.1002/adfm.202207732
10.1002/anie.202309957
10.1002/aenm.202102010
10.1021/acsnano.3c04343
10.1038/s41467-022-35630-6
10.1016/j.ensm.2023.03.002
10.1002/adfm.202211917
10.1038/s41467-023-38384-x
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
2025 Wiley-VCH GmbH
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
– notice: 2025 Wiley-VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202401251
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage n/a
ExternalDocumentID 39046757
10_1002_cssc_202401251
CSSC202401251
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22075171; 21935003
– fundername: Jiaxing university laboratory open fund
  funderid: JJ20240038
– fundername: Natural Science Foundation of Shanghai
  funderid: 23ZR1423400
– fundername: Jiaxing university laboratory open fund
  grantid: JJ20240038
– fundername: Natural Science Foundation of Shanghai
  grantid: 23ZR1423400
– fundername: National Natural Science Foundation of China
  grantid: 21935003
– fundername: National Natural Science Foundation of China
  grantid: 22075171
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGYGG
CITATION
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
K9.
7X8
ID FETCH-LOGICAL-c3731-cccf5fb535710f3e3dc70be231baf1e777de0503dc58be348ffbf60ad9a735b63
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 11:13:58 EDT 2025
Tue Jul 22 18:42:01 EDT 2025
Thu Apr 03 07:02:33 EDT 2025
Tue Jul 01 00:36:27 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Wed Jan 22 17:13:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Interfacial charge density
Electric field
Zn anode
Electrostatic interaction
Aqueous zinc ion battery
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-cccf5fb535710f3e3dc70be231baf1e777de0503dc58be348ffbf60ad9a735b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6203-1281
PMID 39046757
PQID 3151010066
PQPubID 986333
PageCount 11
ParticipantIDs proquest_miscellaneous_3084028445
proquest_journals_3151010066
pubmed_primary_39046757
crossref_citationtrail_10_1002_cssc_202401251
crossref_primary_10_1002_cssc_202401251
wiley_primary_10_1002_cssc_202401251_CSSC202401251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2, 2025
PublicationDateYYYYMMDD 2025-01-02
PublicationDate_xml – month: 01
  year: 2025
  text: January 2, 2025
  day: 02
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2023; 30
2021; 21
2023; 35
2023; 36
2023; 8
2023; 145
2023; 9
2010; 464
2022; 69
2019; 18
2020; 14
2020; 11
2023; 3
2024
2020; 10
2017; 9
2020; 19
2023; 20
2018; 6
2018; 9
2023; 62
2020; 5
2018; 5
2021; 34
2021; 33
2024; 9
2023; 451
2022; 34
2024; 63
2023; 136
2019; 29
2022; 31
2024; 4
2022; 32
2022; 33
2024; 69
2023; 10
2021; 8
2021; 6
2023; 13
2023; 57
2023; 14
2018; 140
2023; 56
2023; 17
2020; 142
2023; 16
2023; 19
2009; 134
2020; 32
2019; 141
2024; 16
2024; 17
2024; 18
2021; 13
2018; 17
2021; 11
2020; 30
2022; 8
2022; 9
2020; 479
2020; 28
2022; 13
2024; 40
2022; 14
2019; 575
2022; 15
2022; 52
2022; 2
2012; 48
2018; 12
2021; 60
2022; 16
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
Peng H. (e_1_2_7_41_1) 2024
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 14
  start-page: 93
  year: 2022
  publication-title: Nano-Micro Lett.
– volume: 34
  year: 2021
  publication-title: Adv. Mater.
– volume: 16
  start-page: 2684
  year: 2023
  end-page: 2695
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 56
  start-page: 218
  year: 2023
  end-page: 226
  publication-title: Energy Storage Mater.
– volume: 33
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 145
  start-page: 22456
  year: 2023
  end-page: 22465
  publication-title: J. Am. Chem. Soc.
– volume: 20
  year: 2023
  publication-title: Small
– volume: 14
  start-page: 4981
  year: 2023
  publication-title: Nat. Commun.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 2886
  year: 2023
  end-page: 2896
  publication-title: ACS Energy Lett.
– volume: 141
  start-page: 9422
  year: 2019
  end-page: 9429
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 1446
  year: 2021
  end-page: 1453
  publication-title: Nano Lett.
– volume: 9
  start-page: 1656
  year: 2018
  publication-title: Nat. Commun.
– volume: 52
  start-page: 40
  year: 2022
  end-page: 51
  publication-title: Energy Storage Mater.
– year: 2024
  publication-title: ChemSusChem
– volume: 48
  start-page: 582
  year: 2012
  end-page: 584
  publication-title: Chem. Commun.
– volume: 14
  start-page: 76
  year: 2023
  publication-title: Nat. Commun.
– volume: 9
  start-page: 9681
  year: 2017
  end-page: 9687
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 1096
  year: 2020
  end-page: 1101
  publication-title: Nat. Mater.
– volume: 17
  start-page: 15113
  year: 2023
  end-page: 15124
  publication-title: ACS Nano
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 451
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 15631
  year: 2017
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 8039
  year: 2022
  end-page: 8047
  publication-title: Nano Res.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 205
  year: 2020
  end-page: 215
  publication-title: Energy Storage Mater.
– volume: 40
  year: 2024
  publication-title: Mater. Today Energy
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 543
  year: 2018
  end-page: 549
  publication-title: Nat. Mater.
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 14
  start-page: 42
  year: 2022
  publication-title: Nano-Micro Lett.
– volume: 11
  start-page: 5889
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  start-page: 3252
  year: 2022
  publication-title: Nat. Commun.
– volume: 9
  year: 2022
  publication-title: Natl. Sci. Rev.
– volume: 17
  start-page: 369
  year: 2024
  end-page: 385
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 1095
  year: 2024
  end-page: 1106
  publication-title: Energy Environ. Sci.
– volume: 3
  year: 2023
  publication-title: Mater. Rep. Energy
– volume: 60
  start-page: 23357
  year: 2021
  end-page: 23364
  publication-title: Angew. Chem., Int. Ed.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 14
  start-page: 17515
  year: 2020
  end-page: 17523
  publication-title: ACS Nano
– volume: 57
  start-page: 628
  year: 2023
  end-page: 638
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 457
  year: 2022
  end-page: 476
  publication-title: ACS Energy Lett.
– volume: 464
  start-page: 571
  year: 2010
  end-page: 574
  publication-title: Nature
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 479
  year: 2020
  publication-title: J. Power Sources
– volume: 15
  start-page: 5017
  year: 2022
  end-page: 5038
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 19594
  year: 2022
  end-page: 19604
  publication-title: ACS Nano
– volume: 6
  start-page: 3236
  year: 2021
  end-page: 3243
  publication-title: ACS Energy Lett.
– volume: 13
  start-page: 79
  year: 2021
  publication-title: Nano-Micro Lett.
– volume: 9
  start-page: 380
  year: 2024
  end-page: 398
  publication-title: Nat. Rev. Mater.
– volume: 6
  start-page: 395
  year: 2021
  end-page: 403
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 3890
  year: 2023
  publication-title: Nat. Commun.
– volume: 134
  start-page: 1608
  year: 2009
  publication-title: Analyst
– volume: 31
  year: 2022
  publication-title: Surf. Interfaces
– volume: 18
  start-page: 1350
  year: 2019
  end-page: 1357
  publication-title: Nat. Mater.
– volume: 62
  year: 2023
  publication-title: Angew Chem Int Edit
– volume: 17
  start-page: 1894
  year: 2024
  end-page: 1903
  publication-title: Energy Environ. Sci.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 30
  year: 2023
  publication-title: Chem. - Eur. J.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 21
  start-page: 10446
  year: 2021
  end-page: 10452
  publication-title: Nano Lett.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 14
  start-page: 34612
  year: 2022
  end-page: 34619
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 3140
  year: 2018
  end-page: 3148
  publication-title: ACS Nano
– volume: 6
  start-page: 23046
  year: 2018
  end-page: 23054
  publication-title: J. Mater. Chem. A
– volume: 136
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 18
  start-page: 4932
  year: 2024
  end-page: 4943
  publication-title: ACS Nano
– volume: 14
  start-page: 2720
  year: 2023
  publication-title: Nat. Commun.
– volume: 142
  start-page: 21404
  year: 2020
  end-page: 21409
  publication-title: J. Am. Chem. Soc.
– volume: 69
  start-page: 237
  year: 2022
  end-page: 243
  publication-title: J. Energy Chem.
– volume: 575
  start-page: 480
  year: 2019
  end-page: 484
  publication-title: Nature
– volume: 140
  start-page: 17515
  year: 2018
  end-page: 17521
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 2
  year: 2022
  publication-title: Mater. Rep. Energy
– volume: 16
  start-page: 1291
  year: 2023
  end-page: 1311
  publication-title: Energy Environ. Sci.
– volume: 4
  year: 2024
  publication-title: Mater. Rep. Energy
– volume: 141
  start-page: 6338
  year: 2019
  end-page: 6344
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 11392
  year: 2022
  end-page: 11404
  publication-title: ACS Nano
– volume: 16
  start-page: 111
  year: 2024
  publication-title: Nano-Micro Lett.
– volume: 36
  year: 2023
  publication-title: Adv. Mater.
– volume: 10
  year: 2023
  publication-title: Natl. Sci. Rev.
– volume: 69
  start-page: 833
  year: 2024
  end-page: 845
  publication-title: Sci. Bull.
– volume: 5
  start-page: 3012
  year: 2020
  end-page: 3020
  publication-title: ACS Energy Lett.
– ident: e_1_2_7_2_1
  doi: 10.1016/j.matre.2024.100268
– ident: e_1_2_7_37_1
  doi: 10.1016/j.scib.2024.01.029
– ident: e_1_2_7_100_1
  doi: 10.1002/adfm.202001317
– ident: e_1_2_7_52_1
  doi: 10.1021/jacs.8b08963
– ident: e_1_2_7_4_1
  doi: 10.1002/aenm.202203766
– ident: e_1_2_7_77_1
  doi: 10.1039/D3EE04292H
– ident: e_1_2_7_101_1
  doi: 10.1039/D2EE03793A
– ident: e_1_2_7_28_1
  doi: 10.1038/s41563-019-0449-6
– ident: e_1_2_7_82_1
  doi: 10.1002/smll.202207502
– ident: e_1_2_7_27_1
  doi: 10.1038/s41563-020-0673-0
– year: 2024
  ident: e_1_2_7_41_1
  publication-title: ChemSusChem
– ident: e_1_2_7_7_1
  doi: 10.1021/jacs.3c06523
– ident: e_1_2_7_18_1
  doi: 10.1039/D2EE02416K
– ident: e_1_2_7_89_1
  doi: 10.1002/adfm.202112936
– ident: e_1_2_7_65_1
  doi: 10.1021/jacs.9b00617
– ident: e_1_2_7_85_1
  doi: 10.1002/adfm.201908528
– ident: e_1_2_7_75_1
  doi: 10.1002/adma.202308639
– ident: e_1_2_7_91_1
  doi: 10.1039/D3EE00982C
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.202300250
– ident: e_1_2_7_32_1
  doi: 10.1002/adfm.202003932
– ident: e_1_2_7_78_1
  doi: 10.1021/acs.nanolett.0c04519
– ident: e_1_2_7_86_1
  doi: 10.1002/admi.201800848
– ident: e_1_2_7_94_1
  doi: 10.1002/adma.201908121
– ident: e_1_2_7_67_1
  doi: 10.1016/j.ensm.2020.03.011
– ident: e_1_2_7_80_1
  doi: 10.1002/aenm.202204388
– ident: e_1_2_7_3_1
  doi: 10.1016/j.matre.2022.100096
– ident: e_1_2_7_97_1
  doi: 10.1021/acsnano.7b09003
– ident: e_1_2_7_61_1
  doi: 10.1002/aenm.202301999
– ident: e_1_2_7_76_1
  doi: 10.1126/sciadv.ade2217
– ident: e_1_2_7_92_1
  doi: 10.1002/adma.202300019
– ident: e_1_2_7_104_1
  doi: 10.1016/j.mtener.2024.101509
– ident: e_1_2_7_103_1
  doi: 10.1016/j.surfin.2022.101972
– ident: e_1_2_7_93_1
  doi: 10.1002/adma.202205175
– ident: e_1_2_7_96_1
  doi: 10.1039/C8TA08314B
– ident: e_1_2_7_68_1
  doi: 10.1002/anie.202310290
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.202102415
– ident: e_1_2_7_1_1
  doi: 10.1016/j.matre.2023.100213
– ident: e_1_2_7_31_1
  doi: 10.1021/acsnano.2c10819
– ident: e_1_2_7_99_1
  doi: 10.1002/advs.202104832
– ident: e_1_2_7_74_1
  doi: 10.1007/s40820-022-00835-3
– ident: e_1_2_7_47_1
  doi: 10.1021/acsenergylett.0c02371
– ident: e_1_2_7_58_1
  doi: 10.1002/chem.202303211
– ident: e_1_2_7_8_1
  doi: 10.1038/s41467-023-40462-z
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.202101158
– ident: e_1_2_7_66_1
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_7_40_1
  doi: 10.1021/acsenergylett.2c01960
– ident: e_1_2_7_25_1
  doi: 10.1038/s41586-019-1649-6
– ident: e_1_2_7_56_1
  doi: 10.1021/acsenergylett.0c01792
– ident: e_1_2_7_98_1
  doi: 10.1002/aenm.201903977
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms15631
– ident: e_1_2_7_59_1
  doi: 10.1002/adfm.201903605
– ident: e_1_2_7_63_1
  doi: 10.1021/jacs.0c09794
– ident: e_1_2_7_42_1
  doi: 10.1002/smll.202304901
– ident: e_1_2_7_84_1
  doi: 10.1002/anie.202401441
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.202308086
– ident: e_1_2_7_87_1
  doi: 10.1007/s40820-021-00599-2
– ident: e_1_2_7_6_1
  doi: 10.1021/acsami.2c05887
– ident: e_1_2_7_73_1
  doi: 10.1016/j.cej.2022.138772
– ident: e_1_2_7_30_1
  doi: 10.1002/aenm.202101518
– ident: e_1_2_7_35_1
  doi: 10.1039/b905441n
– ident: e_1_2_7_57_1
  doi: 10.1002/anie.202308068
– ident: e_1_2_7_102_1
  doi: 10.1002/aenm.202000035
– ident: e_1_2_7_29_1
  doi: 10.1021/acsnano.0c07957
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ensm.2023.01.013
– ident: e_1_2_7_54_1
  doi: 10.1016/j.jechem.2022.01.037
– ident: e_1_2_7_22_1
  doi: 10.1038/nature08879
– ident: e_1_2_7_70_1
  doi: 10.1002/advs.202102612
– ident: e_1_2_7_62_1
  doi: 10.1093/nsr/nwac051
– ident: e_1_2_7_14_1
  doi: 10.1002/ange.202312585
– ident: e_1_2_7_48_1
  doi: 10.1038/s41467-018-04060-8
– ident: e_1_2_7_46_1
  doi: 10.1038/s41467-022-30939-8
– ident: e_1_2_7_26_1
  doi: 10.1039/C1CC15463J
– ident: e_1_2_7_19_1
  doi: 10.1021/acsami.6b16560
– ident: e_1_2_7_90_1
  doi: 10.1002/adma.202106937
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.nanolett.1c03792
– ident: e_1_2_7_11_1
  doi: 10.1007/s40820-024-01337-0
– ident: e_1_2_7_20_1
  doi: 10.1021/acsnano.3c10394
– ident: e_1_2_7_10_1
  doi: 10.1039/D3EE03584K
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jpowsour.2020.228808
– ident: e_1_2_7_50_1
  doi: 10.1007/s12274-022-4419-y
– ident: e_1_2_7_9_1
  doi: 10.1093/nsr/nwad220
– ident: e_1_2_7_36_1
  doi: 10.1039/D3EE02164E
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.202203104
– ident: e_1_2_7_34_1
  doi: 10.1021/jacs.9b05029
– ident: e_1_2_7_95_1
  doi: 10.1038/s41467-023-39634-8
– ident: e_1_2_7_72_1
  doi: 10.1002/adfm.202203595
– ident: e_1_2_7_88_1
  doi: 10.1021/acsenergylett.3c01017
– ident: e_1_2_7_12_1
  doi: 10.1007/s40820-021-00782-5
– ident: e_1_2_7_55_1
  doi: 10.1002/anie.202312193
– ident: e_1_2_7_71_1
  doi: 10.1016/j.ensm.2022.07.036
– ident: e_1_2_7_21_1
  doi: 10.1021/acsenergylett.1c01418
– ident: e_1_2_7_24_1
  doi: 10.1038/s41467-020-19726-5
– ident: e_1_2_7_83_1
  doi: 10.1021/acsnano.2c05285
– ident: e_1_2_7_43_1
  doi: 10.1038/s41578-024-00672-3
– ident: e_1_2_7_38_1
  doi: 10.1002/anie.202316841
– ident: e_1_2_7_81_1
  doi: 10.1002/anie.202109682
– ident: e_1_2_7_53_1
  doi: 10.1002/adfm.202207732
– ident: e_1_2_7_60_1
  doi: 10.1002/anie.202309957
– ident: e_1_2_7_51_1
  doi: 10.1002/aenm.202102010
– ident: e_1_2_7_69_1
  doi: 10.1021/acsnano.3c04343
– ident: e_1_2_7_79_1
  doi: 10.1038/s41467-022-35630-6
– ident: e_1_2_7_33_1
  doi: 10.1016/j.ensm.2023.03.002
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.202211917
– ident: e_1_2_7_64_1
  doi: 10.1038/s41467-023-38384-x
SSID ssj0060966
Score 2.5075357
Snippet The aqueous zinc ion battery emerges as the promising candidate applied in large‐scale energy storage system. However, Zn anode suffers from the issues...
The aqueous zinc ion battery emerges as the promising candidate applied in large-scale energy storage system. However, Zn anode suffers from the issues...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202401251
SubjectTerms Aqueous zinc ion battery
Charge density
Corrosion
Density distribution
Electric charge
Electric double layer
Electric field
Electric fields
Electrolytes
Electrostatic interaction
Hydrogen evolution reactions
Interface stability
Interfacial charge density
Ion transport
Scale (corrosion)
Zn anode
Title Engineering of Charge Density at the Anode/Electrolyte Interface for Long‐Life Zn Anode in Aqueous Zinc Ion Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202401251
https://www.ncbi.nlm.nih.gov/pubmed/39046757
https://www.proquest.com/docview/3151010066
https://www.proquest.com/docview/3084028445
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQN7CB8k4pyEhIrNxx4leyrKatCiosKJWqbiI_q1GrBJHMYljxCXwjX8J1PAkdEEKCTZQojuJc3-tz4se5CL2iJnClmCbMGke4Y4xoxTgB56lygHvNh5Z-914en_G35-L8xi7-pA8xDbjFyBj66xjg2nSzn6KhtuuiBCEgUsRo6IRzJqN4_sGHST9KAj8ftheVkhMhWT6qNtJitvn4Jir9RjU3mesAPUf3kB4rnVacXO0te7Nnv_yi5_g_X7WN7q55Kd5PjnQf3fLNA3R7PqaDe4iWN5QLcRtwnKe_9PggLoDvV1j3GKgk3m9a52eHKbfO9ar3eBhyDNp6DPQYn7TN5fev304WweOLJhXHCzgBS7TLDl8sGovftA1Oup-rR-js6PDj_JisczYQyxTLibU2iGAEE0BdAvPMWUWNBxZpdMi9Usr5KEHjrCiNZ7wMwQRJtavARYSR7DHaatrGP0VYVq6snKVwAJpDC62Eoa7iQcuyMp5miIxtVtu1oHnMq3FdJynmoo7GrCdjZuj1VP5TkvL4Y8nd0QXqdUh3Nctj9xUpWoZeTrehEeIMi26ikWpG4X8ZAJ-LDD1JrjO9ilUUQEmoDBWDA_ylDvX89HQ-Xe38y0PP0J0iZiuOA0bFLtrqPy_9c6BQvXkxhMkPOTgSfQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZRLKb8NFDASEqd0ndiOk2O1bbWFbQ-0lVAvkX-rFVWC2OxhOfEIPCNPwjjZpCwIIcElShRbccYzns9j-xuA11R7LiVTMTPaxtwyFivJeIzKUyTo7hVve_rkNJtc8LcfRL-bMJyF6fghhoBbsIx2vA4GHgLSoxvWUDOfBw5CdEnBSd-GOxzRRph_HbwfGKQyROjtAaM847HIWNLzNtJ0tF5_3S_9BjbXsWvrfI7uge6b3e05-bi3aPSe-fILo-N__dc2bK2gKdnvdOk-3HLVA9gc9xnhHsLiJ_JCUnsSluqvHDkIe-CbJVENQTRJ9qvautFhl17netk40kYdvTKOIEIm07q6-v7123TmHbmsuuJkhjcoinoxJ5ezypDjuiId9efyEVwcHZ6PJ_EqbUNsmGRJbIzxwmvBBKIXzxyzRlLtEEhq5RMnpbQusNBYI3LtGM-91z6jyhaoJUJn7DFsVHXldoBkhc0LayheEOnQVEmhqS24V1leaEcjiPtOK82K0zyk1rguOzbmtAzCLAdhRvBmKP-pY_P4Y8ndXgfKlVXPS5aEESygtAheDa-xE8Iii6qCkEpGccqMPp-LCJ50ujN8ihUU_ZKQEaStBvylDeX47Gw8PD39l0ovYXNyfjItp8en757B3TQkLw7xo3QXNprPC_ccEVWjX7Q28wNndRac
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CIgEb3tBAASMhsUrHie04WVbTjloYKkSpVHUT-VmNqJKqk1kMKz6Bb-RLuE4moQNCSLCJEsVWnOt7c078OBfgNdWeS8lUzIy2MbeMxUoyHqPzFAnCveJtT78_zPaP-dsTcXJlF3-nDzEMuIXIaL_XIcAvrB_9FA0183mQIEREChh9HW7wDOlEoEUfBwGpDAl6u78oz3gsMpb0so00Ha3XX4el37jmOnVtsWdyF1Tf6m7JyeftRaO3zZdfBB3_57XuwZ0VMSU7nSfdh2uuegC3xn0-uIewuCJdSGpPwkT9mSO7YQV8sySqIcglyU5VWzfa65LrnC8bR9oxR6-MI8iPybSuzr5__TadeUdOq644meEJWqJezMnprDLkoK5IJ_y5fATHk71P4_14lbQhNkyyJDbGeOG1YAK5i2eOWSOpdkgjtfKJk1JaFzRorBG5dozn3mufUWUL9BGhM_YYNqq6cptAssLmhTUUD8hzaKqk0NQW3KssL7SjEcR9n5VmpWgeEmucl50Wc1oGY5aDMSN4M5S_6LQ8_lhyq3eBchXT85Il4fsVOFoEr4bb2AlhikVVwUglo_jDjIjPRQRPOtcZHsUKiqgkZARp6wB_aUM5PjoaD1dP_6XSS7j5YXdSTg8O3z2D22nIXBwGj9It2GguF-450qlGv2gj5gcL6hVL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+Charge+Density+at+the+Anode%2FElectrolyte+Interface+for+Long-Life+Zn+Anode+in+Aqueous+Zinc+Ion+Battery&rft.jtitle=ChemSusChem&rft.au=Wu%2C+Kai&rft.au=Liu%2C+Xiaoyu&rft.au=Ning%2C+Fanghua&rft.au=Subhan%2C+Sidra&rft.date=2025-01-02&rft.eissn=1864-564X&rft.volume=18&rft.issue=1&rft.spage=e202401251&rft_id=info:doi/10.1002%2Fcssc.202401251&rft_id=info%3Apmid%2F39046757&rft.externalDocID=39046757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon