Catalytic Asymmetric Synthesis of Axially Chiral Diaryl Ethers through Enantioselective Desymmetrization

Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic a...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 14; pp. e202300481 - n/a
Main Authors Bao, Hanyang, Chen, Yunrong, Yang, Xiaoyu
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 27.03.2023
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid‐catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3‐benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2‐benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene‐containing diaryl ether atropisomers. A highly efficient enantioselective desymmetrization protocol is disclosed for the asymmetric synthesis of axially chiral diaryl ethers by using a chiral phosphoric acid‐catalyzed electrophilic aromatic amination. This method features broad substrate scope, high yields and high enantioselectivity. The facile derivatization of various products into a series of structurally novel azaarene‐containing diaryl ether atropisomers was also demonstrated.
AbstractList Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid‐catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3‐benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2‐benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene‐containing diaryl ether atropisomers.
Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid-catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3-benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2-benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene-containing diaryl ether atropisomers.Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid-catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3-benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2-benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene-containing diaryl ether atropisomers.
Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid‐catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3‐benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2‐benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene‐containing diaryl ether atropisomers. A highly efficient enantioselective desymmetrization protocol is disclosed for the asymmetric synthesis of axially chiral diaryl ethers by using a chiral phosphoric acid‐catalyzed electrophilic aromatic amination. This method features broad substrate scope, high yields and high enantioselectivity. The facile derivatization of various products into a series of structurally novel azaarene‐containing diaryl ether atropisomers was also demonstrated.
ArticleNumber 202300481
Author Bao, Hanyang
Yang, Xiaoyu
Chen, Yunrong
Author_xml – sequence: 1
  givenname: Hanyang
  surname: Bao
  fullname: Bao, Hanyang
  organization: ShanghaiTech University
– sequence: 2
  givenname: Yunrong
  orcidid: 0000-0001-6872-4943
  surname: Chen
  fullname: Chen, Yunrong
  organization: ShanghaiTech University
– sequence: 3
  givenname: Xiaoyu
  orcidid: 0000-0002-0756-0671
  surname: Yang
  fullname: Yang, Xiaoyu
  email: yangxy1@shanghaitech.edu.cn
  organization: ShanghaiTech University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36760025$$D View this record in MEDLINE/PubMed
BookMark eNqNktGL1DAQxoOceHerrz5KwRdBuiZN26SPS2_Vg0Mf1OeSZqc2R5qcSXpa_3rn3L0VDkQhJDPk9818DHNOTpx3QMhzRteM0uKNcgbWBS04paVkj8gZqwqWcyH4CcYl57mQFTsl5zFeIy8lrZ-QU16LGrPqjIytSsouyehsE5dpghQw_LS4NEI0MfNDtvlhlLVL1o4mKJtdGBUWm20RCDFLY_Dz1zHbOuWS8REs6GRuIbuA-3I_FX64p-TxoGyEZ4d3Rb683X5u3-dXH99dtpurXHPBWa5LqGkltWrqQgMvJfps8BRDKZuGCip3NeNcNQOooZc7qelOyUL30FcDY5qvyKt93Zvgv80QUzeZqMFa5cDPsSuEqGpWCl4j-vIBeu3n4NAdUlLysinxXpEXB2ruJ9h1N8FMOIHufoYIyD3wHXo_RG3AaThiFM1zrCYFRpS1Jv0eR-tnl1D6-v-lSK_3tA4-xgDDkWS0u9uG7m4buuM2oKB8INCH9ikoY_8uaw6ujIXlH026zYfL7R_tLxwcx8U
CitedBy_id crossref_primary_10_1002_ange_202314228
crossref_primary_10_1021_acscatal_4c00239
crossref_primary_10_1002_cctc_202400690
crossref_primary_10_1038_s41929_024_01138_z
crossref_primary_10_1038_s41467_023_40718_8
crossref_primary_10_1021_acscatal_4c01489
crossref_primary_10_1002_ange_202312923
crossref_primary_10_1002_anie_202416569
crossref_primary_10_1016_j_checat_2023_100827
crossref_primary_10_1021_acscatal_4c00414
crossref_primary_10_1002_ejoc_202400402
crossref_primary_10_1021_jacs_4c12063
crossref_primary_10_1021_jacs_4c04852
crossref_primary_10_1021_jacsau_3c00814
crossref_primary_10_1021_acs_orglett_3c02100
crossref_primary_10_1039_D4CC01655F
crossref_primary_10_1002_anie_202407767
crossref_primary_10_1021_acscatal_5c00495
crossref_primary_10_1039_D4CE01043D
crossref_primary_10_1002_ange_202416569
crossref_primary_10_1002_anie_202311709
crossref_primary_10_1021_acscatal_4c00001
crossref_primary_10_1002_adsc_202400084
crossref_primary_10_1002_anie_202303430
crossref_primary_10_1021_acscatal_4c00428
crossref_primary_10_1039_D3OB01266B
crossref_primary_10_1039_D4OB00739E
crossref_primary_10_1126_sciadv_adr6135
crossref_primary_10_1002_advs_202403125
crossref_primary_10_34133_research_0474
crossref_primary_10_1002_anie_202312923
crossref_primary_10_1039_D4QO01413H
crossref_primary_10_1002_anie_202314228
crossref_primary_10_1016_j_xcrp_2024_101993
crossref_primary_10_1021_jacs_4c00307
crossref_primary_10_1021_acs_joc_4c00330
crossref_primary_10_1002_ajoc_202400584
crossref_primary_10_1021_acs_orglett_3c02475
crossref_primary_10_1039_D4QO01705F
crossref_primary_10_1039_D3SC06444A
crossref_primary_10_1002_ange_202407767
crossref_primary_10_1002_ejoc_202300738
crossref_primary_10_1002_ange_202303430
crossref_primary_10_1039_D4SC01074D
crossref_primary_10_1021_acscatal_3c06148
crossref_primary_10_1038_s41570_024_00618_x
crossref_primary_10_1002_ange_202311709
Cites_doi 10.1016/j.trechm.2021.12.010
10.1002/anie.200705660
10.1021/cr020025b
10.1016/j.chempr.2021.07.013
10.1016/j.gresc.2021.12.005
10.1021/acs.accounts.2c00465
10.1002/(SICI)1521-3757(19990802)111:15<2230::AID-ANGE2230>3.0.CO;2-V
10.1002/anie.200601866
10.1002/ange.202200371
10.1016/j.isci.2019.11.024
10.1002/cmdc.201000485
10.1002/ange.200460842
10.1002/ange.202015008
10.1055/s-0029-1218801
10.1039/C5CS00012B
10.1021/jacs.9b12994
10.1002/anie.202201064
10.1007/s11426-022-1363-y
10.1021/ol902313v
10.1039/D0CC02368J
10.1021/cr068374j
10.1016/j.cclet.2018.01.045
10.1021/acs.accounts.7b00602
10.1002/ange.202216534
10.1002/ajoc.202100091
10.1021/acs.accounts.8b00473
10.1021/jacs.1c07635
10.1016/j.xcrp.2021.100413
10.1002/ange.202116829
10.1002/ejoc.201101489
10.1002/ange.201002580
10.1002/ange.200353240
10.1055/s-0037-1609581
10.1002/anie.202206501
10.1002/anie.202009395
10.1002/ange.202108630
10.1021/acscatal.1c02331
10.1002/anie.202116829
10.1055/a-1790-3230
10.1002/anie.200353240
10.1002/anie.201002580
10.1021/acs.accounts.2c00500
10.1021/jacs.1c05079
10.1002/anie.202015008
10.1021/cr5001496
10.1002/adsc.201100111
10.1021/acs.accounts.2c00486
10.1002/ange.202201064
10.3762/bjoc.7.156
10.1021/jm200584g
10.1002/ange.200705660
10.1021/ja0491533
10.1021/acscatal.2c04975
10.1002/anie.202216534
10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F
10.1039/D1QO01699G
10.1021/acs.accounts.9b00549
10.1021/jacs.1c04345
10.1002/ange.200601866
10.1002/ange.202211782
10.1002/anie.202200371
10.1039/C8OB00900G
10.1021/acs.chemrev.0c01306
10.1021/acs.chemrev.6b00094
10.1021/acs.accounts.2c00175
10.1021/acs.joc.2c00451
10.1021/acs.accounts.2c00509
10.1021/ja311902f
10.1002/anie.202108630
10.1039/C5CS00015G
10.1002/ange.202206501
10.1039/C4NP00121D
10.1002/ajoc.201600021
10.1002/ange.202009395
10.1002/cjoc.202200327
10.1002/anie.202211782
10.1039/D1SC05360D
10.1002/9780470147238.ch1
10.1002/cjoc.202000751
10.1016/j.chempr.2022.04.011
10.1016/j.ccr.2007.07.020
10.1002/anie.200460842
10.1016/S0040-4039(97)10848-6
10.1021/jacs.1c07741
10.1039/c8ob00900g
10.1039/d0cc02368j
10.1039/d1qo01699g
10.1039/d1sc05360d
10.1016/j.fpsl.2019.100393
10.1039/c5cs00012b
10.1039/c4np00121d
10.1002/anie.202110666
10.1039/c5cs00015g
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
BLEPL
BNZSX
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202300481
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Web of Science - Science Citation Index Expanded - 2023
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Web of Science
PubMed
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36760025
000937888700001
10_1002_anie_202300481
ANIE202300481
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22222107; 22171186
– fundername: ShanghaiTech University
– fundername: Analytical Instrumentation Center, SPST, ShanghaiTech University
  grantid: SPST-AIC10112914
– fundername: Double First-Class Initiative Fund of ShanghaiTech University
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 22222107; 22171186
– fundername: National Natural Science Foundation of China
  grantid: 22171186
– fundername: National Natural Science Foundation of China
  grantid: 22222107
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3731-c4e6058ca962ce34860090092f48990708d6133a9feafb8d8c0da82cbeb5f11c3
IEDL.DBID DR2
ISICitedReferencesCount 55
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000937888700001
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 23:19:02 EDT 2025
Fri Jul 25 10:40:28 EDT 2025
Wed Feb 19 02:25:00 EST 2025
Wed Jul 09 18:40:05 EDT 2025
Fri Aug 29 16:04:29 EDT 2025
Tue Jul 01 01:47:05 EDT 2025
Thu Apr 24 22:49:22 EDT 2025
Wed Jan 22 16:22:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords BRONSTED ACID
ATROPISOMERS
Electrophilic Aromatic Amination
LIGANDS
Axial Chirality
ATROPOSELECTIVE SYNTHESIS
CONSTRUCTION
Chiral Phosphoric Acid
Organocatalysis
Enantioselective Desymmetrization
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3731-c4e6058ca962ce34860090092f48990708d6133a9feafb8d8c0da82cbeb5f11c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6872-4943
0000-0002-0756-0671
PMID 36760025
PQID 2788349488
PQPubID 946352
PageCount 7
ParticipantIDs webofscience_primary_000937888700001CitationCount
proquest_miscellaneous_2775614736
crossref_primary_10_1002_anie_202300481
crossref_citationtrail_10_1002_anie_202300481
pubmed_primary_36760025
proquest_journals_2788349488
wiley_primary_10_1002_anie_202300481_ANIE202300481
webofscience_primary_000937888700001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 27, 2023
PublicationDateYYYYMMDD 2023-03-27
PublicationDate_xml – month: 03
  year: 2023
  text: March 27, 2023
  day: 27
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2007; 107
2004; 126
2019; 52
1999 1999; 38 111
2015; 32
2020 2020; 59 132
2011; 54
2020; 56
2022; 65
2021; 121
2008 2008; 47 120
1983; 14
2011; 353
2009; 11
2022 2022; 61 134
2020; 53
2019; 22
2022; 40
2021; 39
2007; 251
2015; 44
2005 2005; 44 117
2016; 116
2022; 33
2016; 45
1988
2021; 7
2018; 29
2004 2004; 43 116
2021; 2
2012
2020; 142
2010
2010 2010; 49 122
2022; 87
2023 2023; 62 135
2021; 143
2011; 6
2014; 114
2011; 7
2006 2006; 45 118
2016; 5
1998; 39
2021; 10
2021; 11
2022; 3
2022; 4
2022; 8
2022; 9
2022; 12
2022; 13
2021 2021; 60 133
2013; 135
2018; 51
2022; 55
2003; 103
2018; 16
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_83_1
e_1_2_7_60_3
e_1_2_7_60_2
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_41_2
e_1_2_7_11_1
e_1_2_7_45_2
e_1_2_7_45_3
e_1_2_7_26_1
e_1_2_7_68_2
e_1_2_7_49_1
e_1_2_7_71_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_23_2
e_1_2_7_52_3
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_1
e_1_2_7_37_2
e_1_2_7_4_2
e_1_2_7_8_2
e_1_2_7_82_2
e_1_2_7_16_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_48_1
e_1_2_7_48_2
e_1_2_7_29_2
e_1_2_7_51_1
e_1_2_7_70_2
e_1_2_7_24_3
e_1_2_7_24_2
e_1_2_7_32_2
e_1_2_7_74_2
e_1_2_7_20_3
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_5_2
e_1_2_7_9_2
e_1_2_7_81_3
e_1_2_7_17_2
e_1_2_7_62_1
e_1_2_7_81_2
e_1_2_7_13_3
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_43_2
e_1_2_7_66_2
e_1_2_7_47_1
e_1_2_7_47_2
Kagna H. B. (e_1_2_7_78_1) 1988
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_21_3
e_1_2_7_73_3
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_39_2
e_1_2_7_39_3
e_1_2_7_80_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_61_2
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_46_2
e_1_2_7_69_1
e_1_2_7_27_2
e_1_2_7_72_1
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_34_1
e_1_2_7_57_2
e_1_2_7_38_2
Terada, M (WOS:000278407000001) 2010
Clayden, J (000937888700001.49) 2008; 120
Chen, Y (000937888700001.84) 2021; 133
Jia, SQ (WOS:000810708100001) 2022; 61
Magnus, P (WOS:000272461800020) 2009; 11
Liu, W (WOS:000630475100001) 2021; 10
Yuan, B (WOS:000282477800013) 2010; 49
Dai, LL (WOS:000910085200001) 2023; 62
Yang, K (WOS:000674321800003) 2021; 143
Uraguchi, D (WOS:000221135400011) 2004; 126
Yuan, B (000937888700001.51) 2010; 122
Chen, KW (WOS:000761468300001) 2022; 61
Rahman, A (WOS:000437470400002) 2018; 16
Dinh, AN (WOS:000445494200012) 2018; 29
Metrano, AJ (WOS:000456349800022) 2019; 52
Liu, W (WOS:000580568600001) 2020; 59
Basilaia, M (WOS:000862378100001) 2022; 55
Jia, S (000937888700001.46) 2022; 134
Mei, GJ (WOS:000708501600014) 2021; 7
OKI, M (WOS:A1983RC37700001) 1983; 14
Vedejs, E (000937888700001.76) 2005; 117
Page, A (WOS:000295220000001) 2011; 7
Kagna, H. B. (000937888700001.81) 1988; 18
Wang, D (WOS:000713981500001) 2022; 61
Mori, K (WOS:000316244200038) 2013; 135
Chen, Y (WOS:000184821500017) 2003; 103
Zhu, D (000937888700001.25) 2022; 134
Chen, YR (WOS:000609275100001) 2021; 60
Vaidya, SD (WOS:000512222700021) 2020; 142
Zhang, X (WOS:000820884700001) 2022; 55
Vaidya, SD (WOS:000805365600018) 2022; 87
Li, YM (WOS:000250605400003) 2007; 251
Krasnov, VP (WOS:000300930800004) 2012; 2012
Wang, YB (WOS:000426014500035) 2018; 51
Pan, YK (WOS:000674927200005) 2021; 11
Betson, M. S (000937888700001.12) 2006; 118
Pellissier, H (WOS:000292939600001) 2011; 353
Liu, W (WOS:000872707500005) 2022; 33
Liu, CX (WOS:000696018700001) 2021; 143
Zhang, DK (WOS:000658767800007) 2021; 2
Li, X (WOS:000442060000002) 2018; 29
Betson, MS (WOS:000240412200010) 2006; 45
Wencel-Delord, J (WOS:000355485900005) 2015; 44
Min, XL (WOS:000766729100001) 2022; 9
Zeng, XP (WOS:000378585000007) 2016; 116
Xu, Y (WOS:000759893200005) 2022; 4
Yang, CX (WOS:000508675400017) 2019; 22
Akiyama, T (WOS:000251583300010) 2007; 107
Nicolaou, KC (WOS:000081864800001) 1999; 38
Wang, XM (WOS:000700883200011) 2021; 143
Zhang, YC (WOS:000514759600013) 2020; 53
Liu, W (000937888700001.64) 2020; 132
Zhang, DK (WOS:000892731500001) 2022; 12
Song, RJ (WOS:000683806600001) 2021; 60
Nicolaou, K. C (000937888700001.9) 1999; 111
Da, BC (WOS:000653243300001) 2021; 39
Clayden, J (WOS:000255214200023) 2008; 47
Qin, WL (WOS:000859290700001) 2022; 55
Yang, JX (WOS:000691789500004) 2021; 143
Song, R (000937888700001.39) 2021; 133
Sheng, FT (WOS:000816707900001) 2022; 40
Hang, QQ (WOS:000854410500003) 2022; 65
Cheng, JK (WOS:000645513800008) 2021; 121
Gao, YR (WOS:000761468500001) 2022; 61
Wang, D (000937888700001.68) 2022; 134
Wu, YJ (WOS:001022734500001) 2022; 3
Lin, W (WOS:000726864000001) 2022; 13
Zhang, HH (WOS:000862870000001) 2022
Dai, L (000937888700001.54) 2023; 135
Vedejs, E (WOS:000230214800007) 2005; 44
LaPlante, SR (WOS:000296205900001) 2011; 54
Borissov, A (WOS:000385181300003) 2016; 45
LaPlante, SR (WOS:000288599600014) 2011; 6
Zhu, D (WOS:000853127000001) 2022; 61
Parmar, D (WOS:000342328500008) 2014; 114
Smyth, JE (WOS:000363648300004) 2015; 32
Cheng, JK (WOS:000868882500001) 2022; 55
Petersen, KS (WOS:000372915400001) 2016; 5
Akiyama, T (WOS:000220389600023) 2004; 43
Fuji, K (WOS:000072228100028) 1998; 39
Wang, DL (WOS:000541419600001) 2020; 56
Mei, GJ (WOS:000841999200008) 2022; 8
References_xml – volume: 55
  start-page: 2920
  year: 2022
  end-page: 2937
  publication-title: Acc. Chem. Res.
– volume: 143
  start-page: 10048
  year: 2021
  end-page: 10053
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 199
  year: 2019
  end-page: 215
  publication-title: Acc. Chem. Res.
– volume: 55
  start-page: 2904
  year: 2022
  end-page: 2919
  publication-title: Acc. Chem. Res.
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 22
  start-page: 195
  year: 2019
  end-page: 205
  publication-title: iScience
– volume: 143
  start-page: 15005
  year: 2021
  end-page: 15010
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 308
  year: 2016
  end-page: 320
  publication-title: Asian J. Org. Chem.
– volume: 54
  start-page: 7005
  year: 2011
  end-page: 7022
  publication-title: J. Med. Chem.
– volume: 11
  start-page: 5646
  year: 2009
  end-page: 5648
  publication-title: Org. Lett.
– volume: 4
  start-page: 191
  year: 2022
  end-page: 205
  publication-title: Trends Chem.
– volume: 3
  start-page: 117
  year: 2022
  end-page: 136
  publication-title: Green Synth. Catal.
– volume: 107
  start-page: 5744
  year: 2007
  end-page: 5758
  publication-title: Chem. Rev.
– volume: 87
  start-page: 6760
  year: 2022
  end-page: 6768
  publication-title: J. Org. Chem.
– volume: 55
  start-page: 1620
  year: 2022
  end-page: 1633
  publication-title: Acc. Chem. Res.
– volume: 13
  start-page: 141
  year: 2022
  end-page: 148
  publication-title: Chem. Sci.
– volume: 142
  start-page: 2198
  year: 2020
  end-page: 2203
  publication-title: J. Am. Chem. Soc.
– volume: 62 135
  year: 2023 2023
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 692
  year: 2021
  end-page: 710
  publication-title: Asian J. Org. Chem.
– volume: 14
  start-page: 1
  year: 1983
  end-page: 81
  publication-title: Top. Stereochem.
– volume: 65
  start-page: 1929
  year: 2022
  end-page: 1937
  publication-title: Sci. China Chem.
– volume: 121
  start-page: 4805
  year: 2021
  end-page: 4902
  publication-title: Chem. Rev.
– volume: 33
  start-page: 1788
  year: 2022
  end-page: 1812
  publication-title: Synlett
– volume: 56
  start-page: 6201
  year: 2020
  end-page: 6204
  publication-title: Chem. Commun.
– volume: 143
  start-page: 14025
  year: 2021
  end-page: 14040
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 23598 23804
  year: 2020 2020
  end-page: 23602 23808
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 1929
  year: 2010
  end-page: 1982
  publication-title: Synthesis
– volume: 114
  start-page: 9047
  year: 2014
  end-page: 9153
  publication-title: Chem. Rev.
– volume: 103
  start-page: 3155
  year: 2003
  end-page: 3212
  publication-title: Chem. Rev.
– volume: 43 116
  start-page: 1566 1592
  year: 2004 2004
  end-page: 1568 1594
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 126
  start-page: 5356
  year: 2004
  end-page: 5357
  publication-title: J. Am. Chem. Soc.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 249
  year: 1988
  end-page: 330
– volume: 12
  start-page: 14609
  year: 2022
  end-page: 14618
  publication-title: ACS Catal.
– volume: 45
  start-page: 5474
  year: 2016
  end-page: 5540
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 1327
  year: 2011
  end-page: 1333
  publication-title: Beilstein J. Org. Chem.
– volume: 44
  start-page: 3418
  year: 2015
  end-page: 3430
  publication-title: Chem. Soc. Rev.
– volume: 45 118
  start-page: 5803 5935
  year: 2006 2006
  end-page: 5807 5939
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 2743
  year: 2021
  end-page: 2757
  publication-title: Chem
– volume: 116
  start-page: 7330
  year: 2016
  end-page: 7396
  publication-title: Chem. Rev.
– volume: 6
  start-page: 505
  year: 2011
  end-page: 513
  publication-title: ChemMedChem
– volume: 353
  start-page: 1613
  year: 2011
  end-page: 1666
  publication-title: Adv. Synth. Catal.
– volume: 11
  start-page: 8443
  year: 2021
  end-page: 8448
  publication-title: ACS Catal.
– volume: 40
  start-page: 2151
  year: 2022
  end-page: 2160
  publication-title: Chin. J. Chem.
– volume: 29
  start-page: 2155
  year: 2018
  end-page: 2160
  publication-title: Synlett
– volume: 251
  start-page: 2119
  year: 2007
  end-page: 2144
  publication-title: Coord. Chem. Rev.
– volume: 55
  start-page: 2562
  year: 2022
  end-page: 2580
  publication-title: Acc. Chem. Res.
– volume: 32
  start-page: 1562
  year: 2015
  end-page: 1583
  publication-title: Nat. Prod. Rep.
– volume: 135
  start-page: 3964
  year: 2013
  end-page: 3970
  publication-title: J. Am. Chem. Soc.
– start-page: 1471
  year: 2012
  end-page: 1493
  publication-title: Eur. J. Org. Chem.
– volume: 143
  start-page: 12924
  year: 2021
  end-page: 12929
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 534
  year: 2018
  end-page: 547
  publication-title: Acc. Chem. Res.
– volume: 44 117
  start-page: 3974 4040
  year: 2005 2005
  end-page: 4001 4069
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47 120
  start-page: 3234 3278
  year: 2008 2008
  end-page: 3237 3281
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38 111
  start-page: 2096 2230
  year: 1999 1999
  end-page: 2152 2287
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 1855
  year: 2022
  end-page: 1893
  publication-title: Chem
– volume: 55
  start-page: 2780
  year: 2022
  end-page: 2795
  publication-title: Acc. Chem. Res.
– volume: 60 133
  start-page: 26026 26230
  year: 2021 2021
  end-page: 26037 26241
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 2280
  year: 2022
  end-page: 2292
  publication-title: Org. Chem. Front.
– volume: 49 122
  start-page: 7010 7164
  year: 2010 2010
  end-page: 7013 7167
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 425
  year: 2020
  end-page: 446
  publication-title: Acc. Chem. Res.
– volume: 29
  start-page: 1181
  year: 2018
  end-page: 1192
  publication-title: Chin. Chem. Lett.
– volume: 39
  start-page: 1787
  year: 2021
  end-page: 1796
  publication-title: Chin. J. Chem.
– volume: 60 133
  start-page: 5268 5328
  year: 2021 2021
  end-page: 5272 5332
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 39
  start-page: 1373
  year: 1998
  end-page: 1376
  publication-title: Tetrahedron Lett.
– volume: 16
  start-page: 4753
  year: 2018
  end-page: 4777
  publication-title: Org. Biomol. Chem.
– ident: e_1_2_7_67_2
  doi: 10.1016/j.trechm.2021.12.010
– ident: e_1_2_7_47_1
  doi: 10.1002/anie.200705660
– ident: e_1_2_7_8_2
  doi: 10.1021/cr020025b
– ident: e_1_2_7_18_2
  doi: 10.1016/j.chempr.2021.07.013
– ident: e_1_2_7_31_2
  doi: 10.1016/j.gresc.2021.12.005
– ident: e_1_2_7_11_1
– ident: e_1_2_7_42_2
  doi: 10.1021/acs.accounts.2c00465
– ident: e_1_2_7_10_2
  doi: 10.1002/(SICI)1521-3757(19990802)111:15<2230::AID-ANGE2230>3.0.CO;2-V
– ident: e_1_2_7_13_2
  doi: 10.1002/anie.200601866
– ident: e_1_2_7_21_3
  doi: 10.1002/ange.202200371
– ident: e_1_2_7_61_2
  doi: 10.1016/j.isci.2019.11.024
– ident: e_1_2_7_4_2
  doi: 10.1002/cmdc.201000485
– ident: e_1_2_7_73_3
  doi: 10.1002/ange.200460842
– ident: e_1_2_7_81_3
  doi: 10.1002/ange.202015008
– ident: e_1_2_7_55_2
  doi: 10.1055/s-0029-1218801
– ident: e_1_2_7_27_2
  doi: 10.1039/C5CS00012B
– ident: e_1_2_7_23_2
  doi: 10.1021/jacs.9b12994
– ident: e_1_2_7_63_1
  doi: 10.1002/anie.202201064
– ident: e_1_2_7_44_2
  doi: 10.1007/s11426-022-1363-y
– ident: e_1_2_7_79_1
  doi: 10.1021/ol902313v
– ident: e_1_2_7_62_1
  doi: 10.1039/D0CC02368J
– ident: e_1_2_7_54_2
  doi: 10.1021/cr068374j
– ident: e_1_2_7_57_2
  doi: 10.1016/j.cclet.2018.01.045
– ident: e_1_2_7_35_2
  doi: 10.1021/acs.accounts.7b00602
– ident: e_1_2_7_50_2
  doi: 10.1002/ange.202216534
– ident: e_1_2_7_68_2
  doi: 10.1002/ajoc.202100091
– ident: e_1_2_7_36_2
  doi: 10.1021/acs.accounts.8b00473
– ident: e_1_2_7_29_2
  doi: 10.1021/jacs.1c07635
– ident: e_1_2_7_70_2
  doi: 10.1016/j.xcrp.2021.100413
– ident: e_1_2_7_20_3
  doi: 10.1002/ange.202116829
– ident: e_1_2_7_75_2
  doi: 10.1002/ejoc.201101489
– ident: e_1_2_7_83_1
– ident: e_1_2_7_48_2
  doi: 10.1002/ange.201002580
– ident: e_1_2_7_52_3
  doi: 10.1002/ange.200353240
– ident: e_1_2_7_49_1
  doi: 10.1055/s-0037-1609581
– ident: e_1_2_7_80_1
– ident: e_1_2_7_64_1
– ident: e_1_2_7_45_2
  doi: 10.1002/anie.202206501
– ident: e_1_2_7_60_2
  doi: 10.1002/anie.202009395
– ident: e_1_2_7_39_3
  doi: 10.1002/ange.202108630
– start-page: 249
  volume-title: Kinetic Resolution, Vol. 18
  year: 1988
  ident: e_1_2_7_78_1
– ident: e_1_2_7_82_2
  doi: 10.1021/acscatal.1c02331
– ident: e_1_2_7_26_1
– ident: e_1_2_7_34_1
– ident: e_1_2_7_20_2
  doi: 10.1002/anie.202116829
– ident: e_1_2_7_77_2
  doi: 10.1055/a-1790-3230
– ident: e_1_2_7_52_2
  doi: 10.1002/anie.200353240
– ident: e_1_2_7_48_1
  doi: 10.1002/anie.201002580
– ident: e_1_2_7_51_1
– ident: e_1_2_7_5_2
  doi: 10.1021/acs.accounts.2c00500
– ident: e_1_2_7_17_2
  doi: 10.1021/jacs.1c05079
– ident: e_1_2_7_81_2
  doi: 10.1002/anie.202015008
– ident: e_1_2_7_3_1
– ident: e_1_2_7_56_2
  doi: 10.1021/cr5001496
– ident: e_1_2_7_74_2
  doi: 10.1002/adsc.201100111
– ident: e_1_2_7_40_2
  doi: 10.1021/acs.accounts.2c00486
– ident: e_1_2_7_63_2
  doi: 10.1002/ange.202201064
– ident: e_1_2_7_14_2
  doi: 10.3762/bjoc.7.156
– ident: e_1_2_7_6_2
  doi: 10.1021/jm200584g
– ident: e_1_2_7_47_2
  doi: 10.1002/ange.200705660
– ident: e_1_2_7_53_2
  doi: 10.1021/ja0491533
– ident: e_1_2_7_71_2
  doi: 10.1021/acscatal.2c04975
– ident: e_1_2_7_50_1
  doi: 10.1002/anie.202216534
– ident: e_1_2_7_10_1
  doi: 10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F
– ident: e_1_2_7_32_2
  doi: 10.1039/D1QO01699G
– ident: e_1_2_7_37_2
  doi: 10.1021/acs.accounts.9b00549
– ident: e_1_2_7_19_2
  doi: 10.1021/jacs.1c04345
– ident: e_1_2_7_13_3
  doi: 10.1002/ange.200601866
– ident: e_1_2_7_24_3
  doi: 10.1002/ange.202211782
– ident: e_1_2_7_21_2
  doi: 10.1002/anie.202200371
– ident: e_1_2_7_58_2
  doi: 10.1039/C8OB00900G
– ident: e_1_2_7_28_2
  doi: 10.1021/acs.chemrev.0c01306
– ident: e_1_2_7_66_2
  doi: 10.1021/acs.chemrev.6b00094
– ident: e_1_2_7_33_2
  doi: 10.1021/acs.accounts.2c00175
– ident: e_1_2_7_59_1
– ident: e_1_2_7_25_2
  doi: 10.1021/acs.joc.2c00451
– ident: e_1_2_7_41_2
  doi: 10.1021/acs.accounts.2c00509
– ident: e_1_2_7_43_2
  doi: 10.1021/ja311902f
– ident: e_1_2_7_39_2
  doi: 10.1002/anie.202108630
– ident: e_1_2_7_65_2
  doi: 10.1039/C5CS00015G
– ident: e_1_2_7_45_3
  doi: 10.1002/ange.202206501
– ident: e_1_2_7_2_1
  doi: 10.1039/C4NP00121D
– ident: e_1_2_7_76_2
  doi: 10.1002/ajoc.201600021
– ident: e_1_2_7_7_1
– ident: e_1_2_7_60_3
  doi: 10.1002/ange.202009395
– ident: e_1_2_7_46_2
  doi: 10.1002/cjoc.202200327
– ident: e_1_2_7_24_2
  doi: 10.1002/anie.202211782
– ident: e_1_2_7_22_2
  doi: 10.1039/D1SC05360D
– ident: e_1_2_7_1_1
  doi: 10.1002/9780470147238.ch1
– ident: e_1_2_7_38_2
  doi: 10.1002/cjoc.202000751
– ident: e_1_2_7_30_2
  doi: 10.1016/j.chempr.2022.04.011
– ident: e_1_2_7_69_1
– ident: e_1_2_7_72_1
– ident: e_1_2_7_9_2
  doi: 10.1016/j.ccr.2007.07.020
– ident: e_1_2_7_73_2
  doi: 10.1002/anie.200460842
– ident: e_1_2_7_12_2
  doi: 10.1016/S0040-4039(97)10848-6
– ident: e_1_2_7_16_2
  doi: 10.1021/jacs.1c07741
– ident: e_1_2_7_15_1
– volume: 61
  start-page: ARTN e202200371
  year: 2022
  ident: WOS:000761468500001
  article-title: Atroposelective Synthesis of 1,1′-Bipyrroles Bearing a Chiral N-N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202200371
– volume: 134
  year: 2022
  ident: 000937888700001.68
  publication-title: Angew. Chem
– volume: 117
  start-page: 4040
  year: 2005
  ident: 000937888700001.76
  publication-title: Angew. Chem
– volume: 39
  start-page: 1373
  year: 1998
  ident: WOS:000072228100028
  article-title: The first synthesis of an optically active molecular bevel gear with only two cogs on each wheel
  publication-title: TETRAHEDRON LETTERS
– volume: 14
  start-page: 1
  year: 1983
  ident: WOS:A1983RC37700001
  article-title: RECENT ADVANCES IN ATROPISOMERISM
  publication-title: TOPICS IN STEREOCHEMISTRY
– volume: 134
  year: 2022
  ident: 000937888700001.46
  publication-title: Angew. Chem
– volume: 143
  start-page: 15005
  year: 2021
  ident: WOS:000700883200011
  article-title: Enantioselective Synthesis of Nitrogen-Nitrogen Biaryl Atropisomers via Copper-Catalyzed Friedel-Crafts Alkylation Reaction
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c07741
– volume: 54
  start-page: 7005
  year: 2011
  ident: WOS:000296205900001
  article-title: Assessing Atropisomer Axial Chirality in Drug Discovery and Development
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm200584g
– volume: 29
  start-page: 1181
  year: 2018
  ident: WOS:000442060000002
  article-title: Recent advances in asymmetric reactions catalyzed by chiral phosphoric acids
  publication-title: CHINESE CHEMICAL LETTERS
  doi: 10.1016/j.cclet.2018.01.045
– volume: 114
  start-page: 9047
  year: 2014
  ident: WOS:000342328500008
  article-title: Complete Field Guide to Asymmetric BINOL-Phosphate Derived Bronsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Bronsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr5001496
– volume: 60
  start-page: 26026
  year: 2021
  ident: WOS:000683806600001
  article-title: Carbene-Catalyzed Asymmetric Construction of Atropisomers
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202108630
– volume: 143
  start-page: 12924
  year: 2021
  ident: WOS:000691789500004
  article-title: Chiral Phosphoric Acid-Catalyzed Remote Control of Axial Chirality at Boron-Carbon Bond
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c05079
– volume: 52
  start-page: 199
  year: 2019
  ident: WOS:000456349800022
  article-title: Peptide-Based Catalysts Reach the Outer Sphere through Remote Desymmetrization and Atroposelectivity
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.8b00473
– volume: 38
  start-page: 2096
  year: 1999
  ident: WOS:000081864800001
  article-title: Chemistry, biology, and medicine of the glycopeptide antibiotics
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
– volume: 10
  start-page: 692
  year: 2021
  ident: WOS:000630475100001
  article-title: Recent Advances in (Dynamic) Kinetic Resolution and Desymmetrization Catalyzed by Chiral Phosphoric Acids
  publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ajoc.202100091
– volume: 61
  start-page: ARTN e202211782
  year: 2022
  ident: WOS:000853127000001
  article-title: Atroposelective Electrophilic Sulfenylation of N-Aryl Aminoquinone Derivatives Catalyzed by Chiral SPINOL-Derived Sulfide
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202211782
– volume: 44
  start-page: 3974
  year: 2005
  ident: WOS:000230214800007
  article-title: Efficiency in nonenzymatic kinetic resolution
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200460842
– volume: 120
  start-page: 3278
  year: 2008
  ident: 000937888700001.49
  publication-title: Angew. Chem
– volume: 7
  start-page: 2743
  year: 2021
  ident: WOS:000708501600014
  article-title: Rational design and atroposelective synthesis of N-N axially chiral compounds
  publication-title: CHEM
  doi: 10.1016/j.chempr.2021.07.013
– volume: 111
  start-page: 2230
  year: 1999
  ident: 000937888700001.9
  publication-title: Angew. Chem
– volume: 16
  start-page: 4753
  year: 2018
  ident: WOS:000437470400002
  article-title: Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c8ob00900g
– volume: 56
  start-page: 6201
  year: 2020
  ident: WOS:000541419600001
  article-title: Atroposelective synthesis of configurationally stable nonbiaryl N-C atropisomers through direct asymmetric aminations of 1,3-benzenediamines
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/d0cc02368j
– volume: 9
  start-page: 2280
  year: 2022
  ident: WOS:000766729100001
  article-title: Recent advances in the catalytic asymmetric construction of atropisomers by central-to-axial chirality transfer
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/d1qo01699g
– volume: 13
  start-page: 141
  year: 2022
  ident: WOS:000726864000001
  article-title: Asymmetric synthesis of N-N axially chiral compounds via organocatalytic atroposelective N-acylation
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d1sc05360d
– volume: 33
  start-page: 1788
  year: 2022
  ident: WOS:000872707500005
  article-title: Catalytic Kinetic Resolution and Desymmetrization of Amines
  publication-title: SYNLETT
  doi: 10.1055/a-1790-3230
– volume: 55
  start-page: 2920
  year: 2022
  ident: WOS:000868882500001
  article-title: Organocatalytic Enantioselective Synthesis of Axially Chiral Molecules: Development of Strategies and Skeletons
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.2c00509
– volume: 55
  start-page: 2904
  year: 2022
  ident: WOS:000862378100001
  article-title: Atropisomerism in the Pharmaceutically Relevant Realm
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.2c00500
– volume: 7
  start-page: 1327
  year: 2011
  ident: WOS:000295220000001
  article-title: Carbamate-directed benzylic lithiation for the diastereo- and enantioselective synthesis of diaryl ether atropisomers
  publication-title: BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.3762/bjoc.7.156
– volume: 61
  year: 2022
  ident: WOS:000761468300001
  article-title: Organocatalytic Atroposelective Synthesis of N-N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202116829
– volume: 135
  year: 2023
  ident: 000937888700001.54
  publication-title: Angew. Chem
– volume: 122
  start-page: 7164
  year: 2010
  ident: 000937888700001.51
  publication-title: Angew. Chem
– volume: 51
  start-page: 534
  year: 2018
  ident: WOS:000426014500035
  article-title: Construction of Axially Chiral Compounds via Asymmetric Organocatalysis
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.7b00602
– volume: 121
  start-page: 4805
  year: 2021
  ident: WOS:000645513800008
  article-title: Recent Advances in Catalytic Asymmetric Construction of Atropisomers
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.0c01306
– volume: 40
  start-page: 2151
  year: 2022
  ident: WOS:000816707900001
  article-title: Catalytic Asymmetric Synthesis of Axially Chiral 3,3'-Bisindoles by Direct Coupling of Indole Rings
  publication-title: CHINESE JOURNAL OF CHEMISTRY
  doi: 10.1002/cjoc.202200327
– volume: 3
  start-page: 117
  year: 2022
  ident: WOS:001022734500001
  article-title: Stereoselective construction of atropisomers featuring a C-N chiral axis
  publication-title: GREEN SYNTHESIS AND CATALYSIS
  doi: 10.1016/j.gresc.2021.12.005
– volume: 59
  start-page: 23598
  year: 2020
  ident: WOS:000580568600001
  article-title: A Versatile Method for Kinetic Resolution of Protecting-Group-Free BINAMs and NOBINs through Chiral Phosphoric Acid Catalyzed Triazane Formation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202009395
– volume: 22
  start-page: ARTN 100393
  year: 2019
  ident: WOS:000508675400017
  article-title: Development of PLA-PBSA based biodegradable active film and its application to salmon slices
  publication-title: FOOD PACKAGING AND SHELF LIFE
  doi: 10.1016/j.fpsl.2019.100393
– volume: 103
  start-page: 3155
  year: 2003
  ident: WOS:000184821500017
  article-title: Modified BINOL ligands in asymmetric catalysis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr020025b
– volume: 116
  start-page: 7330
  year: 2016
  ident: WOS:000378585000007
  article-title: Catalytic Enantioselective Desymmetrization Reactions to All-Carbon Quaternary Stereocenters
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.6b00094
– volume: 12
  start-page: 14609
  year: 2022
  ident: WOS:000892731500001
  article-title: Remote Enantioselective Desymmetrization of 9,9-Disubstituted 9,10-Dihydroacridines through Asymmetric Aromatic Aminations
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.2c04975
– volume: 44
  start-page: 3418
  year: 2015
  ident: WOS:000355485900005
  article-title: Recent advances and new concepts for the synthesis of axially stereoenriched biaryls
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c5cs00012b
– volume: 251
  start-page: 2119
  year: 2007
  ident: WOS:000250605400003
  article-title: Recent advances in developing new axially chiral phosphine ligands for asymmetric catalysis
  publication-title: COORDINATION CHEMISTRY REVIEWS
  doi: 10.1016/j.ccr.2007.07.020
– volume: 39
  start-page: 1787
  year: 2021
  ident: WOS:000653243300001
  article-title: Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Axially Chiral Compounds†
  publication-title: CHINESE JOURNAL OF CHEMISTRY
  doi: 10.1002/cjoc.202000751
– volume: 8
  start-page: 1855
  year: 2022
  ident: WOS:000841999200008
  article-title: Atropisomers beyond the C-C axial chirality: Advances in catalytic asymmetric synthesis
  publication-title: CHEM
  doi: 10.1016/j.chempr.2022.04.011
– volume: 11
  start-page: 5646
  year: 2009
  ident: WOS:000272461800020
  article-title: Synthesis of Carbamates from Diethoxycarbonyl Hydrazine Derivatives by E1cB Eliminative Cleavage of the N-N′-Bond Rather than Reduction
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol902313v
– volume: 11
  start-page: 8443
  year: 2021
  ident: WOS:000674927200005
  article-title: Kinetic Resolution of α-Tertiary Propargylic Amines through Asymmetric Remote Aminations of Anilines
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.1c02331
– volume: 143
  start-page: 10048
  year: 2021
  ident: WOS:000674321800003
  article-title: Construction of Axially Chiral Arylborons via Atroposelective Miyaura Borylation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c04345
– start-page: 1929
  year: 2010
  ident: WOS:000278407000001
  article-title: Chiral Phosphoric Acids as Versatile Catalysts for Enantioselective Transformations
  publication-title: SYNTHESIS-STUTTGART
  doi: 10.1055/s-0029-1218801
– volume: 5
  start-page: 308
  year: 2016
  ident: WOS:000372915400001
  article-title: Chiral BrOnsted Acid Catalyzed Kinetic Resolutions
  publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ajoc.201600021
– volume: 29
  start-page: 2155
  year: 2018
  ident: WOS:000445494200012
  article-title: Toward a Catalytic Atroposelective Synthesis of Diaryl Ethers Through C(sp 2 )-H Alkylation with Nitroalkanes
  publication-title: SYNLETT
  doi: 10.1055/s-0037-1609581
– volume: 49
  start-page: 7010
  year: 2010
  ident: WOS:000282477800013
  article-title: Biocatalytic Desymmetrization of an Atropisomer with both an Enantioselective Oxidase and Ketoreductases
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201002580
– volume: 43
  start-page: 1566
  year: 2004
  ident: WOS:000220389600023
  article-title: Enantioselective Mannich-type reaction catalyzed by a chiral Bronsted acid
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200353240
– volume: 18
  start-page: 249
  year: 1988
  ident: 000937888700001.81
  publication-title: Kinetic Resolution
– volume: 133
  start-page: 26230
  year: 2021
  ident: 000937888700001.39
  publication-title: Angew. Chem
– volume: 47
  start-page: 3234
  year: 2008
  ident: WOS:000255214200023
  article-title: Enantioselective synthesis of an atropisomeric diaryl ether
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200705660
– year: 2022
  ident: WOS:000862870000001
  article-title: Organocatalytic Atroposelective Synthesis of Indole Derivatives Bearing Axial Chirality: Strategies and Applications
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.2c00465
– volume: 107
  start-page: 5744
  year: 2007
  ident: WOS:000251583300010
  article-title: Stronger bronsted acids
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr068374j
– volume: 2012
  start-page: 1471
  year: 2012
  ident: WOS:000300930800004
  article-title: Nonenzymatic Acylative Kinetic Resolution of Racemic Amines and Related Compounds
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ejoc.201101489
– volume: 353
  start-page: 1613
  year: 2011
  ident: WOS:000292939600001
  article-title: Catalytic Non-Enzymatic Kinetic Resolution
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.201100111
– volume: 55
  start-page: 2780
  year: 2022
  ident: WOS:000859290700001
  article-title: Enantioselective Synthesis of Atropisomers via Vinylidene ortho- Quinone Methides (VQMs)
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.2c00486
– volume: 61
  start-page: ARTN e202206501
  year: 2022
  ident: WOS:000810708100001
  article-title: Atroposelective Construction of Nine-Membered Carbonate-Bridged Biaryls
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202206501
– volume: 2
  start-page: ARTN 100413
  year: 2021
  ident: WOS:000658767800007
  article-title: Enantioselective desymmetrization of 2-substituted and 2,2-disubstituted 1,3-propanediamines via asymmetric para-aminations of anilines
  publication-title: CELL REPORTS PHYSICAL SCIENCE
  doi: 10.1016/j.xcrp.2021.100413
– volume: 45
  start-page: 5803
  year: 2006
  ident: WOS:000240412200010
  article-title: Three groups good, four groups bad?: Atropisomerism in ortho-substituted diaryl ethers
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200601866
– volume: 53
  start-page: 425
  year: 2020
  ident: WOS:000514759600013
  article-title: Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00549
– volume: 133
  start-page: 5328
  year: 2021
  ident: 000937888700001.84
  publication-title: Angew. Chem
– volume: 134
  year: 2022
  ident: 000937888700001.25
  publication-title: Angew. Chem
– volume: 135
  start-page: 3964
  year: 2013
  ident: WOS:000316244200038
  article-title: Enantioselective Synthesis of Multisubstituted Biaryl Skeleton by Chiral Phosphoric Acid Catalyzed Desymmetrization/Kinetic Resolution Sequence
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja311902f
– volume: 143
  start-page: 14025
  year: 2021
  ident: WOS:000696018700001
  article-title: Synthesis of Atropisomers by Transition-Metal-Catalyzed Asymmetric C-H Functionalization Reactions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c07635
– volume: 65
  start-page: 1929
  year: 2022
  ident: WOS:000854410500003
  article-title: Design and catalytic atroposelective synthesis of axially chiral isochromenone-indoles
  publication-title: SCIENCE CHINA-CHEMISTRY
  doi: 10.1007/s11426-022-1363-y
– volume: 126
  start-page: 5356
  year: 2004
  ident: WOS:000221135400011
  article-title: Chiral Bronsted acid-catalyzed direct Mannich reactions via electrophilic activation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja0491533
– volume: 132
  start-page: 23804
  year: 2020
  ident: 000937888700001.64
  publication-title: Angew. Chem
– volume: 55
  start-page: 1620
  year: 2022
  ident: WOS:000820884700001
  article-title: Transition Metal-Catalyzed Biaryl Atropisomer Synthesis via a Torsional Strain Promoted Ring-Opening Reaction
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.2c00175
– volume: 118
  start-page: 5935
  year: 2006
  ident: 000937888700001.12
  publication-title: Angew. Chem
– volume: 60
  start-page: 5268
  year: 2021
  ident: WOS:000609275100001
  article-title: Asymmetric Synthesis of Hydroquinolines with α,α-Disubstitution through Organocatalyzed Kinetic Resolution
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202015008
– volume: 87
  start-page: 6760
  year: 2022
  ident: WOS:000805365600018
  article-title: Approaches toward Atropisomerically Stable and Conformationally Pure Diarylamines
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.2c00451
– volume: 32
  start-page: 1562
  year: 2015
  ident: WOS:000363648300004
  article-title: A twist of nature - the significance of atropisomers in biological systems
  publication-title: NATURAL PRODUCT REPORTS
  doi: 10.1039/c4np00121d
– volume: 62
  year: 2023
  ident: WOS:000910085200001
  article-title: A Dynamic Kinetic Resolution Approach to Axially Chiral Diaryl Ethers by Catalytic Atroposelective Transfer Hydrogenation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202216534
– volume: 142
  start-page: 2198
  year: 2020
  ident: WOS:000512222700021
  article-title: Catalytic Atroposelective Synthesis of N-Aryl Quinoid Compounds
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b12994
– volume: 6
  start-page: 505
  year: 2011
  ident: WOS:000288599600014
  article-title: Revealing Atropisomer Axial Chirality in Drug Discovery
  publication-title: CHEMMEDCHEM
  doi: 10.1002/cmdc.201000485
– volume: 4
  start-page: 191
  year: 2022
  ident: WOS:000759893200005
  article-title: Recent advances towards organocatalytic enantioselective desymmetrizing reactions
  publication-title: TRENDS IN CHEMISTRY
  doi: 10.1016/j.trechm.2021.12.010
– volume: 61
  year: 2022
  ident: WOS:000713981500001
  article-title: Putting DNA to Work as Generic Polymeric Materials
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202110666
– volume: 45
  start-page: 5474
  year: 2016
  ident: WOS:000385181300003
  article-title: Organocatalytic enantioselective desymmetrisation
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c5cs00015g
SSID ssj0028806
Score 2.5958662
Snippet Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields....
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300481
SubjectTerms Asymmetric synthesis
Asymmetry
Axial Chirality
Chemical synthesis
Chemistry
Chemistry, Multidisciplinary
Chiral Phosphoric Acid
Diaryl ethers
Electrophilic Aromatic Amination
Enantiomers
Enantioselective Desymmetrization
Ethers
Organocatalysis
Phosphoric acid
Physical Sciences
Science & Technology
Substrates
Title Catalytic Asymmetric Synthesis of Axially Chiral Diaryl Ethers through Enantioselective Desymmetrization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202300481
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000937888700001
https://www.ncbi.nlm.nih.gov/pubmed/36760025
https://www.proquest.com/docview/2788349488
https://www.proquest.com/docview/2775614736
Volume 62
WOS 000937888700001
WOSCitedRecordID wos000937888700001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hLuXSB_SRQpGRkHrykrWdxDmu0kW0EhxokbhFfkWsumQrsit1-fX1OI-yVFWr9pbIjh07M_YX2_N9AMfaGO8H0lKWSEOFdDGVzjrqZG65ya1NQ4Tc-UV6diU-XSfXD6L4W36IYcENPSOM1-jgSjcnP0lDMQJ7hOLfgfLED8J4YAtR0eXAH8W8cbbhRZxTVKHvWRtjdrL5-Oas9AvUfDQrbQLZMBOdPgPVt6E9gPJ1tFrqkbl_RO_4P418Dk87mEomrV29gC1X78KToleH24ObAtd91j6ZTJr17S0KcxnyeV17QNnMGrKoyOS7t-35mhQ3sztf1oeZf405mQbESTp9IDLFgzizRRPkePzIS_yPcFdcGyD6Eq5Op1-KM9qpNlDDMz6mRjjcajUqT5lxHEWu4hypnSrh_-38CCOthxBc5ZVTlZZWmtgqyYx2OqnGY8NfwXa9qN0bIFXqMq2FjSuhhLOJioWWoooTF2fOY40IaP_VStNRmqOyxrxsyZhZif1XDv0Xwfsh_7eWzOO3OQ96Iyg7p25KlkmJbD7SV3w0JPt-xz0WVbvFCvNkyK2a8TSC163xDFUhOR5izAiOH1rTkB6Wl3BJIgt7LhGM_yZb0TUcOQyWEbBgTn9oXjm5-Dgd7t7-y0P7sIPXeByPZQewvbxbuXceny31YfDBH4vQMcU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6C8TBeGHcyBhhpEk_uUttJnMcqdOpg6wNsEm9RfIlW0aXT0krrfv18nAt0CIHgMbGT1O459udjn-8D2FdaOz-QhrJIaiqkDam0xlIrU8N1akzsM-ROpvHkTHz6FnWnCTEXpuGH6ANu6Bl-vEYHx4D0wQ_WUEzBHqD6t-c8uQ8PUNbbr6q-9AxSzJlnk2DEOUUd-o63MWQHm89vzku_gM0789ImlPVz0eEOqK4VzRGU74PVUg30zR2Cx_9q5mN41CJVMmpM6wncs9VT2M46gbhncJ5h6GftismoXl9coDaXJl_XlcOU9awmi5KMrp15z9ckO59duXd9nLnfMSdjDzpJKxFExngWZ7aovSKPG3yJWwu3r2tyRJ_D2eH4NJvQVriBap7wIdXC4m6rLtKYactR5ypMkd2pFG555wYZaRyK4EVa2qJU0kgdmkIyrayKyuFQ8xewVS0q-wpIGdtEKWHCUhTCmqgIhZKiDCMbJtbBjQBo97flumU1R3GNed7wMbMc-y_v-y-AD339y4bP47c19zoryFu_rnOWSImEPtJ9-H1f7Podt1mKyi5WWCdBetWExwG8bKyn_xTy4yHMDGD_Z3Pqy32ECaMSid92CWD4N9WytuFIY7AMgHl7-kPz8tH0aNxf7f7LQ-9ge3J6cpwfH00_v4aHeB9P57FkD7aWVyv7xsG1pXrrHfIWk_A14A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CIQEv484CA4w0iad0buwkzmOVttq4VAiYtLcovmkVXTotrUT59fg4F9YhBILHxI4dO-fYX2yf7wM4kEo5PxA6jGKhQi4MDYXRJjQi00xlWic-Qu7DLDk64W9P49MrUfwNP0S_4Iae4cdrdPALbQ9_koZiBPYAxb895clNuMUTKtCux596AqnIWWcTX8RYiDL0HW0jjQ63n9-eln7BmtempW0k66ei6T0ou0Y0J1C-DtYrOVDfr_E7_k8r78Nui1PJqDGsB3DDVA_hTt7Jwz2CsxwXfjYumYzqzfk5KnMp8nlTOURZz2uytGT0zRn3YkPys_mlK2s8d6-xIBMPOUkrEEQmeBJnvqy9Ho8beon7E26LayJEH8PJdPIlPwpb2YZQsZQNQ8UN7rWqMksiZRiqXNEMuZ0sdz93bogR2mEIVmbWlFYKLRTVpYiUNDK2w6FiT2CnWlZmD4hNTCol19Tykhsdl5RLwS2NDU2NAxsBhN1XK1TLaY7SGouiYWOOCuy_ou-_AN70-S8aNo_f5tzvjKBovbouolQIpPMRruLXfbLrd9xkKSuzXGOeFMlVU5YE8LQxnr4qZMdDkBnAwVVr6tP9-hKuSaR-0yWA4d9ky9uGI4nBKoDIm9MfmleMZseT_urZvzz0Cm5_HE-L98ezd8_hLt7Go3lRug87q8u1eeGw2kq-9O74A-BhNJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+Asymmetric+Synthesis+of+Axially+Chiral+Diaryl+Ethers+through+Enantioselective+Desymmetrization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Bao%2C+Hanyang&rft.au=Chen%2C+Yunrong&rft.au=Yang%2C+Xiaoyu&rft.date=2023-03-27&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=62&rft.issue=14&rft.spage=e202300481&rft_id=info:doi/10.1002%2Fanie.202300481&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon