Unsymmetrically Chlorinated Non‐Fused Electron Acceptor Leads to High‐Efficiency and Stable Organic Solar Cells

Searching the cost‐effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non‐fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the N...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 5; pp. e202214931 - n/a
Main Authors Ma, De‐Li, Zhang, Qian‐Qian, Li, Chang‐Zhi
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 26.01.2023
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Searching the cost‐effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non‐fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic‐tac‐toe frame of three‐dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high‐performance and stable OSCs. Two non‐fused ring electron acceptors (NFREAs) have been developed. The halogen substituents on the aromatic side chains, as the new structure design tools, not only facilitate the construction of 3D stacks in solid, but also optimize the optoelectronic properties of the NFREAs, leading to organic solar cells with 16.2 % efficiency and excellent operational stability.
AbstractList Searching the cost-effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non-fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic-tac-toe frame of three-dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high-performance and stable OSCs.Searching the cost-effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non-fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic-tac-toe frame of three-dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high-performance and stable OSCs.
Searching the cost‐effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non‐fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic‐tac‐toe frame of three‐dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high‐performance and stable OSCs.
Searching the cost‐effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non‐fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic‐tac‐toe frame of three‐dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high‐performance and stable OSCs. Two non‐fused ring electron acceptors (NFREAs) have been developed. The halogen substituents on the aromatic side chains, as the new structure design tools, not only facilitate the construction of 3D stacks in solid, but also optimize the optoelectronic properties of the NFREAs, leading to organic solar cells with 16.2 % efficiency and excellent operational stability.
Author Ma, De‐Li
Zhang, Qian‐Qian
Li, Chang‐Zhi
Author_xml – sequence: 1
  givenname: De‐Li
  orcidid: 0000-0002-7399-3766
  surname: Ma
  fullname: Ma, De‐Li
  organization: Zhejiang University
– sequence: 2
  givenname: Qian‐Qian
  surname: Zhang
  fullname: Zhang, Qian‐Qian
  organization: Zhejiang University
– sequence: 3
  givenname: Chang‐Zhi
  orcidid: 0000-0003-1968-2032
  surname: Li
  fullname: Li, Chang‐Zhi
  email: czli@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36433656$$D View this record in MEDLINE/PubMed
BookMark eNqNkstq3DAUhk1JaS7ttssi6KZQPNXNkr0czKQJDMkizdrI8nGioJGmkkzxro_QZ-yTVNOZpBAorTY6oO87-jmc0-LIeQdF8ZbgBcGYflLOwIJiSglvGHlRnJCKkpJJyY5yzRkrZV2R4-I0xofM1zUWr4pjJvKLqMRJEW9dnDcbSMFoZe2M2nvrg3EqwYCuvPv5_cf5FHO9sqBT8A4ttYZt8gGtQQ0RJY8uzN195lbjaLQBp2ek3IBukuotoOtwlzNqdOOtCqgFa-Pr4uWobIQ3h_usuD1ffWkvyvX158t2uS41k4yUuhlg4BJGQXHTKJBMcl71Cg-YacaYBiF6xQGPUkromRq1rDlWNQEuh0qws-LDvu82-K8TxNRtTNQ5gXLgp9hRyXGFpaBNRt8_Qx_8FFxOlykhGk4qTDP17kBN_QaGbhvMRoW5exxnBuo98A16P8bf04AnDGPcYCwpx7tDWpNUMt61fnIpqx__X80039M6-BgDjJ0-dEtBGdsR3O3Wo9utR_e0HllbPNMeP_ir0BxSGQvzP-hueXW5-uP-AhwLzGE
CitedBy_id crossref_primary_10_1002_anie_202219245
crossref_primary_10_1016_j_cej_2024_150579
crossref_primary_10_1002_anie_202407355
crossref_primary_10_1016_j_dyepig_2025_112667
crossref_primary_10_1002_ejoc_202401337
crossref_primary_10_1002_marc_202300350
crossref_primary_10_1002_ange_202313016
crossref_primary_10_1021_jacs_4c15071
crossref_primary_10_1002_cptc_202300256
crossref_primary_10_1002_ange_202316495
crossref_primary_10_1002_cssc_202400361
crossref_primary_10_1039_D3CS00492A
crossref_primary_10_1002_adma_202313127
crossref_primary_10_1002_solr_202300453
crossref_primary_10_1007_s40843_023_2867_6
crossref_primary_10_1021_jacs_4c00090
crossref_primary_10_1002_anie_202417244
crossref_primary_10_1002_agt2_469
crossref_primary_10_1039_D3TA06601K
crossref_primary_10_1021_acs_chemmater_3c01216
crossref_primary_10_1021_acsaem_3c02238
crossref_primary_10_1002_ange_202407355
crossref_primary_10_1002_adma_202303729
crossref_primary_10_1002_adfm_202411286
crossref_primary_10_1002_adma_202310362
crossref_primary_10_1002_adma_202405718
crossref_primary_10_1002_aenm_202304063
crossref_primary_10_1002_ange_202412854
crossref_primary_10_1016_j_dyepig_2023_111563
crossref_primary_10_1021_acsami_4c04476
crossref_primary_10_1021_acsami_4c11561
crossref_primary_10_1021_acs_jpcc_3c04584
crossref_primary_10_1039_D3TA07296G
crossref_primary_10_1039_D4TC00502C
crossref_primary_10_1039_D4CS00132J
crossref_primary_10_1021_acsaem_3c03171
crossref_primary_10_1002_ange_202417244
crossref_primary_10_1016_j_nanoen_2024_109583
crossref_primary_10_1038_s41578_023_00618_1
crossref_primary_10_1039_D4TA00933A
crossref_primary_10_1002_chem_202403193
crossref_primary_10_1002_solr_202400153
crossref_primary_10_1038_s41467_023_40423_6
crossref_primary_10_1039_D4RA08370A
crossref_primary_10_1002_anie_202403051
crossref_primary_10_1002_smll_202401176
crossref_primary_10_1021_acsaem_3c02429
crossref_primary_10_1002_adma_202300629
crossref_primary_10_1021_acsmaterialslett_3c01020
crossref_primary_10_1007_s40820_024_01442_0
crossref_primary_10_1007_s11426_024_2272_3
crossref_primary_10_1002_ange_202403753
crossref_primary_10_1039_D4TC00721B
crossref_primary_10_1002_ange_202219245
crossref_primary_10_1002_smll_202412230
crossref_primary_10_1360_TB_2024_0449
crossref_primary_10_1039_D4TC01176G
crossref_primary_10_1002_agt2_488
crossref_primary_10_1021_acsami_3c05767
crossref_primary_10_1002_anie_202412854
crossref_primary_10_1002_anie_202313016
crossref_primary_10_1002_ange_202403051
crossref_primary_10_1002_adma_202401370
crossref_primary_10_1016_j_dyepig_2023_111737
crossref_primary_10_1021_acsami_4c19947
crossref_primary_10_1021_polymscitech_4c00054
crossref_primary_10_1002_anie_202316495
crossref_primary_10_1002_anie_202403753
crossref_primary_10_1002_adma_202306492
crossref_primary_10_1002_adfm_202301573
crossref_primary_10_1002_adfm_202311736
crossref_primary_10_1002_adfm_202301575
crossref_primary_10_1088_2516_1075_ad1e3a
crossref_primary_10_1021_acs_jpclett_4c00153
crossref_primary_10_1002_chem_202403972
crossref_primary_10_1002_adfm_202313594
Cites_doi 10.1002/adma.202000645
10.1038/s41467-021-23389-1
10.1002/anie.202101867
10.1002/adma.202102420
10.1021/acscentsci.1c01250
10.1016/j.joule.2022.01.006
10.1039/D2EE00977C
10.1016/j.scib.2019.10.019
10.1021/jacs.1c00211
10.1038/s41563-022-01244-y
10.1038/s41467-020-17867-1
10.1039/C8QO00788H
10.1021/acs.chemrev.7b00084
10.1038/s41467-021-25394-w
10.1038/nmat5063
10.1016/j.orgel.2018.04.005
10.20517/energymater.2021.08
10.1038/s41467-021-25718-w
10.1021/acs.jpcc.8b07197
10.1002/anie.202100390
10.1016/j.joule.2021.04.002
10.1021/acs.chemrev.1c00955
10.1007/s11426-021-1180-6
10.1021/acsami.1c09597
10.1002/ange.202101867
10.1016/j.nanoen.2022.107802
10.1002/adfm.202107827
10.1002/adma.201404317
10.1021/acs.accounts.0c00009
10.1038/s41467-019-10098-z
10.1002/advs.202203606
10.1038/s41560-021-00820-x
10.1021/accountsmr.2c00052
10.1038/s41467-022-30225-7
10.1021/acs.jpclett.0c00919
10.3866/PKU.WHXB201805091
10.1002/anie.202010856
10.1039/D0TA03703F
10.1002/adma.202110569
10.1002/ange.202100390
10.1016/j.joule.2021.03.014
10.1002/adma.201908205
10.1021/jacs.7b00566
10.1038/s41467-020-20515-3
10.1039/D1TC04097A
10.1002/inf2.12276
10.1002/smtd.202200007
10.1002/aenm.202201076
10.1002/aenm.202002678
10.1002/adma.202002217
10.1016/j.chempr.2020.08.003
10.1002/adma.201705208
10.1002/ange.202113749
10.1021/acsami.0c12100
10.1021/jacs.7b02677
10.1002/aenm.201900887
10.1002/advs.201800434
10.1002/ange.202010856
10.1016/j.jechem.2022.03.030
10.1021/acsenergylett.2c00476
10.1002/aenm.202102591
10.1002/anie.202207397
10.1021/acsenergylett.0c00537
10.1016/j.joule.2019.01.004
10.1021/acsami.7b02193
10.1038/nmat4167
10.1021/jacs.7b11278
10.1021/acs.jpclett.9b02161
10.1039/D1MH01127H
10.1021/acsapm.0c00791
10.1002/anie.202113749
10.1039/c8qo00788h
10.1038/NMAT5063
10.1039/d1mh01127h
10.1039/d0ta03703f
10.1002/aenm.202000177
10.1039/d1tc04097a
10.1038/NMAT4167
10.1039/d2ee00977c
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
17B
1KM
BLEPL
BNZSX
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202214931
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Web of Science - Science Citation Index Expanded - 2023
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

ProQuest Health & Medical Complete (Alumni)
Web of Science
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36433656
000900724000001
10_1002_anie_202214931
ANIE202214931
Genre article
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 22125901
– fundername: Key Technologies Research and Development Program
  funderid: 2019YFA0705900
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
– fundername: National Key Research and Development Program of China; National Key Research & Development Program of China
– fundername: National Natural Science Foundation of China
  grantid: 22125901
– fundername: Key Technologies Research and Development Program
  grantid: 2019YFA0705900
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3731-c9ded47ef62099ae737445ba0d03c333ce66ba4e0f777eb3afc7840a81e47d563
IEDL.DBID DR2
ISICitedReferencesCount 55
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000900724000001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:26:39 EDT 2025
Fri Jul 25 10:31:03 EDT 2025
Thu Apr 03 07:08:54 EDT 2025
Fri Aug 29 16:20:04 EDT 2025
Wed Jul 09 18:24:32 EDT 2025
Tue Jul 01 01:46:59 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Wed Jan 22 16:18:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 3D Network
EXCITON
VOLTAGE
IMPACT
Chlorination
Non-Fused-Ring Acceptor
Single Crystal
DELOCALIZATION
Organic Solar Cells
ENABLES
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3731-c9ded47ef62099ae737445ba0d03c333ce66ba4e0f777eb3afc7840a81e47d563
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7399-3766
0000-0003-1968-2032
0000-0002-7231-9825
PMID 36433656
PQID 2766941502
PQPubID 946352
PageCount 9
ParticipantIDs proquest_journals_2766941502
webofscience_primary_000900724000001CitationCount
proquest_miscellaneous_2740507629
crossref_citationtrail_10_1002_anie_202214931
webofscience_primary_000900724000001
pubmed_primary_36433656
wiley_primary_10_1002_anie_202214931_ANIE202214931
crossref_primary_10_1002_anie_202214931
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 26, 2023
PublicationDateYYYYMMDD 2023-01-26
PublicationDate_xml – month: 01
  year: 2023
  text: January 26, 2023
  day: 26
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2018; 122
2022; 70
2019; 10
2020 2020; 59 132
2020; 12
2022; 65
2022; 21
2020; 11
2020; 10
2017; 9
2017; 117
2022; 122
2020; 8
2020; 6
2020; 5
2022 2022; 61 134
2018; 5
2021; 33
2020; 53
2022; 34
2018; 30
2022; 32
2021; 9
2021; 7
2021; 6
2019; 9
2015; 14
2021; 5
2019; 3
2021; 3
2019; 35
2020; 32
2021; 143
2017; 139
2021; 13
2018; 17
2015; 27
2021; 12
2021; 11
2022; 3
2022; 4
2022; 6
2022; 7
2022; 9
2022; 12
2021 2021; 60 133
2022; 13
2022; 15
2022; 1
2020; 65
2018; 58
2022; 103
e_1_2_6_74_1
e_1_2_6_51_2
e_1_2_6_72_2
e_1_2_6_53_1
e_1_2_6_30_2
e_1_2_6_70_2
(e_1_2_6_79_3) 2022; 134
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_76_2
e_1_2_6_36_3
e_1_2_6_57_1
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_78_2
e_1_2_6_62_2
e_1_2_6_64_2
e_1_2_6_85_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_81_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_49_2
e_1_2_6_22_1
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_1
e_1_2_6_50_2
e_1_2_6_73_1
e_1_2_6_52_2
e_1_2_6_75_1
e_1_2_6_31_2
e_1_2_6_10_1
e_1_2_6_71_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_14_1
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_54_2
e_1_2_6_77_2
(e_1_2_6_28_3) 2022; 134
e_1_2_6_37_3
e_1_2_6_39_1
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_79_2
e_1_2_6_35_3
e_1_2_6_58_1
e_1_2_6_84_2
e_1_2_6_42_1
e_1_2_6_63_2
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_40_2
e_1_2_6_82_2
e_1_2_6_61_1
e_1_2_6_8_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_46_1
e_1_2_6_67_2
Li, JY (WOS:000760890500001) 2022; 6
Zhu, LY (WOS:000484884300020) 2019; 10
Lin, YZ (WOS:000350057400002) 2015; 27
Zhang, GC (WOS:000561093500005) 2020; 11
Park, S (WOS:000575105300001) 2020; 32
Yan, KR (WOS:000447950500012) 2018; 5
Huang, H (WOS:000407540500008) 2017; 117
Qi, F (WOS:000708630500001) 2022; 9
Ma, LJ (WOS:000688006200018) 2021; 12
Li, S. (000900724000001.68) 2022; 134
Yu, ZP (WOS:000467836900006) 2019; 10
Yuan, J (WOS:000575403300005) 2020; 6
Wen, TJ (WOS:000569268800068) 2020; 12
Jiang, DN (WOS:000802291300025) 2022; 7
Li, YX (WOS:000696024700001) 2021; 12
Chen, YN (WOS:000575557600001) 2020; 59
Li, GP (WOS:000645519600013) 2021; 143
Wang, XD (WOS:000707804500001) 2021; 11
Yao, HF (WOS:000527732000011) 2020; 53
Yang, MQ (WOS:001065735200004) 2021; 1
Cui, Y (WOS:000522060400001) 2020; 32
Shen, Q (WOS:000818493300001) 2022; 3
Wen, TJ (WOS:000647879100001) 2021; 60
Liu, YH (WOS:000396185700013) 2017; 139
Li, ST (WOS:000824472700001) 2022; 61
Gao, JH (WOS:000843369200001) 2022; 9
Chen, Z (WOS:000675889700015) 2021; 5
Li, BS (WOS:000530329400007) 2020; 10
Liu, OORA (WOS:000485920600003) 2019; 9
Liu, ZX (WOS:000658769900001) 2021; 12
Li, C (WOS:000648836900002) 2021; 6
(000900724000001.30) 2020; 132
Fan, JY (WOS:000806261700001) 2022; 34
Chen, Z (WOS:000535177500009) 2020; 11
Wang, XD (WOS:000691785200068) 2021; 13
Zhao, WC (WOS:000402691800005) 2017; 139
Zhou, D (WOS:000864020000001) 2022; 103
Xu, X (WOS:000513623200010) 2020; 65
Yang, K (WOS:000725314500001) 2022; 61
Li, DX (WOS:000722705100006) 2021; 7
Wen, T.-J. (000900724000001.35) 2022; 70
Cui, Y (WOS:000691417700001) 2021; 33
Yu, ZP (WOS:000609249200008) 2021; 3
Tao, YD (WOS:000736985600001) 2022; 4
Poelking, C (WOS:000351757800019) 2015; 14
Zhang, ZQ (WOS:000447761900011) 2019; 35
Dai, SX (WOS:000525934300001) 2020; 32
Zhu, LY (WOS:000446926400010) 2018; 122
Zhu, L (WOS:000791057300002) 2022; 21
Zhang, XN (WOS:000760126900013) 2022; 6
Li, SX (WOS:000535176100025) 2020; 5
Zheng, ZL (WOS:000402691600049) 2017; 9
Wen, T.J. (000900724000001.34) 2021; 133
Zhang, X (WOS:000641246400001) 2021; 60
Yang, WY (WOS:000654225600016) 2021; 5
Wang, D (WOS:000797957000001) 2022; 15
Yang, K. (000900724000001.23) 2022; 134
Zhang, YW (WOS:000441869400014) 2018; 5
Li, SX (WOS:000424485100025) 2018; 30
Zhao, FW (WOS:000713795300001) 2021; 9
Li, XX (WOS:000432557000020) 2018; 58
Zhang, GC (WOS:000838899000001) 2022
Liu, YH (WOS:000734747000001) 2022; 65
Li, YX (WOS:000417006000016) 2017; 139
He, CL (WOS:000801822900004) 2022; 13
Wang, ZY (WOS:000662811900005) 2021; 12
Wang, D (WOS:000706322000001) 2022; 32
Yuan, J (WOS:000465149000023) 2019; 3
Zhan, LL (WOS:000842792700001) 2022; 12
Li, DH (WOS:000560225400017) 2020; 8
Hou, JH (WOS:000423153800009) 2018; 17
Zhang, X. (000900724000001.32) 2021; 133
References_xml – volume: 122
  start-page: 14180
  year: 2022
  end-page: 14274
  publication-title: Chem. Rev.
– volume: 4
  year: 2022
  publication-title: InfoMat
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 60
  year: 2021
  end-page: 92
  publication-title: ACS Appl. Polym. Mater.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 2147
  year: 2020
  end-page: 2161
  publication-title: Chem
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 103
  year: 2022
  publication-title: Nano Energy
– volume: 5
  start-page: 1209
  year: 2021
  end-page: 1230
  publication-title: Joule
– volume: 122
  start-page: 22309
  year: 2018
  end-page: 22316
  publication-title: J. Phys. Chem. C
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1832
  year: 2021
  end-page: 1844
  publication-title: Joule
– volume: 9
  start-page: 403
  year: 2022
  end-page: 410
  publication-title: Mater. Horiz.
– volume: 21
  start-page: 656
  year: 2022
  end-page: 663
  publication-title: Nat. Mater.
– volume: 139
  start-page: 3356
  year: 2017
  end-page: 3359
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 12
  start-page: 332
  year: 2021
  publication-title: Nat. Commun.
– volume: 65
  start-page: 224
  year: 2022
  end-page: 268
  publication-title: Sci. China Chem.
– volume: 12
  start-page: 39515
  year: 2020
  end-page: 39523
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 3226
  year: 2020
  end-page: 3233
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 60 133
  start-page: 12475 12583
  year: 2021 2021
  end-page: 12481 12589
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 434
  year: 2015
  end-page: 439
  publication-title: Nat. Mater.
– volume: 10
  start-page: 4888
  year: 2019
  end-page: 4894
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 3943
  year: 2020
  publication-title: Nat. Commun.
– volume: 70
  start-page: 576
  year: 2022
  end-page: 582
  publication-title: J. Energy Chem.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 10291
  year: 2017
  end-page: 10318
  publication-title: Chem. Rev.
– volume: 7
  start-page: 1764
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 60 133
  start-page: 12964 13074
  year: 2021 2021
  end-page: 12970 13080
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 5419
  year: 2021
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2598
  year: 2022
  publication-title: Nat. Commun.
– volume: 8
  start-page: 15607
  year: 2020
  end-page: 15619
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 39652
  year: 2021
  end-page: 39659
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 10
  start-page: 2152
  year: 2019
  publication-title: Nat. Commun.
– volume: 6
  start-page: 605
  year: 2021
  end-page: 613
  publication-title: Nat. Energy
– volume: 7
  start-page: 1787
  year: 2021
  end-page: 1797
  publication-title: ACS Cent. Sci.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 9
  start-page: 18095
  year: 2017
  end-page: 18102
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 3049
  year: 2021
  publication-title: Nat. Commun.
– volume: 5
  start-page: 2845
  year: 2018
  publication-title: Org. Chem. Front.
– volume: 15
  start-page: 2629
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1140
  year: 2019
  end-page: 1151
  publication-title: Joule
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 1170
  year: 2015
  end-page: 1174
  publication-title: Adv. Mater.
– volume: 9
  start-page: 15395
  year: 2021
  end-page: 15406
  publication-title: J. Mater. Chem. C
– volume: 58
  start-page: 133
  year: 2018
  end-page: 138
  publication-title: Org. Electron.
– volume: 143
  start-page: 6123
  year: 2021
  end-page: 6139
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 7148
  year: 2017
  end-page: 7151
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1554
  year: 2020
  end-page: 1567
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 444
  year: 2022
  end-page: 457
  publication-title: Joule
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 139
  start-page: 17114
  year: 2017
  end-page: 17119
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 822
  year: 2020
  end-page: 832
  publication-title: Acc. Chem. Res.
– volume: 59 132
  start-page: 22714 22903
  year: 2020 2020
  end-page: 22720 22909
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 35
  start-page: 394
  year: 2019
  end-page: 400
  publication-title: Acta Phys. Chim. Sin.
– volume: 3
  start-page: 644
  year: 2022
  end-page: 657
  publication-title: Acc. Mater. Res.
– volume: 65
  start-page: 208
  year: 2020
  end-page: 216
  publication-title: Sci. Bull.
– volume: 12
  start-page: 5093
  year: 2021
  publication-title: Nat. Commun.
– volume: 17
  start-page: 119
  year: 2018
  end-page: 128
  publication-title: Nat. Mater.
– volume: 1
  year: 2022
  publication-title: Energy Mater.
– ident: e_1_2_6_54_2
  doi: 10.1002/adma.202000645
– ident: e_1_2_6_44_2
  doi: 10.1038/s41467-021-23389-1
– ident: e_1_2_6_68_1
– ident: e_1_2_6_37_2
  doi: 10.1002/anie.202101867
– ident: e_1_2_6_6_2
  doi: 10.1002/adma.202102420
– ident: e_1_2_6_29_1
– ident: e_1_2_6_64_2
  doi: 10.1021/acscentsci.1c01250
– ident: e_1_2_6_53_1
– ident: e_1_2_6_52_2
  doi: 10.1016/j.joule.2022.01.006
– ident: e_1_2_6_14_1
– ident: e_1_2_6_72_2
  doi: 10.1039/D2EE00977C
– ident: e_1_2_6_77_2
  doi: 10.1016/j.scib.2019.10.019
– ident: e_1_2_6_22_1
– ident: e_1_2_6_75_1
– ident: e_1_2_6_55_2
  doi: 10.1021/jacs.1c00211
– ident: e_1_2_6_9_2
  doi: 10.1038/s41563-022-01244-y
– ident: e_1_2_6_73_1
  doi: 10.1038/s41467-020-17867-1
– ident: e_1_2_6_69_2
  doi: 10.1039/C8QO00788H
– ident: e_1_2_6_83_1
– ident: e_1_2_6_80_1
– ident: e_1_2_6_58_1
– ident: e_1_2_6_27_2
  doi: 10.1021/acs.chemrev.7b00084
– ident: e_1_2_6_59_2
  doi: 10.1038/s41467-021-25394-w
– ident: e_1_2_6_2_2
  doi: 10.1038/nmat5063
– ident: e_1_2_6_31_2
  doi: 10.1016/j.orgel.2018.04.005
– ident: e_1_2_6_40_2
  doi: 10.20517/energymater.2021.08
– ident: e_1_2_6_78_2
  doi: 10.1038/s41467-021-25718-w
– ident: e_1_2_6_66_2
  doi: 10.1021/acs.jpcc.8b07197
– ident: e_1_2_6_36_2
  doi: 10.1002/anie.202100390
– ident: e_1_2_6_82_2
  doi: 10.1016/j.joule.2021.04.002
– ident: e_1_2_6_61_1
– ident: e_1_2_6_4_2
  doi: 10.1021/acs.chemrev.1c00955
– ident: e_1_2_6_3_2
  doi: 10.1007/s11426-021-1180-6
– ident: e_1_2_6_57_1
  doi: 10.1021/acsami.1c09597
– ident: e_1_2_6_37_3
  doi: 10.1002/ange.202101867
– ident: e_1_2_6_13_2
  doi: 10.1016/j.nanoen.2022.107802
– ident: e_1_2_6_70_2
  doi: 10.1002/adfm.202107827
– ident: e_1_2_6_15_2
  doi: 10.1002/adma.201404317
– ident: e_1_2_6_63_2
  doi: 10.1021/acs.accounts.0c00009
– ident: e_1_2_6_33_2
  doi: 10.1038/s41467-019-10098-z
– ident: e_1_2_6_7_2
  doi: 10.1002/advs.202203606
– ident: e_1_2_6_20_2
  doi: 10.1038/s41560-021-00820-x
– volume: 134
  start-page: e202207
  year: 2022
  ident: e_1_2_6_79_3
  publication-title: Angew. Chem.
– ident: e_1_2_6_41_2
  doi: 10.1021/accountsmr.2c00052
– ident: e_1_2_6_84_2
  doi: 10.1038/s41467-022-30225-7
– ident: e_1_2_6_65_1
– ident: e_1_2_6_81_2
  doi: 10.1021/acs.jpclett.0c00919
– ident: e_1_2_6_1_1
– ident: e_1_2_6_32_2
  doi: 10.3866/PKU.WHXB201805091
– ident: e_1_2_6_35_2
  doi: 10.1002/anie.202010856
– ident: e_1_2_6_50_2
  doi: 10.1039/D0TA03703F
– ident: e_1_2_6_71_2
  doi: 10.1002/adma.202110569
– ident: e_1_2_6_36_3
  doi: 10.1002/ange.202100390
– ident: e_1_2_6_42_1
– ident: e_1_2_6_24_2
  doi: 10.1016/j.joule.2021.03.014
– ident: e_1_2_6_18_2
  doi: 10.1002/adma.201908205
– ident: e_1_2_6_26_2
  doi: 10.1021/jacs.7b00566
– ident: e_1_2_6_51_2
  doi: 10.1038/s41467-020-20515-3
– ident: e_1_2_6_23_2
  doi: 10.1039/D1TC04097A
– ident: e_1_2_6_45_2
  doi: 10.1002/inf2.12276
– ident: e_1_2_6_39_1
– ident: e_1_2_6_21_2
  doi: 10.1002/smtd.202200007
– ident: e_1_2_6_8_2
  doi: 10.1002/aenm.202201076
– ident: e_1_2_6_25_1
– ident: e_1_2_6_49_2
  doi: 10.1002/aenm.202002678
– ident: e_1_2_6_12_2
  doi: 10.1002/adma.202002217
– ident: e_1_2_6_74_1
  doi: 10.1016/j.chempr.2020.08.003
– ident: e_1_2_6_30_2
  doi: 10.1002/adma.201705208
– volume: 134
  start-page: e202113749
  year: 2022
  ident: e_1_2_6_28_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202113749
– ident: e_1_2_6_34_2
  doi: 10.1021/acsami.0c12100
– ident: e_1_2_6_16_2
  doi: 10.1021/jacs.7b02677
– ident: e_1_2_6_43_2
  doi: 10.1002/aenm.201900887
– ident: e_1_2_6_76_2
  doi: 10.1002/advs.201800434
– ident: e_1_2_6_5_1
– ident: e_1_2_6_10_1
– ident: e_1_2_6_35_3
  doi: 10.1002/ange.202010856
– ident: e_1_2_6_38_2
  doi: 10.1016/j.jechem.2022.03.030
– ident: e_1_2_6_85_2
  doi: 10.1021/acsenergylett.2c00476
– ident: e_1_2_6_60_1
  doi: 10.1002/aenm.202102591
– ident: e_1_2_6_79_2
  doi: 10.1002/anie.202207397
– ident: e_1_2_6_19_2
  doi: 10.1021/acsenergylett.0c00537
– ident: e_1_2_6_17_2
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_6_62_2
  doi: 10.1021/acsami.7b02193
– ident: e_1_2_6_46_1
– ident: e_1_2_6_47_2
  doi: 10.1038/nmat4167
– ident: e_1_2_6_48_2
  doi: 10.1021/jacs.7b11278
– ident: e_1_2_6_67_2
  doi: 10.1021/acs.jpclett.9b02161
– ident: e_1_2_6_56_2
  doi: 10.1039/D1MH01127H
– ident: e_1_2_6_11_2
  doi: 10.1021/acsapm.0c00791
– ident: e_1_2_6_28_2
  doi: 10.1002/anie.202113749
– volume: 61
  start-page: ARTN e202113749
  year: 2022
  ident: WOS:000725314500001
  article-title: Intramolecular Noncovalent Interaction-Enabled Dopant-Free Hole-Transporting Materials for High-Performance Inverted Perovskite Solar Cells
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202113749
– volume: 70
  start-page: 576
  year: 2022
  ident: 000900724000001.35
  publication-title: J. Energy Chem
– volume: 12
  start-page: ARTN 332
  year: 2021
  ident: WOS:000662811900005
  article-title: The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-020-20515-3
– volume: 5
  start-page: 2845
  year: 2018
  ident: WOS:000447950500012
  article-title: Conductive fullerene surfactants via anion doping as cathode interlayers for efficient organic and perovskite solar cells
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/c8qo00788h
– volume: 132
  start-page: 22903
  year: 2020
  ident: 000900724000001.30
  publication-title: Angew. Chem
– volume: 12
  start-page: 39515
  year: 2020
  ident: WOS:000569268800068
  article-title: Simple Near-Infrared Electron Acceptors for Efficient Photovoltaics and Sensitive Photodetectors
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.0c12100
– volume: 12
  start-page: ARTN 2201076
  year: 2022
  ident: WOS:000842792700001
  article-title: Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.202201076
– volume: 4
  year: 2022
  ident: WOS:000736985600001
  article-title: Healing the degradable organic-inorganic heterointerface for highly efficient and stable organic solar cells
  publication-title: INFOMAT
  doi: 10.1002/inf2.12276
– volume: 17
  start-page: 119
  year: 2018
  ident: WOS:000423153800009
  article-title: Organic solar cells based on non-fullerene acceptors
  publication-title: NATURE MATERIALS
  doi: 10.1038/NMAT5063
– volume: 32
  start-page: ARTN 2002217
  year: 2020
  ident: WOS:000575105300001
  article-title: Progress in Materials, Solution Processes, and Long-Term Stability for Large-Area Organic Photovoltaics
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202002217
– volume: 9
  start-page: 403
  year: 2022
  ident: WOS:000708630500001
  article-title: Regiospecific N-alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors
  publication-title: MATERIALS HORIZONS
  doi: 10.1039/d1mh01127h
– volume: 3
  start-page: 1140
  year: 2019
  ident: WOS:000465149000023
  article-title: Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core
  publication-title: JOULE
  doi: 10.1016/j.joule.2019.01.004
– volume: 133
  start-page: 13074
  year: 2021
  ident: 000900724000001.34
  publication-title: Angew. Chem
– volume: 34
  start-page: ARTN 2110569
  year: 2022
  ident: WOS:000806261700001
  article-title: High-Performance Organic Solar Modules via Bilayer-Merged-Annealing Assisted Blade Coating
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202110569
– volume: 134
  year: 2022
  ident: 000900724000001.23
  publication-title: Angew. Chem
– volume: 8
  start-page: 15607
  year: 2020
  ident: WOS:000560225400017
  article-title: Aggregation of non-fullerene acceptors in organic solar cells
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/d0ta03703f
– volume: 139
  start-page: 7148
  year: 2017
  ident: WOS:000402691800005
  article-title: Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b02677
– volume: 10
  start-page: ARTN 2000177
  year: 2020
  ident: WOS:000530329400007
  article-title: Graphdiyne: A Rising Star of Electrocatalyst Support for Energy Conversion
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.202000177
– volume: 11
  start-page: ARTN 2102591
  year: 2021
  ident: WOS:000707804500001
  article-title: Simple Nonfused Ring Electron Acceptors with 3D Network Packing Structure Boosting the Efficiency of Organic Solar Cells to 15.44%
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.202102591
– volume: 27
  start-page: 1170
  year: 2015
  ident: WOS:000350057400002
  article-title: An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201404317
– volume: 32
  start-page: ARTN 2000645
  year: 2020
  ident: WOS:000525934300001
  article-title: High-Performance Fluorinated Fused-Ring Electron Acceptor with 3D Stacking and Exciton/Charge Transport
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202000645
– volume: 32
  start-page: ARTN 1908205
  year: 2020
  ident: WOS:000522060400001
  article-title: Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201908205
– volume: 58
  start-page: 133
  year: 2018
  ident: WOS:000432557000020
  article-title: Synthesis and photovoltaic properties of a simple non-fused small molecule acceptor
  publication-title: ORGANIC ELECTRONICS
  doi: 10.1016/j.orgel.2018.04.005
– volume: 6
  start-page: 444
  year: 2022
  ident: WOS:000760126900013
  article-title: High fill factor organic solar cells with increased dielectric constant and molecular packing density
  publication-title: JOULE
  doi: 10.1016/j.joule.2022.01.006
– volume: 33
  start-page: ARTN 2102420
  year: 2021
  ident: WOS:000691417700001
  article-title: Single-Junction Organic Photovoltaic Cell with 19% Efficiency
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202102420
– volume: 61
  start-page: ARTN e202207397
  year: 2022
  ident: WOS:000824472700001
  article-title: Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnO-Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5 Years
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202207397
– volume: 9
  start-page: 18095
  year: 2017
  ident: WOS:000402691600049
  article-title: Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.7b02193
– year: 2022
  ident: WOS:000838899000001
  article-title: Renewed Prospects for Organic Photovoltaics
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.1c00955
– volume: 117
  start-page: 10291
  year: 2017
  ident: WOS:000407540500008
  article-title: Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00084
– volume: 5
  start-page: 1832
  year: 2021
  ident: WOS:000675889700015
  article-title: Triplet exciton formation for non-radiative voltage loss in high-efficiency nonfullerene organic solar cells
  publication-title: JOULE
  doi: 10.1016/j.joule.2021.04.002
– volume: 12
  start-page: ARTN 5093
  year: 2021
  ident: WOS:000688006200018
  article-title: Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-021-25394-w
– volume: 12
  start-page: ARTN 3049
  year: 2021
  ident: WOS:000658769900001
  article-title: Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-021-23389-1
– volume: 134
  year: 2022
  ident: 000900724000001.68
  publication-title: Angew. Chem
– volume: 35
  start-page: 394
  year: 2019
  ident: WOS:000447761900011
  article-title: A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells
  publication-title: ACTA PHYSICO-CHIMICA SINICA
  doi: 10.3866/PKU.WHXB201805091
– volume: 13
  start-page: ARTN 2598
  year: 2022
  ident: WOS:000801822900004
  article-title: Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-022-30225-7
– volume: 11
  start-page: 3226
  year: 2020
  ident: WOS:000535177500009
  article-title: Ultrafast Hole Transfer and Carrier Transport Controlled by Nanoscale-Phase Morphology in Nonfullerene Organic Solar Cells
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS
  doi: 10.1021/acs.jpclett.0c00919
– volume: 3
  start-page: 60
  year: 2021
  ident: WOS:000609249200008
  article-title: Conjugated Polymers for Photon-to-Electron and Photon-to-Fuel Conversions
  publication-title: ACS APPLIED POLYMER MATERIALS
  doi: 10.1021/acsapm.0c00791
– volume: 5
  start-page: ARTN 1800434
  year: 2018
  ident: WOS:000441869400014
  article-title: Current Status of Outdoor Lifetime Testing of Organic Photovoltaics
  publication-title: ADVANCED SCIENCE
  doi: 10.1002/advs.201800434
– volume: 32
  start-page: ARTN 2107827
  year: 2022
  ident: WOS:000706322000001
  article-title: High-Performance Organic Solar Cells from Non-Halogenated Solvents
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202107827
– volume: 60
  start-page: 12964
  year: 2021
  ident: WOS:000647879100001
  article-title: Simple Non-Fused Electron Acceptors Leading to Efficient Organic Photovoltaics
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202101867
– volume: 103
  start-page: ARTN 107802
  year: 2022
  ident: WOS:000864020000001
  article-title: Recent advances of nonfullerene acceptors in organic solar cells
  publication-title: NANO ENERGY
  doi: 10.1016/j.nanoen.2022.107802
– volume: 9
  start-page: ARTN 2203606
  year: 2022
  ident: WOS:000843369200001
  article-title: Over 19.2% Efficiency of Organic Solar Cells Enabled by Precisely Tuning the Charge Transfer State Via Donor Alloy Strategy
  publication-title: ADVANCED SCIENCE
  doi: 10.1002/advs.202203606
– volume: 1
  start-page: ARTN 100008
  year: 2021
  ident: WOS:001065735200004
  article-title: Non-fused ring acceptors for organic solar cells
  publication-title: ENERGY MATERIALS
  doi: 10.20517/energymater.2021.08
– volume: 133
  start-page: 12583
  year: 2021
  ident: 000900724000001.32
  publication-title: Angew. Chem
– volume: 65
  start-page: 208
  year: 2020
  ident: WOS:000513623200010
  article-title: Interface-enhanced organic solar cells with extrapolated T80 lifetimes of over 20 years
  publication-title: SCIENCE BULLETIN
  doi: 10.1016/j.scib.2019.10.019
– volume: 9
  start-page: 15395
  year: 2021
  ident: WOS:000713795300001
  article-title: Low-cost materials for organic solar cells
  publication-title: JOURNAL OF MATERIALS CHEMISTRY C
  doi: 10.1039/d1tc04097a
– volume: 14
  start-page: 434
  year: 2015
  ident: WOS:000351757800019
  article-title: Impact of mesoscale order on open-circuit voltage in organic solar cells
  publication-title: NATURE MATERIALS
  doi: 10.1038/NMAT4167
– volume: 3
  start-page: 644
  year: 2022
  ident: WOS:000818493300001
  article-title: Design of Non-fused Ring Acceptors toward High-Performance, Stable, and Low-Cost Organic Photovoltaics
  publication-title: ACCOUNTS OF MATERIALS RESEARCH
  doi: 10.1021/accountsmr.2c00052
– volume: 5
  start-page: 1554
  year: 2020
  ident: WOS:000535176100025
  article-title: New Phase for Organic Solar Cell Research: Emergence of Y-Series Electron Acceptors and Their Perspectives
  publication-title: ACS ENERGY LETTERS
  doi: 10.1021/acsenergylett.0c00537
– volume: 53
  start-page: 822
  year: 2020
  ident: WOS:000527732000011
  article-title: Recent Progress in Chlorinated Organic Photovoltaic Materials
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.0c00009
– volume: 7
  start-page: 1787
  year: 2021
  ident: WOS:000722705100006
  article-title: Asymmetric Non-Fullerene Small-Molecule Acceptors toward High-Performance Organic Solar Cells
  publication-title: ACS CENTRAL SCIENCE
  doi: 10.1021/acscentsci.1c01250
– volume: 59
  start-page: 22714
  year: 2020
  ident: WOS:000575557600001
  article-title: A Fully Non-fused Ring Acceptor with Planar Backbone and Near-IR Absorption for High Performance Polymer Solar Cells
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202010856
– volume: 5
  start-page: 1209
  year: 2021
  ident: WOS:000654225600016
  article-title: Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit
  publication-title: JOULE
  doi: 10.1016/j.joule.2021.03.014
– volume: 21
  start-page: 656
  year: 2022
  ident: WOS:000791057300002
  article-title: Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology
  publication-title: NATURE MATERIALS
  doi: 10.1038/s41563-022-01244-y
– volume: 122
  start-page: 22309
  year: 2018
  ident: WOS:000446926400010
  article-title: Exciton Binding Energies of Nonfullerene Small Molecule Acceptors: Implication for Exciton Dissociation Driving Forces in Organic Solar Cells
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY C
  doi: 10.1021/acs.jpcc.8b07197
– volume: 12
  start-page: ARTN 5419
  year: 2021
  ident: WOS:000696024700001
  article-title: Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-021-25718-w
– volume: 139
  start-page: 3356
  year: 2017
  ident: WOS:000396185700013
  article-title: Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b00566
– volume: 13
  start-page: 39652
  year: 2021
  ident: WOS:000691785200068
  article-title: High-Performance Simple Nonfused Ring Electron Acceptors with Diphenylamino Flanking Groups
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.1c09597
– volume: 65
  start-page: 224
  year: 2022
  ident: WOS:000734747000001
  article-title: Recent progress in organic solar cells (Part I material science)
  publication-title: SCIENCE CHINA-CHEMISTRY
  doi: 10.1007/s11426-021-1180-6
– volume: 30
  start-page: ARTN 1705208
  year: 2018
  ident: WOS:000424485100025
  article-title: An Unfused-Core-Based Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201705208
– volume: 15
  start-page: 2629
  year: 2022
  ident: WOS:000797957000001
  article-title: High-performance see-through power windows
  publication-title: ENERGY & ENVIRONMENTAL SCIENCE
  doi: 10.1039/d2ee00977c
– volume: 7
  start-page: 1764
  year: 2022
  ident: WOS:000802291300025
  article-title: Controllable Anion Doping of Electron Acceptors for High-Efficiency Organic Solar Cells
  publication-title: ACS ENERGY LETTERS
  doi: 10.1021/acsenergylett.2c00476
– volume: 60
  start-page: 12475
  year: 2021
  ident: WOS:000641246400001
  article-title: High-Performance Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and End-Group Engineering
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202100390
– volume: 11
  start-page: ARTN 3943
  year: 2020
  ident: WOS:000561093500005
  article-title: Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-020-17867-1
– volume: 143
  start-page: 6123
  year: 2021
  ident: WOS:000645519600013
  article-title: Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c00211
– volume: 6
  start-page: 605
  year: 2021
  ident: WOS:000648836900002
  article-title: Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells
  publication-title: NATURE ENERGY
  doi: 10.1038/s41560-021-00820-x
– volume: 9
  start-page: ARTN 1900887
  year: 2019
  ident: WOS:000485920600003
  article-title: Boosting Organic-Metal Oxide Heterojunction via Conjugated Small Molecules for Efficient and Stable Nonfullerene Polymer Solar Cells
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.201900887
– volume: 6
  start-page: 2147
  year: 2020
  ident: WOS:000575403300005
  article-title: Reducing Voltage Losses in the A-DA'D-A Acceptor-Based Organic Solar Cells
  publication-title: CHEM
  doi: 10.1016/j.chempr.2020.08.003
– volume: 6
  start-page: ARTN 2200007
  year: 2022
  ident: WOS:000760890500001
  article-title: Influence of Large Steric Hinderance Substituent Position on Conformation and Charge Transfer Process for Non-Fused Ring Acceptors
  publication-title: SMALL METHODS
  doi: 10.1002/smtd.202200007
– volume: 139
  start-page: 17114
  year: 2017
  ident: WOS:000417006000016
  article-title: High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b11278
– volume: 10
  start-page: 4888
  year: 2019
  ident: WOS:000484884300020
  article-title: Achieving Small Exciton Binding Energies in Small Molecule Acceptors for Organic Solar Cells: Effect of Molecular Packing
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS
  doi: 10.1021/acs.jpclett.9b02161
– volume: 10
  start-page: ARTN 2152
  year: 2019
  ident: WOS:000467836900006
  article-title: Simple non-fused electron acceptors for efficient and stable organic solar cells
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-10098-z
SSID ssj0028806
Score 2.630634
Snippet Searching the cost‐effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled....
Searching the cost-effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled....
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202214931
SubjectTerms 3D Network
Chemistry
Chemistry, Multidisciplinary
Chlorination
Non-Fused-Ring Acceptor
Optoelectronics
Organic semiconductors
Organic Solar Cells
Photovoltaic cells
Physical Sciences
Science & Technology
Single Crystal
Solar cells
Title Unsymmetrically Chlorinated Non‐Fused Electron Acceptor Leads to High‐Efficiency and Stable Organic Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202214931
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000900724000001
https://www.ncbi.nlm.nih.gov/pubmed/36433656
https://www.proquest.com/docview/2766941502
https://www.proquest.com/docview/2740507629
Volume 62
WOS 000900724000001
WOSCitedRecordID wos000900724000001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3DhUV6BgoxUiZPbrO3Ym-Mq2lVbiT0AK_UW-RUhkSaoyR7KiZ_Ab-SXMJMX3SJEBTdHGSsZexx_48x8Q8ihEIWee10wpYNmMrWcGZckLE1DnIZCJYnB8453a3WykWfnyfm1LP6eH2I6cMOV0X2vcYEb2xz_Ig3FDGzw7zgHjN8lUmPAFqKi9xN_FAfj7NOLhGBYhX5kbYz58W733V3pN6h5Y1faBbLdTrR6QMyoQx-A8vlo29oj9_UGveP_KPmQ3B9gKl30dvWI3AnVPrmbjdXhHpNmUzVXFxdYjwtmubyi2aculg-gq6fruvrx7ftq20B7OdTZoQuHETT1JcWqng1ta4oxJiC37FgsMAWUmspTgL-2DLRPEnX0A_reNAtl2Twhm9XyY3bChgIOzAktZsylPnipYcoxQdcELbSUiTWxj4UTQriglDUyxIXWGrx6UzgNDqeZz4LUPlHiKdmr6io8JzS4uXXWC5GaFDCIMpbbufdWei6dSXxE2DiBuRvYzbHIRpn3vMw8x6HMp6GMyNtJ_kvP6_FHyYPRHvJhfTc51wozgJOYR-TNdBumAH-3mCrUW5QBMBzDZpNG5FlvR9OjBABBMFcVkcPrhjXdR-iLpO6yc-LgHWa3EcsGxZHOoI0I7yzrL-rli_Xpcrp68S-dXpJ70MawPMbVAdlrL7fhFUC11r7uluNPQBk2Zw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcigX_imGAotUxMmts2t74wOHKE2U0DYHaKTezP5FSLgOqhOhcOIReBVehUfgSZjxH6QIgZB64OZ4J_Gud2b3m83MNwC7Qsxk18qZH0sn_TDR3FcmivwkcUHiZnEUKTrvOJ7Eo2n48jQ63YAvTS5MxQ_RHriRZZTrNRk4HUjv_2ANpRRsdPA4R5AvOnVc5aFbfUCvrXgxPsApfsb5cHDSH_l1YQHfCCk6vkmss6HErlDiqHJSyDCMtApsIIwQwrg41ip0wUxKid6mmhmJjpDqdlwobRQL_N0rcJXKiBNd_8GrlrGKozlUCU1C-FT3vuGJDPj-en_X98FfwO2FfXAdOpd73_AGfG3eWhXy8m5vudB75uMFQsn_6rXehOs1Eme9ynRuwYbLb8NWvymAdweKaV6szs6o5BgqcrZi_bdluCKic8sm8_zbp8_DZYHXg7qUEOsZChKanzMqXFqwxZxRGA3KDUqiDspyZSq3DBG-zhyr8mANe03HC6zvsqy4C9NLGfM92MznubsPzJmuNtoKkagEYVasNNdda3VoeWhUZD3wG41JTU3gTnVEsrSinuYpTV3aTp0Hz1v59xV1yW8ldxoFTOslrEi5jCnJOQq4B0_bZpwC-kdJ5W6-JBnE-wHup4kH25Xito8SiHUFegse7P6syW07oXvirQ9LPxX70PkbsX49cGJsWHjAS1X-w_DS3mQ8aD89-JcvPYGt0cnxUXo0nhw-hGt4n6IQfR7vwObifOkeITJd6MflWsDgzWVbyXeDTJTZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIkEvvB-GAotUxMmts2t74wOHKA81FCIEROrN7MtCaupUdSIUTvwEfgp_hb_AL2HGL0gRAiH1wM3xTuJd78zuN5uZbwB2hMhk18rMj6WTfpho7isTRX6SuCBxWRxFis47Xk7i_Wn4_DA63IAvTS5MxQ_RHriRZZTrNRn4ic32fpCGUgY2-necI8YXnTqs8sCtPqDTVjwbD3CGn3A-Gr7t7_t1XQHfCCk6vkmss6HEnlDeqHJSyDCMtApsIIwQwrg41ip0QSalRGdTZUaiH6S6HRdKG8UCf_cCXAzjIKFiEYPXLWEVR2uo8pmE8KnsfUMTGfC99f6ub4O_YNsz2-A6ci63vtFV-Nq8tCri5Wh3udC75uMZPsn_6a1egys1Dme9ynCuw4bLb8DlflP-7iYU07xYHR9TwTFU49mK9d-XwYqIzS2bzPNvnz6PlgVeD-tCQqxnKERofsqobGnBFnNGQTQoNyxpOijHlancMsT3euZYlQVr2Bs6XGB9N5sVt2B6LmO-DZv5PHd3gTnT1UZbIRKVIMiKlea6a60OLQ-NiqwHfqMwqanp26mKyCytiKd5SlOXtlPnwdNW_qQiLvmt5Hajf2m9gBUplzGlOEcB9-Bx24xTQP8nqdzNlySDaD_A3TTx4E6lt-2jBCJdgb6CBzs_K3LbTtieWOvD0kvFPnT-RqxfD5z4GhYe8FKT_zC8tDcZD9tP9_7lS4_g0qvBKH0xnhzchy28TSGIPo-3YXNxunQPEJYu9MNyJWDw7ryN5Dsc9pOI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsymmetrically+Chlorinated+Non-Fused+Electron+Acceptor+Leads+to+High-Efficiency+and+Stable+Organic+Solar+Cells&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ma%2C+De-Li&rft.au=Zhang%2C+Qian-Qian&rft.au=Li%2C+Chang-Zhi&rft.date=2023-01-26&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=62&rft.issue=5&rft.spage=e202214931&rft_id=info:doi/10.1002%2Fanie.202214931&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon