Unsymmetrically Chlorinated Non‐Fused Electron Acceptor Leads to High‐Efficiency and Stable Organic Solar Cells
Searching the cost‐effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non‐fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the N...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 5; pp. e202214931 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
26.01.2023
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Searching the cost‐effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non‐fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic‐tac‐toe frame of three‐dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high‐performance and stable OSCs.
Two non‐fused ring electron acceptors (NFREAs) have been developed. The halogen substituents on the aromatic side chains, as the new structure design tools, not only facilitate the construction of 3D stacks in solid, but also optimize the optoelectronic properties of the NFREAs, leading to organic solar cells with 16.2 % efficiency and excellent operational stability. |
---|---|
AbstractList | Searching the cost-effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non-fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic-tac-toe frame of three-dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high-performance and stable OSCs.Searching the cost-effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non-fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic-tac-toe frame of three-dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high-performance and stable OSCs. Searching the cost‐effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non‐fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic‐tac‐toe frame of three‐dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high‐performance and stable OSCs. Searching the cost‐effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non‐fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic‐tac‐toe frame of three‐dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high‐performance and stable OSCs. Two non‐fused ring electron acceptors (NFREAs) have been developed. The halogen substituents on the aromatic side chains, as the new structure design tools, not only facilitate the construction of 3D stacks in solid, but also optimize the optoelectronic properties of the NFREAs, leading to organic solar cells with 16.2 % efficiency and excellent operational stability. |
Author | Ma, De‐Li Zhang, Qian‐Qian Li, Chang‐Zhi |
Author_xml | – sequence: 1 givenname: De‐Li orcidid: 0000-0002-7399-3766 surname: Ma fullname: Ma, De‐Li organization: Zhejiang University – sequence: 2 givenname: Qian‐Qian surname: Zhang fullname: Zhang, Qian‐Qian organization: Zhejiang University – sequence: 3 givenname: Chang‐Zhi orcidid: 0000-0003-1968-2032 surname: Li fullname: Li, Chang‐Zhi email: czli@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36433656$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstq3DAUhk1JaS7ttssi6KZQPNXNkr0czKQJDMkizdrI8nGioJGmkkzxro_QZ-yTVNOZpBAorTY6oO87-jmc0-LIeQdF8ZbgBcGYflLOwIJiSglvGHlRnJCKkpJJyY5yzRkrZV2R4-I0xofM1zUWr4pjJvKLqMRJEW9dnDcbSMFoZe2M2nvrg3EqwYCuvPv5_cf5FHO9sqBT8A4ttYZt8gGtQQ0RJY8uzN195lbjaLQBp2ek3IBukuotoOtwlzNqdOOtCqgFa-Pr4uWobIQ3h_usuD1ffWkvyvX158t2uS41k4yUuhlg4BJGQXHTKJBMcl71Cg-YacaYBiF6xQGPUkromRq1rDlWNQEuh0qws-LDvu82-K8TxNRtTNQ5gXLgp9hRyXGFpaBNRt8_Qx_8FFxOlykhGk4qTDP17kBN_QaGbhvMRoW5exxnBuo98A16P8bf04AnDGPcYCwpx7tDWpNUMt61fnIpqx__X80039M6-BgDjJ0-dEtBGdsR3O3Wo9utR_e0HllbPNMeP_ir0BxSGQvzP-hueXW5-uP-AhwLzGE |
CitedBy_id | crossref_primary_10_1002_anie_202219245 crossref_primary_10_1016_j_cej_2024_150579 crossref_primary_10_1002_anie_202407355 crossref_primary_10_1016_j_dyepig_2025_112667 crossref_primary_10_1002_ejoc_202401337 crossref_primary_10_1002_marc_202300350 crossref_primary_10_1002_ange_202313016 crossref_primary_10_1021_jacs_4c15071 crossref_primary_10_1002_cptc_202300256 crossref_primary_10_1002_ange_202316495 crossref_primary_10_1002_cssc_202400361 crossref_primary_10_1039_D3CS00492A crossref_primary_10_1002_adma_202313127 crossref_primary_10_1002_solr_202300453 crossref_primary_10_1007_s40843_023_2867_6 crossref_primary_10_1021_jacs_4c00090 crossref_primary_10_1002_anie_202417244 crossref_primary_10_1002_agt2_469 crossref_primary_10_1039_D3TA06601K crossref_primary_10_1021_acs_chemmater_3c01216 crossref_primary_10_1021_acsaem_3c02238 crossref_primary_10_1002_ange_202407355 crossref_primary_10_1002_adma_202303729 crossref_primary_10_1002_adfm_202411286 crossref_primary_10_1002_adma_202310362 crossref_primary_10_1002_adma_202405718 crossref_primary_10_1002_aenm_202304063 crossref_primary_10_1002_ange_202412854 crossref_primary_10_1016_j_dyepig_2023_111563 crossref_primary_10_1021_acsami_4c04476 crossref_primary_10_1021_acsami_4c11561 crossref_primary_10_1021_acs_jpcc_3c04584 crossref_primary_10_1039_D3TA07296G crossref_primary_10_1039_D4TC00502C crossref_primary_10_1039_D4CS00132J crossref_primary_10_1021_acsaem_3c03171 crossref_primary_10_1002_ange_202417244 crossref_primary_10_1016_j_nanoen_2024_109583 crossref_primary_10_1038_s41578_023_00618_1 crossref_primary_10_1039_D4TA00933A crossref_primary_10_1002_chem_202403193 crossref_primary_10_1002_solr_202400153 crossref_primary_10_1038_s41467_023_40423_6 crossref_primary_10_1039_D4RA08370A crossref_primary_10_1002_anie_202403051 crossref_primary_10_1002_smll_202401176 crossref_primary_10_1021_acsaem_3c02429 crossref_primary_10_1002_adma_202300629 crossref_primary_10_1021_acsmaterialslett_3c01020 crossref_primary_10_1007_s40820_024_01442_0 crossref_primary_10_1007_s11426_024_2272_3 crossref_primary_10_1002_ange_202403753 crossref_primary_10_1039_D4TC00721B crossref_primary_10_1002_ange_202219245 crossref_primary_10_1002_smll_202412230 crossref_primary_10_1360_TB_2024_0449 crossref_primary_10_1039_D4TC01176G crossref_primary_10_1002_agt2_488 crossref_primary_10_1021_acsami_3c05767 crossref_primary_10_1002_anie_202412854 crossref_primary_10_1002_anie_202313016 crossref_primary_10_1002_ange_202403051 crossref_primary_10_1002_adma_202401370 crossref_primary_10_1016_j_dyepig_2023_111737 crossref_primary_10_1021_acsami_4c19947 crossref_primary_10_1021_polymscitech_4c00054 crossref_primary_10_1002_anie_202316495 crossref_primary_10_1002_anie_202403753 crossref_primary_10_1002_adma_202306492 crossref_primary_10_1002_adfm_202301573 crossref_primary_10_1002_adfm_202311736 crossref_primary_10_1002_adfm_202301575 crossref_primary_10_1088_2516_1075_ad1e3a crossref_primary_10_1021_acs_jpclett_4c00153 crossref_primary_10_1002_chem_202403972 crossref_primary_10_1002_adfm_202313594 |
Cites_doi | 10.1002/adma.202000645 10.1038/s41467-021-23389-1 10.1002/anie.202101867 10.1002/adma.202102420 10.1021/acscentsci.1c01250 10.1016/j.joule.2022.01.006 10.1039/D2EE00977C 10.1016/j.scib.2019.10.019 10.1021/jacs.1c00211 10.1038/s41563-022-01244-y 10.1038/s41467-020-17867-1 10.1039/C8QO00788H 10.1021/acs.chemrev.7b00084 10.1038/s41467-021-25394-w 10.1038/nmat5063 10.1016/j.orgel.2018.04.005 10.20517/energymater.2021.08 10.1038/s41467-021-25718-w 10.1021/acs.jpcc.8b07197 10.1002/anie.202100390 10.1016/j.joule.2021.04.002 10.1021/acs.chemrev.1c00955 10.1007/s11426-021-1180-6 10.1021/acsami.1c09597 10.1002/ange.202101867 10.1016/j.nanoen.2022.107802 10.1002/adfm.202107827 10.1002/adma.201404317 10.1021/acs.accounts.0c00009 10.1038/s41467-019-10098-z 10.1002/advs.202203606 10.1038/s41560-021-00820-x 10.1021/accountsmr.2c00052 10.1038/s41467-022-30225-7 10.1021/acs.jpclett.0c00919 10.3866/PKU.WHXB201805091 10.1002/anie.202010856 10.1039/D0TA03703F 10.1002/adma.202110569 10.1002/ange.202100390 10.1016/j.joule.2021.03.014 10.1002/adma.201908205 10.1021/jacs.7b00566 10.1038/s41467-020-20515-3 10.1039/D1TC04097A 10.1002/inf2.12276 10.1002/smtd.202200007 10.1002/aenm.202201076 10.1002/aenm.202002678 10.1002/adma.202002217 10.1016/j.chempr.2020.08.003 10.1002/adma.201705208 10.1002/ange.202113749 10.1021/acsami.0c12100 10.1021/jacs.7b02677 10.1002/aenm.201900887 10.1002/advs.201800434 10.1002/ange.202010856 10.1016/j.jechem.2022.03.030 10.1021/acsenergylett.2c00476 10.1002/aenm.202102591 10.1002/anie.202207397 10.1021/acsenergylett.0c00537 10.1016/j.joule.2019.01.004 10.1021/acsami.7b02193 10.1038/nmat4167 10.1021/jacs.7b11278 10.1021/acs.jpclett.9b02161 10.1039/D1MH01127H 10.1021/acsapm.0c00791 10.1002/anie.202113749 10.1039/c8qo00788h 10.1038/NMAT5063 10.1039/d1mh01127h 10.1039/d0ta03703f 10.1002/aenm.202000177 10.1039/d1tc04097a 10.1038/NMAT4167 10.1039/d2ee00977c |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 17B 1KM BLEPL BNZSX DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202214931 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Web of Science - Science Citation Index Expanded - 2023 Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36433656 000900724000001 10_1002_anie_202214931 ANIE202214931 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: 22125901 – fundername: Key Technologies Research and Development Program funderid: 2019YFA0705900 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) – fundername: National Key Research and Development Program of China; National Key Research & Development Program of China – fundername: National Natural Science Foundation of China grantid: 22125901 – fundername: Key Technologies Research and Development Program grantid: 2019YFA0705900 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3731-c9ded47ef62099ae737445ba0d03c333ce66ba4e0f777eb3afc7840a81e47d563 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 55 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000900724000001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:26:39 EDT 2025 Fri Jul 25 10:31:03 EDT 2025 Thu Apr 03 07:08:54 EDT 2025 Fri Aug 29 16:20:04 EDT 2025 Wed Jul 09 18:24:32 EDT 2025 Tue Jul 01 01:46:59 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Wed Jan 22 16:18:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 3D Network EXCITON VOLTAGE IMPACT Chlorination Non-Fused-Ring Acceptor Single Crystal DELOCALIZATION Organic Solar Cells ENABLES |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3731-c9ded47ef62099ae737445ba0d03c333ce66ba4e0f777eb3afc7840a81e47d563 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7399-3766 0000-0003-1968-2032 0000-0002-7231-9825 |
PMID | 36433656 |
PQID | 2766941502 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2766941502 webofscience_primary_000900724000001CitationCount proquest_miscellaneous_2740507629 crossref_citationtrail_10_1002_anie_202214931 webofscience_primary_000900724000001 pubmed_primary_36433656 wiley_primary_10_1002_anie_202214931_ANIE202214931 crossref_primary_10_1002_anie_202214931 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 26, 2023 |
PublicationDateYYYYMMDD | 2023-01-26 |
PublicationDate_xml | – month: 01 year: 2023 text: January 26, 2023 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2018; 122 2022; 70 2019; 10 2020 2020; 59 132 2020; 12 2022; 65 2022; 21 2020; 11 2020; 10 2017; 9 2017; 117 2022; 122 2020; 8 2020; 6 2020; 5 2022 2022; 61 134 2018; 5 2021; 33 2020; 53 2022; 34 2018; 30 2022; 32 2021; 9 2021; 7 2021; 6 2019; 9 2015; 14 2021; 5 2019; 3 2021; 3 2019; 35 2020; 32 2021; 143 2017; 139 2021; 13 2018; 17 2015; 27 2021; 12 2021; 11 2022; 3 2022; 4 2022; 6 2022; 7 2022; 9 2022; 12 2021 2021; 60 133 2022; 13 2022; 15 2022; 1 2020; 65 2018; 58 2022; 103 e_1_2_6_74_1 e_1_2_6_51_2 e_1_2_6_72_2 e_1_2_6_53_1 e_1_2_6_30_2 e_1_2_6_70_2 (e_1_2_6_79_3) 2022; 134 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_76_2 e_1_2_6_36_3 e_1_2_6_57_1 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_78_2 e_1_2_6_62_2 e_1_2_6_64_2 e_1_2_6_85_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_81_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_49_2 e_1_2_6_22_1 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_1 e_1_2_6_50_2 e_1_2_6_73_1 e_1_2_6_52_2 e_1_2_6_75_1 e_1_2_6_31_2 e_1_2_6_10_1 e_1_2_6_71_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_14_1 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_54_2 e_1_2_6_77_2 (e_1_2_6_28_3) 2022; 134 e_1_2_6_37_3 e_1_2_6_39_1 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_79_2 e_1_2_6_35_3 e_1_2_6_58_1 e_1_2_6_84_2 e_1_2_6_42_1 e_1_2_6_63_2 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_40_2 e_1_2_6_82_2 e_1_2_6_61_1 e_1_2_6_8_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_46_1 e_1_2_6_67_2 Li, JY (WOS:000760890500001) 2022; 6 Zhu, LY (WOS:000484884300020) 2019; 10 Lin, YZ (WOS:000350057400002) 2015; 27 Zhang, GC (WOS:000561093500005) 2020; 11 Park, S (WOS:000575105300001) 2020; 32 Yan, KR (WOS:000447950500012) 2018; 5 Huang, H (WOS:000407540500008) 2017; 117 Qi, F (WOS:000708630500001) 2022; 9 Ma, LJ (WOS:000688006200018) 2021; 12 Li, S. (000900724000001.68) 2022; 134 Yu, ZP (WOS:000467836900006) 2019; 10 Yuan, J (WOS:000575403300005) 2020; 6 Wen, TJ (WOS:000569268800068) 2020; 12 Jiang, DN (WOS:000802291300025) 2022; 7 Li, YX (WOS:000696024700001) 2021; 12 Chen, YN (WOS:000575557600001) 2020; 59 Li, GP (WOS:000645519600013) 2021; 143 Wang, XD (WOS:000707804500001) 2021; 11 Yao, HF (WOS:000527732000011) 2020; 53 Yang, MQ (WOS:001065735200004) 2021; 1 Cui, Y (WOS:000522060400001) 2020; 32 Shen, Q (WOS:000818493300001) 2022; 3 Wen, TJ (WOS:000647879100001) 2021; 60 Liu, YH (WOS:000396185700013) 2017; 139 Li, ST (WOS:000824472700001) 2022; 61 Gao, JH (WOS:000843369200001) 2022; 9 Chen, Z (WOS:000675889700015) 2021; 5 Li, BS (WOS:000530329400007) 2020; 10 Liu, OORA (WOS:000485920600003) 2019; 9 Liu, ZX (WOS:000658769900001) 2021; 12 Li, C (WOS:000648836900002) 2021; 6 (000900724000001.30) 2020; 132 Fan, JY (WOS:000806261700001) 2022; 34 Chen, Z (WOS:000535177500009) 2020; 11 Wang, XD (WOS:000691785200068) 2021; 13 Zhao, WC (WOS:000402691800005) 2017; 139 Zhou, D (WOS:000864020000001) 2022; 103 Xu, X (WOS:000513623200010) 2020; 65 Yang, K (WOS:000725314500001) 2022; 61 Li, DX (WOS:000722705100006) 2021; 7 Wen, T.-J. (000900724000001.35) 2022; 70 Cui, Y (WOS:000691417700001) 2021; 33 Yu, ZP (WOS:000609249200008) 2021; 3 Tao, YD (WOS:000736985600001) 2022; 4 Poelking, C (WOS:000351757800019) 2015; 14 Zhang, ZQ (WOS:000447761900011) 2019; 35 Dai, SX (WOS:000525934300001) 2020; 32 Zhu, LY (WOS:000446926400010) 2018; 122 Zhu, L (WOS:000791057300002) 2022; 21 Zhang, XN (WOS:000760126900013) 2022; 6 Li, SX (WOS:000535176100025) 2020; 5 Zheng, ZL (WOS:000402691600049) 2017; 9 Wen, T.J. (000900724000001.34) 2021; 133 Zhang, X (WOS:000641246400001) 2021; 60 Yang, WY (WOS:000654225600016) 2021; 5 Wang, D (WOS:000797957000001) 2022; 15 Yang, K. (000900724000001.23) 2022; 134 Zhang, YW (WOS:000441869400014) 2018; 5 Li, SX (WOS:000424485100025) 2018; 30 Zhao, FW (WOS:000713795300001) 2021; 9 Li, XX (WOS:000432557000020) 2018; 58 Zhang, GC (WOS:000838899000001) 2022 Liu, YH (WOS:000734747000001) 2022; 65 Li, YX (WOS:000417006000016) 2017; 139 He, CL (WOS:000801822900004) 2022; 13 Wang, ZY (WOS:000662811900005) 2021; 12 Wang, D (WOS:000706322000001) 2022; 32 Yuan, J (WOS:000465149000023) 2019; 3 Zhan, LL (WOS:000842792700001) 2022; 12 Li, DH (WOS:000560225400017) 2020; 8 Hou, JH (WOS:000423153800009) 2018; 17 Zhang, X. (000900724000001.32) 2021; 133 |
References_xml | – volume: 122 start-page: 14180 year: 2022 end-page: 14274 publication-title: Chem. Rev. – volume: 4 year: 2022 publication-title: InfoMat – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 3 start-page: 60 year: 2021 end-page: 92 publication-title: ACS Appl. Polym. Mater. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 2147 year: 2020 end-page: 2161 publication-title: Chem – volume: 6 year: 2022 publication-title: Small Methods – volume: 103 year: 2022 publication-title: Nano Energy – volume: 5 start-page: 1209 year: 2021 end-page: 1230 publication-title: Joule – volume: 122 start-page: 22309 year: 2018 end-page: 22316 publication-title: J. Phys. Chem. C – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 5 start-page: 1832 year: 2021 end-page: 1844 publication-title: Joule – volume: 9 start-page: 403 year: 2022 end-page: 410 publication-title: Mater. Horiz. – volume: 21 start-page: 656 year: 2022 end-page: 663 publication-title: Nat. Mater. – volume: 139 start-page: 3356 year: 2017 end-page: 3359 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 12 start-page: 332 year: 2021 publication-title: Nat. Commun. – volume: 65 start-page: 224 year: 2022 end-page: 268 publication-title: Sci. China Chem. – volume: 12 start-page: 39515 year: 2020 end-page: 39523 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 3226 year: 2020 end-page: 3233 publication-title: J. Phys. Chem. Lett. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 60 133 start-page: 12475 12583 year: 2021 2021 end-page: 12481 12589 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 434 year: 2015 end-page: 439 publication-title: Nat. Mater. – volume: 10 start-page: 4888 year: 2019 end-page: 4894 publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 3943 year: 2020 publication-title: Nat. Commun. – volume: 70 start-page: 576 year: 2022 end-page: 582 publication-title: J. Energy Chem. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 10291 year: 2017 end-page: 10318 publication-title: Chem. Rev. – volume: 7 start-page: 1764 year: 2022 publication-title: ACS Energy Lett. – volume: 60 133 start-page: 12964 13074 year: 2021 2021 end-page: 12970 13080 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 5419 year: 2021 publication-title: Nat. Commun. – volume: 13 start-page: 2598 year: 2022 publication-title: Nat. Commun. – volume: 8 start-page: 15607 year: 2020 end-page: 15619 publication-title: J. Mater. Chem. A – volume: 13 start-page: 39652 year: 2021 end-page: 39659 publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 10 start-page: 2152 year: 2019 publication-title: Nat. Commun. – volume: 6 start-page: 605 year: 2021 end-page: 613 publication-title: Nat. Energy – volume: 7 start-page: 1787 year: 2021 end-page: 1797 publication-title: ACS Cent. Sci. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 9 start-page: 18095 year: 2017 end-page: 18102 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 3049 year: 2021 publication-title: Nat. Commun. – volume: 5 start-page: 2845 year: 2018 publication-title: Org. Chem. Front. – volume: 15 start-page: 2629 year: 2022 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1140 year: 2019 end-page: 1151 publication-title: Joule – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 27 start-page: 1170 year: 2015 end-page: 1174 publication-title: Adv. Mater. – volume: 9 start-page: 15395 year: 2021 end-page: 15406 publication-title: J. Mater. Chem. C – volume: 58 start-page: 133 year: 2018 end-page: 138 publication-title: Org. Electron. – volume: 143 start-page: 6123 year: 2021 end-page: 6139 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 7148 year: 2017 end-page: 7151 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1554 year: 2020 end-page: 1567 publication-title: ACS Energy Lett. – volume: 6 start-page: 444 year: 2022 end-page: 457 publication-title: Joule – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 139 start-page: 17114 year: 2017 end-page: 17119 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 822 year: 2020 end-page: 832 publication-title: Acc. Chem. Res. – volume: 59 132 start-page: 22714 22903 year: 2020 2020 end-page: 22720 22909 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 35 start-page: 394 year: 2019 end-page: 400 publication-title: Acta Phys. Chim. Sin. – volume: 3 start-page: 644 year: 2022 end-page: 657 publication-title: Acc. Mater. Res. – volume: 65 start-page: 208 year: 2020 end-page: 216 publication-title: Sci. Bull. – volume: 12 start-page: 5093 year: 2021 publication-title: Nat. Commun. – volume: 17 start-page: 119 year: 2018 end-page: 128 publication-title: Nat. Mater. – volume: 1 year: 2022 publication-title: Energy Mater. – ident: e_1_2_6_54_2 doi: 10.1002/adma.202000645 – ident: e_1_2_6_44_2 doi: 10.1038/s41467-021-23389-1 – ident: e_1_2_6_68_1 – ident: e_1_2_6_37_2 doi: 10.1002/anie.202101867 – ident: e_1_2_6_6_2 doi: 10.1002/adma.202102420 – ident: e_1_2_6_29_1 – ident: e_1_2_6_64_2 doi: 10.1021/acscentsci.1c01250 – ident: e_1_2_6_53_1 – ident: e_1_2_6_52_2 doi: 10.1016/j.joule.2022.01.006 – ident: e_1_2_6_14_1 – ident: e_1_2_6_72_2 doi: 10.1039/D2EE00977C – ident: e_1_2_6_77_2 doi: 10.1016/j.scib.2019.10.019 – ident: e_1_2_6_22_1 – ident: e_1_2_6_75_1 – ident: e_1_2_6_55_2 doi: 10.1021/jacs.1c00211 – ident: e_1_2_6_9_2 doi: 10.1038/s41563-022-01244-y – ident: e_1_2_6_73_1 doi: 10.1038/s41467-020-17867-1 – ident: e_1_2_6_69_2 doi: 10.1039/C8QO00788H – ident: e_1_2_6_83_1 – ident: e_1_2_6_80_1 – ident: e_1_2_6_58_1 – ident: e_1_2_6_27_2 doi: 10.1021/acs.chemrev.7b00084 – ident: e_1_2_6_59_2 doi: 10.1038/s41467-021-25394-w – ident: e_1_2_6_2_2 doi: 10.1038/nmat5063 – ident: e_1_2_6_31_2 doi: 10.1016/j.orgel.2018.04.005 – ident: e_1_2_6_40_2 doi: 10.20517/energymater.2021.08 – ident: e_1_2_6_78_2 doi: 10.1038/s41467-021-25718-w – ident: e_1_2_6_66_2 doi: 10.1021/acs.jpcc.8b07197 – ident: e_1_2_6_36_2 doi: 10.1002/anie.202100390 – ident: e_1_2_6_82_2 doi: 10.1016/j.joule.2021.04.002 – ident: e_1_2_6_61_1 – ident: e_1_2_6_4_2 doi: 10.1021/acs.chemrev.1c00955 – ident: e_1_2_6_3_2 doi: 10.1007/s11426-021-1180-6 – ident: e_1_2_6_57_1 doi: 10.1021/acsami.1c09597 – ident: e_1_2_6_37_3 doi: 10.1002/ange.202101867 – ident: e_1_2_6_13_2 doi: 10.1016/j.nanoen.2022.107802 – ident: e_1_2_6_70_2 doi: 10.1002/adfm.202107827 – ident: e_1_2_6_15_2 doi: 10.1002/adma.201404317 – ident: e_1_2_6_63_2 doi: 10.1021/acs.accounts.0c00009 – ident: e_1_2_6_33_2 doi: 10.1038/s41467-019-10098-z – ident: e_1_2_6_7_2 doi: 10.1002/advs.202203606 – ident: e_1_2_6_20_2 doi: 10.1038/s41560-021-00820-x – volume: 134 start-page: e202207 year: 2022 ident: e_1_2_6_79_3 publication-title: Angew. Chem. – ident: e_1_2_6_41_2 doi: 10.1021/accountsmr.2c00052 – ident: e_1_2_6_84_2 doi: 10.1038/s41467-022-30225-7 – ident: e_1_2_6_65_1 – ident: e_1_2_6_81_2 doi: 10.1021/acs.jpclett.0c00919 – ident: e_1_2_6_1_1 – ident: e_1_2_6_32_2 doi: 10.3866/PKU.WHXB201805091 – ident: e_1_2_6_35_2 doi: 10.1002/anie.202010856 – ident: e_1_2_6_50_2 doi: 10.1039/D0TA03703F – ident: e_1_2_6_71_2 doi: 10.1002/adma.202110569 – ident: e_1_2_6_36_3 doi: 10.1002/ange.202100390 – ident: e_1_2_6_42_1 – ident: e_1_2_6_24_2 doi: 10.1016/j.joule.2021.03.014 – ident: e_1_2_6_18_2 doi: 10.1002/adma.201908205 – ident: e_1_2_6_26_2 doi: 10.1021/jacs.7b00566 – ident: e_1_2_6_51_2 doi: 10.1038/s41467-020-20515-3 – ident: e_1_2_6_23_2 doi: 10.1039/D1TC04097A – ident: e_1_2_6_45_2 doi: 10.1002/inf2.12276 – ident: e_1_2_6_39_1 – ident: e_1_2_6_21_2 doi: 10.1002/smtd.202200007 – ident: e_1_2_6_8_2 doi: 10.1002/aenm.202201076 – ident: e_1_2_6_25_1 – ident: e_1_2_6_49_2 doi: 10.1002/aenm.202002678 – ident: e_1_2_6_12_2 doi: 10.1002/adma.202002217 – ident: e_1_2_6_74_1 doi: 10.1016/j.chempr.2020.08.003 – ident: e_1_2_6_30_2 doi: 10.1002/adma.201705208 – volume: 134 start-page: e202113749 year: 2022 ident: e_1_2_6_28_3 publication-title: Angew. Chem. doi: 10.1002/ange.202113749 – ident: e_1_2_6_34_2 doi: 10.1021/acsami.0c12100 – ident: e_1_2_6_16_2 doi: 10.1021/jacs.7b02677 – ident: e_1_2_6_43_2 doi: 10.1002/aenm.201900887 – ident: e_1_2_6_76_2 doi: 10.1002/advs.201800434 – ident: e_1_2_6_5_1 – ident: e_1_2_6_10_1 – ident: e_1_2_6_35_3 doi: 10.1002/ange.202010856 – ident: e_1_2_6_38_2 doi: 10.1016/j.jechem.2022.03.030 – ident: e_1_2_6_85_2 doi: 10.1021/acsenergylett.2c00476 – ident: e_1_2_6_60_1 doi: 10.1002/aenm.202102591 – ident: e_1_2_6_79_2 doi: 10.1002/anie.202207397 – ident: e_1_2_6_19_2 doi: 10.1021/acsenergylett.0c00537 – ident: e_1_2_6_17_2 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_6_62_2 doi: 10.1021/acsami.7b02193 – ident: e_1_2_6_46_1 – ident: e_1_2_6_47_2 doi: 10.1038/nmat4167 – ident: e_1_2_6_48_2 doi: 10.1021/jacs.7b11278 – ident: e_1_2_6_67_2 doi: 10.1021/acs.jpclett.9b02161 – ident: e_1_2_6_56_2 doi: 10.1039/D1MH01127H – ident: e_1_2_6_11_2 doi: 10.1021/acsapm.0c00791 – ident: e_1_2_6_28_2 doi: 10.1002/anie.202113749 – volume: 61 start-page: ARTN e202113749 year: 2022 ident: WOS:000725314500001 article-title: Intramolecular Noncovalent Interaction-Enabled Dopant-Free Hole-Transporting Materials for High-Performance Inverted Perovskite Solar Cells publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202113749 – volume: 70 start-page: 576 year: 2022 ident: 000900724000001.35 publication-title: J. Energy Chem – volume: 12 start-page: ARTN 332 year: 2021 ident: WOS:000662811900005 article-title: The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-20515-3 – volume: 5 start-page: 2845 year: 2018 ident: WOS:000447950500012 article-title: Conductive fullerene surfactants via anion doping as cathode interlayers for efficient organic and perovskite solar cells publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/c8qo00788h – volume: 132 start-page: 22903 year: 2020 ident: 000900724000001.30 publication-title: Angew. Chem – volume: 12 start-page: 39515 year: 2020 ident: WOS:000569268800068 article-title: Simple Near-Infrared Electron Acceptors for Efficient Photovoltaics and Sensitive Photodetectors publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.0c12100 – volume: 12 start-page: ARTN 2201076 year: 2022 ident: WOS:000842792700001 article-title: Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.202201076 – volume: 4 year: 2022 ident: WOS:000736985600001 article-title: Healing the degradable organic-inorganic heterointerface for highly efficient and stable organic solar cells publication-title: INFOMAT doi: 10.1002/inf2.12276 – volume: 17 start-page: 119 year: 2018 ident: WOS:000423153800009 article-title: Organic solar cells based on non-fullerene acceptors publication-title: NATURE MATERIALS doi: 10.1038/NMAT5063 – volume: 32 start-page: ARTN 2002217 year: 2020 ident: WOS:000575105300001 article-title: Progress in Materials, Solution Processes, and Long-Term Stability for Large-Area Organic Photovoltaics publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202002217 – volume: 9 start-page: 403 year: 2022 ident: WOS:000708630500001 article-title: Regiospecific N-alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors publication-title: MATERIALS HORIZONS doi: 10.1039/d1mh01127h – volume: 3 start-page: 1140 year: 2019 ident: WOS:000465149000023 article-title: Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core publication-title: JOULE doi: 10.1016/j.joule.2019.01.004 – volume: 133 start-page: 13074 year: 2021 ident: 000900724000001.34 publication-title: Angew. Chem – volume: 34 start-page: ARTN 2110569 year: 2022 ident: WOS:000806261700001 article-title: High-Performance Organic Solar Modules via Bilayer-Merged-Annealing Assisted Blade Coating publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202110569 – volume: 134 year: 2022 ident: 000900724000001.23 publication-title: Angew. Chem – volume: 8 start-page: 15607 year: 2020 ident: WOS:000560225400017 article-title: Aggregation of non-fullerene acceptors in organic solar cells publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/d0ta03703f – volume: 139 start-page: 7148 year: 2017 ident: WOS:000402691800005 article-title: Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b02677 – volume: 10 start-page: ARTN 2000177 year: 2020 ident: WOS:000530329400007 article-title: Graphdiyne: A Rising Star of Electrocatalyst Support for Energy Conversion publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.202000177 – volume: 11 start-page: ARTN 2102591 year: 2021 ident: WOS:000707804500001 article-title: Simple Nonfused Ring Electron Acceptors with 3D Network Packing Structure Boosting the Efficiency of Organic Solar Cells to 15.44% publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.202102591 – volume: 27 start-page: 1170 year: 2015 ident: WOS:000350057400002 article-title: An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201404317 – volume: 32 start-page: ARTN 2000645 year: 2020 ident: WOS:000525934300001 article-title: High-Performance Fluorinated Fused-Ring Electron Acceptor with 3D Stacking and Exciton/Charge Transport publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202000645 – volume: 32 start-page: ARTN 1908205 year: 2020 ident: WOS:000522060400001 article-title: Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201908205 – volume: 58 start-page: 133 year: 2018 ident: WOS:000432557000020 article-title: Synthesis and photovoltaic properties of a simple non-fused small molecule acceptor publication-title: ORGANIC ELECTRONICS doi: 10.1016/j.orgel.2018.04.005 – volume: 6 start-page: 444 year: 2022 ident: WOS:000760126900013 article-title: High fill factor organic solar cells with increased dielectric constant and molecular packing density publication-title: JOULE doi: 10.1016/j.joule.2022.01.006 – volume: 33 start-page: ARTN 2102420 year: 2021 ident: WOS:000691417700001 article-title: Single-Junction Organic Photovoltaic Cell with 19% Efficiency publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202102420 – volume: 61 start-page: ARTN e202207397 year: 2022 ident: WOS:000824472700001 article-title: Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnO-Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5 Years publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202207397 – volume: 9 start-page: 18095 year: 2017 ident: WOS:000402691600049 article-title: Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.7b02193 – year: 2022 ident: WOS:000838899000001 article-title: Renewed Prospects for Organic Photovoltaics publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.1c00955 – volume: 117 start-page: 10291 year: 2017 ident: WOS:000407540500008 article-title: Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00084 – volume: 5 start-page: 1832 year: 2021 ident: WOS:000675889700015 article-title: Triplet exciton formation for non-radiative voltage loss in high-efficiency nonfullerene organic solar cells publication-title: JOULE doi: 10.1016/j.joule.2021.04.002 – volume: 12 start-page: ARTN 5093 year: 2021 ident: WOS:000688006200018 article-title: Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-021-25394-w – volume: 12 start-page: ARTN 3049 year: 2021 ident: WOS:000658769900001 article-title: Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-021-23389-1 – volume: 134 year: 2022 ident: 000900724000001.68 publication-title: Angew. Chem – volume: 35 start-page: 394 year: 2019 ident: WOS:000447761900011 article-title: A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells publication-title: ACTA PHYSICO-CHIMICA SINICA doi: 10.3866/PKU.WHXB201805091 – volume: 13 start-page: ARTN 2598 year: 2022 ident: WOS:000801822900004 article-title: Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18% publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-022-30225-7 – volume: 11 start-page: 3226 year: 2020 ident: WOS:000535177500009 article-title: Ultrafast Hole Transfer and Carrier Transport Controlled by Nanoscale-Phase Morphology in Nonfullerene Organic Solar Cells publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS doi: 10.1021/acs.jpclett.0c00919 – volume: 3 start-page: 60 year: 2021 ident: WOS:000609249200008 article-title: Conjugated Polymers for Photon-to-Electron and Photon-to-Fuel Conversions publication-title: ACS APPLIED POLYMER MATERIALS doi: 10.1021/acsapm.0c00791 – volume: 5 start-page: ARTN 1800434 year: 2018 ident: WOS:000441869400014 article-title: Current Status of Outdoor Lifetime Testing of Organic Photovoltaics publication-title: ADVANCED SCIENCE doi: 10.1002/advs.201800434 – volume: 32 start-page: ARTN 2107827 year: 2022 ident: WOS:000706322000001 article-title: High-Performance Organic Solar Cells from Non-Halogenated Solvents publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202107827 – volume: 60 start-page: 12964 year: 2021 ident: WOS:000647879100001 article-title: Simple Non-Fused Electron Acceptors Leading to Efficient Organic Photovoltaics publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202101867 – volume: 103 start-page: ARTN 107802 year: 2022 ident: WOS:000864020000001 article-title: Recent advances of nonfullerene acceptors in organic solar cells publication-title: NANO ENERGY doi: 10.1016/j.nanoen.2022.107802 – volume: 9 start-page: ARTN 2203606 year: 2022 ident: WOS:000843369200001 article-title: Over 19.2% Efficiency of Organic Solar Cells Enabled by Precisely Tuning the Charge Transfer State Via Donor Alloy Strategy publication-title: ADVANCED SCIENCE doi: 10.1002/advs.202203606 – volume: 1 start-page: ARTN 100008 year: 2021 ident: WOS:001065735200004 article-title: Non-fused ring acceptors for organic solar cells publication-title: ENERGY MATERIALS doi: 10.20517/energymater.2021.08 – volume: 133 start-page: 12583 year: 2021 ident: 000900724000001.32 publication-title: Angew. Chem – volume: 65 start-page: 208 year: 2020 ident: WOS:000513623200010 article-title: Interface-enhanced organic solar cells with extrapolated T80 lifetimes of over 20 years publication-title: SCIENCE BULLETIN doi: 10.1016/j.scib.2019.10.019 – volume: 9 start-page: 15395 year: 2021 ident: WOS:000713795300001 article-title: Low-cost materials for organic solar cells publication-title: JOURNAL OF MATERIALS CHEMISTRY C doi: 10.1039/d1tc04097a – volume: 14 start-page: 434 year: 2015 ident: WOS:000351757800019 article-title: Impact of mesoscale order on open-circuit voltage in organic solar cells publication-title: NATURE MATERIALS doi: 10.1038/NMAT4167 – volume: 3 start-page: 644 year: 2022 ident: WOS:000818493300001 article-title: Design of Non-fused Ring Acceptors toward High-Performance, Stable, and Low-Cost Organic Photovoltaics publication-title: ACCOUNTS OF MATERIALS RESEARCH doi: 10.1021/accountsmr.2c00052 – volume: 5 start-page: 1554 year: 2020 ident: WOS:000535176100025 article-title: New Phase for Organic Solar Cell Research: Emergence of Y-Series Electron Acceptors and Their Perspectives publication-title: ACS ENERGY LETTERS doi: 10.1021/acsenergylett.0c00537 – volume: 53 start-page: 822 year: 2020 ident: WOS:000527732000011 article-title: Recent Progress in Chlorinated Organic Photovoltaic Materials publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.0c00009 – volume: 7 start-page: 1787 year: 2021 ident: WOS:000722705100006 article-title: Asymmetric Non-Fullerene Small-Molecule Acceptors toward High-Performance Organic Solar Cells publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.1c01250 – volume: 59 start-page: 22714 year: 2020 ident: WOS:000575557600001 article-title: A Fully Non-fused Ring Acceptor with Planar Backbone and Near-IR Absorption for High Performance Polymer Solar Cells publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202010856 – volume: 5 start-page: 1209 year: 2021 ident: WOS:000654225600016 article-title: Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit publication-title: JOULE doi: 10.1016/j.joule.2021.03.014 – volume: 21 start-page: 656 year: 2022 ident: WOS:000791057300002 article-title: Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology publication-title: NATURE MATERIALS doi: 10.1038/s41563-022-01244-y – volume: 122 start-page: 22309 year: 2018 ident: WOS:000446926400010 article-title: Exciton Binding Energies of Nonfullerene Small Molecule Acceptors: Implication for Exciton Dissociation Driving Forces in Organic Solar Cells publication-title: JOURNAL OF PHYSICAL CHEMISTRY C doi: 10.1021/acs.jpcc.8b07197 – volume: 12 start-page: ARTN 5419 year: 2021 ident: WOS:000696024700001 article-title: Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-021-25718-w – volume: 139 start-page: 3356 year: 2017 ident: WOS:000396185700013 article-title: Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b00566 – volume: 13 start-page: 39652 year: 2021 ident: WOS:000691785200068 article-title: High-Performance Simple Nonfused Ring Electron Acceptors with Diphenylamino Flanking Groups publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.1c09597 – volume: 65 start-page: 224 year: 2022 ident: WOS:000734747000001 article-title: Recent progress in organic solar cells (Part I material science) publication-title: SCIENCE CHINA-CHEMISTRY doi: 10.1007/s11426-021-1180-6 – volume: 30 start-page: ARTN 1705208 year: 2018 ident: WOS:000424485100025 article-title: An Unfused-Core-Based Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201705208 – volume: 15 start-page: 2629 year: 2022 ident: WOS:000797957000001 article-title: High-performance see-through power windows publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/d2ee00977c – volume: 7 start-page: 1764 year: 2022 ident: WOS:000802291300025 article-title: Controllable Anion Doping of Electron Acceptors for High-Efficiency Organic Solar Cells publication-title: ACS ENERGY LETTERS doi: 10.1021/acsenergylett.2c00476 – volume: 60 start-page: 12475 year: 2021 ident: WOS:000641246400001 article-title: High-Performance Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and End-Group Engineering publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202100390 – volume: 11 start-page: ARTN 3943 year: 2020 ident: WOS:000561093500005 article-title: Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-17867-1 – volume: 143 start-page: 6123 year: 2021 ident: WOS:000645519600013 article-title: Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c00211 – volume: 6 start-page: 605 year: 2021 ident: WOS:000648836900002 article-title: Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells publication-title: NATURE ENERGY doi: 10.1038/s41560-021-00820-x – volume: 9 start-page: ARTN 1900887 year: 2019 ident: WOS:000485920600003 article-title: Boosting Organic-Metal Oxide Heterojunction via Conjugated Small Molecules for Efficient and Stable Nonfullerene Polymer Solar Cells publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201900887 – volume: 6 start-page: 2147 year: 2020 ident: WOS:000575403300005 article-title: Reducing Voltage Losses in the A-DA'D-A Acceptor-Based Organic Solar Cells publication-title: CHEM doi: 10.1016/j.chempr.2020.08.003 – volume: 6 start-page: ARTN 2200007 year: 2022 ident: WOS:000760890500001 article-title: Influence of Large Steric Hinderance Substituent Position on Conformation and Charge Transfer Process for Non-Fused Ring Acceptors publication-title: SMALL METHODS doi: 10.1002/smtd.202200007 – volume: 139 start-page: 17114 year: 2017 ident: WOS:000417006000016 article-title: High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b11278 – volume: 10 start-page: 4888 year: 2019 ident: WOS:000484884300020 article-title: Achieving Small Exciton Binding Energies in Small Molecule Acceptors for Organic Solar Cells: Effect of Molecular Packing publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS doi: 10.1021/acs.jpclett.9b02161 – volume: 10 start-page: ARTN 2152 year: 2019 ident: WOS:000467836900006 article-title: Simple non-fused electron acceptors for efficient and stable organic solar cells publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-10098-z |
SSID | ssj0028806 |
Score | 2.630634 |
Snippet | Searching the cost‐effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled.... Searching the cost-effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled.... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202214931 |
SubjectTerms | 3D Network Chemistry Chemistry, Multidisciplinary Chlorination Non-Fused-Ring Acceptor Optoelectronics Organic semiconductors Organic Solar Cells Photovoltaic cells Physical Sciences Science & Technology Single Crystal Solar cells |
Title | Unsymmetrically Chlorinated Non‐Fused Electron Acceptor Leads to High‐Efficiency and Stable Organic Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202214931 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000900724000001 https://www.ncbi.nlm.nih.gov/pubmed/36433656 https://www.proquest.com/docview/2766941502 https://www.proquest.com/docview/2740507629 |
Volume | 62 |
WOS | 000900724000001 |
WOSCitedRecordID | wos000900724000001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3DhUV6BgoxUiZPbrO3Ym-Mq2lVbiT0AK_UW-RUhkSaoyR7KiZ_Ab-SXMJMX3SJEBTdHGSsZexx_48x8Q8ihEIWee10wpYNmMrWcGZckLE1DnIZCJYnB8453a3WykWfnyfm1LP6eH2I6cMOV0X2vcYEb2xz_Ig3FDGzw7zgHjN8lUmPAFqKi9xN_FAfj7NOLhGBYhX5kbYz58W733V3pN6h5Y1faBbLdTrR6QMyoQx-A8vlo29oj9_UGveP_KPmQ3B9gKl30dvWI3AnVPrmbjdXhHpNmUzVXFxdYjwtmubyi2aculg-gq6fruvrx7ftq20B7OdTZoQuHETT1JcWqng1ta4oxJiC37FgsMAWUmspTgL-2DLRPEnX0A_reNAtl2Twhm9XyY3bChgIOzAktZsylPnipYcoxQdcELbSUiTWxj4UTQriglDUyxIXWGrx6UzgNDqeZz4LUPlHiKdmr6io8JzS4uXXWC5GaFDCIMpbbufdWei6dSXxE2DiBuRvYzbHIRpn3vMw8x6HMp6GMyNtJ_kvP6_FHyYPRHvJhfTc51wozgJOYR-TNdBumAH-3mCrUW5QBMBzDZpNG5FlvR9OjBABBMFcVkcPrhjXdR-iLpO6yc-LgHWa3EcsGxZHOoI0I7yzrL-rli_Xpcrp68S-dXpJ70MawPMbVAdlrL7fhFUC11r7uluNPQBk2Zw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcigX_imGAotUxMmts2t74wOHKE2U0DYHaKTezP5FSLgOqhOhcOIReBVehUfgSZjxH6QIgZB64OZ4J_Gud2b3m83MNwC7Qsxk18qZH0sn_TDR3FcmivwkcUHiZnEUKTrvOJ7Eo2n48jQ63YAvTS5MxQ_RHriRZZTrNRk4HUjv_2ANpRRsdPA4R5AvOnVc5aFbfUCvrXgxPsApfsb5cHDSH_l1YQHfCCk6vkmss6HErlDiqHJSyDCMtApsIIwQwrg41ip0wUxKid6mmhmJjpDqdlwobRQL_N0rcJXKiBNd_8GrlrGKozlUCU1C-FT3vuGJDPj-en_X98FfwO2FfXAdOpd73_AGfG3eWhXy8m5vudB75uMFQsn_6rXehOs1Eme9ynRuwYbLb8NWvymAdweKaV6szs6o5BgqcrZi_bdluCKic8sm8_zbp8_DZYHXg7qUEOsZChKanzMqXFqwxZxRGA3KDUqiDspyZSq3DBG-zhyr8mANe03HC6zvsqy4C9NLGfM92MznubsPzJmuNtoKkagEYVasNNdda3VoeWhUZD3wG41JTU3gTnVEsrSinuYpTV3aTp0Hz1v59xV1yW8ldxoFTOslrEi5jCnJOQq4B0_bZpwC-kdJ5W6-JBnE-wHup4kH25Xito8SiHUFegse7P6syW07oXvirQ9LPxX70PkbsX49cGJsWHjAS1X-w_DS3mQ8aD89-JcvPYGt0cnxUXo0nhw-hGt4n6IQfR7vwObifOkeITJd6MflWsDgzWVbyXeDTJTZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIkEvvB-GAotUxMmts2t74wOHKA81FCIEROrN7MtCaupUdSIUTvwEfgp_hb_AL2HGL0gRAiH1wM3xTuJd78zuN5uZbwB2hMhk18rMj6WTfpho7isTRX6SuCBxWRxFis47Xk7i_Wn4_DA63IAvTS5MxQ_RHriRZZTrNRn4ic32fpCGUgY2-necI8YXnTqs8sCtPqDTVjwbD3CGn3A-Gr7t7_t1XQHfCCk6vkmss6HEnlDeqHJSyDCMtApsIIwQwrg41ip0QSalRGdTZUaiH6S6HRdKG8UCf_cCXAzjIKFiEYPXLWEVR2uo8pmE8KnsfUMTGfC99f6ub4O_YNsz2-A6ci63vtFV-Nq8tCri5Wh3udC75uMZPsn_6a1egys1Dme9ynCuw4bLb8DlflP-7iYU07xYHR9TwTFU49mK9d-XwYqIzS2bzPNvnz6PlgVeD-tCQqxnKERofsqobGnBFnNGQTQoNyxpOijHlancMsT3euZYlQVr2Bs6XGB9N5sVt2B6LmO-DZv5PHd3gTnT1UZbIRKVIMiKlea6a60OLQ-NiqwHfqMwqanp26mKyCytiKd5SlOXtlPnwdNW_qQiLvmt5Hajf2m9gBUplzGlOEcB9-Bx24xTQP8nqdzNlySDaD_A3TTx4E6lt-2jBCJdgb6CBzs_K3LbTtieWOvD0kvFPnT-RqxfD5z4GhYe8FKT_zC8tDcZD9tP9_7lS4_g0qvBKH0xnhzchy28TSGIPo-3YXNxunQPEJYu9MNyJWDw7ryN5Dsc9pOI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsymmetrically+Chlorinated+Non-Fused+Electron+Acceptor+Leads+to+High-Efficiency+and+Stable+Organic+Solar+Cells&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ma%2C+De-Li&rft.au=Zhang%2C+Qian-Qian&rft.au=Li%2C+Chang-Zhi&rft.date=2023-01-26&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=62&rft.issue=5&rft.spage=e202214931&rft_id=info:doi/10.1002%2Fanie.202214931&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |