Catalytic Asymmetric Synthesis of Axially Chiral Diaryl Ethers through Enantioselective Desymmetrization
Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic a...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 14; pp. e202300481 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
27.03.2023
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid‐catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3‐benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2‐benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene‐containing diaryl ether atropisomers.
A highly efficient enantioselective desymmetrization protocol is disclosed for the asymmetric synthesis of axially chiral diaryl ethers by using a chiral phosphoric acid‐catalyzed electrophilic aromatic amination. This method features broad substrate scope, high yields and high enantioselectivity. The facile derivatization of various products into a series of structurally novel azaarene‐containing diaryl ether atropisomers was also demonstrated. |
---|---|
AbstractList | Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid‐catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3‐benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2‐benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene‐containing diaryl ether atropisomers. Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid-catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3-benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2-benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene-containing diaryl ether atropisomers.Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid-catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3-benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2-benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene-containing diaryl ether atropisomers. Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid‐catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3‐benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2‐benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene‐containing diaryl ether atropisomers. A highly efficient enantioselective desymmetrization protocol is disclosed for the asymmetric synthesis of axially chiral diaryl ethers by using a chiral phosphoric acid‐catalyzed electrophilic aromatic amination. This method features broad substrate scope, high yields and high enantioselectivity. The facile derivatization of various products into a series of structurally novel azaarene‐containing diaryl ether atropisomers was also demonstrated. |
ArticleNumber | 202300481 |
Author | Bao, Hanyang Yang, Xiaoyu Chen, Yunrong |
Author_xml | – sequence: 1 givenname: Hanyang surname: Bao fullname: Bao, Hanyang organization: ShanghaiTech University – sequence: 2 givenname: Yunrong orcidid: 0000-0001-6872-4943 surname: Chen fullname: Chen, Yunrong organization: ShanghaiTech University – sequence: 3 givenname: Xiaoyu orcidid: 0000-0002-0756-0671 surname: Yang fullname: Yang, Xiaoyu email: yangxy1@shanghaitech.edu.cn organization: ShanghaiTech University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36760025$$D View this record in MEDLINE/PubMed |
BookMark | eNqNktGL1DAQxoOceHerrz5KwRdBuiZN26SPS2_Vg0Mf1OeSZqc2R5qcSXpa_3rn3L0VDkQhJDPk9818DHNOTpx3QMhzRteM0uKNcgbWBS04paVkj8gZqwqWcyH4CcYl57mQFTsl5zFeIy8lrZ-QU16LGrPqjIytSsouyehsE5dpghQw_LS4NEI0MfNDtvlhlLVL1o4mKJtdGBUWm20RCDFLY_Dz1zHbOuWS8REs6GRuIbuA-3I_FX64p-TxoGyEZ4d3Rb683X5u3-dXH99dtpurXHPBWa5LqGkltWrqQgMvJfps8BRDKZuGCip3NeNcNQOooZc7qelOyUL30FcDY5qvyKt93Zvgv80QUzeZqMFa5cDPsSuEqGpWCl4j-vIBeu3n4NAdUlLysinxXpEXB2ruJ9h1N8FMOIHufoYIyD3wHXo_RG3AaThiFM1zrCYFRpS1Jv0eR-tnl1D6-v-lSK_3tA4-xgDDkWS0u9uG7m4buuM2oKB8INCH9ikoY_8uaw6ujIXlH026zYfL7R_tLxwcx8U |
CitedBy_id | crossref_primary_10_1002_ange_202314228 crossref_primary_10_1021_acscatal_4c00239 crossref_primary_10_1002_cctc_202400690 crossref_primary_10_1038_s41929_024_01138_z crossref_primary_10_1038_s41467_023_40718_8 crossref_primary_10_1021_acscatal_4c01489 crossref_primary_10_1002_ange_202312923 crossref_primary_10_1002_anie_202416569 crossref_primary_10_1016_j_checat_2023_100827 crossref_primary_10_1021_acscatal_4c00414 crossref_primary_10_1002_ejoc_202400402 crossref_primary_10_1021_jacs_4c12063 crossref_primary_10_1021_jacs_4c04852 crossref_primary_10_1021_jacsau_3c00814 crossref_primary_10_1021_acs_orglett_3c02100 crossref_primary_10_1039_D4CC01655F crossref_primary_10_1002_anie_202407767 crossref_primary_10_1021_acscatal_5c00495 crossref_primary_10_1039_D4CE01043D crossref_primary_10_1002_ange_202416569 crossref_primary_10_1002_anie_202311709 crossref_primary_10_1021_acscatal_4c00001 crossref_primary_10_1002_adsc_202400084 crossref_primary_10_1002_anie_202303430 crossref_primary_10_1021_acscatal_4c00428 crossref_primary_10_1039_D3OB01266B crossref_primary_10_1039_D4OB00739E crossref_primary_10_1126_sciadv_adr6135 crossref_primary_10_1002_advs_202403125 crossref_primary_10_34133_research_0474 crossref_primary_10_1002_anie_202312923 crossref_primary_10_1039_D4QO01413H crossref_primary_10_1002_anie_202314228 crossref_primary_10_1016_j_xcrp_2024_101993 crossref_primary_10_1021_jacs_4c00307 crossref_primary_10_1021_acs_joc_4c00330 crossref_primary_10_1002_ajoc_202400584 crossref_primary_10_1021_acs_orglett_3c02475 crossref_primary_10_1039_D4QO01705F crossref_primary_10_1039_D3SC06444A crossref_primary_10_1002_ange_202407767 crossref_primary_10_1002_ejoc_202300738 crossref_primary_10_1002_ange_202303430 crossref_primary_10_1039_D4SC01074D crossref_primary_10_1021_acscatal_3c06148 crossref_primary_10_1038_s41570_024_00618_x crossref_primary_10_1002_ange_202311709 |
Cites_doi | 10.1016/j.trechm.2021.12.010 10.1002/anie.200705660 10.1021/cr020025b 10.1016/j.chempr.2021.07.013 10.1016/j.gresc.2021.12.005 10.1021/acs.accounts.2c00465 10.1002/(SICI)1521-3757(19990802)111:15<2230::AID-ANGE2230>3.0.CO;2-V 10.1002/anie.200601866 10.1002/ange.202200371 10.1016/j.isci.2019.11.024 10.1002/cmdc.201000485 10.1002/ange.200460842 10.1002/ange.202015008 10.1055/s-0029-1218801 10.1039/C5CS00012B 10.1021/jacs.9b12994 10.1002/anie.202201064 10.1007/s11426-022-1363-y 10.1021/ol902313v 10.1039/D0CC02368J 10.1021/cr068374j 10.1016/j.cclet.2018.01.045 10.1021/acs.accounts.7b00602 10.1002/ange.202216534 10.1002/ajoc.202100091 10.1021/acs.accounts.8b00473 10.1021/jacs.1c07635 10.1016/j.xcrp.2021.100413 10.1002/ange.202116829 10.1002/ejoc.201101489 10.1002/ange.201002580 10.1002/ange.200353240 10.1055/s-0037-1609581 10.1002/anie.202206501 10.1002/anie.202009395 10.1002/ange.202108630 10.1021/acscatal.1c02331 10.1002/anie.202116829 10.1055/a-1790-3230 10.1002/anie.200353240 10.1002/anie.201002580 10.1021/acs.accounts.2c00500 10.1021/jacs.1c05079 10.1002/anie.202015008 10.1021/cr5001496 10.1002/adsc.201100111 10.1021/acs.accounts.2c00486 10.1002/ange.202201064 10.3762/bjoc.7.156 10.1021/jm200584g 10.1002/ange.200705660 10.1021/ja0491533 10.1021/acscatal.2c04975 10.1002/anie.202216534 10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F 10.1039/D1QO01699G 10.1021/acs.accounts.9b00549 10.1021/jacs.1c04345 10.1002/ange.200601866 10.1002/ange.202211782 10.1002/anie.202200371 10.1039/C8OB00900G 10.1021/acs.chemrev.0c01306 10.1021/acs.chemrev.6b00094 10.1021/acs.accounts.2c00175 10.1021/acs.joc.2c00451 10.1021/acs.accounts.2c00509 10.1021/ja311902f 10.1002/anie.202108630 10.1039/C5CS00015G 10.1002/ange.202206501 10.1039/C4NP00121D 10.1002/ajoc.201600021 10.1002/ange.202009395 10.1002/cjoc.202200327 10.1002/anie.202211782 10.1039/D1SC05360D 10.1002/9780470147238.ch1 10.1002/cjoc.202000751 10.1016/j.chempr.2022.04.011 10.1016/j.ccr.2007.07.020 10.1002/anie.200460842 10.1016/S0040-4039(97)10848-6 10.1021/jacs.1c07741 10.1039/c8ob00900g 10.1039/d0cc02368j 10.1039/d1qo01699g 10.1039/d1sc05360d 10.1016/j.fpsl.2019.100393 10.1039/c5cs00012b 10.1039/c4np00121d 10.1002/anie.202110666 10.1039/c5cs00015g |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM BLEPL BNZSX DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202300481 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Web of Science - Science Citation Index Expanded - 2023 Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Web of Science PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36760025 000937888700001 10_1002_anie_202300481 ANIE202300481 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22222107; 22171186 – fundername: ShanghaiTech University – fundername: Analytical Instrumentation Center, SPST, ShanghaiTech University grantid: SPST-AIC10112914 – fundername: Double First-Class Initiative Fund of ShanghaiTech University – fundername: National Natural Science Foundation of China (NSFC) grantid: 22222107; 22171186 – fundername: National Natural Science Foundation of China grantid: 22171186 – fundername: National Natural Science Foundation of China grantid: 22222107 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3731-c4e6058ca962ce34860090092f48990708d6133a9feafb8d8c0da82cbeb5f11c3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 55 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000937888700001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 23:19:02 EDT 2025 Fri Jul 25 10:40:28 EDT 2025 Wed Feb 19 02:25:00 EST 2025 Wed Jul 09 18:40:05 EDT 2025 Fri Aug 29 16:04:29 EDT 2025 Tue Jul 01 01:47:05 EDT 2025 Thu Apr 24 22:49:22 EDT 2025 Wed Jan 22 16:22:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | BRONSTED ACID ATROPISOMERS Electrophilic Aromatic Amination LIGANDS Axial Chirality ATROPOSELECTIVE SYNTHESIS CONSTRUCTION Chiral Phosphoric Acid Organocatalysis Enantioselective Desymmetrization |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3731-c4e6058ca962ce34860090092f48990708d6133a9feafb8d8c0da82cbeb5f11c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6872-4943 0000-0002-0756-0671 |
PMID | 36760025 |
PQID | 2788349488 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | webofscience_primary_000937888700001CitationCount proquest_miscellaneous_2775614736 crossref_primary_10_1002_anie_202300481 crossref_citationtrail_10_1002_anie_202300481 pubmed_primary_36760025 proquest_journals_2788349488 wiley_primary_10_1002_anie_202300481_ANIE202300481 webofscience_primary_000937888700001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 27, 2023 |
PublicationDateYYYYMMDD | 2023-03-27 |
PublicationDate_xml | – month: 03 year: 2023 text: March 27, 2023 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2007; 107 2004; 126 2019; 52 1999 1999; 38 111 2015; 32 2020 2020; 59 132 2011; 54 2020; 56 2022; 65 2021; 121 2008 2008; 47 120 1983; 14 2011; 353 2009; 11 2022 2022; 61 134 2020; 53 2019; 22 2022; 40 2021; 39 2007; 251 2015; 44 2005 2005; 44 117 2016; 116 2022; 33 2016; 45 1988 2021; 7 2018; 29 2004 2004; 43 116 2021; 2 2012 2020; 142 2010 2010 2010; 49 122 2022; 87 2023 2023; 62 135 2021; 143 2011; 6 2014; 114 2011; 7 2006 2006; 45 118 2016; 5 1998; 39 2021; 10 2021; 11 2022; 3 2022; 4 2022; 8 2022; 9 2022; 12 2022; 13 2021 2021; 60 133 2013; 135 2018; 51 2022; 55 2003; 103 2018; 16 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_83_1 e_1_2_7_60_3 e_1_2_7_60_2 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_41_2 e_1_2_7_11_1 e_1_2_7_45_2 e_1_2_7_45_3 e_1_2_7_26_1 e_1_2_7_68_2 e_1_2_7_49_1 e_1_2_7_71_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_23_2 e_1_2_7_52_3 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_1 e_1_2_7_37_2 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_1 e_1_2_7_48_2 e_1_2_7_29_2 e_1_2_7_51_1 e_1_2_7_70_2 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_20_3 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_5_2 e_1_2_7_9_2 e_1_2_7_81_3 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_81_2 e_1_2_7_13_3 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_43_2 e_1_2_7_66_2 e_1_2_7_47_1 e_1_2_7_47_2 Kagna H. B. (e_1_2_7_78_1) 1988 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_21_3 e_1_2_7_73_3 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_39_2 e_1_2_7_39_3 e_1_2_7_80_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_69_1 e_1_2_7_27_2 e_1_2_7_72_1 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_34_1 e_1_2_7_57_2 e_1_2_7_38_2 Terada, M (WOS:000278407000001) 2010 Clayden, J (000937888700001.49) 2008; 120 Chen, Y (000937888700001.84) 2021; 133 Jia, SQ (WOS:000810708100001) 2022; 61 Magnus, P (WOS:000272461800020) 2009; 11 Liu, W (WOS:000630475100001) 2021; 10 Yuan, B (WOS:000282477800013) 2010; 49 Dai, LL (WOS:000910085200001) 2023; 62 Yang, K (WOS:000674321800003) 2021; 143 Uraguchi, D (WOS:000221135400011) 2004; 126 Yuan, B (000937888700001.51) 2010; 122 Chen, KW (WOS:000761468300001) 2022; 61 Rahman, A (WOS:000437470400002) 2018; 16 Dinh, AN (WOS:000445494200012) 2018; 29 Metrano, AJ (WOS:000456349800022) 2019; 52 Liu, W (WOS:000580568600001) 2020; 59 Basilaia, M (WOS:000862378100001) 2022; 55 Jia, S (000937888700001.46) 2022; 134 Mei, GJ (WOS:000708501600014) 2021; 7 OKI, M (WOS:A1983RC37700001) 1983; 14 Vedejs, E (000937888700001.76) 2005; 117 Page, A (WOS:000295220000001) 2011; 7 Kagna, H. B. (000937888700001.81) 1988; 18 Wang, D (WOS:000713981500001) 2022; 61 Mori, K (WOS:000316244200038) 2013; 135 Chen, Y (WOS:000184821500017) 2003; 103 Zhu, D (000937888700001.25) 2022; 134 Chen, YR (WOS:000609275100001) 2021; 60 Vaidya, SD (WOS:000512222700021) 2020; 142 Zhang, X (WOS:000820884700001) 2022; 55 Vaidya, SD (WOS:000805365600018) 2022; 87 Li, YM (WOS:000250605400003) 2007; 251 Krasnov, VP (WOS:000300930800004) 2012; 2012 Wang, YB (WOS:000426014500035) 2018; 51 Pan, YK (WOS:000674927200005) 2021; 11 Betson, M. S (000937888700001.12) 2006; 118 Pellissier, H (WOS:000292939600001) 2011; 353 Liu, W (WOS:000872707500005) 2022; 33 Liu, CX (WOS:000696018700001) 2021; 143 Zhang, DK (WOS:000658767800007) 2021; 2 Li, X (WOS:000442060000002) 2018; 29 Betson, MS (WOS:000240412200010) 2006; 45 Wencel-Delord, J (WOS:000355485900005) 2015; 44 Min, XL (WOS:000766729100001) 2022; 9 Zeng, XP (WOS:000378585000007) 2016; 116 Xu, Y (WOS:000759893200005) 2022; 4 Yang, CX (WOS:000508675400017) 2019; 22 Akiyama, T (WOS:000251583300010) 2007; 107 Nicolaou, KC (WOS:000081864800001) 1999; 38 Wang, XM (WOS:000700883200011) 2021; 143 Zhang, YC (WOS:000514759600013) 2020; 53 Liu, W (000937888700001.64) 2020; 132 Zhang, DK (WOS:000892731500001) 2022; 12 Song, RJ (WOS:000683806600001) 2021; 60 Nicolaou, K. C (000937888700001.9) 1999; 111 Da, BC (WOS:000653243300001) 2021; 39 Clayden, J (WOS:000255214200023) 2008; 47 Qin, WL (WOS:000859290700001) 2022; 55 Yang, JX (WOS:000691789500004) 2021; 143 Song, R (000937888700001.39) 2021; 133 Sheng, FT (WOS:000816707900001) 2022; 40 Hang, QQ (WOS:000854410500003) 2022; 65 Cheng, JK (WOS:000645513800008) 2021; 121 Gao, YR (WOS:000761468500001) 2022; 61 Wang, D (000937888700001.68) 2022; 134 Wu, YJ (WOS:001022734500001) 2022; 3 Lin, W (WOS:000726864000001) 2022; 13 Zhang, HH (WOS:000862870000001) 2022 Dai, L (000937888700001.54) 2023; 135 Vedejs, E (WOS:000230214800007) 2005; 44 LaPlante, SR (WOS:000296205900001) 2011; 54 Borissov, A (WOS:000385181300003) 2016; 45 LaPlante, SR (WOS:000288599600014) 2011; 6 Zhu, D (WOS:000853127000001) 2022; 61 Parmar, D (WOS:000342328500008) 2014; 114 Smyth, JE (WOS:000363648300004) 2015; 32 Cheng, JK (WOS:000868882500001) 2022; 55 Petersen, KS (WOS:000372915400001) 2016; 5 Akiyama, T (WOS:000220389600023) 2004; 43 Fuji, K (WOS:000072228100028) 1998; 39 Wang, DL (WOS:000541419600001) 2020; 56 Mei, GJ (WOS:000841999200008) 2022; 8 |
References_xml | – volume: 55 start-page: 2920 year: 2022 end-page: 2937 publication-title: Acc. Chem. Res. – volume: 143 start-page: 10048 year: 2021 end-page: 10053 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 199 year: 2019 end-page: 215 publication-title: Acc. Chem. Res. – volume: 55 start-page: 2904 year: 2022 end-page: 2919 publication-title: Acc. Chem. Res. – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 22 start-page: 195 year: 2019 end-page: 205 publication-title: iScience – volume: 143 start-page: 15005 year: 2021 end-page: 15010 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 308 year: 2016 end-page: 320 publication-title: Asian J. Org. Chem. – volume: 54 start-page: 7005 year: 2011 end-page: 7022 publication-title: J. Med. Chem. – volume: 11 start-page: 5646 year: 2009 end-page: 5648 publication-title: Org. Lett. – volume: 4 start-page: 191 year: 2022 end-page: 205 publication-title: Trends Chem. – volume: 3 start-page: 117 year: 2022 end-page: 136 publication-title: Green Synth. Catal. – volume: 107 start-page: 5744 year: 2007 end-page: 5758 publication-title: Chem. Rev. – volume: 87 start-page: 6760 year: 2022 end-page: 6768 publication-title: J. Org. Chem. – volume: 55 start-page: 1620 year: 2022 end-page: 1633 publication-title: Acc. Chem. Res. – volume: 13 start-page: 141 year: 2022 end-page: 148 publication-title: Chem. Sci. – volume: 142 start-page: 2198 year: 2020 end-page: 2203 publication-title: J. Am. Chem. Soc. – volume: 62 135 year: 2023 2023 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 692 year: 2021 end-page: 710 publication-title: Asian J. Org. Chem. – volume: 14 start-page: 1 year: 1983 end-page: 81 publication-title: Top. Stereochem. – volume: 65 start-page: 1929 year: 2022 end-page: 1937 publication-title: Sci. China Chem. – volume: 121 start-page: 4805 year: 2021 end-page: 4902 publication-title: Chem. Rev. – volume: 33 start-page: 1788 year: 2022 end-page: 1812 publication-title: Synlett – volume: 56 start-page: 6201 year: 2020 end-page: 6204 publication-title: Chem. Commun. – volume: 143 start-page: 14025 year: 2021 end-page: 14040 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 23598 23804 year: 2020 2020 end-page: 23602 23808 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 1929 year: 2010 end-page: 1982 publication-title: Synthesis – volume: 114 start-page: 9047 year: 2014 end-page: 9153 publication-title: Chem. Rev. – volume: 103 start-page: 3155 year: 2003 end-page: 3212 publication-title: Chem. Rev. – volume: 43 116 start-page: 1566 1592 year: 2004 2004 end-page: 1568 1594 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 126 start-page: 5356 year: 2004 end-page: 5357 publication-title: J. Am. Chem. Soc. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 249 year: 1988 end-page: 330 – volume: 12 start-page: 14609 year: 2022 end-page: 14618 publication-title: ACS Catal. – volume: 45 start-page: 5474 year: 2016 end-page: 5540 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 1327 year: 2011 end-page: 1333 publication-title: Beilstein J. Org. Chem. – volume: 44 start-page: 3418 year: 2015 end-page: 3430 publication-title: Chem. Soc. Rev. – volume: 45 118 start-page: 5803 5935 year: 2006 2006 end-page: 5807 5939 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 2743 year: 2021 end-page: 2757 publication-title: Chem – volume: 116 start-page: 7330 year: 2016 end-page: 7396 publication-title: Chem. Rev. – volume: 6 start-page: 505 year: 2011 end-page: 513 publication-title: ChemMedChem – volume: 353 start-page: 1613 year: 2011 end-page: 1666 publication-title: Adv. Synth. Catal. – volume: 11 start-page: 8443 year: 2021 end-page: 8448 publication-title: ACS Catal. – volume: 40 start-page: 2151 year: 2022 end-page: 2160 publication-title: Chin. J. Chem. – volume: 29 start-page: 2155 year: 2018 end-page: 2160 publication-title: Synlett – volume: 251 start-page: 2119 year: 2007 end-page: 2144 publication-title: Coord. Chem. Rev. – volume: 55 start-page: 2562 year: 2022 end-page: 2580 publication-title: Acc. Chem. Res. – volume: 32 start-page: 1562 year: 2015 end-page: 1583 publication-title: Nat. Prod. Rep. – volume: 135 start-page: 3964 year: 2013 end-page: 3970 publication-title: J. Am. Chem. Soc. – start-page: 1471 year: 2012 end-page: 1493 publication-title: Eur. J. Org. Chem. – volume: 143 start-page: 12924 year: 2021 end-page: 12929 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 534 year: 2018 end-page: 547 publication-title: Acc. Chem. Res. – volume: 44 117 start-page: 3974 4040 year: 2005 2005 end-page: 4001 4069 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 120 start-page: 3234 3278 year: 2008 2008 end-page: 3237 3281 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 38 111 start-page: 2096 2230 year: 1999 1999 end-page: 2152 2287 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 1855 year: 2022 end-page: 1893 publication-title: Chem – volume: 55 start-page: 2780 year: 2022 end-page: 2795 publication-title: Acc. Chem. Res. – volume: 60 133 start-page: 26026 26230 year: 2021 2021 end-page: 26037 26241 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 2280 year: 2022 end-page: 2292 publication-title: Org. Chem. Front. – volume: 49 122 start-page: 7010 7164 year: 2010 2010 end-page: 7013 7167 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 425 year: 2020 end-page: 446 publication-title: Acc. Chem. Res. – volume: 29 start-page: 1181 year: 2018 end-page: 1192 publication-title: Chin. Chem. Lett. – volume: 39 start-page: 1787 year: 2021 end-page: 1796 publication-title: Chin. J. Chem. – volume: 60 133 start-page: 5268 5328 year: 2021 2021 end-page: 5272 5332 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 39 start-page: 1373 year: 1998 end-page: 1376 publication-title: Tetrahedron Lett. – volume: 16 start-page: 4753 year: 2018 end-page: 4777 publication-title: Org. Biomol. Chem. – ident: e_1_2_7_67_2 doi: 10.1016/j.trechm.2021.12.010 – ident: e_1_2_7_47_1 doi: 10.1002/anie.200705660 – ident: e_1_2_7_8_2 doi: 10.1021/cr020025b – ident: e_1_2_7_18_2 doi: 10.1016/j.chempr.2021.07.013 – ident: e_1_2_7_31_2 doi: 10.1016/j.gresc.2021.12.005 – ident: e_1_2_7_11_1 – ident: e_1_2_7_42_2 doi: 10.1021/acs.accounts.2c00465 – ident: e_1_2_7_10_2 doi: 10.1002/(SICI)1521-3757(19990802)111:15<2230::AID-ANGE2230>3.0.CO;2-V – ident: e_1_2_7_13_2 doi: 10.1002/anie.200601866 – ident: e_1_2_7_21_3 doi: 10.1002/ange.202200371 – ident: e_1_2_7_61_2 doi: 10.1016/j.isci.2019.11.024 – ident: e_1_2_7_4_2 doi: 10.1002/cmdc.201000485 – ident: e_1_2_7_73_3 doi: 10.1002/ange.200460842 – ident: e_1_2_7_81_3 doi: 10.1002/ange.202015008 – ident: e_1_2_7_55_2 doi: 10.1055/s-0029-1218801 – ident: e_1_2_7_27_2 doi: 10.1039/C5CS00012B – ident: e_1_2_7_23_2 doi: 10.1021/jacs.9b12994 – ident: e_1_2_7_63_1 doi: 10.1002/anie.202201064 – ident: e_1_2_7_44_2 doi: 10.1007/s11426-022-1363-y – ident: e_1_2_7_79_1 doi: 10.1021/ol902313v – ident: e_1_2_7_62_1 doi: 10.1039/D0CC02368J – ident: e_1_2_7_54_2 doi: 10.1021/cr068374j – ident: e_1_2_7_57_2 doi: 10.1016/j.cclet.2018.01.045 – ident: e_1_2_7_35_2 doi: 10.1021/acs.accounts.7b00602 – ident: e_1_2_7_50_2 doi: 10.1002/ange.202216534 – ident: e_1_2_7_68_2 doi: 10.1002/ajoc.202100091 – ident: e_1_2_7_36_2 doi: 10.1021/acs.accounts.8b00473 – ident: e_1_2_7_29_2 doi: 10.1021/jacs.1c07635 – ident: e_1_2_7_70_2 doi: 10.1016/j.xcrp.2021.100413 – ident: e_1_2_7_20_3 doi: 10.1002/ange.202116829 – ident: e_1_2_7_75_2 doi: 10.1002/ejoc.201101489 – ident: e_1_2_7_83_1 – ident: e_1_2_7_48_2 doi: 10.1002/ange.201002580 – ident: e_1_2_7_52_3 doi: 10.1002/ange.200353240 – ident: e_1_2_7_49_1 doi: 10.1055/s-0037-1609581 – ident: e_1_2_7_80_1 – ident: e_1_2_7_64_1 – ident: e_1_2_7_45_2 doi: 10.1002/anie.202206501 – ident: e_1_2_7_60_2 doi: 10.1002/anie.202009395 – ident: e_1_2_7_39_3 doi: 10.1002/ange.202108630 – start-page: 249 volume-title: Kinetic Resolution, Vol. 18 year: 1988 ident: e_1_2_7_78_1 – ident: e_1_2_7_82_2 doi: 10.1021/acscatal.1c02331 – ident: e_1_2_7_26_1 – ident: e_1_2_7_34_1 – ident: e_1_2_7_20_2 doi: 10.1002/anie.202116829 – ident: e_1_2_7_77_2 doi: 10.1055/a-1790-3230 – ident: e_1_2_7_52_2 doi: 10.1002/anie.200353240 – ident: e_1_2_7_48_1 doi: 10.1002/anie.201002580 – ident: e_1_2_7_51_1 – ident: e_1_2_7_5_2 doi: 10.1021/acs.accounts.2c00500 – ident: e_1_2_7_17_2 doi: 10.1021/jacs.1c05079 – ident: e_1_2_7_81_2 doi: 10.1002/anie.202015008 – ident: e_1_2_7_3_1 – ident: e_1_2_7_56_2 doi: 10.1021/cr5001496 – ident: e_1_2_7_74_2 doi: 10.1002/adsc.201100111 – ident: e_1_2_7_40_2 doi: 10.1021/acs.accounts.2c00486 – ident: e_1_2_7_63_2 doi: 10.1002/ange.202201064 – ident: e_1_2_7_14_2 doi: 10.3762/bjoc.7.156 – ident: e_1_2_7_6_2 doi: 10.1021/jm200584g – ident: e_1_2_7_47_2 doi: 10.1002/ange.200705660 – ident: e_1_2_7_53_2 doi: 10.1021/ja0491533 – ident: e_1_2_7_71_2 doi: 10.1021/acscatal.2c04975 – ident: e_1_2_7_50_1 doi: 10.1002/anie.202216534 – ident: e_1_2_7_10_1 doi: 10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F – ident: e_1_2_7_32_2 doi: 10.1039/D1QO01699G – ident: e_1_2_7_37_2 doi: 10.1021/acs.accounts.9b00549 – ident: e_1_2_7_19_2 doi: 10.1021/jacs.1c04345 – ident: e_1_2_7_13_3 doi: 10.1002/ange.200601866 – ident: e_1_2_7_24_3 doi: 10.1002/ange.202211782 – ident: e_1_2_7_21_2 doi: 10.1002/anie.202200371 – ident: e_1_2_7_58_2 doi: 10.1039/C8OB00900G – ident: e_1_2_7_28_2 doi: 10.1021/acs.chemrev.0c01306 – ident: e_1_2_7_66_2 doi: 10.1021/acs.chemrev.6b00094 – ident: e_1_2_7_33_2 doi: 10.1021/acs.accounts.2c00175 – ident: e_1_2_7_59_1 – ident: e_1_2_7_25_2 doi: 10.1021/acs.joc.2c00451 – ident: e_1_2_7_41_2 doi: 10.1021/acs.accounts.2c00509 – ident: e_1_2_7_43_2 doi: 10.1021/ja311902f – ident: e_1_2_7_39_2 doi: 10.1002/anie.202108630 – ident: e_1_2_7_65_2 doi: 10.1039/C5CS00015G – ident: e_1_2_7_45_3 doi: 10.1002/ange.202206501 – ident: e_1_2_7_2_1 doi: 10.1039/C4NP00121D – ident: e_1_2_7_76_2 doi: 10.1002/ajoc.201600021 – ident: e_1_2_7_7_1 – ident: e_1_2_7_60_3 doi: 10.1002/ange.202009395 – ident: e_1_2_7_46_2 doi: 10.1002/cjoc.202200327 – ident: e_1_2_7_24_2 doi: 10.1002/anie.202211782 – ident: e_1_2_7_22_2 doi: 10.1039/D1SC05360D – ident: e_1_2_7_1_1 doi: 10.1002/9780470147238.ch1 – ident: e_1_2_7_38_2 doi: 10.1002/cjoc.202000751 – ident: e_1_2_7_30_2 doi: 10.1016/j.chempr.2022.04.011 – ident: e_1_2_7_69_1 – ident: e_1_2_7_72_1 – ident: e_1_2_7_9_2 doi: 10.1016/j.ccr.2007.07.020 – ident: e_1_2_7_73_2 doi: 10.1002/anie.200460842 – ident: e_1_2_7_12_2 doi: 10.1016/S0040-4039(97)10848-6 – ident: e_1_2_7_16_2 doi: 10.1021/jacs.1c07741 – ident: e_1_2_7_15_1 – volume: 61 start-page: ARTN e202200371 year: 2022 ident: WOS:000761468500001 article-title: Atroposelective Synthesis of 1,1′-Bipyrroles Bearing a Chiral N-N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202200371 – volume: 134 year: 2022 ident: 000937888700001.68 publication-title: Angew. Chem – volume: 117 start-page: 4040 year: 2005 ident: 000937888700001.76 publication-title: Angew. Chem – volume: 39 start-page: 1373 year: 1998 ident: WOS:000072228100028 article-title: The first synthesis of an optically active molecular bevel gear with only two cogs on each wheel publication-title: TETRAHEDRON LETTERS – volume: 14 start-page: 1 year: 1983 ident: WOS:A1983RC37700001 article-title: RECENT ADVANCES IN ATROPISOMERISM publication-title: TOPICS IN STEREOCHEMISTRY – volume: 134 year: 2022 ident: 000937888700001.46 publication-title: Angew. Chem – volume: 143 start-page: 15005 year: 2021 ident: WOS:000700883200011 article-title: Enantioselective Synthesis of Nitrogen-Nitrogen Biaryl Atropisomers via Copper-Catalyzed Friedel-Crafts Alkylation Reaction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c07741 – volume: 54 start-page: 7005 year: 2011 ident: WOS:000296205900001 article-title: Assessing Atropisomer Axial Chirality in Drug Discovery and Development publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm200584g – volume: 29 start-page: 1181 year: 2018 ident: WOS:000442060000002 article-title: Recent advances in asymmetric reactions catalyzed by chiral phosphoric acids publication-title: CHINESE CHEMICAL LETTERS doi: 10.1016/j.cclet.2018.01.045 – volume: 114 start-page: 9047 year: 2014 ident: WOS:000342328500008 article-title: Complete Field Guide to Asymmetric BINOL-Phosphate Derived Bronsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Bronsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates publication-title: CHEMICAL REVIEWS doi: 10.1021/cr5001496 – volume: 60 start-page: 26026 year: 2021 ident: WOS:000683806600001 article-title: Carbene-Catalyzed Asymmetric Construction of Atropisomers publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202108630 – volume: 143 start-page: 12924 year: 2021 ident: WOS:000691789500004 article-title: Chiral Phosphoric Acid-Catalyzed Remote Control of Axial Chirality at Boron-Carbon Bond publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c05079 – volume: 52 start-page: 199 year: 2019 ident: WOS:000456349800022 article-title: Peptide-Based Catalysts Reach the Outer Sphere through Remote Desymmetrization and Atroposelectivity publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.8b00473 – volume: 38 start-page: 2096 year: 1999 ident: WOS:000081864800001 article-title: Chemistry, biology, and medicine of the glycopeptide antibiotics publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 10 start-page: 692 year: 2021 ident: WOS:000630475100001 article-title: Recent Advances in (Dynamic) Kinetic Resolution and Desymmetrization Catalyzed by Chiral Phosphoric Acids publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ajoc.202100091 – volume: 61 start-page: ARTN e202211782 year: 2022 ident: WOS:000853127000001 article-title: Atroposelective Electrophilic Sulfenylation of N-Aryl Aminoquinone Derivatives Catalyzed by Chiral SPINOL-Derived Sulfide publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202211782 – volume: 44 start-page: 3974 year: 2005 ident: WOS:000230214800007 article-title: Efficiency in nonenzymatic kinetic resolution publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200460842 – volume: 120 start-page: 3278 year: 2008 ident: 000937888700001.49 publication-title: Angew. Chem – volume: 7 start-page: 2743 year: 2021 ident: WOS:000708501600014 article-title: Rational design and atroposelective synthesis of N-N axially chiral compounds publication-title: CHEM doi: 10.1016/j.chempr.2021.07.013 – volume: 111 start-page: 2230 year: 1999 ident: 000937888700001.9 publication-title: Angew. Chem – volume: 16 start-page: 4753 year: 2018 ident: WOS:000437470400002 article-title: Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c8ob00900g – volume: 56 start-page: 6201 year: 2020 ident: WOS:000541419600001 article-title: Atroposelective synthesis of configurationally stable nonbiaryl N-C atropisomers through direct asymmetric aminations of 1,3-benzenediamines publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d0cc02368j – volume: 9 start-page: 2280 year: 2022 ident: WOS:000766729100001 article-title: Recent advances in the catalytic asymmetric construction of atropisomers by central-to-axial chirality transfer publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/d1qo01699g – volume: 13 start-page: 141 year: 2022 ident: WOS:000726864000001 article-title: Asymmetric synthesis of N-N axially chiral compounds via organocatalytic atroposelective N-acylation publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc05360d – volume: 33 start-page: 1788 year: 2022 ident: WOS:000872707500005 article-title: Catalytic Kinetic Resolution and Desymmetrization of Amines publication-title: SYNLETT doi: 10.1055/a-1790-3230 – volume: 55 start-page: 2920 year: 2022 ident: WOS:000868882500001 article-title: Organocatalytic Enantioselective Synthesis of Axially Chiral Molecules: Development of Strategies and Skeletons publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.2c00509 – volume: 55 start-page: 2904 year: 2022 ident: WOS:000862378100001 article-title: Atropisomerism in the Pharmaceutically Relevant Realm publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.2c00500 – volume: 7 start-page: 1327 year: 2011 ident: WOS:000295220000001 article-title: Carbamate-directed benzylic lithiation for the diastereo- and enantioselective synthesis of diaryl ether atropisomers publication-title: BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY doi: 10.3762/bjoc.7.156 – volume: 61 year: 2022 ident: WOS:000761468300001 article-title: Organocatalytic Atroposelective Synthesis of N-N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202116829 – volume: 135 year: 2023 ident: 000937888700001.54 publication-title: Angew. Chem – volume: 122 start-page: 7164 year: 2010 ident: 000937888700001.51 publication-title: Angew. Chem – volume: 51 start-page: 534 year: 2018 ident: WOS:000426014500035 article-title: Construction of Axially Chiral Compounds via Asymmetric Organocatalysis publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.7b00602 – volume: 121 start-page: 4805 year: 2021 ident: WOS:000645513800008 article-title: Recent Advances in Catalytic Asymmetric Construction of Atropisomers publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.0c01306 – volume: 40 start-page: 2151 year: 2022 ident: WOS:000816707900001 article-title: Catalytic Asymmetric Synthesis of Axially Chiral 3,3'-Bisindoles by Direct Coupling of Indole Rings publication-title: CHINESE JOURNAL OF CHEMISTRY doi: 10.1002/cjoc.202200327 – volume: 3 start-page: 117 year: 2022 ident: WOS:001022734500001 article-title: Stereoselective construction of atropisomers featuring a C-N chiral axis publication-title: GREEN SYNTHESIS AND CATALYSIS doi: 10.1016/j.gresc.2021.12.005 – volume: 59 start-page: 23598 year: 2020 ident: WOS:000580568600001 article-title: A Versatile Method for Kinetic Resolution of Protecting-Group-Free BINAMs and NOBINs through Chiral Phosphoric Acid Catalyzed Triazane Formation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202009395 – volume: 22 start-page: ARTN 100393 year: 2019 ident: WOS:000508675400017 article-title: Development of PLA-PBSA based biodegradable active film and its application to salmon slices publication-title: FOOD PACKAGING AND SHELF LIFE doi: 10.1016/j.fpsl.2019.100393 – volume: 103 start-page: 3155 year: 2003 ident: WOS:000184821500017 article-title: Modified BINOL ligands in asymmetric catalysis publication-title: CHEMICAL REVIEWS doi: 10.1021/cr020025b – volume: 116 start-page: 7330 year: 2016 ident: WOS:000378585000007 article-title: Catalytic Enantioselective Desymmetrization Reactions to All-Carbon Quaternary Stereocenters publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00094 – volume: 12 start-page: 14609 year: 2022 ident: WOS:000892731500001 article-title: Remote Enantioselective Desymmetrization of 9,9-Disubstituted 9,10-Dihydroacridines through Asymmetric Aromatic Aminations publication-title: ACS CATALYSIS doi: 10.1021/acscatal.2c04975 – volume: 44 start-page: 3418 year: 2015 ident: WOS:000355485900005 article-title: Recent advances and new concepts for the synthesis of axially stereoenriched biaryls publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00012b – volume: 251 start-page: 2119 year: 2007 ident: WOS:000250605400003 article-title: Recent advances in developing new axially chiral phosphine ligands for asymmetric catalysis publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2007.07.020 – volume: 39 start-page: 1787 year: 2021 ident: WOS:000653243300001 article-title: Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Axially Chiral Compounds† publication-title: CHINESE JOURNAL OF CHEMISTRY doi: 10.1002/cjoc.202000751 – volume: 8 start-page: 1855 year: 2022 ident: WOS:000841999200008 article-title: Atropisomers beyond the C-C axial chirality: Advances in catalytic asymmetric synthesis publication-title: CHEM doi: 10.1016/j.chempr.2022.04.011 – volume: 11 start-page: 5646 year: 2009 ident: WOS:000272461800020 article-title: Synthesis of Carbamates from Diethoxycarbonyl Hydrazine Derivatives by E1cB Eliminative Cleavage of the N-N′-Bond Rather than Reduction publication-title: ORGANIC LETTERS doi: 10.1021/ol902313v – volume: 11 start-page: 8443 year: 2021 ident: WOS:000674927200005 article-title: Kinetic Resolution of α-Tertiary Propargylic Amines through Asymmetric Remote Aminations of Anilines publication-title: ACS CATALYSIS doi: 10.1021/acscatal.1c02331 – volume: 143 start-page: 10048 year: 2021 ident: WOS:000674321800003 article-title: Construction of Axially Chiral Arylborons via Atroposelective Miyaura Borylation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c04345 – start-page: 1929 year: 2010 ident: WOS:000278407000001 article-title: Chiral Phosphoric Acids as Versatile Catalysts for Enantioselective Transformations publication-title: SYNTHESIS-STUTTGART doi: 10.1055/s-0029-1218801 – volume: 5 start-page: 308 year: 2016 ident: WOS:000372915400001 article-title: Chiral BrOnsted Acid Catalyzed Kinetic Resolutions publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ajoc.201600021 – volume: 29 start-page: 2155 year: 2018 ident: WOS:000445494200012 article-title: Toward a Catalytic Atroposelective Synthesis of Diaryl Ethers Through C(sp 2 )-H Alkylation with Nitroalkanes publication-title: SYNLETT doi: 10.1055/s-0037-1609581 – volume: 49 start-page: 7010 year: 2010 ident: WOS:000282477800013 article-title: Biocatalytic Desymmetrization of an Atropisomer with both an Enantioselective Oxidase and Ketoreductases publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201002580 – volume: 43 start-page: 1566 year: 2004 ident: WOS:000220389600023 article-title: Enantioselective Mannich-type reaction catalyzed by a chiral Bronsted acid publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200353240 – volume: 18 start-page: 249 year: 1988 ident: 000937888700001.81 publication-title: Kinetic Resolution – volume: 133 start-page: 26230 year: 2021 ident: 000937888700001.39 publication-title: Angew. Chem – volume: 47 start-page: 3234 year: 2008 ident: WOS:000255214200023 article-title: Enantioselective synthesis of an atropisomeric diaryl ether publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200705660 – year: 2022 ident: WOS:000862870000001 article-title: Organocatalytic Atroposelective Synthesis of Indole Derivatives Bearing Axial Chirality: Strategies and Applications publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.2c00465 – volume: 107 start-page: 5744 year: 2007 ident: WOS:000251583300010 article-title: Stronger bronsted acids publication-title: CHEMICAL REVIEWS doi: 10.1021/cr068374j – volume: 2012 start-page: 1471 year: 2012 ident: WOS:000300930800004 article-title: Nonenzymatic Acylative Kinetic Resolution of Racemic Amines and Related Compounds publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ejoc.201101489 – volume: 353 start-page: 1613 year: 2011 ident: WOS:000292939600001 article-title: Catalytic Non-Enzymatic Kinetic Resolution publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.201100111 – volume: 55 start-page: 2780 year: 2022 ident: WOS:000859290700001 article-title: Enantioselective Synthesis of Atropisomers via Vinylidene ortho- Quinone Methides (VQMs) publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.2c00486 – volume: 61 start-page: ARTN e202206501 year: 2022 ident: WOS:000810708100001 article-title: Atroposelective Construction of Nine-Membered Carbonate-Bridged Biaryls publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202206501 – volume: 2 start-page: ARTN 100413 year: 2021 ident: WOS:000658767800007 article-title: Enantioselective desymmetrization of 2-substituted and 2,2-disubstituted 1,3-propanediamines via asymmetric para-aminations of anilines publication-title: CELL REPORTS PHYSICAL SCIENCE doi: 10.1016/j.xcrp.2021.100413 – volume: 45 start-page: 5803 year: 2006 ident: WOS:000240412200010 article-title: Three groups good, four groups bad?: Atropisomerism in ortho-substituted diaryl ethers publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200601866 – volume: 53 start-page: 425 year: 2020 ident: WOS:000514759600013 article-title: Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00549 – volume: 133 start-page: 5328 year: 2021 ident: 000937888700001.84 publication-title: Angew. Chem – volume: 134 year: 2022 ident: 000937888700001.25 publication-title: Angew. Chem – volume: 135 start-page: 3964 year: 2013 ident: WOS:000316244200038 article-title: Enantioselective Synthesis of Multisubstituted Biaryl Skeleton by Chiral Phosphoric Acid Catalyzed Desymmetrization/Kinetic Resolution Sequence publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja311902f – volume: 143 start-page: 14025 year: 2021 ident: WOS:000696018700001 article-title: Synthesis of Atropisomers by Transition-Metal-Catalyzed Asymmetric C-H Functionalization Reactions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c07635 – volume: 65 start-page: 1929 year: 2022 ident: WOS:000854410500003 article-title: Design and catalytic atroposelective synthesis of axially chiral isochromenone-indoles publication-title: SCIENCE CHINA-CHEMISTRY doi: 10.1007/s11426-022-1363-y – volume: 126 start-page: 5356 year: 2004 ident: WOS:000221135400011 article-title: Chiral Bronsted acid-catalyzed direct Mannich reactions via electrophilic activation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0491533 – volume: 132 start-page: 23804 year: 2020 ident: 000937888700001.64 publication-title: Angew. Chem – volume: 55 start-page: 1620 year: 2022 ident: WOS:000820884700001 article-title: Transition Metal-Catalyzed Biaryl Atropisomer Synthesis via a Torsional Strain Promoted Ring-Opening Reaction publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.2c00175 – volume: 118 start-page: 5935 year: 2006 ident: 000937888700001.12 publication-title: Angew. Chem – volume: 60 start-page: 5268 year: 2021 ident: WOS:000609275100001 article-title: Asymmetric Synthesis of Hydroquinolines with α,α-Disubstitution through Organocatalyzed Kinetic Resolution publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202015008 – volume: 87 start-page: 6760 year: 2022 ident: WOS:000805365600018 article-title: Approaches toward Atropisomerically Stable and Conformationally Pure Diarylamines publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.2c00451 – volume: 32 start-page: 1562 year: 2015 ident: WOS:000363648300004 article-title: A twist of nature - the significance of atropisomers in biological systems publication-title: NATURAL PRODUCT REPORTS doi: 10.1039/c4np00121d – volume: 62 year: 2023 ident: WOS:000910085200001 article-title: A Dynamic Kinetic Resolution Approach to Axially Chiral Diaryl Ethers by Catalytic Atroposelective Transfer Hydrogenation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202216534 – volume: 142 start-page: 2198 year: 2020 ident: WOS:000512222700021 article-title: Catalytic Atroposelective Synthesis of N-Aryl Quinoid Compounds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b12994 – volume: 6 start-page: 505 year: 2011 ident: WOS:000288599600014 article-title: Revealing Atropisomer Axial Chirality in Drug Discovery publication-title: CHEMMEDCHEM doi: 10.1002/cmdc.201000485 – volume: 4 start-page: 191 year: 2022 ident: WOS:000759893200005 article-title: Recent advances towards organocatalytic enantioselective desymmetrizing reactions publication-title: TRENDS IN CHEMISTRY doi: 10.1016/j.trechm.2021.12.010 – volume: 61 year: 2022 ident: WOS:000713981500001 article-title: Putting DNA to Work as Generic Polymeric Materials publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202110666 – volume: 45 start-page: 5474 year: 2016 ident: WOS:000385181300003 article-title: Organocatalytic enantioselective desymmetrisation publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00015g |
SSID | ssj0028806 |
Score | 2.5958662 |
Snippet | Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields.... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300481 |
SubjectTerms | Asymmetric synthesis Asymmetry Axial Chirality Chemical synthesis Chemistry Chemistry, Multidisciplinary Chiral Phosphoric Acid Diaryl ethers Electrophilic Aromatic Amination Enantiomers Enantioselective Desymmetrization Ethers Organocatalysis Phosphoric acid Physical Sciences Science & Technology Substrates |
Title | Catalytic Asymmetric Synthesis of Axially Chiral Diaryl Ethers through Enantioselective Desymmetrization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202300481 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000937888700001 https://www.ncbi.nlm.nih.gov/pubmed/36760025 https://www.proquest.com/docview/2788349488 https://www.proquest.com/docview/2775614736 |
Volume | 62 |
WOS | 000937888700001 |
WOSCitedRecordID | wos000937888700001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hLuXSB_SRQpGRkHrykrWdxDmu0kW0EhxokbhFfkWsumQrsit1-fX1OI-yVFWr9pbIjh07M_YX2_N9AMfaGO8H0lKWSEOFdDGVzjrqZG65ya1NQ4Tc-UV6diU-XSfXD6L4W36IYcENPSOM1-jgSjcnP0lDMQJ7hOLfgfLED8J4YAtR0eXAH8W8cbbhRZxTVKHvWRtjdrL5-Oas9AvUfDQrbQLZMBOdPgPVt6E9gPJ1tFrqkbl_RO_4P418Dk87mEomrV29gC1X78KToleH24ObAtd91j6ZTJr17S0KcxnyeV17QNnMGrKoyOS7t-35mhQ3sztf1oeZf405mQbESTp9IDLFgzizRRPkePzIS_yPcFdcGyD6Eq5Op1-KM9qpNlDDMz6mRjjcajUqT5lxHEWu4hypnSrh_-38CCOthxBc5ZVTlZZWmtgqyYx2OqnGY8NfwXa9qN0bIFXqMq2FjSuhhLOJioWWoooTF2fOY40IaP_VStNRmqOyxrxsyZhZif1XDv0Xwfsh_7eWzOO3OQ96Iyg7p25KlkmJbD7SV3w0JPt-xz0WVbvFCvNkyK2a8TSC163xDFUhOR5izAiOH1rTkB6Wl3BJIgt7LhGM_yZb0TUcOQyWEbBgTn9oXjm5-Dgd7t7-y0P7sIPXeByPZQewvbxbuXceny31YfDBH4vQMcU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6C8TBeGHcyBhhpEk_uUttJnMcqdOpg6wNsEm9RfIlW0aXT0krrfv18nAt0CIHgMbGT1O459udjn-8D2FdaOz-QhrJIaiqkDam0xlIrU8N1akzsM-ROpvHkTHz6FnWnCTEXpuGH6ANu6Bl-vEYHx4D0wQ_WUEzBHqD6t-c8uQ8PUNbbr6q-9AxSzJlnk2DEOUUd-o63MWQHm89vzku_gM0789ImlPVz0eEOqK4VzRGU74PVUg30zR2Cx_9q5mN41CJVMmpM6wncs9VT2M46gbhncJ5h6GftismoXl9coDaXJl_XlcOU9awmi5KMrp15z9ckO59duXd9nLnfMSdjDzpJKxFExngWZ7aovSKPG3yJWwu3r2tyRJ_D2eH4NJvQVriBap7wIdXC4m6rLtKYactR5ypMkd2pFG555wYZaRyK4EVa2qJU0kgdmkIyrayKyuFQ8xewVS0q-wpIGdtEKWHCUhTCmqgIhZKiDCMbJtbBjQBo97flumU1R3GNed7wMbMc-y_v-y-AD339y4bP47c19zoryFu_rnOWSImEPtJ9-H1f7Podt1mKyi5WWCdBetWExwG8bKyn_xTy4yHMDGD_Z3Pqy32ECaMSid92CWD4N9WytuFIY7AMgHl7-kPz8tH0aNxf7f7LQ-9ge3J6cpwfH00_v4aHeB9P57FkD7aWVyv7xsG1pXrrHfIWk_A14A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CIQEv484CA4w0iad0buwkzmOVttq4VAiYtLcovmkVXTotrUT59fg4F9YhBILHxI4dO-fYX2yf7wM4kEo5PxA6jGKhQi4MDYXRJjQi00xlWic-Qu7DLDk64W9P49MrUfwNP0S_4Iae4cdrdPALbQ9_koZiBPYAxb895clNuMUTKtCux596AqnIWWcTX8RYiDL0HW0jjQ63n9-eln7BmtempW0k66ei6T0ou0Y0J1C-DtYrOVDfr_E7_k8r78Nui1PJqDGsB3DDVA_hTt7Jwz2CsxwXfjYumYzqzfk5KnMp8nlTOURZz2uytGT0zRn3YkPys_mlK2s8d6-xIBMPOUkrEEQmeBJnvqy9Ho8beon7E26LayJEH8PJdPIlPwpb2YZQsZQNQ8UN7rWqMksiZRiqXNEMuZ0sdz93bogR2mEIVmbWlFYKLRTVpYiUNDK2w6FiT2CnWlZmD4hNTCol19Tykhsdl5RLwS2NDU2NAxsBhN1XK1TLaY7SGouiYWOOCuy_ou-_AN70-S8aNo_f5tzvjKBovbouolQIpPMRruLXfbLrd9xkKSuzXGOeFMlVU5YE8LQxnr4qZMdDkBnAwVVr6tP9-hKuSaR-0yWA4d9ky9uGI4nBKoDIm9MfmleMZseT_urZvzz0Cm5_HE-L98ezd8_hLt7Go3lRug87q8u1eeGw2kq-9O74A-BhNJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+Asymmetric+Synthesis+of+Axially+Chiral+Diaryl+Ethers+through+Enantioselective+Desymmetrization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Bao%2C+Hanyang&rft.au=Chen%2C+Yunrong&rft.au=Yang%2C+Xiaoyu&rft.date=2023-03-27&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=62&rft.issue=14&rft.spage=e202300481&rft_id=info:doi/10.1002%2Fanie.202300481&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |