Nonlinear Optical Properties of 2D Materials and their Applications

2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light‐matter interactions. The nonlinear optical properties of 2D materials are of g...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 34; pp. e2311621 - n/a
Main Authors Xie, Zhixiang, Zhao, Tianxiang, Yu, Xuechao, Wang, Junjia
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light‐matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second‐order and third‐order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second‐order susceptibility χ(2) and third‐order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second‐harmonic generation (SHG) and third‐harmonic generation (THG) for 2D materials are presented. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. In this article, a comprehensive review of measurement methods for nonlinear susceptibility is provided. Nonlinear susceptibility of different 2D materials are compared. Their applications in nonlinear photonic devices are discussed.
AbstractList 2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light‐matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second‐order and third‐order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second‐order susceptibility χ(2) and third‐order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second‐harmonic generation (SHG) and third‐harmonic generation (THG) for 2D materials are presented. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. In this article, a comprehensive review of measurement methods for nonlinear susceptibility is provided. Nonlinear susceptibility of different 2D materials are compared. Their applications in nonlinear photonic devices are discussed.
2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light‐matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second‐order and third‐order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second‐order susceptibility χ(2) and third‐order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second‐harmonic generation (SHG) and third‐harmonic generation (THG) for 2D materials are presented.
2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light-matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second-order and third-order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second-order susceptibility χ(2) and third-order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second-harmonic generation (SHG) and third-harmonic generation (THG) for 2D materials are presented.2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light-matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second-order and third-order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second-order susceptibility χ(2) and third-order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second-harmonic generation (SHG) and third-harmonic generation (THG) for 2D materials are presented.
Author Wang, Junjia
Zhao, Tianxiang
Xie, Zhixiang
Yu, Xuechao
Author_xml – sequence: 1
  givenname: Zhixiang
  surname: Xie
  fullname: Xie, Zhixiang
  organization: Southeast University
– sequence: 2
  givenname: Tianxiang
  surname: Zhao
  fullname: Zhao, Tianxiang
  organization: Southeast University
– sequence: 3
  givenname: Xuechao
  surname: Yu
  fullname: Yu, Xuechao
  email: xcyu2022@sinano.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Junjia
  orcidid: 0000-0003-0872-4794
  surname: Wang
  fullname: Wang, Junjia
  email: junjia_wang@seu.edu.cn
  organization: Southeast University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38618662$$D View this record in MEDLINE/PubMed
BookMark eNqFkdtLwzAUh4Mo7qKvPkrBF186c2mT9nHMK3ROUJ9DmqaYkTU16ZD992buIgzEpxzI951zkt8AHDe2UQBcIDhCEOIbvzBmhCEmCFGMjkAfUURimuH8eF8j2AMD7-cQEoQTdgp6JKMooxT3weTZNkY3Srho1nZaChO9ONsq12nlI1tH-Daaik45LYyPRFNF3YfSLhq3rQl0p23jz8BJHW7V-fYcgvf7u7fJY1zMHp4m4yKWhBEUyzAQirTMEE5lleI8S6tSMYZYVuEsp5LBPCllWE3VZUZoQmQFUSKwoimmmJEhuN70bZ39XCrf8YX2UhkjGmWXnhNIckxYimhArw7QuV26JmwXqDxNA8lIoC631LJcqIq3Ti-EW_Hd9wQg2QDSWe-dqrnU3c-jOye04QjydQp8nQLfpxC00YG26_ynkG-EL23U6h-av06L4tf9BmcTl10
CitedBy_id crossref_primary_10_1177_17562848241308387
crossref_primary_10_1002_bio_70125
crossref_primary_10_1063_5_0242014
crossref_primary_10_12677_ms_2025_153044
crossref_primary_10_1021_acs_jpclett_4c03138
crossref_primary_10_1039_D4NH00160E
crossref_primary_10_1515_nanoph_2024_0267
crossref_primary_10_1002_cplu_202400528
crossref_primary_10_1002_lpor_202401519
crossref_primary_10_1021_acs_jpclett_4c02600
crossref_primary_10_1063_5_0235837
crossref_primary_10_1021_acs_jpcc_4c06756
crossref_primary_10_1002_admi_202400894
crossref_primary_10_1021_acsnano_4c12605
crossref_primary_10_1088_1402_4896_ad7a39
crossref_primary_10_1364_OE_547760
crossref_primary_10_1021_acsnano_4c14699
Cites_doi 10.1007/s40843-020-1289-7
10.1021/acsphotonics.8b00685
10.1038/s41566-019-0547-7
10.1002/smtd.202101435
10.1038/s41467-023-38344-5
10.1002/adma.202006415
10.1088/0953-8984/25/19/195302
10.1063/1.5052417
10.1021/acsphotonics.2c00222
10.3788/COL202220.073701
10.1364/OL.44.005214
10.1515/nanoph-2017-0030
10.1038/s41467-023-40602-5
10.1021/acsnano.2c08147
10.1021/acsphotonics.7b00631
10.1038/nphoton.2016.15
10.1002/adfm.202110119
10.1038/s41566-020-00729-z
10.1109/58.484462
10.1021/acsnano.9b06782
10.1103/PhysRevApplied.20.044023
10.1088/1367-2630/16/5/053014
10.1002/adom.202101963
10.1002/adfm.202105259
10.1002/adfm.202106228
10.1021/acsphotonics.1c00767
10.1039/C7NR00971B
10.1021/acs.nanolett.1c04359
10.1002/lpor.202100117
10.1021/acsphotonics.1c00525
10.1007/s003400050866
10.1038/nphoton.2013.304
10.1038/s41699-019-0135-1
10.1016/j.optlastec.2018.02.018
10.1038/s41567-021-01275-3
10.1364/OL.43.000304
10.1038/s41377-021-00588-5
10.1021/acsphotonics.1c01358
10.1039/C8NR09368G
10.1126/science.1102896
10.1142/S0218863597000204
10.1364/OE.15.013351
10.1103/PhysRevLett.4.564
10.1088/1361-648X/ab6cbf
10.3788/COL202220.032701
10.1038/s41566-018-0175-7
10.1103/PhysRevB.98.115426
10.3788/COL202220.031901
10.1002/lpor.201800215
10.1021/acsphotonics.6b00639
10.1021/acs.nanolett.9b00487
10.1109/JSTQE.2010.2047715
10.1364/PRJ.483172
10.1038/nature22986
10.1002/lpor.201800282
10.1038/nature16472
10.1103/PhysRevB.95.165406
10.1002/lpor.201900416
10.1364/PRJ.8.000078
10.1016/0030-4018(84)90328-6
10.1038/s41377-020-00459-5
10.1038/s41467-021-23436-x
10.1007/s00340-009-3656-z
10.1016/j.physrep.2021.02.003
10.1049/el:20072253
10.1038/srep05530
10.1016/j.spmi.2014.10.019
10.1016/j.electacta.2019.01.053
10.1088/2053-1583/4/1/011006
10.1021/acsmaterialslett.9b00419
10.1021/acs.nanolett.0c01603
10.1007/s12200-020-1058-3
10.1038/s41566-019-0492-5
10.1038/srep10334
10.1364/BOE.7.001727
10.1038/s41566-021-00859-y
10.1038/s41467-023-41079-y
10.1002/adma.201603119
10.1002/adfm.200901007
10.1364/OL.502953
10.1021/nn4042909
10.1016/j.infrared.2018.07.028
10.1021/acsphotonics.3c00722
10.3788/COL202321.021407
10.1126/science.aba1416
10.1126/science.1106612
10.1038/s41467-021-27213-8
10.1021/acsnano.5b03480
10.3389/fmats.2021.775048
10.1021/acs.nanolett.9b02740
10.1021/acsnano.2c00514
10.1038/nphoton.2010.154
10.1088/0034-4885/79/3/036401
10.1103/PhysRevLett.105.097401
10.1063/1.4941998
10.1002/adfm.201803807
10.1103/PhysRevLett.105.057401
10.1186/s43074-020-00020-y
10.1016/j.mtphys.2022.100649
10.1038/s41586-022-05610-3
10.1002/adfm.202302051
10.1002/advs.201802373
10.1103/PhysRevLett.7.118
10.1016/j.optmat.2017.12.023
10.1126/science.1218497
10.1021/nl504860z
10.1016/j.conb.2004.08.013
10.1021/acs.accounts.1c00188
10.1038/lsa.2016.131
10.1021/nl901101g
10.1103/PhysRevB.86.035327
10.1063/1.5144482
10.1002/inf2.12236
10.1002/adfm.202107768
10.1039/D0TC05607C
10.1126/science.aac9439
10.1016/S0038-1098(97)00269-X
10.1021/acs.nanolett.1c00891
10.1021/acsphotonics.8b00653
10.3788/COL201210.101902
10.1126/sciadv.abd4623
10.1016/j.physleta.2015.10.044
10.1007/s12274-016-1034-9
10.1126/sciadv.ade7968
10.1063/1.5131165
10.1021/acsphotonics.0c00819
10.1088/1367-2630/ac90e2
10.1002/inf2.12148
10.1038/nphoton.2010.256
10.3390/sym14010084
10.1364/OE.16.003408
10.1038/s41578-019-0124-1
10.1016/j.ccr.2021.213927
10.1021/acsnano.2c03566
10.1038/s41566-023-01195-z
10.1002/lpor.202100726
10.1002/adma.202101589
10.3788/COL202321.043801
10.1038/s41467-022-32739-6
10.1002/adfm.202006788
10.1002/inf2.12274
10.1088/0034-4885/70/8/R02
10.1007/s00340-015-6178-x
10.1016/j.mattod.2021.07.023
10.1021/acs.nanolett.7b02268
10.1002/adma.201606128
10.1007/s12274-020-3197-7
10.1364/JOSAB.19.000289
10.1021/acs.jpcc.9b11848
10.1038/nature10067
10.1364/JOSAB.26.000420
10.1126/science.1158877
10.1002/lpor.201900052
10.1038/nbt899
10.1038/s41586-019-1013-x
10.1016/j.spmi.2019.106244
10.1021/acs.jpclett.7b00140
10.1002/adma.202100113
10.1002/anie.201409837
10.1002/adom.202201688
10.1021/acsphotonics.7b00231
10.1038/nature01175
10.1038/s41467-017-01351-4
10.1364/AOP.8.000618
10.1039/D3EE01047C
10.1109/3.53394
10.1021/acs.jpclett.1c02770
10.1002/adma.201902685
10.1088/0963-9659/1/3/004
10.1103/PhysRevB.87.121406
10.1002/lpor.202100322
10.1038/s41467-017-00749-4
10.1002/adom.201701334
10.1021/nn901703e
10.1002/adom.202100625
10.1021/ar4000955
10.1038/s41467-021-25941-5
10.1364/OL.40.003480
10.1063/1.322965
10.1007/s12274-022-5119-3
10.1109/JSTQE.2016.2514784
10.1021/nl403328s
10.1088/0957-0233/12/11/304
10.1038/s41377-018-0011-3
10.1021/acs.nanolett.1c03376
10.1038/s41563-023-01556-7
10.1021/acs.nanolett.1c02381
10.3788/COL202119.081405
10.1038/s41565-018-0145-8
10.3788/COL202220.093201
10.1002/advs.202201842
10.1038/s41377-022-01008-y
10.1038/nphoton.2010.186
10.1364/OPTICA.444105
10.1038/nphoton.2011.177
10.1002/adom.201800579
10.1021/nl401561r
10.1126/science.286.5444.1507
10.1063/5.0088275
10.1016/j.apsusc.2018.04.117
10.1038/s41566-020-00728-0
10.1038/s41578-022-00440-1
10.1364/OL.16.001683
10.1038/nmeth.4218
10.1021/acs.nanolett.7b05033
10.1038/ncomms15354
10.1002/lpor.201900409
10.1088/2053-1583/aab390
10.1103/PhysRevB.99.205404
10.1364/OE.24.021105
10.1038/nphoton.2012.361
10.1021/jacs.5b04305
10.1038/s41598-017-03667-z
10.1002/bem.22117
10.1364/OL.14.000955
10.1002/adom.201900631
10.3788/COL202119.060003
10.1021/acsphotonics.0c01759
10.1515/nanoph-2018-0106
10.1002/adom.202101432
10.1088/2053-1583/abaf68
10.1002/adfm.201800785
10.1016/j.molliq.2021.115347
10.1117/1.3041159
10.1002/advs.202003834
10.1002/inf2.12024
10.3788/COL202321.091401
10.1021/acs.nanolett.1c01975
10.1002/smll.202103938
10.1016/j.apsusc.2022.153240
10.1038/s41467-021-21267-4
10.1088/1367-2630/ac231c
10.1016/j.optmat.2018.03.046
10.1002/adom.202001671
10.1117/1.AP.4.3.030502
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202311621
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38618662
10_1002_smll_202311621
SMLL202311621
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20210207
– fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 62205054; 62375051
– fundername: National Natural Science Foundation of China
  grantid: 62205054
– fundername: National Natural Science Foundation of China
  grantid: 62375051
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20210207
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3731-c6620a5b8125cd52985dbe77178d2896c7094bc861efb83643cd014a2e6526273
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 09:54:17 EDT 2025
Wed Aug 13 06:06:05 EDT 2025
Mon Jul 21 05:46:09 EDT 2025
Thu Jul 24 02:05:55 EDT 2025
Thu Apr 24 23:08:43 EDT 2025
Wed Jan 22 17:14:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords nonlinear optics
THG
SHG
2D materials
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-c6620a5b8125cd52985dbe77178d2896c7094bc861efb83643cd014a2e6526273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0872-4794
PMID 38618662
PQID 3095503973
PQPubID 1046358
PageCount 21
ParticipantIDs proquest_miscellaneous_3039237516
proquest_journals_3095503973
pubmed_primary_38618662
crossref_citationtrail_10_1002_smll_202311621
crossref_primary_10_1002_smll_202311621
wiley_primary_10_1002_smll_202311621_SMLL202311621
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1991; 16
2002; 19
1960; 4
2020; 20
2012; 8434
2019; 99
2010; 105
2019; 11
2018; 448
2019; 13
2021; 328
2019; 14
2022; 23
2022; 24
2019; 567
1999; 286
2020; 15
2019; 19
2020; 14
2007; 70
2020; 13
2022; 20
2021; 441
2015; 80
2022; 22
2013; 7
2016; 380
1997; 6
2018; 43
2012; 10
2011; 474
2018; 7
1984; 50
2018; 6
2018; 8
2018; 39
2018; 5
2009; 97
2015; 137
2020; 91
2002; 420
2014; 16
2016; 41
2023; 614
2009; 19
2010; 4
1992; 1
2019; 8
2019; 7
2018; 29
2018; 28
2019; 9
2019; 4
2022; 591
1976; 47
2019; 6
2019; 31
2013; 87
2019; 2
2019; 1
2018; 104
2015; 120
2015; 54
2016; 10
2000; 70
2020; 32
2021; 50
2004; 306
2011; 5
2007; 15
2023; 42
2016; 4
2016; 5
2018; 18
2016; 7
2021; 54
2020; 31
1990; 26
2022; 4
2019; 44
2022; 6
2022; 7
2022; 9
2022; 13
2022; 14
2022; 11
2018; 93
2018; 12
2016; 28
2018; 98
2022; 16
2016; 8
2016; 9
2019; 299
2016; 24
2003; 21
2017; 546
2018; 13
2017; 7
2017; 8
2023; 35
2021; 21
2013; 25
2021; 23
2023; 33
2017; 4
2020; 63
2016; 108
2023; 9
2020; 367
2020; 124
2011; 17
2017; 9
2016; 79
2023; 20
2014; 1
2020; 7
2023; 21
2021; 915
1997; 104
2021; 32
2020; 4
2020; 3
2021; 31
2014; 4
2023; 22
2021; 33
2020; 1
1961; 7
2015; 40
2013; 13
2019; 115
2005; 307
2016; 353
2001; 12
2012; 336
2018; 76
2009; 324
2018; 79
2021; 9
2021; 8
2023; 10
2015; 1
2021; 7
2015; 15
2021; 4
2023; 14
2015; 5
2021; 3
2023; 11
2023; 17
2013; 46
2023; 16
2008; 16
2017; 23
2016; 529
2008; 13
2017; 29
2015; 9
2009; 26
2021; 14
2017; 95
2021; 15
2021; 10
2021; 12
2017; 14
2017; 17
2004; 14
2021; 17
2021; 19
2009; 9
2019; 135
2009; 4
2007; 43
2024; 49
1989; 14
1996; 43
2012; 86
e_1_2_10_40_1
e_1_2_10_109_1
Xiao Q. (e_1_2_10_6_1) 2023; 35
Deng M. (e_1_2_10_17_1) 2021; 9
e_1_2_10_210_1
e_1_2_10_233_1
e_1_2_10_158_1
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_245_1
e_1_2_10_147_1
e_1_2_10_219_1
Zhao L. (e_1_2_10_223_1) 2014; 1
Yang H. (e_1_2_10_57_1) 2022; 13
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_185_1
e_1_2_10_41_1
e_1_2_10_211_1
e_1_2_10_234_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
Jia L. (e_1_2_10_134_1) 2023; 14
e_1_2_10_200_1
e_1_2_10_246_1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_42_1
e_1_2_10_212_1
e_1_2_10_235_1
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
e_1_2_10_30_1
e_1_2_10_247_1
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_236_1
e_1_2_10_213_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_240_1
e_1_2_10_31_1
e_1_2_10_225_1
e_1_2_10_248_1
e_1_2_10_202_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_237_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_241_1
e_1_2_10_32_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_249_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
Eggleton B. J. (e_1_2_10_214_1) 2012; 8434
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_230_1
e_1_2_10_215_1
e_1_2_10_238_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_242_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_204_1
e_1_2_10_227_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_231_1
e_1_2_10_239_1
e_1_2_10_216_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
Wang L. (e_1_2_10_190_1) 2019; 9
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_243_1
e_1_2_10_145_1
Glinka Y. D. (e_1_2_10_174_1) 2015; 1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
Xia C. Q. (e_1_2_10_139_1) 2016; 41
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_108_1
e_1_2_10_217_1
Lee S. (e_1_2_10_101_1) 2021; 21
e_1_2_10_232_1
e_1_2_10_157_1
e_1_2_10_229_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_111_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
Wang B. H. (e_1_2_10_12_1) 2023; 42
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_221_1
e_1_2_10_244_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 79
  year: 2016
  publication-title: Rep. Prog. Phys.
– volume: 4
  year: 2021
  publication-title: InfoMat
– volume: 7
  start-page: 243
  year: 2018
  publication-title: Nanophotonics
– volume: 15
  start-page: 837
  year: 2021
  publication-title: Nat. Photonics
– volume: 4
  year: 2022
  publication-title: Adv. Photonics
– volume: 25
  year: 2013
  publication-title: J. Phys.: Condens. Matter
– volume: 54
  start-page: 1185
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 118
  year: 1961
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 6404
  year: 2022
  publication-title: ACS Nano
– volume: 17
  start-page: 2148
  year: 2023
  publication-title: ACS Nano
– volume: 474
  start-page: 64
  year: 2011
  publication-title: Nature
– volume: 15
  start-page: 2001
  year: 2015
  publication-title: Nano Lett.
– volume: 448
  start-page: 416
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 567
  start-page: 323
  year: 2019
  publication-title: Nature
– volume: 299
  start-page: 654
  year: 2019
  publication-title: Electrochim. Acta
– volume: 420
  start-page: 153
  year: 2002
  publication-title: Nature
– volume: 50
  start-page: 256
  year: 1984
  publication-title: Opt. Commun.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 307
  start-page: 400
  year: 2005
  publication-title: Science
– volume: 4
  start-page: 803
  year: 2009
  publication-title: ACS Nano
– volume: 4
  year: 2014
  publication-title: Sci. Rep.
– volume: 29
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 43
  start-page: 1196
  year: 2007
  publication-title: Electron. Lett.
– volume: 16
  year: 2022
  publication-title: Laser Photonics Rev.
– volume: 9
  year: 2022
  publication-title: Appl. Phys. Rev.
– volume: 26
  start-page: 760
  year: 1990
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 87
  year: 2013
  publication-title: Phys. Rew. B
– volume: 135
  year: 2019
  publication-title: Superlattices Microstruct.
– volume: 24
  year: 2016
  publication-title: Opt. Express
– volume: 91
  year: 2020
  publication-title: Rev. Sci. Instrum.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 12
  start-page: 5628
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  start-page: 8441
  year: 2013
  publication-title: ACS Nano
– volume: 9
  start-page: 2423
  year: 2009
  publication-title: Nano Lett.
– volume: 8
  start-page: 893
  year: 2017
  publication-title: Nat. Commun.
– volume: 286
  start-page: 1507
  year: 1999
  publication-title: Science
– volume: 4
  start-page: 1466
  year: 2017
  publication-title: ACS Photonics
– volume: 529
  start-page: 1
  year: 2016
  publication-title: Nature
– volume: 28
  year: 2016
  publication-title: Adv. Mater.
– volume: 19
  start-page: 289
  year: 2002
  publication-title: Opt. Soc. Am
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 84
  year: 2022
  publication-title: Symmetry
– volume: 10
  start-page: 227
  year: 2016
  publication-title: Nat. Photonics
– volume: 21
  start-page: 8872
  year: 2021
  publication-title: Nano Lett.
– volume: 380
  start-page: 304
  year: 2016
  publication-title: Phys. Lett. A
– volume: 7
  start-page: 842
  year: 2013
  publication-title: Nat. Photonics
– volume: 16
  start-page: 3128
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 3485
  year: 2018
  publication-title: ACS Photonics
– volume: 8
  start-page: 824
  year: 2021
  publication-title: ACS Photonics
– volume: 336
  start-page: 1287
  year: 2012
  publication-title: Science
– volume: 104
  start-page: 83
  year: 2018
  publication-title: Opt. Laser Technol.
– volume: 11
  start-page: 1238
  year: 2023
  publication-title: Photonics Res.
– volume: 21
  start-page: 4335
  year: 2021
  publication-title: Nano Lett.
– volume: 39
  start-page: 257
  year: 2018
  publication-title: Bioelectromagnetics
– volume: 8
  year: 2021
  publication-title: Front. Mater.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 24
  year: 2022
  publication-title: New J. Phys.
– volume: 12
  start-page: 6894
  year: 2021
  publication-title: Nat. Commun.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 3379
  year: 2018
  publication-title: ACS Photonics
– volume: 17
  start-page: 995
  year: 2021
  publication-title: Nat. Phys.
– volume: 324
  start-page: 1530
  year: 2009
  publication-title: Science
– volume: 8
  start-page: 63
  year: 2018
  publication-title: Nanophotonics
– volume: 12
  start-page: 1083
  year: 2021
  publication-title: Nat. Commun.
– volume: 21
  start-page: 1369
  year: 2003
  publication-title: Nat. Biotechnol.
– volume: 546
  start-page: 622
  year: 2017
  publication-title: Nature
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2012
  publication-title: Chin. Opt. Lett.
– volume: 32
  year: 2020
  publication-title: J. Phys.: Condens. Matter
– volume: 42
  start-page: 659
  year: 2023
  publication-title: J. Infrared Millimeter Waves
– volume: 12
  start-page: 1777
  year: 2001
  publication-title: Meas. Sci. Technol.
– volume: 14
  start-page: 37
  year: 2020
  publication-title: Nat. Photonics
– volume: 14
  start-page: 4845
  year: 2023
  publication-title: Nat. Commun.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 16
  start-page: 1683
  year: 1991
  publication-title: Opt. Lett.
– volume: 44
  start-page: 5214
  year: 2019
  publication-title: Opt. Lett.
– volume: 22
  start-page: 1094
  year: 2023
  publication-title: Nat. Mater.
– volume: 13
  start-page: 5660
  year: 2013
  publication-title: Nano Lett.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 16
  year: 2014
  publication-title: New J. Phys.
– volume: 9
  year: 2021
  publication-title: Photonics Res.
– volume: 12
  start-page: 430
  year: 2018
  publication-title: Nat. Photonics
– volume: 13
  start-page: 3329
  year: 2013
  publication-title: Nano Lett.
– volume: 1
  start-page: 1
  year: 2020
  publication-title: PhotoniX
– volume: 15
  start-page: 193
  year: 2020
  publication-title: Nat. Photonics
– volume: 1
  start-page: 317
  year: 2019
  publication-title: InfoMat
– volume: 13
  start-page: 129
  year: 2020
  publication-title: Front. Optoelectron.
– volume: 120
  start-page: 653
  year: 2015
  publication-title: Appl. Phys. B
– volume: 41
  start-page: 1122
  year: 2016
  publication-title: Opt. Express
– volume: 23
  start-page: 195
  year: 2017
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 14
  start-page: 5310
  year: 2023
  publication-title: Nat. Commun.
– volume: 23
  year: 2022
  publication-title: Mater. Today Phys.
– volume: 70
  start-page: 587
  year: 2000
  publication-title: Appl. Phys. B
– volume: 328
  year: 2021
  publication-title: J. Mol. Liq.
– volume: 4
  start-page: 8
  year: 2016
  publication-title: ACS Photonics
– volume: 4
  start-page: 611
  year: 2010
  publication-title: Nat. Photonics
– volume: 7
  start-page: 377
  year: 2018
  publication-title: Light Sci. Appl.
– volume: 13
  year: 2008
  publication-title: J. Biomed. Opt.
– volume: 4
  start-page: 564
  year: 1960
  publication-title: Phys. Rev. Lett.
– volume: 26
  start-page: 420
  year: 2009
  publication-title: J. Opt. Soc.Am. B
– volume: 13
  start-page: 5123
  year: 2022
  publication-title: Nat. Commun.
– volume: 40
  start-page: 3480
  year: 2015
  publication-title: Opt. Lett.
– volume: 10
  start-page: 3944
  year: 2023
  publication-title: ACS Photonics
– volume: 43
  start-page: 44
  year: 1996
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 10
  year: 2021
  publication-title: Light Sci. Appl.
– volume: 19
  start-page: 2634
  year: 2019
  publication-title: Nano Lett.
– volume: 79
  start-page: 220
  year: 2018
  publication-title: Opt. Mater.
– volume: 15
  year: 2021
  publication-title: Laser Photonics Rev.
– volume: 93
  start-page: 87
  year: 2018
  publication-title: Infrared Phys. Technol.
– volume: 12
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 614
  start-page: 75
  year: 2023
  publication-title: Nature
– volume: 13
  start-page: 754
  year: 2019
  publication-title: Nat. Photonics
– volume: 46
  start-page: 2656
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 108
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 4287
  year: 2022
  publication-title: Nano Lett.
– volume: 15
  year: 2007
  publication-title: Opt. Express
– volume: 9
  start-page: 1543
  year: 2016
  publication-title: Nano Res.
– volume: 9
  start-page: 2600
  year: 2022
  publication-title: ACS Photonics
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 21
  start-page: 7405
  year: 2021
  publication-title: Nano Lett.
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 12
  year: 2018
  publication-title: Laser Photonics Rev.
– volume: 8
  start-page: 2713
  year: 2021
  publication-title: ACS Photonics
– volume: 80
  start-page: 80
  year: 2015
  publication-title: Superlattices Microstruct.
– volume: 95
  year: 2017
  publication-title: Phys. Rew. B
– volume: 76
  start-page: 69
  year: 2018
  publication-title: Opt. Mater.
– volume: 915
  start-page: 1
  year: 2021
  publication-title: Phys. Rep.
– volume: 9
  year: 2019
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– volume: 18
  start-page: 1344
  year: 2018
  publication-title: Nano Lett.
– volume: 17
  start-page: 607
  year: 2023
  publication-title: Nat. Photonics
– volume: 98
  year: 2018
  publication-title: Phys. Rew. B
– volume: 6
  start-page: 251
  year: 1997
  publication-title: J. Nonlinear Opt. Phys. Mater.
– volume: 3
  start-page: 1110
  year: 2021
  publication-title: InfoMat
– volume: 54
  start-page: 2775
  year: 2021
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 36
  year: 2020
  publication-title: InfoMat
– volume: 5
  year: 2018
  publication-title: 2D Mater.
– volume: 14
  year: 2023
  publication-title: Micromachines
– volume: 49
  start-page: 351
  year: 2024
  publication-title: Opt. Lett.
– volume: 21
  start-page: 6321
  year: 2021
  publication-title: Nano Lett.
– volume: 43
  start-page: 304
  year: 2018
  publication-title: Opt. Lett.
– volume: 20
  year: 2023
  publication-title: Phys. Rev. Appl.
– volume: 9
  start-page: 5806
  year: 2017
  publication-title: Nanoscale
– volume: 4
  start-page: 417
  year: 2010
  publication-title: Nat. Photonics
– volume: 14
  start-page: 955
  year: 1989
  publication-title: Opt. Lett.
– volume: 7
  start-page: 93
  year: 2013
  publication-title: Nat. Photonics
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 9
  start-page: 6544
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 17
  year: 2021
  publication-title: Small
– volume: 19
  year: 2021
  publication-title: Chin. Opt. Lett.
– volume: 1
  start-page: 1
  year: 2014
  publication-title: Mil. Med. Res.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1343
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 17
  start-page: 5027
  year: 2017
  publication-title: Nano Lett.
– volume: 9
  start-page: 518
  year: 2022
  publication-title: ACS Photonics
– volume: 19
  start-page: 3077
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 4
  year: 2020
  publication-title: npj 2D Mater. Appl.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 23
  year: 2021
  publication-title: New J. Phys.
– volume: 9
  start-page: 512
  year: 2022
  publication-title: Optica
– volume: 353
  year: 2016
  publication-title: Science
– volume: 99
  year: 2019
  publication-title: Phys. Rew. B
– volume: 13
  year: 2022
  publication-title: Micromachines
– volume: 14
  start-page: 374
  year: 2017
  publication-title: Nat. Methods
– volume: 8
  start-page: 1922
  year: 2021
  publication-title: ACS Photonics
– volume: 8434
  year: 2012
  publication-title: Nonlinear Opt. (Mclc) Sect. B
– volume: 20
  start-page: 5309
  year: 2020
  publication-title: Nano Lett.
– volume: 11
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 7
  start-page: 3352
  year: 2017
  publication-title: Sci. Rep.
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 4
  start-page: 822
  year: 2010
  publication-title: Nat. Photonics
– volume: 13
  year: 2019
  publication-title: Laser Photonics Rev.
– volume: 12
  start-page: 3733
  year: 2021
  publication-title: Nat. Commun.
– volume: 17
  start-page: 5
  year: 2011
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 5
  year: 2016
  publication-title: Light Sci. Appl.
– volume: 5
  start-page: 554
  year: 2011
  publication-title: Nat. Photonics
– volume: 8
  start-page: 1253
  year: 2017
  publication-title: Nat. Commun.
– volume: 13
  start-page: 583
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 6511
  year: 2019
  publication-title: Nano Lett.
– volume: 2
  start-page: 55
  year: 2019
  publication-title: ACS Mater. Lett.
– volume: 50
  start-page: 570
  year: 2021
  publication-title: Mater. Today
– volume: 21
  start-page: 4305
  year: 2021
  publication-title: ACS Photonics
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 16
  start-page: 3408
  year: 2008
  publication-title: Opt. Express
– volume: 14
  year: 2020
  publication-title: Laser Photonics Rev.
– volume: 21
  year: 2023
  publication-title: Chin. Opt. Lett.
– volume: 137
  start-page: 7994
  year: 2015
  publication-title: J. Am. Chem. Soc
– volume: 8
  start-page: 618
  year: 2016
  publication-title: Adv. Opt. Photonics
– volume: 15
  start-page: 6
  year: 2020
  publication-title: Nat. Photonics
– volume: 63
  start-page: 1489
  year: 2020
  publication-title: Sci. China Mater.
– volume: 97
  start-page: 679
  year: 2009
  publication-title: Appl. Phys. B
– volume: 4
  start-page: 2144
  year: 2017
  publication-title: ACS Photonics
– volume: 14
  start-page: 2224
  year: 2021
  publication-title: Nano Res.
– volume: 86
  year: 2012
  publication-title: Phys. Rew. B
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 591
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 367
  start-page: 903
  year: 2020
  publication-title: Science
– volume: 47
  start-page: 2497
  year: 1976
  publication-title: J. Appl. Phys.
– volume: 14
  start-page: 2580
  year: 2023
  publication-title: Nat. Commun.
– volume: 441
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 70
  start-page: 1325
  year: 2007
  publication-title: Rep. Prog. Phys.
– volume: 11
  start-page: 2577
  year: 2019
  publication-title: Nanoscale
– volume: 124
  start-page: 7979
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 10
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 7
  start-page: 1727
  year: 2016
  publication-title: Biomed. Opt. Express
– volume: 104
  start-page: 1
  year: 1997
  publication-title: Solid State Commun.
– volume: 8
  year: 2018
  publication-title: AIP Adv.
– volume: 10
  start-page: 146
  year: 2021
  publication-title: Light Sci. Appl.
– volume: 8
  start-page: 78
  year: 2019
  publication-title: Photonics Res.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 16
  start-page: 5803
  year: 2022
  publication-title: Nano Res.
– volume: 14
  start-page: 610
  year: 2004
  publication-title: Curr. Opin. Neurobiol.
– volume: 7
  year: 2020
  publication-title: 2D Mater.
– volume: 115
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 2506
  year: 2020
  publication-title: ACS Photonics
– volume: 7
  start-page: 778
  year: 2022
  publication-title: Nat. Rev. Mater.
– volume: 11
  year: 2022
  publication-title: Light Sci. Appl.
– volume: 9
  start-page: 7142
  year: 2015
  publication-title: ACS Nano
– volume: 4
  start-page: 552
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 1
  start-page: 145
  year: 1992
  publication-title: Pure Appl. Opt.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 1
  year: 2015
  publication-title: Phys. Rew. B
– volume: 20
  year: 2022
  publication-title: Chin. Opt. Lett.
– volume: 14
  start-page: 37
  year: 2019
  publication-title: Nat. Photonics
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 4
  year: 2016
  publication-title: 2D Mater.
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_10_196_1
  doi: 10.1007/s40843-020-1289-7
– ident: e_1_2_10_158_1
  doi: 10.1021/acsphotonics.8b00685
– ident: e_1_2_10_10_1
  doi: 10.1038/s41566-019-0547-7
– ident: e_1_2_10_11_1
  doi: 10.1002/smtd.202101435
– ident: e_1_2_10_70_1
  doi: 10.1038/s41467-023-38344-5
– ident: e_1_2_10_244_1
  doi: 10.1002/adma.202006415
– ident: e_1_2_10_156_1
  doi: 10.1088/0953-8984/25/19/195302
– ident: e_1_2_10_167_1
  doi: 10.1063/1.5052417
– ident: e_1_2_10_184_1
  doi: 10.1021/acsphotonics.2c00222
– ident: e_1_2_10_9_1
  doi: 10.3788/COL202220.073701
– ident: e_1_2_10_44_1
  doi: 10.1364/OL.44.005214
– volume: 8434
  year: 2012
  ident: e_1_2_10_214_1
  publication-title: Nonlinear Opt. (Mclc) Sect. B
– volume: 13
  year: 2022
  ident: e_1_2_10_57_1
  publication-title: Micromachines
– ident: e_1_2_10_186_1
  doi: 10.1364/OL.44.005214
– ident: e_1_2_10_29_1
  doi: 10.1515/nanoph-2017-0030
– ident: e_1_2_10_76_1
  doi: 10.1038/s41467-023-40602-5
– ident: e_1_2_10_188_1
  doi: 10.1021/acsnano.2c08147
– ident: e_1_2_10_119_1
  doi: 10.1021/acsphotonics.7b00631
– ident: e_1_2_10_13_1
  doi: 10.1038/nphoton.2016.15
– ident: e_1_2_10_3_1
  doi: 10.1002/adfm.202110119
– volume: 1
  start-page: 1
  year: 2014
  ident: e_1_2_10_223_1
  publication-title: Mil. Med. Res.
– ident: e_1_2_10_62_1
  doi: 10.1038/s41566-020-00729-z
– ident: e_1_2_10_150_1
  doi: 10.1109/58.484462
– ident: e_1_2_10_187_1
  doi: 10.1021/acsnano.9b06782
– ident: e_1_2_10_98_1
  doi: 10.1103/PhysRevApplied.20.044023
– ident: e_1_2_10_178_1
  doi: 10.1088/1367-2630/16/5/053014
– ident: e_1_2_10_191_1
  doi: 10.1002/adom.202101963
– ident: e_1_2_10_93_1
  doi: 10.1002/adfm.202105259
– ident: e_1_2_10_100_1
  doi: 10.1002/adfm.202106228
– ident: e_1_2_10_39_1
  doi: 10.1021/acsphotonics.1c00767
– ident: e_1_2_10_220_1
  doi: 10.1039/C7NR00971B
– ident: e_1_2_10_69_1
  doi: 10.1021/acs.nanolett.1c04359
– ident: e_1_2_10_46_1
  doi: 10.1002/lpor.202100117
– ident: e_1_2_10_83_1
  doi: 10.1021/acsphotonics.1c00525
– ident: e_1_2_10_125_1
  doi: 10.1007/s003400050866
– ident: e_1_2_10_25_1
  doi: 10.1038/nphoton.2013.304
– ident: e_1_2_10_105_1
  doi: 10.1038/s41699-019-0135-1
– ident: e_1_2_10_124_1
  doi: 10.1016/j.optlastec.2018.02.018
– ident: e_1_2_10_108_1
  doi: 10.1038/s41567-021-01275-3
– ident: e_1_2_10_144_1
  doi: 10.1364/OL.43.000304
– ident: e_1_2_10_231_1
  doi: 10.1038/s41377-021-00588-5
– ident: e_1_2_10_159_1
  doi: 10.1021/acsphotonics.1c01358
– ident: e_1_2_10_210_1
  doi: 10.1039/C8NR09368G
– ident: e_1_2_10_19_1
  doi: 10.1126/science.1102896
– ident: e_1_2_10_114_1
  doi: 10.1142/S0218863597000204
– ident: e_1_2_10_140_1
  doi: 10.1364/OE.15.013351
– ident: e_1_2_10_4_1
  doi: 10.1103/PhysRevLett.4.564
– ident: e_1_2_10_181_1
  doi: 10.1088/1361-648X/ab6cbf
– ident: e_1_2_10_82_1
  doi: 10.3788/COL202220.032701
– ident: e_1_2_10_66_1
  doi: 10.1038/s41566-018-0175-7
– ident: e_1_2_10_95_1
  doi: 10.1103/PhysRevB.98.115426
– ident: e_1_2_10_137_1
  doi: 10.3788/COL202220.031901
– ident: e_1_2_10_238_1
  doi: 10.1002/lpor.201800215
– ident: e_1_2_10_78_1
  doi: 10.1021/acsphotonics.6b00639
– ident: e_1_2_10_99_1
  doi: 10.1021/acs.nanolett.9b00487
– ident: e_1_2_10_226_1
  doi: 10.1109/JSTQE.2010.2047715
– ident: e_1_2_10_221_1
  doi: 10.1364/PRJ.483172
– ident: e_1_2_10_245_1
  doi: 10.1038/nature22986
– ident: e_1_2_10_205_1
  doi: 10.1002/lpor.201800282
– ident: e_1_2_10_248_1
  doi: 10.1038/nature16472
– ident: e_1_2_10_183_1
  doi: 10.1103/PhysRevB.95.165406
– ident: e_1_2_10_197_1
  doi: 10.1002/lpor.201900416
– ident: e_1_2_10_8_1
  doi: 10.1364/PRJ.8.000078
– ident: e_1_2_10_152_1
  doi: 10.1016/0030-4018(84)90328-6
– ident: e_1_2_10_68_1
  doi: 10.1038/s41377-020-00459-5
– ident: e_1_2_10_71_1
  doi: 10.1038/s41467-021-23436-x
– ident: e_1_2_10_116_1
  doi: 10.1007/s00340-009-3656-z
– ident: e_1_2_10_109_1
  doi: 10.1016/j.physrep.2021.02.003
– ident: e_1_2_10_237_1
  doi: 10.1049/el:20072253
– ident: e_1_2_10_133_1
  doi: 10.1038/srep05530
– ident: e_1_2_10_195_1
  doi: 10.1016/j.spmi.2014.10.019
– ident: e_1_2_10_110_1
  doi: 10.1016/j.electacta.2019.01.053
– ident: e_1_2_10_157_1
  doi: 10.1088/2053-1583/4/1/011006
– ident: e_1_2_10_209_1
  doi: 10.1021/acsmaterialslett.9b00419
– ident: e_1_2_10_31_1
  doi: 10.1021/acs.nanolett.0c01603
– ident: e_1_2_10_243_1
  doi: 10.1007/s12200-020-1058-3
– ident: e_1_2_10_63_1
  doi: 10.1038/s41566-019-0492-5
– ident: e_1_2_10_163_1
  doi: 10.1038/srep10334
– ident: e_1_2_10_131_1
  doi: 10.1364/BOE.7.001727
– ident: e_1_2_10_216_1
  doi: 10.1038/s41566-021-00859-y
– ident: e_1_2_10_241_1
  doi: 10.1038/s41467-023-41079-y
– ident: e_1_2_10_79_1
  doi: 10.1002/adma.201603119
– ident: e_1_2_10_53_1
  doi: 10.1002/adfm.200901007
– ident: e_1_2_10_151_1
  doi: 10.1364/OL.502953
– ident: e_1_2_10_65_1
  doi: 10.1021/nn4042909
– ident: e_1_2_10_193_1
  doi: 10.1016/j.infrared.2018.07.028
– volume: 9
  year: 2021
  ident: e_1_2_10_17_1
  publication-title: Photonics Res.
– ident: e_1_2_10_107_1
  doi: 10.1021/acsphotonics.3c00722
– ident: e_1_2_10_217_1
  doi: 10.3788/COL202321.021407
– ident: e_1_2_10_59_1
  doi: 10.1126/science.aba1416
– ident: e_1_2_10_206_1
  doi: 10.1126/science.1106612
– ident: e_1_2_10_90_1
  doi: 10.1038/s41467-021-27213-8
– ident: e_1_2_10_182_1
  doi: 10.1021/acsnano.5b03480
– ident: e_1_2_10_168_1
  doi: 10.3389/fmats.2021.775048
– ident: e_1_2_10_232_1
  doi: 10.1021/acs.nanolett.9b02740
– ident: e_1_2_10_28_1
  doi: 10.1021/acsnano.2c00514
– ident: e_1_2_10_47_1
  doi: 10.1038/nphoton.2010.154
– ident: e_1_2_10_117_1
  doi: 10.1088/0034-4885/79/3/036401
– ident: e_1_2_10_177_1
  doi: 10.1103/PhysRevLett.105.097401
– ident: e_1_2_10_27_1
  doi: 10.1063/1.4941998
– ident: e_1_2_10_34_1
  doi: 10.1002/adfm.201803807
– ident: e_1_2_10_202_1
  doi: 10.1103/PhysRevLett.105.057401
– ident: e_1_2_10_229_1
  doi: 10.1186/s43074-020-00020-y
– ident: e_1_2_10_42_1
  doi: 10.1016/j.mtphys.2022.100649
– ident: e_1_2_10_75_1
  doi: 10.1038/s41586-022-05610-3
– ident: e_1_2_10_185_1
  doi: 10.1002/adfm.202302051
– ident: e_1_2_10_1_1
  doi: 10.1002/advs.201802373
– ident: e_1_2_10_5_1
  doi: 10.1103/PhysRevLett.7.118
– ident: e_1_2_10_200_1
  doi: 10.1016/j.optmat.2017.12.023
– volume: 21
  start-page: 4305
  year: 2021
  ident: e_1_2_10_101_1
  publication-title: ACS Photonics
– ident: e_1_2_10_49_1
  doi: 10.1126/science.1218497
– ident: e_1_2_10_233_1
  doi: 10.1021/nl504860z
– ident: e_1_2_10_129_1
  doi: 10.1016/j.conb.2004.08.013
– ident: e_1_2_10_15_1
  doi: 10.1021/acs.accounts.1c00188
– ident: e_1_2_10_56_1
  doi: 10.1038/lsa.2016.131
– ident: e_1_2_10_136_1
  doi: 10.1021/nl901101g
– ident: e_1_2_10_112_1
  doi: 10.1103/PhysRevB.86.035327
– ident: e_1_2_10_146_1
  doi: 10.1063/1.5144482
– ident: e_1_2_10_208_1
  doi: 10.1002/inf2.12236
– volume: 1
  year: 2015
  ident: e_1_2_10_174_1
  publication-title: Phys. Rew. B
– ident: e_1_2_10_7_1
  doi: 10.1002/adfm.202107768
– ident: e_1_2_10_172_1
  doi: 10.1039/D0TC05607C
– ident: e_1_2_10_247_1
  doi: 10.1126/science.aac9439
– ident: e_1_2_10_170_1
  doi: 10.1016/S0038-1098(97)00269-X
– ident: e_1_2_10_97_1
  doi: 10.1021/acs.nanolett.1c00891
– ident: e_1_2_10_142_1
  doi: 10.1021/acsphotonics.8b00653
– ident: e_1_2_10_115_1
  doi: 10.3788/COL201210.101902
– ident: e_1_2_10_73_1
  doi: 10.1126/sciadv.abd4623
– ident: e_1_2_10_175_1
  doi: 10.1016/j.physleta.2015.10.044
– ident: e_1_2_10_20_1
  doi: 10.1007/s12274-016-1034-9
– ident: e_1_2_10_230_1
  doi: 10.1126/sciadv.ade7968
– ident: e_1_2_10_246_1
  doi: 10.1063/1.5131165
– ident: e_1_2_10_52_1
  doi: 10.1021/acsphotonics.0c00819
– ident: e_1_2_10_33_1
  doi: 10.1088/1367-2630/ac90e2
– ident: e_1_2_10_38_1
  doi: 10.1002/inf2.12148
– ident: e_1_2_10_48_1
  doi: 10.1038/nphoton.2010.256
– ident: e_1_2_10_85_1
  doi: 10.3390/sym14010084
– ident: e_1_2_10_138_1
  doi: 10.1364/OE.16.003408
– ident: e_1_2_10_21_1
  doi: 10.1038/s41578-019-0124-1
– ident: e_1_2_10_80_1
  doi: 10.1016/j.ccr.2021.213927
– ident: e_1_2_10_169_1
  doi: 10.1021/acsnano.2c03566
– ident: e_1_2_10_228_1
  doi: 10.1038/s41566-023-01195-z
– ident: e_1_2_10_135_1
  doi: 10.1002/lpor.202100726
– volume: 35
  year: 2023
  ident: e_1_2_10_6_1
  publication-title: Adv. Mater.
– ident: e_1_2_10_94_1
  doi: 10.1021/acsphotonics.8b00685
– ident: e_1_2_10_43_1
  doi: 10.1002/adma.202101589
– ident: e_1_2_10_106_1
  doi: 10.3788/COL202321.043801
– ident: e_1_2_10_225_1
  doi: 10.1038/s41467-022-32739-6
– ident: e_1_2_10_96_1
  doi: 10.1002/adfm.202006788
– ident: e_1_2_10_40_1
  doi: 10.1002/inf2.12274
– ident: e_1_2_10_224_1
  doi: 10.1088/0034-4885/70/8/R02
– ident: e_1_2_10_141_1
  doi: 10.1007/s00340-015-6178-x
– ident: e_1_2_10_87_1
  doi: 10.1016/j.mattod.2021.07.023
– ident: e_1_2_10_171_1
  doi: 10.1021/acs.nanolett.7b02268
– ident: e_1_2_10_16_1
  doi: 10.1002/adma.201606128
– ident: e_1_2_10_103_1
  doi: 10.1007/s12274-020-3197-7
– ident: e_1_2_10_123_1
  doi: 10.1364/JOSAB.19.000289
– ident: e_1_2_10_128_1
  doi: 10.1021/acs.jpcc.9b11848
– ident: e_1_2_10_36_1
  doi: 10.1038/nature10067
– ident: e_1_2_10_148_1
  doi: 10.1364/JOSAB.26.000420
– ident: e_1_2_10_61_1
  doi: 10.1126/science.1158877
– ident: e_1_2_10_189_1
  doi: 10.1002/lpor.201900052
– ident: e_1_2_10_130_1
  doi: 10.1038/nbt899
– ident: e_1_2_10_37_1
  doi: 10.1038/s41586-019-1013-x
– ident: e_1_2_10_240_1
  doi: 10.1016/j.spmi.2019.106244
– ident: e_1_2_10_179_1
  doi: 10.1021/acs.jpclett.7b00140
– ident: e_1_2_10_81_1
  doi: 10.1002/adma.202100113
– ident: e_1_2_10_164_1
  doi: 10.1002/anie.201409837
– ident: e_1_2_10_74_1
  doi: 10.1002/adom.202201688
– ident: e_1_2_10_239_1
  doi: 10.1021/acsphotonics.7b00231
– ident: e_1_2_10_222_1
  doi: 10.1038/nature01175
– ident: e_1_2_10_249_1
  doi: 10.1038/s41467-017-01351-4
– ident: e_1_2_10_35_1
  doi: 10.1364/AOP.8.000618
– ident: e_1_2_10_102_1
  doi: 10.1039/D3EE01047C
– ident: e_1_2_10_113_1
  doi: 10.1109/3.53394
– ident: e_1_2_10_51_1
  doi: 10.1021/acs.jpclett.1c02770
– ident: e_1_2_10_22_1
  doi: 10.1002/adma.201902685
– ident: e_1_2_10_149_1
  doi: 10.1088/0963-9659/1/3/004
– ident: e_1_2_10_176_1
  doi: 10.1103/PhysRevB.87.121406
– ident: e_1_2_10_26_1
  doi: 10.1002/lpor.202100322
– ident: e_1_2_10_60_1
  doi: 10.1038/s41467-017-00749-4
– ident: e_1_2_10_153_1
  doi: 10.1002/adom.201701334
– ident: e_1_2_10_24_1
  doi: 10.1021/nn901703e
– volume: 42
  start-page: 659
  year: 2023
  ident: e_1_2_10_12_1
  publication-title: J. Infrared Millimeter Waves
– ident: e_1_2_10_204_1
  doi: 10.1002/adom.202100625
– ident: e_1_2_10_242_1
  doi: 10.1021/ar4000955
– ident: e_1_2_10_77_1
  doi: 10.1038/s41467-021-25941-5
– volume: 14
  year: 2023
  ident: e_1_2_10_134_1
  publication-title: Micromachines
– ident: e_1_2_10_120_1
  doi: 10.1364/OL.40.003480
– volume: 41
  start-page: 1122
  year: 2016
  ident: e_1_2_10_139_1
  publication-title: Opt. Express
– ident: e_1_2_10_147_1
  doi: 10.1063/1.322965
– ident: e_1_2_10_91_1
  doi: 10.1007/s12274-022-5119-3
– ident: e_1_2_10_219_1
  doi: 10.1109/JSTQE.2016.2514784
– ident: e_1_2_10_155_1
  doi: 10.1021/nl403328s
– ident: e_1_2_10_212_1
  doi: 10.1088/0957-0233/12/11/304
– ident: e_1_2_10_58_1
  doi: 10.1038/s41377-018-0011-3
– ident: e_1_2_10_173_1
  doi: 10.1021/acs.nanolett.1c03376
– ident: e_1_2_10_89_1
  doi: 10.1038/s41563-023-01556-7
– ident: e_1_2_10_92_1
  doi: 10.1021/acs.nanolett.1c02381
– ident: e_1_2_10_218_1
  doi: 10.3788/COL202119.081405
– ident: e_1_2_10_67_1
  doi: 10.1038/s41565-018-0145-8
– ident: e_1_2_10_143_1
  doi: 10.3788/COL202220.093201
– ident: e_1_2_10_104_1
  doi: 10.1002/advs.202201842
– ident: e_1_2_10_203_1
  doi: 10.1038/s41377-022-01008-y
– ident: e_1_2_10_23_1
  doi: 10.1038/nphoton.2010.186
– ident: e_1_2_10_55_1
  doi: 10.1364/OPTICA.444105
– ident: e_1_2_10_64_1
  doi: 10.1038/nphoton.2011.177
– ident: e_1_2_10_201_1
  doi: 10.1002/adom.201800579
– ident: e_1_2_10_154_1
  doi: 10.1021/nl401561r
– ident: e_1_2_10_213_1
  doi: 10.1126/science.286.5444.1507
– ident: e_1_2_10_72_1
  doi: 10.1063/5.0088275
– ident: e_1_2_10_227_1
  doi: 10.1016/j.apsusc.2018.04.117
– ident: e_1_2_10_50_1
  doi: 10.1038/s41566-020-00728-0
– ident: e_1_2_10_88_1
  doi: 10.1038/s41578-022-00440-1
– ident: e_1_2_10_145_1
  doi: 10.1364/OL.16.001683
– ident: e_1_2_10_132_1
  doi: 10.1038/nmeth.4218
– ident: e_1_2_10_207_1
  doi: 10.1021/acs.nanolett.7b05033
– ident: e_1_2_10_235_1
  doi: 10.1038/ncomms15354
– ident: e_1_2_10_111_1
  doi: 10.1002/lpor.201900409
– ident: e_1_2_10_166_1
  doi: 10.1088/2053-1583/aab390
– ident: e_1_2_10_32_1
  doi: 10.1103/PhysRevB.99.205404
– ident: e_1_2_10_121_1
  doi: 10.1364/OE.24.021105
– ident: e_1_2_10_127_1
  doi: 10.1038/nphoton.2012.361
– ident: e_1_2_10_165_1
  doi: 10.1021/jacs.5b04305
– ident: e_1_2_10_180_1
  doi: 10.1038/s41598-017-03667-z
– ident: e_1_2_10_211_1
  doi: 10.1002/bem.22117
– ident: e_1_2_10_122_1
  doi: 10.1364/OL.14.000955
– ident: e_1_2_10_54_1
  doi: 10.1002/adom.201900631
– ident: e_1_2_10_236_1
  doi: 10.3788/COL202119.060003
– ident: e_1_2_10_84_1
  doi: 10.1021/acsphotonics.0c01759
– ident: e_1_2_10_118_1
  doi: 10.1515/nanoph-2018-0106
– ident: e_1_2_10_194_1
  doi: 10.1002/adom.202101432
– ident: e_1_2_10_2_1
  doi: 10.1088/2053-1583/abaf68
– ident: e_1_2_10_160_1
  doi: 10.1002/adfm.201800785
– ident: e_1_2_10_199_1
  doi: 10.1016/j.molliq.2021.115347
– ident: e_1_2_10_126_1
  doi: 10.1117/1.3041159
– ident: e_1_2_10_18_1
  doi: 10.1002/advs.202003834
– ident: e_1_2_10_86_1
  doi: 10.1002/inf2.12024
– ident: e_1_2_10_215_1
  doi: 10.3788/COL202321.091401
– volume: 9
  year: 2019
  ident: e_1_2_10_190_1
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– ident: e_1_2_10_45_1
  doi: 10.1021/acs.nanolett.1c01975
– ident: e_1_2_10_192_1
  doi: 10.1002/smll.202103938
– ident: e_1_2_10_234_1
  doi: 10.1038/s41566-019-0547-7
– ident: e_1_2_10_30_1
  doi: 10.1016/j.apsusc.2022.153240
– ident: e_1_2_10_162_1
  doi: 10.1038/s41467-021-21267-4
– ident: e_1_2_10_161_1
  doi: 10.1088/1367-2630/ac231c
– ident: e_1_2_10_198_1
  doi: 10.1016/j.optmat.2018.03.046
– ident: e_1_2_10_41_1
  doi: 10.1002/adom.202001671
– ident: e_1_2_10_14_1
  doi: 10.1117/1.AP.4.3.030502
SSID ssj0031247
Score 2.5429113
SecondaryResourceType review_article
Snippet 2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2311621
SubjectTerms 2D materials
Harmonic generations
Nonlinear optics
Optical properties
Phase matching
Photoelectric effect
Photoelectricity
SHG
THG
Two dimensional analysis
Two dimensional materials
Title Nonlinear Optical Properties of 2D Materials and their Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202311621
https://www.ncbi.nlm.nih.gov/pubmed/38618662
https://www.proquest.com/docview/3095503973
https://www.proquest.com/docview/3039237516
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4YT3rw_aiiWRMTTwW6227LkaCEGECjknBr9tFexEKgXPz17nShgsaY6K1Nd7Pt7kznm52dbwCuZRp6OqLCFRLDjKLRcAVPfTfywtRTWjOtMcG51-edgX8_DIYrWfyWH6LccEPNKP7XqOBCzmqfpKGztxGGDgw-8XiRSY4HthAVPZX8UcwYr6K6irFZLhJvLVkb67S23n3dKn2DmuvItTA97V0Qy5e2J05eq_NcVtX7Fz7H_3zVHuwscClpWkHah40kO4DtFbbCQ2j17QBiSh4mxRY4ecSt_ClyspJxSugt6YncijQRmSZFFII0V2LkRzBo3720Ou6iBoOrWMg8V3FO6yKQBgcESge0EQVaJqFxAiNtfDWuQuMfShVxL0llxAy-Udp4XYImPKDcYKNj2MzGWXIKxAs1V6k0_p7EnBQuEEsxPxWCcq1C4YC7XINYLQjKsU7GKLbUyjTGyYnLyXHgpmw_sdQcP7asLJc0XqjoLGZIvlc3cIw5cFU-NsqFERORJeM5tjHwkYWBxx04saJQDsUiLDXAqQO0WNBf3iF-7nW75d3ZXzqdw5a59u3xwwps5tN5cmEgUS4vC7H_ALRxAME
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQOAAH3o_yDBISp441WdPuiHhoQDsQDIlblUd7YXRobBd-PXGzlg2EkODYNlHaJK4_2_FngCOZBZ4OqXCFxDCjaLVcwbOmG3pB5imtmdaY4Bx3ePuxef3kl6cJMRfG8kNUDjeUjOJ_jQKODumTT9bQt5cexg4MQPE4ppLPYllvpM8_v68YpJhRX0V9FaO1XKTeKnkbG_Rkuv-0XvoGNqexa6F8LpdAlq9tz5w810dDWVfvXxgd__Vdy7A4hqbk1O6lFZhJ81VYmCAsXIOzjh1BDMjta-EFJ3fozR8gLSvpZ4Sek1gM7a4mItekCESQ04kw-To8Xl50z9ruuAyDq1jAPFdxThvClwYK-Er7tBX6WqaBsQNDbcw1rgJjIkoVci_NZMgMxFHaGF6Cptyn3MCjDajl_TzdAuIFmqtMGpNPYloKFwinWDMTgnKtAuGAWy5CosYc5Vgqo5dYdmWa4OQk1eQ4cFy1f7XsHD-23C3XNBlL6VvCkH-vYRAZc-CwemzkC4MmIk_7I2xjECQLfI87sGn3QjUUC7HaAKcO0GJFf3mH5CGOoupq-y-dDmCu3Y2jJLrq3OzAvLnftKcRd6E2HIzSPYOQhnK_kIEPzssE3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4YTIwefD-qqGti4qlAd9ttORKR-AA0PhJuzT7ai1oIwsVf704XKmiMiR7b7maf0_lmZ-cbgFOZhp6OqHCFRDejqNddwVPfjbww9ZTWTGsMcO50-eWTf90LejNR_JYfojhwQ8nI_9co4AOdVj9JQ99eX9B1YPCJxzGSfNHntTomb2jeFwRSzGivPL2KUVouMm9NaRtrtDpff14tfcOa89A11z2tNRDTXtsrJ8-V8UhW1PsXQsf_DGsdVifAlDTsTtqAhSTbhJUZusItOO_aBsSQ3A7yM3Byh2f5QyRlJf2U0CbpiJHd00RkmuRuCNKYcZJvw1Pr4vH80p0kYXAVC5nnKs5pTQTSAIFA6YDWo0DLJDRWYKSNscZVaAxEqSLuJamMmAE4ShuzS9CEB5QbcLQDpayfJXtAvFBzlUpj8EkMSuECwRTzUyEo1yoUDrjTNYjVhKEcE2W8xJZbmcY4OXExOQ6cFeUHlpvjx5Ll6ZLGExl9ixmy79UMHmMOnBSfjXShy0RkSX-MZQx-ZGHgcQd27VYommIR5hrg1AGaL-gvfYgfOu128bT_l0rHsHTXbMXtq-7NASyb1769iliG0mg4Tg4NPBrJo1wCPgCwIgOM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Optical+Properties+of+2D+Materials+and+their+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xie%2C+Zhixiang&rft.au=Zhao%2C+Tianxiang&rft.au=Yu%2C+Xuechao&rft.au=Wang%2C+Junjia&rft.date=2024-08-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=34&rft.spage=e2311621&rft_id=info:doi/10.1002%2Fsmll.202311621&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon