Engineering of Charge Density at the Anode/Electrolyte Interface for Long‐Life Zn Anode in Aqueous Zinc Ion Battery
The aqueous zinc ion battery emerges as the promising candidate applied in large‐scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte i...
Saved in:
Published in | ChemSusChem Vol. 18; no. 1; pp. e202401251 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1864-5631 1864-564X 1864-564X |
DOI | 10.1002/cssc.202401251 |
Cover
Abstract | The aqueous zinc ion battery emerges as the promising candidate applied in large‐scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution. In this context, the recent advancements concentrating on the strategies and mechanisms to regulate charge density at the Zn anode/electrolyte interface are summarized. Different characterization techniques for charge density distribution have been analysed, which can be applied to assess the interfacial zinc ion transport. Additionally, the charge density regulations at the Zn anode/electrolyte interface are discussed, elucidating their roles in modulating electrostatic interactions, electric field, structure of solvated zinc ion and electric double layer, respectively. Finally, the perspectives and challenges on the further research are provided to establish the stable anode/electrolyte interface by focusing on charge density modifications, which is expected to facilitate the development of aqueous zinc ion battery.
The engineering of charge density at the anode/electrolyte interface can regulate electrostatic interaction, interfacial electric field, the structure of the electric double layer, and the configuration of solvated zinc ions. These charge density adjustments stabilize the Zn anode/electrolyte interface, which can facilitate uniform zinc ion transport and suppress the hydrogen evolution reaction for long‐life Zn anode. |
---|---|
AbstractList | The aqueous zinc ion battery emerges as the promising candidate applied in large‐scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution. In this context, the recent advancements concentrating on the strategies and mechanisms to regulate charge density at the Zn anode/electrolyte interface are summarized. Different characterization techniques for charge density distribution have been analysed, which can be applied to assess the interfacial zinc ion transport. Additionally, the charge density regulations at the Zn anode/electrolyte interface are discussed, elucidating their roles in modulating electrostatic interactions, electric field, structure of solvated zinc ion and electric double layer, respectively. Finally, the perspectives and challenges on the further research are provided to establish the stable anode/electrolyte interface by focusing on charge density modifications, which is expected to facilitate the development of aqueous zinc ion battery. The aqueous zinc ion battery emerges as the promising candidate applied in large-scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution. In this context, the recent advancements concentrating on the strategies and mechanisms to regulate charge density at the Zn anode/electrolyte interface are summarized. Different characterization techniques for charge density distribution have been analysed, which can be applied to assess the interfacial zinc ion transport. Additionally, the charge density regulations at the Zn anode/electrolyte interface are discussed, elucidating their roles in modulating electrostatic interactions, electric field, structure of solvated zinc ion and electric double layer, respectively. Finally, the perspectives and challenges on the further research are provided to establish the stable anode/electrolyte interface by focusing on charge density modifications, which is expected to facilitate the development of aqueous zinc ion battery.The aqueous zinc ion battery emerges as the promising candidate applied in large-scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution. In this context, the recent advancements concentrating on the strategies and mechanisms to regulate charge density at the Zn anode/electrolyte interface are summarized. Different characterization techniques for charge density distribution have been analysed, which can be applied to assess the interfacial zinc ion transport. Additionally, the charge density regulations at the Zn anode/electrolyte interface are discussed, elucidating their roles in modulating electrostatic interactions, electric field, structure of solvated zinc ion and electric double layer, respectively. Finally, the perspectives and challenges on the further research are provided to establish the stable anode/electrolyte interface by focusing on charge density modifications, which is expected to facilitate the development of aqueous zinc ion battery. The aqueous zinc ion battery emerges as the promising candidate applied in large‐scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution. In this context, the recent advancements concentrating on the strategies and mechanisms to regulate charge density at the Zn anode/electrolyte interface are summarized. Different characterization techniques for charge density distribution have been analysed, which can be applied to assess the interfacial zinc ion transport. Additionally, the charge density regulations at the Zn anode/electrolyte interface are discussed, elucidating their roles in modulating electrostatic interactions, electric field, structure of solvated zinc ion and electric double layer, respectively. Finally, the perspectives and challenges on the further research are provided to establish the stable anode/electrolyte interface by focusing on charge density modifications, which is expected to facilitate the development of aqueous zinc ion battery. The engineering of charge density at the anode/electrolyte interface can regulate electrostatic interaction, interfacial electric field, the structure of the electric double layer, and the configuration of solvated zinc ions. These charge density adjustments stabilize the Zn anode/electrolyte interface, which can facilitate uniform zinc ion transport and suppress the hydrogen evolution reaction for long‐life Zn anode. |
Author | Wu, Kai Liu, Xiaoyu Ning, Fanghua Xie, Yihua Yi, Jin Subhan, Sidra Lu, Shigang Xia, Yongyao |
Author_xml | – sequence: 1 givenname: Kai surname: Wu fullname: Wu, Kai organization: Jiaxing University – sequence: 2 givenname: Xiaoyu surname: Liu fullname: Liu, Xiaoyu organization: Shanghai University – sequence: 3 givenname: Fanghua surname: Ning fullname: Ning, Fanghua organization: Shanghai University – sequence: 4 givenname: Sidra surname: Subhan fullname: Subhan, Sidra organization: University of Peshawar – sequence: 5 givenname: Yihua surname: Xie fullname: Xie, Yihua organization: Fudan University – sequence: 6 givenname: Shigang surname: Lu fullname: Lu, Shigang organization: Shanghai University – sequence: 7 givenname: Yongyao surname: Xia fullname: Xia, Yongyao organization: Fudan University – sequence: 8 givenname: Jin orcidid: 0000-0001-6203-1281 surname: Yi fullname: Yi, Jin email: jin.yi@shu.edu.cn organization: Shanghai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39046757$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctqGzEUhkVJaC7ttssi6KYbO9LoNl6mU7cxGLJICyUbodEcOQpjKZU0hNn1EfqMfZKOcS4QKF3pIL7v53D-E3QQYgCE3lEyp4RUZzZnO69IxQmtBH2Fjmkt-UxI_uPgaWb0CJ3kfEuIJAspX6MjtiBcKqGO0bAMGx8Akg8bHB1ubkzaAP4MIfsyYlNwuQF8HmIHZ8sebEmxHwvgVSiQnLGAXUx4HcPmz6_fa-8AX4c9jv00_BwgDhlf-2DxKgb8yZTJG9-gQ2f6DG8f3lP0_cvyW3MxW19-XTXn65llitGZtdYJ1womFCWOAeusIi1UjLbGUVBKdUAEmb5F3QLjtXOtk8R0C6OYaCU7RR_3uXcpTqvkorc-W-h7E3Z7aUZqTqqaczGhH16gt3FIYdpOMyooma4td4HvH6ih3UKn75LfmjTqx4NOAN8DNsWcEzhtfTHFx1CS8b2mRO9607ve9FNvkzZ_oT0m_1NY7IV738P4H1o3V1fNs_sXRP-row |
CitedBy_id | crossref_primary_10_1021_acsami_4c21312 crossref_primary_10_1021_acsanm_4c05108 crossref_primary_10_1002_anie_202414702 crossref_primary_10_1021_acsami_4c13058 crossref_primary_10_1002_ange_202414702 crossref_primary_10_1039_D4EE03209H crossref_primary_10_1002_cssc_202402101 crossref_primary_10_1021_acsaem_4c02966 |
Cites_doi | 10.1016/j.matre.2024.100268 10.1016/j.scib.2024.01.029 10.1002/adfm.202001317 10.1021/jacs.8b08963 10.1002/aenm.202203766 10.1039/D3EE04292H 10.1039/D2EE03793A 10.1038/s41563-019-0449-6 10.1002/smll.202207502 10.1038/s41563-020-0673-0 10.1021/jacs.3c06523 10.1039/D2EE02416K 10.1002/adfm.202112936 10.1021/jacs.9b00617 10.1002/adfm.201908528 10.1002/adma.202308639 10.1039/D3EE00982C 10.1002/aenm.202300250 10.1002/adfm.202003932 10.1021/acs.nanolett.0c04519 10.1002/admi.201800848 10.1002/adma.201908121 10.1016/j.ensm.2020.03.011 10.1002/aenm.202204388 10.1016/j.matre.2022.100096 10.1021/acsnano.7b09003 10.1002/aenm.202301999 10.1126/sciadv.ade2217 10.1002/adma.202300019 10.1016/j.mtener.2024.101509 10.1016/j.surfin.2022.101972 10.1002/adma.202205175 10.1039/C8TA08314B 10.1002/anie.202310290 10.1002/adma.202102415 10.1016/j.matre.2023.100213 10.1021/acsnano.2c10819 10.1002/advs.202104832 10.1007/s40820-022-00835-3 10.1021/acsenergylett.0c02371 10.1002/chem.202303211 10.1038/s41467-023-40462-z 10.1002/aenm.202101158 10.1038/s41563-018-0063-z 10.1021/acsenergylett.2c01960 10.1038/s41586-019-1649-6 10.1021/acsenergylett.0c01792 10.1002/aenm.201903977 10.1038/ncomms15631 10.1002/adfm.201903605 10.1021/jacs.0c09794 10.1002/smll.202304901 10.1002/anie.202401441 10.1002/adma.202308086 10.1007/s40820-021-00599-2 10.1021/acsami.2c05887 10.1016/j.cej.2022.138772 10.1002/aenm.202101518 10.1039/b905441n 10.1002/anie.202308068 10.1002/aenm.202000035 10.1021/acsnano.0c07957 10.1016/j.ensm.2023.01.013 10.1016/j.jechem.2022.01.037 10.1038/nature08879 10.1002/advs.202102612 10.1093/nsr/nwac051 10.1002/ange.202312585 10.1038/s41467-018-04060-8 10.1038/s41467-022-30939-8 10.1039/C1CC15463J 10.1021/acsami.6b16560 10.1002/adma.202106937 10.1021/acs.nanolett.1c03792 10.1007/s40820-024-01337-0 10.1021/acsnano.3c10394 10.1039/D3EE03584K 10.1016/j.jpowsour.2020.228808 10.1007/s12274-022-4419-y 10.1093/nsr/nwad220 10.1039/D3EE02164E 10.1002/adma.202203104 10.1021/jacs.9b05029 10.1038/s41467-023-39634-8 10.1002/adfm.202203595 10.1021/acsenergylett.3c01017 10.1007/s40820-021-00782-5 10.1002/anie.202312193 10.1016/j.ensm.2022.07.036 10.1021/acsenergylett.1c01418 10.1038/s41467-020-19726-5 10.1021/acsnano.2c05285 10.1038/s41578-024-00672-3 10.1002/anie.202316841 10.1002/anie.202109682 10.1002/adfm.202207732 10.1002/anie.202309957 10.1002/aenm.202102010 10.1021/acsnano.3c04343 10.1038/s41467-022-35630-6 10.1016/j.ensm.2023.03.002 10.1002/adfm.202211917 10.1038/s41467-023-38384-x |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. 2025 Wiley-VCH GmbH |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. – notice: 2025 Wiley-VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.202401251 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | n/a |
ExternalDocumentID | 39046757 10_1002_cssc_202401251 CSSC202401251 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22075171; 21935003 – fundername: Jiaxing university laboratory open fund funderid: JJ20240038 – fundername: Natural Science Foundation of Shanghai funderid: 23ZR1423400 – fundername: Jiaxing university laboratory open fund grantid: JJ20240038 – fundername: Natural Science Foundation of Shanghai grantid: 23ZR1423400 – fundername: National Natural Science Foundation of China grantid: 21935003 – fundername: National Natural Science Foundation of China grantid: 22075171 |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX AEYWJ AGYGG CITATION NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3731-cccf5fb535710f3e3dc70be231baf1e777de0503dc58be348ffbf60ad9a735b63 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 11:13:58 EDT 2025 Tue Jul 22 18:42:01 EDT 2025 Thu Apr 03 07:02:33 EDT 2025 Tue Jul 01 00:36:27 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Wed Jan 22 17:13:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Interfacial charge density Electric field Zn anode Electrostatic interaction Aqueous zinc ion battery |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-cccf5fb535710f3e3dc70be231baf1e777de0503dc58be348ffbf60ad9a735b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6203-1281 |
PMID | 39046757 |
PQID | 3151010066 |
PQPubID | 986333 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3084028445 proquest_journals_3151010066 pubmed_primary_39046757 crossref_citationtrail_10_1002_cssc_202401251 crossref_primary_10_1002_cssc_202401251 wiley_primary_10_1002_cssc_202401251_CSSC202401251 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2, 2025 |
PublicationDateYYYYMMDD | 2025-01-02 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2, 2025 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2023; 30 2021; 21 2023; 35 2023; 36 2023; 8 2023; 145 2023; 9 2010; 464 2022; 69 2019; 18 2020; 14 2020; 11 2023; 3 2024 2020; 10 2017; 9 2020; 19 2023; 20 2018; 6 2018; 9 2023; 62 2020; 5 2018; 5 2021; 34 2021; 33 2024; 9 2023; 451 2022; 34 2024; 63 2023; 136 2019; 29 2022; 31 2024; 4 2022; 32 2022; 33 2024; 69 2023; 10 2021; 8 2021; 6 2023; 13 2023; 57 2023; 14 2018; 140 2023; 56 2023; 17 2020; 142 2023; 16 2023; 19 2009; 134 2020; 32 2019; 141 2024; 16 2024; 17 2024; 18 2021; 13 2018; 17 2021; 11 2020; 30 2022; 8 2022; 9 2020; 479 2020; 28 2022; 13 2024; 40 2022; 14 2019; 575 2022; 15 2022; 52 2022; 2 2012; 48 2018; 12 2021; 60 2022; 16 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 Peng H. (e_1_2_7_41_1) 2024 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – volume: 14 start-page: 93 year: 2022 publication-title: Nano-Micro Lett. – volume: 34 year: 2021 publication-title: Adv. Mater. – volume: 16 start-page: 2684 year: 2023 end-page: 2695 publication-title: Energy Environ. Sci. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 56 start-page: 218 year: 2023 end-page: 226 publication-title: Energy Storage Mater. – volume: 33 year: 2022 publication-title: Adv. Funct. Mater. – volume: 145 start-page: 22456 year: 2023 end-page: 22465 publication-title: J. Am. Chem. Soc. – volume: 20 year: 2023 publication-title: Small – volume: 14 start-page: 4981 year: 2023 publication-title: Nat. Commun. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 2886 year: 2023 end-page: 2896 publication-title: ACS Energy Lett. – volume: 141 start-page: 9422 year: 2019 end-page: 9429 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 1446 year: 2021 end-page: 1453 publication-title: Nano Lett. – volume: 9 start-page: 1656 year: 2018 publication-title: Nat. Commun. – volume: 52 start-page: 40 year: 2022 end-page: 51 publication-title: Energy Storage Mater. – year: 2024 publication-title: ChemSusChem – volume: 48 start-page: 582 year: 2012 end-page: 584 publication-title: Chem. Commun. – volume: 14 start-page: 76 year: 2023 publication-title: Nat. Commun. – volume: 9 start-page: 9681 year: 2017 end-page: 9687 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 1096 year: 2020 end-page: 1101 publication-title: Nat. Mater. – volume: 17 start-page: 15113 year: 2023 end-page: 15124 publication-title: ACS Nano – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 451 year: 2023 publication-title: Chem. Eng. J. – volume: 8 start-page: 15631 year: 2017 publication-title: Nat. Commun. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 8039 year: 2022 end-page: 8047 publication-title: Nano Res. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 205 year: 2020 end-page: 215 publication-title: Energy Storage Mater. – volume: 40 year: 2024 publication-title: Mater. Today Energy – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 17 start-page: 543 year: 2018 end-page: 549 publication-title: Nat. Mater. – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 14 start-page: 42 year: 2022 publication-title: Nano-Micro Lett. – volume: 11 start-page: 5889 year: 2020 publication-title: Nat. Commun. – volume: 13 start-page: 3252 year: 2022 publication-title: Nat. Commun. – volume: 9 year: 2022 publication-title: Natl. Sci. Rev. – volume: 17 start-page: 369 year: 2024 end-page: 385 publication-title: Energy Environ. Sci. – volume: 17 start-page: 1095 year: 2024 end-page: 1106 publication-title: Energy Environ. Sci. – volume: 3 year: 2023 publication-title: Mater. Rep. Energy – volume: 60 start-page: 23357 year: 2021 end-page: 23364 publication-title: Angew. Chem., Int. Ed. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 19 year: 2023 publication-title: Small – volume: 14 start-page: 17515 year: 2020 end-page: 17523 publication-title: ACS Nano – volume: 57 start-page: 628 year: 2023 end-page: 638 publication-title: Energy Storage Mater. – volume: 8 start-page: 457 year: 2022 end-page: 476 publication-title: ACS Energy Lett. – volume: 464 start-page: 571 year: 2010 end-page: 574 publication-title: Nature – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 479 year: 2020 publication-title: J. Power Sources – volume: 15 start-page: 5017 year: 2022 end-page: 5038 publication-title: Energy Environ. Sci. – volume: 16 start-page: 19594 year: 2022 end-page: 19604 publication-title: ACS Nano – volume: 6 start-page: 3236 year: 2021 end-page: 3243 publication-title: ACS Energy Lett. – volume: 13 start-page: 79 year: 2021 publication-title: Nano-Micro Lett. – volume: 9 start-page: 380 year: 2024 end-page: 398 publication-title: Nat. Rev. Mater. – volume: 6 start-page: 395 year: 2021 end-page: 403 publication-title: ACS Energy Lett. – volume: 14 start-page: 3890 year: 2023 publication-title: Nat. Commun. – volume: 134 start-page: 1608 year: 2009 publication-title: Analyst – volume: 31 year: 2022 publication-title: Surf. Interfaces – volume: 18 start-page: 1350 year: 2019 end-page: 1357 publication-title: Nat. Mater. – volume: 62 year: 2023 publication-title: Angew Chem Int Edit – volume: 17 start-page: 1894 year: 2024 end-page: 1903 publication-title: Energy Environ. Sci. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 30 year: 2023 publication-title: Chem. - Eur. J. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 21 start-page: 10446 year: 2021 end-page: 10452 publication-title: Nano Lett. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 14 start-page: 34612 year: 2022 end-page: 34619 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 3140 year: 2018 end-page: 3148 publication-title: ACS Nano – volume: 6 start-page: 23046 year: 2018 end-page: 23054 publication-title: J. Mater. Chem. A – volume: 136 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 18 start-page: 4932 year: 2024 end-page: 4943 publication-title: ACS Nano – volume: 14 start-page: 2720 year: 2023 publication-title: Nat. Commun. – volume: 142 start-page: 21404 year: 2020 end-page: 21409 publication-title: J. Am. Chem. Soc. – volume: 69 start-page: 237 year: 2022 end-page: 243 publication-title: J. Energy Chem. – volume: 575 start-page: 480 year: 2019 end-page: 484 publication-title: Nature – volume: 140 start-page: 17515 year: 2018 end-page: 17521 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 2 year: 2022 publication-title: Mater. Rep. Energy – volume: 16 start-page: 1291 year: 2023 end-page: 1311 publication-title: Energy Environ. Sci. – volume: 4 year: 2024 publication-title: Mater. Rep. Energy – volume: 141 start-page: 6338 year: 2019 end-page: 6344 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 11392 year: 2022 end-page: 11404 publication-title: ACS Nano – volume: 16 start-page: 111 year: 2024 publication-title: Nano-Micro Lett. – volume: 36 year: 2023 publication-title: Adv. Mater. – volume: 10 year: 2023 publication-title: Natl. Sci. Rev. – volume: 69 start-page: 833 year: 2024 end-page: 845 publication-title: Sci. Bull. – volume: 5 start-page: 3012 year: 2020 end-page: 3020 publication-title: ACS Energy Lett. – ident: e_1_2_7_2_1 doi: 10.1016/j.matre.2024.100268 – ident: e_1_2_7_37_1 doi: 10.1016/j.scib.2024.01.029 – ident: e_1_2_7_100_1 doi: 10.1002/adfm.202001317 – ident: e_1_2_7_52_1 doi: 10.1021/jacs.8b08963 – ident: e_1_2_7_4_1 doi: 10.1002/aenm.202203766 – ident: e_1_2_7_77_1 doi: 10.1039/D3EE04292H – ident: e_1_2_7_101_1 doi: 10.1039/D2EE03793A – ident: e_1_2_7_28_1 doi: 10.1038/s41563-019-0449-6 – ident: e_1_2_7_82_1 doi: 10.1002/smll.202207502 – ident: e_1_2_7_27_1 doi: 10.1038/s41563-020-0673-0 – year: 2024 ident: e_1_2_7_41_1 publication-title: ChemSusChem – ident: e_1_2_7_7_1 doi: 10.1021/jacs.3c06523 – ident: e_1_2_7_18_1 doi: 10.1039/D2EE02416K – ident: e_1_2_7_89_1 doi: 10.1002/adfm.202112936 – ident: e_1_2_7_65_1 doi: 10.1021/jacs.9b00617 – ident: e_1_2_7_85_1 doi: 10.1002/adfm.201908528 – ident: e_1_2_7_75_1 doi: 10.1002/adma.202308639 – ident: e_1_2_7_91_1 doi: 10.1039/D3EE00982C – ident: e_1_2_7_13_1 doi: 10.1002/aenm.202300250 – ident: e_1_2_7_32_1 doi: 10.1002/adfm.202003932 – ident: e_1_2_7_78_1 doi: 10.1021/acs.nanolett.0c04519 – ident: e_1_2_7_86_1 doi: 10.1002/admi.201800848 – ident: e_1_2_7_94_1 doi: 10.1002/adma.201908121 – ident: e_1_2_7_67_1 doi: 10.1016/j.ensm.2020.03.011 – ident: e_1_2_7_80_1 doi: 10.1002/aenm.202204388 – ident: e_1_2_7_3_1 doi: 10.1016/j.matre.2022.100096 – ident: e_1_2_7_97_1 doi: 10.1021/acsnano.7b09003 – ident: e_1_2_7_61_1 doi: 10.1002/aenm.202301999 – ident: e_1_2_7_76_1 doi: 10.1126/sciadv.ade2217 – ident: e_1_2_7_92_1 doi: 10.1002/adma.202300019 – ident: e_1_2_7_104_1 doi: 10.1016/j.mtener.2024.101509 – ident: e_1_2_7_103_1 doi: 10.1016/j.surfin.2022.101972 – ident: e_1_2_7_93_1 doi: 10.1002/adma.202205175 – ident: e_1_2_7_96_1 doi: 10.1039/C8TA08314B – ident: e_1_2_7_68_1 doi: 10.1002/anie.202310290 – ident: e_1_2_7_16_1 doi: 10.1002/adma.202102415 – ident: e_1_2_7_1_1 doi: 10.1016/j.matre.2023.100213 – ident: e_1_2_7_31_1 doi: 10.1021/acsnano.2c10819 – ident: e_1_2_7_99_1 doi: 10.1002/advs.202104832 – ident: e_1_2_7_74_1 doi: 10.1007/s40820-022-00835-3 – ident: e_1_2_7_47_1 doi: 10.1021/acsenergylett.0c02371 – ident: e_1_2_7_58_1 doi: 10.1002/chem.202303211 – ident: e_1_2_7_8_1 doi: 10.1038/s41467-023-40462-z – ident: e_1_2_7_49_1 doi: 10.1002/aenm.202101158 – ident: e_1_2_7_66_1 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_7_40_1 doi: 10.1021/acsenergylett.2c01960 – ident: e_1_2_7_25_1 doi: 10.1038/s41586-019-1649-6 – ident: e_1_2_7_56_1 doi: 10.1021/acsenergylett.0c01792 – ident: e_1_2_7_98_1 doi: 10.1002/aenm.201903977 – ident: e_1_2_7_23_1 doi: 10.1038/ncomms15631 – ident: e_1_2_7_59_1 doi: 10.1002/adfm.201903605 – ident: e_1_2_7_63_1 doi: 10.1021/jacs.0c09794 – ident: e_1_2_7_42_1 doi: 10.1002/smll.202304901 – ident: e_1_2_7_84_1 doi: 10.1002/anie.202401441 – ident: e_1_2_7_17_1 doi: 10.1002/adma.202308086 – ident: e_1_2_7_87_1 doi: 10.1007/s40820-021-00599-2 – ident: e_1_2_7_6_1 doi: 10.1021/acsami.2c05887 – ident: e_1_2_7_73_1 doi: 10.1016/j.cej.2022.138772 – ident: e_1_2_7_30_1 doi: 10.1002/aenm.202101518 – ident: e_1_2_7_35_1 doi: 10.1039/b905441n – ident: e_1_2_7_57_1 doi: 10.1002/anie.202308068 – ident: e_1_2_7_102_1 doi: 10.1002/aenm.202000035 – ident: e_1_2_7_29_1 doi: 10.1021/acsnano.0c07957 – ident: e_1_2_7_5_1 doi: 10.1016/j.ensm.2023.01.013 – ident: e_1_2_7_54_1 doi: 10.1016/j.jechem.2022.01.037 – ident: e_1_2_7_22_1 doi: 10.1038/nature08879 – ident: e_1_2_7_70_1 doi: 10.1002/advs.202102612 – ident: e_1_2_7_62_1 doi: 10.1093/nsr/nwac051 – ident: e_1_2_7_14_1 doi: 10.1002/ange.202312585 – ident: e_1_2_7_48_1 doi: 10.1038/s41467-018-04060-8 – ident: e_1_2_7_46_1 doi: 10.1038/s41467-022-30939-8 – ident: e_1_2_7_26_1 doi: 10.1039/C1CC15463J – ident: e_1_2_7_19_1 doi: 10.1021/acsami.6b16560 – ident: e_1_2_7_90_1 doi: 10.1002/adma.202106937 – ident: e_1_2_7_44_1 doi: 10.1021/acs.nanolett.1c03792 – ident: e_1_2_7_11_1 doi: 10.1007/s40820-024-01337-0 – ident: e_1_2_7_20_1 doi: 10.1021/acsnano.3c10394 – ident: e_1_2_7_10_1 doi: 10.1039/D3EE03584K – ident: e_1_2_7_39_1 doi: 10.1016/j.jpowsour.2020.228808 – ident: e_1_2_7_50_1 doi: 10.1007/s12274-022-4419-y – ident: e_1_2_7_9_1 doi: 10.1093/nsr/nwad220 – ident: e_1_2_7_36_1 doi: 10.1039/D3EE02164E – ident: e_1_2_7_45_1 doi: 10.1002/adma.202203104 – ident: e_1_2_7_34_1 doi: 10.1021/jacs.9b05029 – ident: e_1_2_7_95_1 doi: 10.1038/s41467-023-39634-8 – ident: e_1_2_7_72_1 doi: 10.1002/adfm.202203595 – ident: e_1_2_7_88_1 doi: 10.1021/acsenergylett.3c01017 – ident: e_1_2_7_12_1 doi: 10.1007/s40820-021-00782-5 – ident: e_1_2_7_55_1 doi: 10.1002/anie.202312193 – ident: e_1_2_7_71_1 doi: 10.1016/j.ensm.2022.07.036 – ident: e_1_2_7_21_1 doi: 10.1021/acsenergylett.1c01418 – ident: e_1_2_7_24_1 doi: 10.1038/s41467-020-19726-5 – ident: e_1_2_7_83_1 doi: 10.1021/acsnano.2c05285 – ident: e_1_2_7_43_1 doi: 10.1038/s41578-024-00672-3 – ident: e_1_2_7_38_1 doi: 10.1002/anie.202316841 – ident: e_1_2_7_81_1 doi: 10.1002/anie.202109682 – ident: e_1_2_7_53_1 doi: 10.1002/adfm.202207732 – ident: e_1_2_7_60_1 doi: 10.1002/anie.202309957 – ident: e_1_2_7_51_1 doi: 10.1002/aenm.202102010 – ident: e_1_2_7_69_1 doi: 10.1021/acsnano.3c04343 – ident: e_1_2_7_79_1 doi: 10.1038/s41467-022-35630-6 – ident: e_1_2_7_33_1 doi: 10.1016/j.ensm.2023.03.002 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.202211917 – ident: e_1_2_7_64_1 doi: 10.1038/s41467-023-38384-x |
SSID | ssj0060966 |
Score | 2.5075357 |
Snippet | The aqueous zinc ion battery emerges as the promising candidate applied in large‐scale energy storage system. However, Zn anode suffers from the issues... The aqueous zinc ion battery emerges as the promising candidate applied in large-scale energy storage system. However, Zn anode suffers from the issues... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202401251 |
SubjectTerms | Aqueous zinc ion battery Charge density Corrosion Density distribution Electric charge Electric double layer Electric field Electric fields Electrolytes Electrostatic interaction Hydrogen evolution reactions Interface stability Interfacial charge density Ion transport Scale (corrosion) Zn anode |
Title | Engineering of Charge Density at the Anode/Electrolyte Interface for Long‐Life Zn Anode in Aqueous Zinc Ion Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202401251 https://www.ncbi.nlm.nih.gov/pubmed/39046757 https://www.proquest.com/docview/3151010066 https://www.proquest.com/docview/3084028445 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQN7CB8k4pyEhIrNxx4leyrKatCiosKJWqbiI_q1GrBJHMYljxCXwjX8J1PAkdEEKCTZQojuJc3-tz4se5CL2iJnClmCbMGke4Y4xoxTgB56lygHvNh5Z-914en_G35-L8xi7-pA8xDbjFyBj66xjg2nSzn6KhtuuiBCEgUsRo6IRzJqN4_sGHST9KAj8ftheVkhMhWT6qNtJitvn4Jir9RjU3mesAPUf3kB4rnVacXO0te7Nnv_yi5_g_X7WN7q55Kd5PjnQf3fLNA3R7PqaDe4iWN5QLcRtwnKe_9PggLoDvV1j3GKgk3m9a52eHKbfO9ar3eBhyDNp6DPQYn7TN5fev304WweOLJhXHCzgBS7TLDl8sGovftA1Oup-rR-js6PDj_JisczYQyxTLibU2iGAEE0BdAvPMWUWNBxZpdMi9Usr5KEHjrCiNZ7wMwQRJtavARYSR7DHaatrGP0VYVq6snKVwAJpDC62Eoa7iQcuyMp5miIxtVtu1oHnMq3FdJynmoo7GrCdjZuj1VP5TkvL4Y8nd0QXqdUh3Nctj9xUpWoZeTrehEeIMi26ikWpG4X8ZAJ-LDD1JrjO9ilUUQEmoDBWDA_ylDvX89HQ-Xe38y0PP0J0iZiuOA0bFLtrqPy_9c6BQvXkxhMkPOTgSfQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZRLKb8NFDASEqd0ndiOk2O1bbWFbQ-0lVAvkX-rFVWC2OxhOfEIPCNPwjjZpCwIIcElShRbccYzns9j-xuA11R7LiVTMTPaxtwyFivJeIzKUyTo7hVve_rkNJtc8LcfRL-bMJyF6fghhoBbsIx2vA4GHgLSoxvWUDOfBw5CdEnBSd-GOxzRRph_HbwfGKQyROjtAaM847HIWNLzNtJ0tF5_3S_9BjbXsWvrfI7uge6b3e05-bi3aPSe-fILo-N__dc2bK2gKdnvdOk-3HLVA9gc9xnhHsLiJ_JCUnsSluqvHDkIe-CbJVENQTRJ9qvautFhl17netk40kYdvTKOIEIm07q6-v7123TmHbmsuuJkhjcoinoxJ5ezypDjuiId9efyEVwcHZ6PJ_EqbUNsmGRJbIzxwmvBBKIXzxyzRlLtEEhq5RMnpbQusNBYI3LtGM-91z6jyhaoJUJn7DFsVHXldoBkhc0LayheEOnQVEmhqS24V1leaEcjiPtOK82K0zyk1rguOzbmtAzCLAdhRvBmKP-pY_P4Y8ndXgfKlVXPS5aEESygtAheDa-xE8Iii6qCkEpGccqMPp-LCJ50ujN8ihUU_ZKQEaStBvylDeX47Gw8PD39l0ovYXNyfjItp8en757B3TQkLw7xo3QXNprPC_ccEVWjX7Q28wNndRac |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CIgEb3tBAASMhsUrHie04WVbTjloYKkSpVHUT-VmNqJKqk1kMKz6Bb-RLuE4moQNCSLCJEsVWnOt7c078OBfgNdWeS8lUzIy2MbeMxUoyHqPzFAnCveJtT78_zPaP-dsTcXJlF3-nDzEMuIXIaL_XIcAvrB_9FA0183mQIEREChh9HW7wDOlEoEUfBwGpDAl6u78oz3gsMpb0so00Ha3XX4el37jmOnVtsWdyF1Tf6m7JyeftRaO3zZdfBB3_57XuwZ0VMSU7nSfdh2uuegC3xn0-uIewuCJdSGpPwkT9mSO7YQV8sySqIcglyU5VWzfa65LrnC8bR9oxR6-MI8iPybSuzr5__TadeUdOq644meEJWqJezMnprDLkoK5IJ_y5fATHk71P4_14lbQhNkyyJDbGeOG1YAK5i2eOWSOpdkgjtfKJk1JaFzRorBG5dozn3mufUWUL9BGhM_YYNqq6cptAssLmhTUUD8hzaKqk0NQW3KssL7SjEcR9n5VmpWgeEmucl50Wc1oGY5aDMSN4M5S_6LQ8_lhyq3eBchXT85Il4fsVOFoEr4bb2AlhikVVwUglo_jDjIjPRQRPOtcZHsUKiqgkZARp6wB_aUM5PjoaD1dP_6XSS7j5YXdSTg8O3z2D22nIXBwGj9It2GguF-450qlGv2gj5gcL6hVL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+Charge+Density+at+the+Anode%2FElectrolyte+Interface+for+Long-Life+Zn+Anode+in+Aqueous+Zinc+Ion+Battery&rft.jtitle=ChemSusChem&rft.au=Wu%2C+Kai&rft.au=Liu%2C+Xiaoyu&rft.au=Ning%2C+Fanghua&rft.au=Subhan%2C+Sidra&rft.date=2025-01-02&rft.eissn=1864-564X&rft.volume=18&rft.issue=1&rft.spage=e202401251&rft_id=info:doi/10.1002%2Fcssc.202401251&rft_id=info%3Apmid%2F39046757&rft.externalDocID=39046757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |