Nonlinear Optical Properties of 2D Materials and their Applications
2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light‐matter interactions. The nonlinear optical properties of 2D materials are of g...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 34; pp. e2311621 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light‐matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second‐order and third‐order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second‐order susceptibility χ(2) and third‐order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second‐harmonic generation (SHG) and third‐harmonic generation (THG) for 2D materials are presented.
The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. In this article, a comprehensive review of measurement methods for nonlinear susceptibility is provided. Nonlinear susceptibility of different 2D materials are compared. Their applications in nonlinear photonic devices are discussed. |
---|---|
AbstractList | 2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light‐matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second‐order and third‐order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second‐order susceptibility χ(2) and third‐order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second‐harmonic generation (SHG) and third‐harmonic generation (THG) for 2D materials are presented.
The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. In this article, a comprehensive review of measurement methods for nonlinear susceptibility is provided. Nonlinear susceptibility of different 2D materials are compared. Their applications in nonlinear photonic devices are discussed. 2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light‐matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second‐order and third‐order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second‐order susceptibility χ(2) and third‐order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second‐harmonic generation (SHG) and third‐harmonic generation (THG) for 2D materials are presented. 2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light-matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second-order and third-order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second-order susceptibility χ(2) and third-order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second-harmonic generation (SHG) and third-harmonic generation (THG) for 2D materials are presented.2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and perfect phase matching, 2D materials have marvelous nonlinear light-matter interactions. The nonlinear optical properties of 2D materials are of great significance to the design and analysis of applied materials and functional devices. Here, the fundamental of nonlinear optics (NLO) for 2D materials is introduced, and the methods for characterizing and measuring second-order and third-order nonlinear susceptibility of 2D materials are reviewed. Furthermore, the theoretical and experimental values of second-order susceptibility χ(2) and third-order susceptibility χ(3) are tabulated. Several applications and possible future research directions of second-harmonic generation (SHG) and third-harmonic generation (THG) for 2D materials are presented. |
Author | Wang, Junjia Zhao, Tianxiang Xie, Zhixiang Yu, Xuechao |
Author_xml | – sequence: 1 givenname: Zhixiang surname: Xie fullname: Xie, Zhixiang organization: Southeast University – sequence: 2 givenname: Tianxiang surname: Zhao fullname: Zhao, Tianxiang organization: Southeast University – sequence: 3 givenname: Xuechao surname: Yu fullname: Yu, Xuechao email: xcyu2022@sinano.ac.cn organization: Chinese Academy of Sciences – sequence: 4 givenname: Junjia orcidid: 0000-0003-0872-4794 surname: Wang fullname: Wang, Junjia email: junjia_wang@seu.edu.cn organization: Southeast University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38618662$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkdtLwzAUh4Mo7qKvPkrBF186c2mT9nHMK3ROUJ9DmqaYkTU16ZD992buIgzEpxzI951zkt8AHDe2UQBcIDhCEOIbvzBmhCEmCFGMjkAfUURimuH8eF8j2AMD7-cQEoQTdgp6JKMooxT3weTZNkY3Srho1nZaChO9ONsq12nlI1tH-Daaik45LYyPRFNF3YfSLhq3rQl0p23jz8BJHW7V-fYcgvf7u7fJY1zMHp4m4yKWhBEUyzAQirTMEE5lleI8S6tSMYZYVuEsp5LBPCllWE3VZUZoQmQFUSKwoimmmJEhuN70bZ39XCrf8YX2UhkjGmWXnhNIckxYimhArw7QuV26JmwXqDxNA8lIoC631LJcqIq3Ti-EW_Hd9wQg2QDSWe-dqrnU3c-jOye04QjydQp8nQLfpxC00YG26_ynkG-EL23U6h-av06L4tf9BmcTl10 |
CitedBy_id | crossref_primary_10_1177_17562848241308387 crossref_primary_10_1002_bio_70125 crossref_primary_10_1063_5_0242014 crossref_primary_10_12677_ms_2025_153044 crossref_primary_10_1021_acs_jpclett_4c03138 crossref_primary_10_1039_D4NH00160E crossref_primary_10_1515_nanoph_2024_0267 crossref_primary_10_1002_cplu_202400528 crossref_primary_10_1002_lpor_202401519 crossref_primary_10_1021_acs_jpclett_4c02600 crossref_primary_10_1063_5_0235837 crossref_primary_10_1021_acs_jpcc_4c06756 crossref_primary_10_1002_admi_202400894 crossref_primary_10_1021_acsnano_4c12605 crossref_primary_10_1088_1402_4896_ad7a39 crossref_primary_10_1364_OE_547760 crossref_primary_10_1021_acsnano_4c14699 |
Cites_doi | 10.1007/s40843-020-1289-7 10.1021/acsphotonics.8b00685 10.1038/s41566-019-0547-7 10.1002/smtd.202101435 10.1038/s41467-023-38344-5 10.1002/adma.202006415 10.1088/0953-8984/25/19/195302 10.1063/1.5052417 10.1021/acsphotonics.2c00222 10.3788/COL202220.073701 10.1364/OL.44.005214 10.1515/nanoph-2017-0030 10.1038/s41467-023-40602-5 10.1021/acsnano.2c08147 10.1021/acsphotonics.7b00631 10.1038/nphoton.2016.15 10.1002/adfm.202110119 10.1038/s41566-020-00729-z 10.1109/58.484462 10.1021/acsnano.9b06782 10.1103/PhysRevApplied.20.044023 10.1088/1367-2630/16/5/053014 10.1002/adom.202101963 10.1002/adfm.202105259 10.1002/adfm.202106228 10.1021/acsphotonics.1c00767 10.1039/C7NR00971B 10.1021/acs.nanolett.1c04359 10.1002/lpor.202100117 10.1021/acsphotonics.1c00525 10.1007/s003400050866 10.1038/nphoton.2013.304 10.1038/s41699-019-0135-1 10.1016/j.optlastec.2018.02.018 10.1038/s41567-021-01275-3 10.1364/OL.43.000304 10.1038/s41377-021-00588-5 10.1021/acsphotonics.1c01358 10.1039/C8NR09368G 10.1126/science.1102896 10.1142/S0218863597000204 10.1364/OE.15.013351 10.1103/PhysRevLett.4.564 10.1088/1361-648X/ab6cbf 10.3788/COL202220.032701 10.1038/s41566-018-0175-7 10.1103/PhysRevB.98.115426 10.3788/COL202220.031901 10.1002/lpor.201800215 10.1021/acsphotonics.6b00639 10.1021/acs.nanolett.9b00487 10.1109/JSTQE.2010.2047715 10.1364/PRJ.483172 10.1038/nature22986 10.1002/lpor.201800282 10.1038/nature16472 10.1103/PhysRevB.95.165406 10.1002/lpor.201900416 10.1364/PRJ.8.000078 10.1016/0030-4018(84)90328-6 10.1038/s41377-020-00459-5 10.1038/s41467-021-23436-x 10.1007/s00340-009-3656-z 10.1016/j.physrep.2021.02.003 10.1049/el:20072253 10.1038/srep05530 10.1016/j.spmi.2014.10.019 10.1016/j.electacta.2019.01.053 10.1088/2053-1583/4/1/011006 10.1021/acsmaterialslett.9b00419 10.1021/acs.nanolett.0c01603 10.1007/s12200-020-1058-3 10.1038/s41566-019-0492-5 10.1038/srep10334 10.1364/BOE.7.001727 10.1038/s41566-021-00859-y 10.1038/s41467-023-41079-y 10.1002/adma.201603119 10.1002/adfm.200901007 10.1364/OL.502953 10.1021/nn4042909 10.1016/j.infrared.2018.07.028 10.1021/acsphotonics.3c00722 10.3788/COL202321.021407 10.1126/science.aba1416 10.1126/science.1106612 10.1038/s41467-021-27213-8 10.1021/acsnano.5b03480 10.3389/fmats.2021.775048 10.1021/acs.nanolett.9b02740 10.1021/acsnano.2c00514 10.1038/nphoton.2010.154 10.1088/0034-4885/79/3/036401 10.1103/PhysRevLett.105.097401 10.1063/1.4941998 10.1002/adfm.201803807 10.1103/PhysRevLett.105.057401 10.1186/s43074-020-00020-y 10.1016/j.mtphys.2022.100649 10.1038/s41586-022-05610-3 10.1002/adfm.202302051 10.1002/advs.201802373 10.1103/PhysRevLett.7.118 10.1016/j.optmat.2017.12.023 10.1126/science.1218497 10.1021/nl504860z 10.1016/j.conb.2004.08.013 10.1021/acs.accounts.1c00188 10.1038/lsa.2016.131 10.1021/nl901101g 10.1103/PhysRevB.86.035327 10.1063/1.5144482 10.1002/inf2.12236 10.1002/adfm.202107768 10.1039/D0TC05607C 10.1126/science.aac9439 10.1016/S0038-1098(97)00269-X 10.1021/acs.nanolett.1c00891 10.1021/acsphotonics.8b00653 10.3788/COL201210.101902 10.1126/sciadv.abd4623 10.1016/j.physleta.2015.10.044 10.1007/s12274-016-1034-9 10.1126/sciadv.ade7968 10.1063/1.5131165 10.1021/acsphotonics.0c00819 10.1088/1367-2630/ac90e2 10.1002/inf2.12148 10.1038/nphoton.2010.256 10.3390/sym14010084 10.1364/OE.16.003408 10.1038/s41578-019-0124-1 10.1016/j.ccr.2021.213927 10.1021/acsnano.2c03566 10.1038/s41566-023-01195-z 10.1002/lpor.202100726 10.1002/adma.202101589 10.3788/COL202321.043801 10.1038/s41467-022-32739-6 10.1002/adfm.202006788 10.1002/inf2.12274 10.1088/0034-4885/70/8/R02 10.1007/s00340-015-6178-x 10.1016/j.mattod.2021.07.023 10.1021/acs.nanolett.7b02268 10.1002/adma.201606128 10.1007/s12274-020-3197-7 10.1364/JOSAB.19.000289 10.1021/acs.jpcc.9b11848 10.1038/nature10067 10.1364/JOSAB.26.000420 10.1126/science.1158877 10.1002/lpor.201900052 10.1038/nbt899 10.1038/s41586-019-1013-x 10.1016/j.spmi.2019.106244 10.1021/acs.jpclett.7b00140 10.1002/adma.202100113 10.1002/anie.201409837 10.1002/adom.202201688 10.1021/acsphotonics.7b00231 10.1038/nature01175 10.1038/s41467-017-01351-4 10.1364/AOP.8.000618 10.1039/D3EE01047C 10.1109/3.53394 10.1021/acs.jpclett.1c02770 10.1002/adma.201902685 10.1088/0963-9659/1/3/004 10.1103/PhysRevB.87.121406 10.1002/lpor.202100322 10.1038/s41467-017-00749-4 10.1002/adom.201701334 10.1021/nn901703e 10.1002/adom.202100625 10.1021/ar4000955 10.1038/s41467-021-25941-5 10.1364/OL.40.003480 10.1063/1.322965 10.1007/s12274-022-5119-3 10.1109/JSTQE.2016.2514784 10.1021/nl403328s 10.1088/0957-0233/12/11/304 10.1038/s41377-018-0011-3 10.1021/acs.nanolett.1c03376 10.1038/s41563-023-01556-7 10.1021/acs.nanolett.1c02381 10.3788/COL202119.081405 10.1038/s41565-018-0145-8 10.3788/COL202220.093201 10.1002/advs.202201842 10.1038/s41377-022-01008-y 10.1038/nphoton.2010.186 10.1364/OPTICA.444105 10.1038/nphoton.2011.177 10.1002/adom.201800579 10.1021/nl401561r 10.1126/science.286.5444.1507 10.1063/5.0088275 10.1016/j.apsusc.2018.04.117 10.1038/s41566-020-00728-0 10.1038/s41578-022-00440-1 10.1364/OL.16.001683 10.1038/nmeth.4218 10.1021/acs.nanolett.7b05033 10.1038/ncomms15354 10.1002/lpor.201900409 10.1088/2053-1583/aab390 10.1103/PhysRevB.99.205404 10.1364/OE.24.021105 10.1038/nphoton.2012.361 10.1021/jacs.5b04305 10.1038/s41598-017-03667-z 10.1002/bem.22117 10.1364/OL.14.000955 10.1002/adom.201900631 10.3788/COL202119.060003 10.1021/acsphotonics.0c01759 10.1515/nanoph-2018-0106 10.1002/adom.202101432 10.1088/2053-1583/abaf68 10.1002/adfm.201800785 10.1016/j.molliq.2021.115347 10.1117/1.3041159 10.1002/advs.202003834 10.1002/inf2.12024 10.3788/COL202321.091401 10.1021/acs.nanolett.1c01975 10.1002/smll.202103938 10.1016/j.apsusc.2022.153240 10.1038/s41467-021-21267-4 10.1088/1367-2630/ac231c 10.1016/j.optmat.2018.03.046 10.1002/adom.202001671 10.1117/1.AP.4.3.030502 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202311621 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38618662 10_1002_smll_202311621 SMLL202311621 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20210207 – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: 62205054; 62375051 – fundername: National Natural Science Foundation of China grantid: 62205054 – fundername: National Natural Science Foundation of China grantid: 62375051 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20210207 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3731-c6620a5b8125cd52985dbe77178d2896c7094bc861efb83643cd014a2e6526273 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 09:54:17 EDT 2025 Wed Aug 13 06:06:05 EDT 2025 Mon Jul 21 05:46:09 EDT 2025 Thu Jul 24 02:05:55 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 Wed Jan 22 17:14:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | nonlinear optics THG SHG 2D materials |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-c6620a5b8125cd52985dbe77178d2896c7094bc861efb83643cd014a2e6526273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0872-4794 |
PMID | 38618662 |
PQID | 3095503973 |
PQPubID | 1046358 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_3039237516 proquest_journals_3095503973 pubmed_primary_38618662 crossref_citationtrail_10_1002_smll_202311621 crossref_primary_10_1002_smll_202311621 wiley_primary_10_1002_smll_202311621_SMLL202311621 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1991; 16 2002; 19 1960; 4 2020; 20 2012; 8434 2019; 99 2010; 105 2019; 11 2018; 448 2019; 13 2021; 328 2019; 14 2022; 23 2022; 24 2019; 567 1999; 286 2020; 15 2019; 19 2020; 14 2007; 70 2020; 13 2022; 20 2021; 441 2015; 80 2022; 22 2013; 7 2016; 380 1997; 6 2018; 43 2012; 10 2011; 474 2018; 7 1984; 50 2018; 6 2018; 8 2018; 39 2018; 5 2009; 97 2015; 137 2020; 91 2002; 420 2014; 16 2016; 41 2023; 614 2009; 19 2010; 4 1992; 1 2019; 8 2019; 7 2018; 29 2018; 28 2019; 9 2019; 4 2022; 591 1976; 47 2019; 6 2019; 31 2013; 87 2019; 2 2019; 1 2018; 104 2015; 120 2015; 54 2016; 10 2000; 70 2020; 32 2021; 50 2004; 306 2011; 5 2007; 15 2023; 42 2016; 4 2016; 5 2018; 18 2016; 7 2021; 54 2020; 31 1990; 26 2022; 4 2019; 44 2022; 6 2022; 7 2022; 9 2022; 13 2022; 14 2022; 11 2018; 93 2018; 12 2016; 28 2018; 98 2022; 16 2016; 8 2016; 9 2019; 299 2016; 24 2003; 21 2017; 546 2018; 13 2017; 7 2017; 8 2023; 35 2021; 21 2013; 25 2021; 23 2023; 33 2017; 4 2020; 63 2016; 108 2023; 9 2020; 367 2020; 124 2011; 17 2017; 9 2016; 79 2023; 20 2014; 1 2020; 7 2023; 21 2021; 915 1997; 104 2021; 32 2020; 4 2020; 3 2021; 31 2014; 4 2023; 22 2021; 33 2020; 1 1961; 7 2015; 40 2013; 13 2019; 115 2005; 307 2016; 353 2001; 12 2012; 336 2018; 76 2009; 324 2018; 79 2021; 9 2021; 8 2023; 10 2015; 1 2021; 7 2015; 15 2021; 4 2023; 14 2015; 5 2021; 3 2023; 11 2023; 17 2013; 46 2023; 16 2008; 16 2017; 23 2016; 529 2008; 13 2017; 29 2015; 9 2009; 26 2021; 14 2017; 95 2021; 15 2021; 10 2021; 12 2017; 14 2017; 17 2004; 14 2021; 17 2021; 19 2009; 9 2019; 135 2009; 4 2007; 43 2024; 49 1989; 14 1996; 43 2012; 86 e_1_2_10_40_1 e_1_2_10_109_1 Xiao Q. (e_1_2_10_6_1) 2023; 35 Deng M. (e_1_2_10_17_1) 2021; 9 e_1_2_10_210_1 e_1_2_10_233_1 e_1_2_10_158_1 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_245_1 e_1_2_10_147_1 e_1_2_10_219_1 Zhao L. (e_1_2_10_223_1) 2014; 1 Yang H. (e_1_2_10_57_1) 2022; 13 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_185_1 e_1_2_10_41_1 e_1_2_10_211_1 e_1_2_10_234_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 Jia L. (e_1_2_10_134_1) 2023; 14 e_1_2_10_200_1 e_1_2_10_246_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_42_1 e_1_2_10_212_1 e_1_2_10_235_1 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 e_1_2_10_30_1 e_1_2_10_247_1 e_1_2_10_201_1 e_1_2_10_224_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_236_1 e_1_2_10_213_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_240_1 e_1_2_10_31_1 e_1_2_10_225_1 e_1_2_10_248_1 e_1_2_10_202_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_237_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_241_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_249_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 Eggleton B. J. (e_1_2_10_214_1) 2012; 8434 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_230_1 e_1_2_10_215_1 e_1_2_10_238_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_242_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_204_1 e_1_2_10_227_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_231_1 e_1_2_10_239_1 e_1_2_10_216_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 Wang L. (e_1_2_10_190_1) 2019; 9 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_243_1 e_1_2_10_145_1 Glinka Y. D. (e_1_2_10_174_1) 2015; 1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 Xia C. Q. (e_1_2_10_139_1) 2016; 41 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_108_1 e_1_2_10_217_1 Lee S. (e_1_2_10_101_1) 2021; 21 e_1_2_10_232_1 e_1_2_10_157_1 e_1_2_10_229_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_111_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 Wang B. H. (e_1_2_10_12_1) 2023; 42 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_221_1 e_1_2_10_244_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
References_xml | – volume: 79 year: 2016 publication-title: Rep. Prog. Phys. – volume: 4 year: 2021 publication-title: InfoMat – volume: 7 start-page: 243 year: 2018 publication-title: Nanophotonics – volume: 15 start-page: 837 year: 2021 publication-title: Nat. Photonics – volume: 4 year: 2022 publication-title: Adv. Photonics – volume: 25 year: 2013 publication-title: J. Phys.: Condens. Matter – volume: 54 start-page: 1185 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 118 year: 1961 publication-title: Phys. Rev. Lett. – volume: 16 start-page: 6404 year: 2022 publication-title: ACS Nano – volume: 17 start-page: 2148 year: 2023 publication-title: ACS Nano – volume: 474 start-page: 64 year: 2011 publication-title: Nature – volume: 15 start-page: 2001 year: 2015 publication-title: Nano Lett. – volume: 448 start-page: 416 year: 2018 publication-title: Appl. Surf. Sci. – volume: 567 start-page: 323 year: 2019 publication-title: Nature – volume: 299 start-page: 654 year: 2019 publication-title: Electrochim. Acta – volume: 420 start-page: 153 year: 2002 publication-title: Nature – volume: 50 start-page: 256 year: 1984 publication-title: Opt. Commun. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 307 start-page: 400 year: 2005 publication-title: Science – volume: 4 start-page: 803 year: 2009 publication-title: ACS Nano – volume: 4 year: 2014 publication-title: Sci. Rep. – volume: 29 year: 2018 publication-title: Adv. Funct. Mater. – volume: 43 start-page: 1196 year: 2007 publication-title: Electron. Lett. – volume: 16 year: 2022 publication-title: Laser Photonics Rev. – volume: 9 year: 2022 publication-title: Appl. Phys. Rev. – volume: 26 start-page: 760 year: 1990 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 87 year: 2013 publication-title: Phys. Rew. B – volume: 135 year: 2019 publication-title: Superlattices Microstruct. – volume: 24 year: 2016 publication-title: Opt. Express – volume: 91 year: 2020 publication-title: Rev. Sci. Instrum. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 12 start-page: 5628 year: 2021 publication-title: Nat. Commun. – volume: 7 start-page: 8441 year: 2013 publication-title: ACS Nano – volume: 9 start-page: 2423 year: 2009 publication-title: Nano Lett. – volume: 8 start-page: 893 year: 2017 publication-title: Nat. Commun. – volume: 286 start-page: 1507 year: 1999 publication-title: Science – volume: 4 start-page: 1466 year: 2017 publication-title: ACS Photonics – volume: 529 start-page: 1 year: 2016 publication-title: Nature – volume: 28 year: 2016 publication-title: Adv. Mater. – volume: 19 start-page: 289 year: 2002 publication-title: Opt. Soc. Am – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 84 year: 2022 publication-title: Symmetry – volume: 10 start-page: 227 year: 2016 publication-title: Nat. Photonics – volume: 21 start-page: 8872 year: 2021 publication-title: Nano Lett. – volume: 380 start-page: 304 year: 2016 publication-title: Phys. Lett. A – volume: 7 start-page: 842 year: 2013 publication-title: Nat. Photonics – volume: 16 start-page: 3128 year: 2023 publication-title: Energy Environ. Sci. – volume: 5 start-page: 3485 year: 2018 publication-title: ACS Photonics – volume: 8 start-page: 824 year: 2021 publication-title: ACS Photonics – volume: 336 start-page: 1287 year: 2012 publication-title: Science – volume: 104 start-page: 83 year: 2018 publication-title: Opt. Laser Technol. – volume: 11 start-page: 1238 year: 2023 publication-title: Photonics Res. – volume: 21 start-page: 4335 year: 2021 publication-title: Nano Lett. – volume: 39 start-page: 257 year: 2018 publication-title: Bioelectromagnetics – volume: 8 year: 2021 publication-title: Front. Mater. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 24 year: 2022 publication-title: New J. Phys. – volume: 12 start-page: 6894 year: 2021 publication-title: Nat. Commun. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 3379 year: 2018 publication-title: ACS Photonics – volume: 17 start-page: 995 year: 2021 publication-title: Nat. Phys. – volume: 324 start-page: 1530 year: 2009 publication-title: Science – volume: 8 start-page: 63 year: 2018 publication-title: Nanophotonics – volume: 12 start-page: 1083 year: 2021 publication-title: Nat. Commun. – volume: 21 start-page: 1369 year: 2003 publication-title: Nat. Biotechnol. – volume: 546 start-page: 622 year: 2017 publication-title: Nature – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 10 year: 2012 publication-title: Chin. Opt. Lett. – volume: 32 year: 2020 publication-title: J. Phys.: Condens. Matter – volume: 42 start-page: 659 year: 2023 publication-title: J. Infrared Millimeter Waves – volume: 12 start-page: 1777 year: 2001 publication-title: Meas. Sci. Technol. – volume: 14 start-page: 37 year: 2020 publication-title: Nat. Photonics – volume: 14 start-page: 4845 year: 2023 publication-title: Nat. Commun. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 16 start-page: 1683 year: 1991 publication-title: Opt. Lett. – volume: 44 start-page: 5214 year: 2019 publication-title: Opt. Lett. – volume: 22 start-page: 1094 year: 2023 publication-title: Nat. Mater. – volume: 13 start-page: 5660 year: 2013 publication-title: Nano Lett. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 16 year: 2014 publication-title: New J. Phys. – volume: 9 year: 2021 publication-title: Photonics Res. – volume: 12 start-page: 430 year: 2018 publication-title: Nat. Photonics – volume: 13 start-page: 3329 year: 2013 publication-title: Nano Lett. – volume: 1 start-page: 1 year: 2020 publication-title: PhotoniX – volume: 15 start-page: 193 year: 2020 publication-title: Nat. Photonics – volume: 1 start-page: 317 year: 2019 publication-title: InfoMat – volume: 13 start-page: 129 year: 2020 publication-title: Front. Optoelectron. – volume: 120 start-page: 653 year: 2015 publication-title: Appl. Phys. B – volume: 41 start-page: 1122 year: 2016 publication-title: Opt. Express – volume: 23 start-page: 195 year: 2017 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 14 start-page: 5310 year: 2023 publication-title: Nat. Commun. – volume: 23 year: 2022 publication-title: Mater. Today Phys. – volume: 70 start-page: 587 year: 2000 publication-title: Appl. Phys. B – volume: 328 year: 2021 publication-title: J. Mol. Liq. – volume: 4 start-page: 8 year: 2016 publication-title: ACS Photonics – volume: 4 start-page: 611 year: 2010 publication-title: Nat. Photonics – volume: 7 start-page: 377 year: 2018 publication-title: Light Sci. Appl. – volume: 13 year: 2008 publication-title: J. Biomed. Opt. – volume: 4 start-page: 564 year: 1960 publication-title: Phys. Rev. Lett. – volume: 26 start-page: 420 year: 2009 publication-title: J. Opt. Soc.Am. B – volume: 13 start-page: 5123 year: 2022 publication-title: Nat. Commun. – volume: 40 start-page: 3480 year: 2015 publication-title: Opt. Lett. – volume: 10 start-page: 3944 year: 2023 publication-title: ACS Photonics – volume: 43 start-page: 44 year: 1996 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 10 year: 2021 publication-title: Light Sci. Appl. – volume: 19 start-page: 2634 year: 2019 publication-title: Nano Lett. – volume: 79 start-page: 220 year: 2018 publication-title: Opt. Mater. – volume: 15 year: 2021 publication-title: Laser Photonics Rev. – volume: 93 start-page: 87 year: 2018 publication-title: Infrared Phys. Technol. – volume: 12 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 614 start-page: 75 year: 2023 publication-title: Nature – volume: 13 start-page: 754 year: 2019 publication-title: Nat. Photonics – volume: 46 start-page: 2656 year: 2013 publication-title: Acc. Chem. Res. – volume: 108 year: 2016 publication-title: Appl. Phys. Lett. – volume: 22 start-page: 4287 year: 2022 publication-title: Nano Lett. – volume: 15 year: 2007 publication-title: Opt. Express – volume: 9 start-page: 1543 year: 2016 publication-title: Nano Res. – volume: 9 start-page: 2600 year: 2022 publication-title: ACS Photonics – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 21 start-page: 7405 year: 2021 publication-title: Nano Lett. – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 12 year: 2018 publication-title: Laser Photonics Rev. – volume: 8 start-page: 2713 year: 2021 publication-title: ACS Photonics – volume: 80 start-page: 80 year: 2015 publication-title: Superlattices Microstruct. – volume: 95 year: 2017 publication-title: Phys. Rew. B – volume: 76 start-page: 69 year: 2018 publication-title: Opt. Mater. – volume: 915 start-page: 1 year: 2021 publication-title: Phys. Rep. – volume: 9 year: 2019 publication-title: Proc. SPIE Int. Soc. Opt. Eng. – volume: 18 start-page: 1344 year: 2018 publication-title: Nano Lett. – volume: 17 start-page: 607 year: 2023 publication-title: Nat. Photonics – volume: 98 year: 2018 publication-title: Phys. Rew. B – volume: 6 start-page: 251 year: 1997 publication-title: J. Nonlinear Opt. Phys. Mater. – volume: 3 start-page: 1110 year: 2021 publication-title: InfoMat – volume: 54 start-page: 2775 year: 2021 publication-title: Acc. Chem. Res. – volume: 3 start-page: 36 year: 2020 publication-title: InfoMat – volume: 5 year: 2018 publication-title: 2D Mater. – volume: 14 year: 2023 publication-title: Micromachines – volume: 49 start-page: 351 year: 2024 publication-title: Opt. Lett. – volume: 21 start-page: 6321 year: 2021 publication-title: Nano Lett. – volume: 43 start-page: 304 year: 2018 publication-title: Opt. Lett. – volume: 20 year: 2023 publication-title: Phys. Rev. Appl. – volume: 9 start-page: 5806 year: 2017 publication-title: Nanoscale – volume: 4 start-page: 417 year: 2010 publication-title: Nat. Photonics – volume: 14 start-page: 955 year: 1989 publication-title: Opt. Lett. – volume: 7 start-page: 93 year: 2013 publication-title: Nat. Photonics – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 9 start-page: 6544 year: 2021 publication-title: J. Mater. Chem. C – volume: 17 year: 2021 publication-title: Small – volume: 19 year: 2021 publication-title: Chin. Opt. Lett. – volume: 1 start-page: 1 year: 2014 publication-title: Mil. Med. Res. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 8 start-page: 1343 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 17 start-page: 5027 year: 2017 publication-title: Nano Lett. – volume: 9 start-page: 518 year: 2022 publication-title: ACS Photonics – volume: 19 start-page: 3077 year: 2009 publication-title: Adv. Funct. Mater. – volume: 4 year: 2020 publication-title: npj 2D Mater. Appl. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 23 year: 2021 publication-title: New J. Phys. – volume: 9 start-page: 512 year: 2022 publication-title: Optica – volume: 353 year: 2016 publication-title: Science – volume: 99 year: 2019 publication-title: Phys. Rew. B – volume: 13 year: 2022 publication-title: Micromachines – volume: 14 start-page: 374 year: 2017 publication-title: Nat. Methods – volume: 8 start-page: 1922 year: 2021 publication-title: ACS Photonics – volume: 8434 year: 2012 publication-title: Nonlinear Opt. (Mclc) Sect. B – volume: 20 start-page: 5309 year: 2020 publication-title: Nano Lett. – volume: 11 year: 2022 publication-title: Adv. Opt. Mater. – volume: 7 start-page: 3352 year: 2017 publication-title: Sci. Rep. – volume: 6 year: 2022 publication-title: Small Methods – volume: 4 start-page: 822 year: 2010 publication-title: Nat. Photonics – volume: 13 year: 2019 publication-title: Laser Photonics Rev. – volume: 12 start-page: 3733 year: 2021 publication-title: Nat. Commun. – volume: 17 start-page: 5 year: 2011 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 5 year: 2016 publication-title: Light Sci. Appl. – volume: 5 start-page: 554 year: 2011 publication-title: Nat. Photonics – volume: 8 start-page: 1253 year: 2017 publication-title: Nat. Commun. – volume: 13 start-page: 583 year: 2018 publication-title: Nat. Nanotechnol. – volume: 19 start-page: 6511 year: 2019 publication-title: Nano Lett. – volume: 2 start-page: 55 year: 2019 publication-title: ACS Mater. Lett. – volume: 50 start-page: 570 year: 2021 publication-title: Mater. Today – volume: 21 start-page: 4305 year: 2021 publication-title: ACS Photonics – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 16 start-page: 3408 year: 2008 publication-title: Opt. Express – volume: 14 year: 2020 publication-title: Laser Photonics Rev. – volume: 21 year: 2023 publication-title: Chin. Opt. Lett. – volume: 137 start-page: 7994 year: 2015 publication-title: J. Am. Chem. Soc – volume: 8 start-page: 618 year: 2016 publication-title: Adv. Opt. Photonics – volume: 15 start-page: 6 year: 2020 publication-title: Nat. Photonics – volume: 63 start-page: 1489 year: 2020 publication-title: Sci. China Mater. – volume: 97 start-page: 679 year: 2009 publication-title: Appl. Phys. B – volume: 4 start-page: 2144 year: 2017 publication-title: ACS Photonics – volume: 14 start-page: 2224 year: 2021 publication-title: Nano Res. – volume: 86 year: 2012 publication-title: Phys. Rew. B – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 591 year: 2022 publication-title: Appl. Surf. Sci. – volume: 367 start-page: 903 year: 2020 publication-title: Science – volume: 47 start-page: 2497 year: 1976 publication-title: J. Appl. Phys. – volume: 14 start-page: 2580 year: 2023 publication-title: Nat. Commun. – volume: 441 year: 2021 publication-title: Coord. Chem. Rev. – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 70 start-page: 1325 year: 2007 publication-title: Rep. Prog. Phys. – volume: 11 start-page: 2577 year: 2019 publication-title: Nanoscale – volume: 124 start-page: 7979 year: 2020 publication-title: J. Phys. Chem. C – volume: 10 year: 2021 publication-title: Adv. Opt. Mater. – volume: 7 start-page: 1727 year: 2016 publication-title: Biomed. Opt. Express – volume: 104 start-page: 1 year: 1997 publication-title: Solid State Commun. – volume: 8 year: 2018 publication-title: AIP Adv. – volume: 10 start-page: 146 year: 2021 publication-title: Light Sci. Appl. – volume: 8 start-page: 78 year: 2019 publication-title: Photonics Res. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 16 start-page: 5803 year: 2022 publication-title: Nano Res. – volume: 14 start-page: 610 year: 2004 publication-title: Curr. Opin. Neurobiol. – volume: 7 year: 2020 publication-title: 2D Mater. – volume: 115 year: 2019 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 2506 year: 2020 publication-title: ACS Photonics – volume: 7 start-page: 778 year: 2022 publication-title: Nat. Rev. Mater. – volume: 11 year: 2022 publication-title: Light Sci. Appl. – volume: 9 start-page: 7142 year: 2015 publication-title: ACS Nano – volume: 4 start-page: 552 year: 2019 publication-title: Nat. Rev. Mater. – volume: 1 start-page: 145 year: 1992 publication-title: Pure Appl. Opt. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 1 year: 2015 publication-title: Phys. Rew. B – volume: 20 year: 2022 publication-title: Chin. Opt. Lett. – volume: 14 start-page: 37 year: 2019 publication-title: Nat. Photonics – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 4 year: 2016 publication-title: 2D Mater. – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – ident: e_1_2_10_196_1 doi: 10.1007/s40843-020-1289-7 – ident: e_1_2_10_158_1 doi: 10.1021/acsphotonics.8b00685 – ident: e_1_2_10_10_1 doi: 10.1038/s41566-019-0547-7 – ident: e_1_2_10_11_1 doi: 10.1002/smtd.202101435 – ident: e_1_2_10_70_1 doi: 10.1038/s41467-023-38344-5 – ident: e_1_2_10_244_1 doi: 10.1002/adma.202006415 – ident: e_1_2_10_156_1 doi: 10.1088/0953-8984/25/19/195302 – ident: e_1_2_10_167_1 doi: 10.1063/1.5052417 – ident: e_1_2_10_184_1 doi: 10.1021/acsphotonics.2c00222 – ident: e_1_2_10_9_1 doi: 10.3788/COL202220.073701 – ident: e_1_2_10_44_1 doi: 10.1364/OL.44.005214 – volume: 8434 year: 2012 ident: e_1_2_10_214_1 publication-title: Nonlinear Opt. (Mclc) Sect. B – volume: 13 year: 2022 ident: e_1_2_10_57_1 publication-title: Micromachines – ident: e_1_2_10_186_1 doi: 10.1364/OL.44.005214 – ident: e_1_2_10_29_1 doi: 10.1515/nanoph-2017-0030 – ident: e_1_2_10_76_1 doi: 10.1038/s41467-023-40602-5 – ident: e_1_2_10_188_1 doi: 10.1021/acsnano.2c08147 – ident: e_1_2_10_119_1 doi: 10.1021/acsphotonics.7b00631 – ident: e_1_2_10_13_1 doi: 10.1038/nphoton.2016.15 – ident: e_1_2_10_3_1 doi: 10.1002/adfm.202110119 – volume: 1 start-page: 1 year: 2014 ident: e_1_2_10_223_1 publication-title: Mil. Med. Res. – ident: e_1_2_10_62_1 doi: 10.1038/s41566-020-00729-z – ident: e_1_2_10_150_1 doi: 10.1109/58.484462 – ident: e_1_2_10_187_1 doi: 10.1021/acsnano.9b06782 – ident: e_1_2_10_98_1 doi: 10.1103/PhysRevApplied.20.044023 – ident: e_1_2_10_178_1 doi: 10.1088/1367-2630/16/5/053014 – ident: e_1_2_10_191_1 doi: 10.1002/adom.202101963 – ident: e_1_2_10_93_1 doi: 10.1002/adfm.202105259 – ident: e_1_2_10_100_1 doi: 10.1002/adfm.202106228 – ident: e_1_2_10_39_1 doi: 10.1021/acsphotonics.1c00767 – ident: e_1_2_10_220_1 doi: 10.1039/C7NR00971B – ident: e_1_2_10_69_1 doi: 10.1021/acs.nanolett.1c04359 – ident: e_1_2_10_46_1 doi: 10.1002/lpor.202100117 – ident: e_1_2_10_83_1 doi: 10.1021/acsphotonics.1c00525 – ident: e_1_2_10_125_1 doi: 10.1007/s003400050866 – ident: e_1_2_10_25_1 doi: 10.1038/nphoton.2013.304 – ident: e_1_2_10_105_1 doi: 10.1038/s41699-019-0135-1 – ident: e_1_2_10_124_1 doi: 10.1016/j.optlastec.2018.02.018 – ident: e_1_2_10_108_1 doi: 10.1038/s41567-021-01275-3 – ident: e_1_2_10_144_1 doi: 10.1364/OL.43.000304 – ident: e_1_2_10_231_1 doi: 10.1038/s41377-021-00588-5 – ident: e_1_2_10_159_1 doi: 10.1021/acsphotonics.1c01358 – ident: e_1_2_10_210_1 doi: 10.1039/C8NR09368G – ident: e_1_2_10_19_1 doi: 10.1126/science.1102896 – ident: e_1_2_10_114_1 doi: 10.1142/S0218863597000204 – ident: e_1_2_10_140_1 doi: 10.1364/OE.15.013351 – ident: e_1_2_10_4_1 doi: 10.1103/PhysRevLett.4.564 – ident: e_1_2_10_181_1 doi: 10.1088/1361-648X/ab6cbf – ident: e_1_2_10_82_1 doi: 10.3788/COL202220.032701 – ident: e_1_2_10_66_1 doi: 10.1038/s41566-018-0175-7 – ident: e_1_2_10_95_1 doi: 10.1103/PhysRevB.98.115426 – ident: e_1_2_10_137_1 doi: 10.3788/COL202220.031901 – ident: e_1_2_10_238_1 doi: 10.1002/lpor.201800215 – ident: e_1_2_10_78_1 doi: 10.1021/acsphotonics.6b00639 – ident: e_1_2_10_99_1 doi: 10.1021/acs.nanolett.9b00487 – ident: e_1_2_10_226_1 doi: 10.1109/JSTQE.2010.2047715 – ident: e_1_2_10_221_1 doi: 10.1364/PRJ.483172 – ident: e_1_2_10_245_1 doi: 10.1038/nature22986 – ident: e_1_2_10_205_1 doi: 10.1002/lpor.201800282 – ident: e_1_2_10_248_1 doi: 10.1038/nature16472 – ident: e_1_2_10_183_1 doi: 10.1103/PhysRevB.95.165406 – ident: e_1_2_10_197_1 doi: 10.1002/lpor.201900416 – ident: e_1_2_10_8_1 doi: 10.1364/PRJ.8.000078 – ident: e_1_2_10_152_1 doi: 10.1016/0030-4018(84)90328-6 – ident: e_1_2_10_68_1 doi: 10.1038/s41377-020-00459-5 – ident: e_1_2_10_71_1 doi: 10.1038/s41467-021-23436-x – ident: e_1_2_10_116_1 doi: 10.1007/s00340-009-3656-z – ident: e_1_2_10_109_1 doi: 10.1016/j.physrep.2021.02.003 – ident: e_1_2_10_237_1 doi: 10.1049/el:20072253 – ident: e_1_2_10_133_1 doi: 10.1038/srep05530 – ident: e_1_2_10_195_1 doi: 10.1016/j.spmi.2014.10.019 – ident: e_1_2_10_110_1 doi: 10.1016/j.electacta.2019.01.053 – ident: e_1_2_10_157_1 doi: 10.1088/2053-1583/4/1/011006 – ident: e_1_2_10_209_1 doi: 10.1021/acsmaterialslett.9b00419 – ident: e_1_2_10_31_1 doi: 10.1021/acs.nanolett.0c01603 – ident: e_1_2_10_243_1 doi: 10.1007/s12200-020-1058-3 – ident: e_1_2_10_63_1 doi: 10.1038/s41566-019-0492-5 – ident: e_1_2_10_163_1 doi: 10.1038/srep10334 – ident: e_1_2_10_131_1 doi: 10.1364/BOE.7.001727 – ident: e_1_2_10_216_1 doi: 10.1038/s41566-021-00859-y – ident: e_1_2_10_241_1 doi: 10.1038/s41467-023-41079-y – ident: e_1_2_10_79_1 doi: 10.1002/adma.201603119 – ident: e_1_2_10_53_1 doi: 10.1002/adfm.200901007 – ident: e_1_2_10_151_1 doi: 10.1364/OL.502953 – ident: e_1_2_10_65_1 doi: 10.1021/nn4042909 – ident: e_1_2_10_193_1 doi: 10.1016/j.infrared.2018.07.028 – volume: 9 year: 2021 ident: e_1_2_10_17_1 publication-title: Photonics Res. – ident: e_1_2_10_107_1 doi: 10.1021/acsphotonics.3c00722 – ident: e_1_2_10_217_1 doi: 10.3788/COL202321.021407 – ident: e_1_2_10_59_1 doi: 10.1126/science.aba1416 – ident: e_1_2_10_206_1 doi: 10.1126/science.1106612 – ident: e_1_2_10_90_1 doi: 10.1038/s41467-021-27213-8 – ident: e_1_2_10_182_1 doi: 10.1021/acsnano.5b03480 – ident: e_1_2_10_168_1 doi: 10.3389/fmats.2021.775048 – ident: e_1_2_10_232_1 doi: 10.1021/acs.nanolett.9b02740 – ident: e_1_2_10_28_1 doi: 10.1021/acsnano.2c00514 – ident: e_1_2_10_47_1 doi: 10.1038/nphoton.2010.154 – ident: e_1_2_10_117_1 doi: 10.1088/0034-4885/79/3/036401 – ident: e_1_2_10_177_1 doi: 10.1103/PhysRevLett.105.097401 – ident: e_1_2_10_27_1 doi: 10.1063/1.4941998 – ident: e_1_2_10_34_1 doi: 10.1002/adfm.201803807 – ident: e_1_2_10_202_1 doi: 10.1103/PhysRevLett.105.057401 – ident: e_1_2_10_229_1 doi: 10.1186/s43074-020-00020-y – ident: e_1_2_10_42_1 doi: 10.1016/j.mtphys.2022.100649 – ident: e_1_2_10_75_1 doi: 10.1038/s41586-022-05610-3 – ident: e_1_2_10_185_1 doi: 10.1002/adfm.202302051 – ident: e_1_2_10_1_1 doi: 10.1002/advs.201802373 – ident: e_1_2_10_5_1 doi: 10.1103/PhysRevLett.7.118 – ident: e_1_2_10_200_1 doi: 10.1016/j.optmat.2017.12.023 – volume: 21 start-page: 4305 year: 2021 ident: e_1_2_10_101_1 publication-title: ACS Photonics – ident: e_1_2_10_49_1 doi: 10.1126/science.1218497 – ident: e_1_2_10_233_1 doi: 10.1021/nl504860z – ident: e_1_2_10_129_1 doi: 10.1016/j.conb.2004.08.013 – ident: e_1_2_10_15_1 doi: 10.1021/acs.accounts.1c00188 – ident: e_1_2_10_56_1 doi: 10.1038/lsa.2016.131 – ident: e_1_2_10_136_1 doi: 10.1021/nl901101g – ident: e_1_2_10_112_1 doi: 10.1103/PhysRevB.86.035327 – ident: e_1_2_10_146_1 doi: 10.1063/1.5144482 – ident: e_1_2_10_208_1 doi: 10.1002/inf2.12236 – volume: 1 year: 2015 ident: e_1_2_10_174_1 publication-title: Phys. Rew. B – ident: e_1_2_10_7_1 doi: 10.1002/adfm.202107768 – ident: e_1_2_10_172_1 doi: 10.1039/D0TC05607C – ident: e_1_2_10_247_1 doi: 10.1126/science.aac9439 – ident: e_1_2_10_170_1 doi: 10.1016/S0038-1098(97)00269-X – ident: e_1_2_10_97_1 doi: 10.1021/acs.nanolett.1c00891 – ident: e_1_2_10_142_1 doi: 10.1021/acsphotonics.8b00653 – ident: e_1_2_10_115_1 doi: 10.3788/COL201210.101902 – ident: e_1_2_10_73_1 doi: 10.1126/sciadv.abd4623 – ident: e_1_2_10_175_1 doi: 10.1016/j.physleta.2015.10.044 – ident: e_1_2_10_20_1 doi: 10.1007/s12274-016-1034-9 – ident: e_1_2_10_230_1 doi: 10.1126/sciadv.ade7968 – ident: e_1_2_10_246_1 doi: 10.1063/1.5131165 – ident: e_1_2_10_52_1 doi: 10.1021/acsphotonics.0c00819 – ident: e_1_2_10_33_1 doi: 10.1088/1367-2630/ac90e2 – ident: e_1_2_10_38_1 doi: 10.1002/inf2.12148 – ident: e_1_2_10_48_1 doi: 10.1038/nphoton.2010.256 – ident: e_1_2_10_85_1 doi: 10.3390/sym14010084 – ident: e_1_2_10_138_1 doi: 10.1364/OE.16.003408 – ident: e_1_2_10_21_1 doi: 10.1038/s41578-019-0124-1 – ident: e_1_2_10_80_1 doi: 10.1016/j.ccr.2021.213927 – ident: e_1_2_10_169_1 doi: 10.1021/acsnano.2c03566 – ident: e_1_2_10_228_1 doi: 10.1038/s41566-023-01195-z – ident: e_1_2_10_135_1 doi: 10.1002/lpor.202100726 – volume: 35 year: 2023 ident: e_1_2_10_6_1 publication-title: Adv. Mater. – ident: e_1_2_10_94_1 doi: 10.1021/acsphotonics.8b00685 – ident: e_1_2_10_43_1 doi: 10.1002/adma.202101589 – ident: e_1_2_10_106_1 doi: 10.3788/COL202321.043801 – ident: e_1_2_10_225_1 doi: 10.1038/s41467-022-32739-6 – ident: e_1_2_10_96_1 doi: 10.1002/adfm.202006788 – ident: e_1_2_10_40_1 doi: 10.1002/inf2.12274 – ident: e_1_2_10_224_1 doi: 10.1088/0034-4885/70/8/R02 – ident: e_1_2_10_141_1 doi: 10.1007/s00340-015-6178-x – ident: e_1_2_10_87_1 doi: 10.1016/j.mattod.2021.07.023 – ident: e_1_2_10_171_1 doi: 10.1021/acs.nanolett.7b02268 – ident: e_1_2_10_16_1 doi: 10.1002/adma.201606128 – ident: e_1_2_10_103_1 doi: 10.1007/s12274-020-3197-7 – ident: e_1_2_10_123_1 doi: 10.1364/JOSAB.19.000289 – ident: e_1_2_10_128_1 doi: 10.1021/acs.jpcc.9b11848 – ident: e_1_2_10_36_1 doi: 10.1038/nature10067 – ident: e_1_2_10_148_1 doi: 10.1364/JOSAB.26.000420 – ident: e_1_2_10_61_1 doi: 10.1126/science.1158877 – ident: e_1_2_10_189_1 doi: 10.1002/lpor.201900052 – ident: e_1_2_10_130_1 doi: 10.1038/nbt899 – ident: e_1_2_10_37_1 doi: 10.1038/s41586-019-1013-x – ident: e_1_2_10_240_1 doi: 10.1016/j.spmi.2019.106244 – ident: e_1_2_10_179_1 doi: 10.1021/acs.jpclett.7b00140 – ident: e_1_2_10_81_1 doi: 10.1002/adma.202100113 – ident: e_1_2_10_164_1 doi: 10.1002/anie.201409837 – ident: e_1_2_10_74_1 doi: 10.1002/adom.202201688 – ident: e_1_2_10_239_1 doi: 10.1021/acsphotonics.7b00231 – ident: e_1_2_10_222_1 doi: 10.1038/nature01175 – ident: e_1_2_10_249_1 doi: 10.1038/s41467-017-01351-4 – ident: e_1_2_10_35_1 doi: 10.1364/AOP.8.000618 – ident: e_1_2_10_102_1 doi: 10.1039/D3EE01047C – ident: e_1_2_10_113_1 doi: 10.1109/3.53394 – ident: e_1_2_10_51_1 doi: 10.1021/acs.jpclett.1c02770 – ident: e_1_2_10_22_1 doi: 10.1002/adma.201902685 – ident: e_1_2_10_149_1 doi: 10.1088/0963-9659/1/3/004 – ident: e_1_2_10_176_1 doi: 10.1103/PhysRevB.87.121406 – ident: e_1_2_10_26_1 doi: 10.1002/lpor.202100322 – ident: e_1_2_10_60_1 doi: 10.1038/s41467-017-00749-4 – ident: e_1_2_10_153_1 doi: 10.1002/adom.201701334 – ident: e_1_2_10_24_1 doi: 10.1021/nn901703e – volume: 42 start-page: 659 year: 2023 ident: e_1_2_10_12_1 publication-title: J. Infrared Millimeter Waves – ident: e_1_2_10_204_1 doi: 10.1002/adom.202100625 – ident: e_1_2_10_242_1 doi: 10.1021/ar4000955 – ident: e_1_2_10_77_1 doi: 10.1038/s41467-021-25941-5 – volume: 14 year: 2023 ident: e_1_2_10_134_1 publication-title: Micromachines – ident: e_1_2_10_120_1 doi: 10.1364/OL.40.003480 – volume: 41 start-page: 1122 year: 2016 ident: e_1_2_10_139_1 publication-title: Opt. Express – ident: e_1_2_10_147_1 doi: 10.1063/1.322965 – ident: e_1_2_10_91_1 doi: 10.1007/s12274-022-5119-3 – ident: e_1_2_10_219_1 doi: 10.1109/JSTQE.2016.2514784 – ident: e_1_2_10_155_1 doi: 10.1021/nl403328s – ident: e_1_2_10_212_1 doi: 10.1088/0957-0233/12/11/304 – ident: e_1_2_10_58_1 doi: 10.1038/s41377-018-0011-3 – ident: e_1_2_10_173_1 doi: 10.1021/acs.nanolett.1c03376 – ident: e_1_2_10_89_1 doi: 10.1038/s41563-023-01556-7 – ident: e_1_2_10_92_1 doi: 10.1021/acs.nanolett.1c02381 – ident: e_1_2_10_218_1 doi: 10.3788/COL202119.081405 – ident: e_1_2_10_67_1 doi: 10.1038/s41565-018-0145-8 – ident: e_1_2_10_143_1 doi: 10.3788/COL202220.093201 – ident: e_1_2_10_104_1 doi: 10.1002/advs.202201842 – ident: e_1_2_10_203_1 doi: 10.1038/s41377-022-01008-y – ident: e_1_2_10_23_1 doi: 10.1038/nphoton.2010.186 – ident: e_1_2_10_55_1 doi: 10.1364/OPTICA.444105 – ident: e_1_2_10_64_1 doi: 10.1038/nphoton.2011.177 – ident: e_1_2_10_201_1 doi: 10.1002/adom.201800579 – ident: e_1_2_10_154_1 doi: 10.1021/nl401561r – ident: e_1_2_10_213_1 doi: 10.1126/science.286.5444.1507 – ident: e_1_2_10_72_1 doi: 10.1063/5.0088275 – ident: e_1_2_10_227_1 doi: 10.1016/j.apsusc.2018.04.117 – ident: e_1_2_10_50_1 doi: 10.1038/s41566-020-00728-0 – ident: e_1_2_10_88_1 doi: 10.1038/s41578-022-00440-1 – ident: e_1_2_10_145_1 doi: 10.1364/OL.16.001683 – ident: e_1_2_10_132_1 doi: 10.1038/nmeth.4218 – ident: e_1_2_10_207_1 doi: 10.1021/acs.nanolett.7b05033 – ident: e_1_2_10_235_1 doi: 10.1038/ncomms15354 – ident: e_1_2_10_111_1 doi: 10.1002/lpor.201900409 – ident: e_1_2_10_166_1 doi: 10.1088/2053-1583/aab390 – ident: e_1_2_10_32_1 doi: 10.1103/PhysRevB.99.205404 – ident: e_1_2_10_121_1 doi: 10.1364/OE.24.021105 – ident: e_1_2_10_127_1 doi: 10.1038/nphoton.2012.361 – ident: e_1_2_10_165_1 doi: 10.1021/jacs.5b04305 – ident: e_1_2_10_180_1 doi: 10.1038/s41598-017-03667-z – ident: e_1_2_10_211_1 doi: 10.1002/bem.22117 – ident: e_1_2_10_122_1 doi: 10.1364/OL.14.000955 – ident: e_1_2_10_54_1 doi: 10.1002/adom.201900631 – ident: e_1_2_10_236_1 doi: 10.3788/COL202119.060003 – ident: e_1_2_10_84_1 doi: 10.1021/acsphotonics.0c01759 – ident: e_1_2_10_118_1 doi: 10.1515/nanoph-2018-0106 – ident: e_1_2_10_194_1 doi: 10.1002/adom.202101432 – ident: e_1_2_10_2_1 doi: 10.1088/2053-1583/abaf68 – ident: e_1_2_10_160_1 doi: 10.1002/adfm.201800785 – ident: e_1_2_10_199_1 doi: 10.1016/j.molliq.2021.115347 – ident: e_1_2_10_126_1 doi: 10.1117/1.3041159 – ident: e_1_2_10_18_1 doi: 10.1002/advs.202003834 – ident: e_1_2_10_86_1 doi: 10.1002/inf2.12024 – ident: e_1_2_10_215_1 doi: 10.3788/COL202321.091401 – volume: 9 year: 2019 ident: e_1_2_10_190_1 publication-title: Proc. SPIE Int. Soc. Opt. Eng. – ident: e_1_2_10_45_1 doi: 10.1021/acs.nanolett.1c01975 – ident: e_1_2_10_192_1 doi: 10.1002/smll.202103938 – ident: e_1_2_10_234_1 doi: 10.1038/s41566-019-0547-7 – ident: e_1_2_10_30_1 doi: 10.1016/j.apsusc.2022.153240 – ident: e_1_2_10_162_1 doi: 10.1038/s41467-021-21267-4 – ident: e_1_2_10_161_1 doi: 10.1088/1367-2630/ac231c – ident: e_1_2_10_198_1 doi: 10.1016/j.optmat.2018.03.046 – ident: e_1_2_10_41_1 doi: 10.1002/adom.202001671 – ident: e_1_2_10_14_1 doi: 10.1117/1.AP.4.3.030502 |
SSID | ssj0031247 |
Score | 2.5429113 |
SecondaryResourceType | review_article |
Snippet | 2D materials are a subject of intense research in recent years owing to their exclusive photoelectric properties. With giant nonlinear susceptibility and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2311621 |
SubjectTerms | 2D materials Harmonic generations Nonlinear optics Optical properties Phase matching Photoelectric effect Photoelectricity SHG THG Two dimensional analysis Two dimensional materials |
Title | Nonlinear Optical Properties of 2D Materials and their Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202311621 https://www.ncbi.nlm.nih.gov/pubmed/38618662 https://www.proquest.com/docview/3095503973 https://www.proquest.com/docview/3039237516 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4YT3rw_aiiWRMTTwW6227LkaCEGECjknBr9tFexEKgXPz17nShgsaY6K1Nd7Pt7kznm52dbwCuZRp6OqLCFRLDjKLRcAVPfTfywtRTWjOtMcG51-edgX8_DIYrWfyWH6LccEPNKP7XqOBCzmqfpKGztxGGDgw-8XiRSY4HthAVPZX8UcwYr6K6irFZLhJvLVkb67S23n3dKn2DmuvItTA97V0Qy5e2J05eq_NcVtX7Fz7H_3zVHuwscClpWkHah40kO4DtFbbCQ2j17QBiSh4mxRY4ecSt_ClyspJxSugt6YncijQRmSZFFII0V2LkRzBo3720Ou6iBoOrWMg8V3FO6yKQBgcESge0EQVaJqFxAiNtfDWuQuMfShVxL0llxAy-Udp4XYImPKDcYKNj2MzGWXIKxAs1V6k0_p7EnBQuEEsxPxWCcq1C4YC7XINYLQjKsU7GKLbUyjTGyYnLyXHgpmw_sdQcP7asLJc0XqjoLGZIvlc3cIw5cFU-NsqFERORJeM5tjHwkYWBxx04saJQDsUiLDXAqQO0WNBf3iF-7nW75d3ZXzqdw5a59u3xwwps5tN5cmEgUS4vC7H_ALRxAME |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQOAAH3o_yDBISp441WdPuiHhoQDsQDIlblUd7YXRobBd-PXGzlg2EkODYNlHaJK4_2_FngCOZBZ4OqXCFxDCjaLVcwbOmG3pB5imtmdaY4Bx3ePuxef3kl6cJMRfG8kNUDjeUjOJ_jQKODumTT9bQt5cexg4MQPE4ppLPYllvpM8_v68YpJhRX0V9FaO1XKTeKnkbG_Rkuv-0XvoGNqexa6F8LpdAlq9tz5w810dDWVfvXxgd__Vdy7A4hqbk1O6lFZhJ81VYmCAsXIOzjh1BDMjta-EFJ3fozR8gLSvpZ4Sek1gM7a4mItekCESQ04kw-To8Xl50z9ruuAyDq1jAPFdxThvClwYK-Er7tBX6WqaBsQNDbcw1rgJjIkoVci_NZMgMxFHaGF6Cptyn3MCjDajl_TzdAuIFmqtMGpNPYloKFwinWDMTgnKtAuGAWy5CosYc5Vgqo5dYdmWa4OQk1eQ4cFy1f7XsHD-23C3XNBlL6VvCkH-vYRAZc-CwemzkC4MmIk_7I2xjECQLfI87sGn3QjUUC7HaAKcO0GJFf3mH5CGOoupq-y-dDmCu3Y2jJLrq3OzAvLnftKcRd6E2HIzSPYOQhnK_kIEPzssE3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4YTIwefD-qqGti4qlAd9ttORKR-AA0PhJuzT7ai1oIwsVf704XKmiMiR7b7maf0_lmZ-cbgFOZhp6OqHCFRDejqNddwVPfjbww9ZTWTGsMcO50-eWTf90LejNR_JYfojhwQ8nI_9co4AOdVj9JQ99eX9B1YPCJxzGSfNHntTomb2jeFwRSzGivPL2KUVouMm9NaRtrtDpff14tfcOa89A11z2tNRDTXtsrJ8-V8UhW1PsXQsf_DGsdVifAlDTsTtqAhSTbhJUZusItOO_aBsSQ3A7yM3Byh2f5QyRlJf2U0CbpiJHd00RkmuRuCNKYcZJvw1Pr4vH80p0kYXAVC5nnKs5pTQTSAIFA6YDWo0DLJDRWYKSNscZVaAxEqSLuJamMmAE4ShuzS9CEB5QbcLQDpayfJXtAvFBzlUpj8EkMSuECwRTzUyEo1yoUDrjTNYjVhKEcE2W8xJZbmcY4OXExOQ6cFeUHlpvjx5Ll6ZLGExl9ixmy79UMHmMOnBSfjXShy0RkSX-MZQx-ZGHgcQd27VYommIR5hrg1AGaL-gvfYgfOu128bT_l0rHsHTXbMXtq-7NASyb1769iliG0mg4Tg4NPBrJo1wCPgCwIgOM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Optical+Properties+of+2D+Materials+and+their+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xie%2C+Zhixiang&rft.au=Zhao%2C+Tianxiang&rft.au=Yu%2C+Xuechao&rft.au=Wang%2C+Junjia&rft.date=2024-08-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=20&rft.issue=34&rft.spage=e2311621&rft_id=info:doi/10.1002%2Fsmll.202311621&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |