Recent Advances in Mechanical Vibration Energy Harvesters Based on Triboelectric Nanogenerators
With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cabl...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 22; pp. e2300401 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by‐product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact–separation (C‐S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT.
This work systematically reviews latest achievement in VEH based on TENG in the fields of mechanical engineering. The future development of VEH based on TENG is prospected and challenged. |
---|---|
AbstractList | With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by‐product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact–separation (C‐S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT.
This work systematically reviews latest achievement in VEH based on TENG in the fields of mechanical engineering. The future development of VEH based on TENG is prospected and challenged. With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by‐product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact–separation (C‐S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT. With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by-product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact-separation (C-S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT.With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by-product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact-separation (C-S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT. With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by‐product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact–separation (C‐S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT. |
Author | Xi, Ziyue Du, Taili Zou, Yongjiu Dong, Fangyang Xu, Minyi Zhu, Meixian Sun, Peiting |
Author_xml | – sequence: 1 givenname: Taili surname: Du fullname: Du, Taili organization: Dalian Maritime University – sequence: 2 givenname: Fangyang surname: Dong fullname: Dong, Fangyang organization: Dalian Maritime University – sequence: 3 givenname: Ziyue surname: Xi fullname: Xi, Ziyue organization: Dalian Maritime University – sequence: 4 givenname: Meixian surname: Zhu fullname: Zhu, Meixian organization: Dalian Maritime University – sequence: 5 givenname: Yongjiu surname: Zou fullname: Zou, Yongjiu email: zouyj0421@dlmu.edu.cn organization: Dalian Maritime University – sequence: 6 givenname: Peiting surname: Sun fullname: Sun, Peiting email: sunptg@dlmu.edu.cn organization: Dalian Maritime University – sequence: 7 givenname: Minyi orcidid: 0000-0002-3772-8340 surname: Xu fullname: Xu, Minyi email: xuminyi@dlmu.edu.cn organization: Dalian Maritime University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36840670$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9rVDEQx4NU7A-9epSAl152neS9l7x3rKVaYatgi9cwyZutKdmkJm8r-9-buu0WCuIpA_l8Zob5HrK9mCIx9lbAXADID2UVwlyCbABaEC_YgVCimaleDnu7WsA-OyzlBqARstWv2H6j-haUhgNmvpOjOPGT8Q6jo8J95BfkfmL0DgP_4W3GyafIzyLl6w0_x3xHZaJc-EcsNPL6dZW9TRTITdk7_hVjuqZK45Ryec1eLjEUevPwHrHLT2dXp-ezxbfPX05PFjPX6EbM7GitRjVaqTuQ7TD2_WBF22vVddjVYsQlWrQ9UNe6YVgqdKMbtVOkQTdH7Hjb9TanX-u6n1n54igEjJTWxUjdA6huELKi75-hN2mdY93NyF4KqRqphkq9e6DWdkWjuc1-hXljHg9XgfkWcDmVkmm5QwSY-2TMfTJml0wV2meC89Pf004Zffi3Nmy13z7Q5j9DzOXFYvHk_gEoQaMv |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2025_111551 crossref_primary_10_1002_aesr_202400116 crossref_primary_10_1016_j_nanoen_2024_109383 crossref_primary_10_3390_polym16172459 crossref_primary_10_3390_batteries9100487 crossref_primary_10_1021_acsami_4c10322 crossref_primary_10_1021_acsaelm_3c01381 crossref_primary_10_1021_acsami_4c07571 crossref_primary_10_1002_aenm_202302353 crossref_primary_10_1557_s43577_025_00862_6 crossref_primary_10_1002_admt_202400451 crossref_primary_10_1007_s12274_023_6309_3 crossref_primary_10_1002_smll_202304591 crossref_primary_10_1088_2515_7655_ad307c crossref_primary_10_1002_aenm_202400585 crossref_primary_10_1016_j_mne_2024_100287 crossref_primary_10_1002_sus2_196 crossref_primary_10_1002_adsu_202400575 crossref_primary_10_3390_mi15050645 crossref_primary_10_1038_s44172_024_00249_6 crossref_primary_10_4018_IJeC_349742 crossref_primary_10_1016_j_cej_2024_152532 crossref_primary_10_1016_j_nanoen_2024_109419 crossref_primary_10_3390_s24123817 crossref_primary_10_1016_j_nanoen_2024_109558 crossref_primary_10_1016_j_sna_2025_116278 crossref_primary_10_1155_2023_5568046 crossref_primary_10_3390_app15063196 |
Cites_doi | 10.1021/acsnano.9b08998 10.3390/electronics8121526 10.1021/nl4008985 10.1038/srep16409 10.3390/s21041514 10.1016/j.energy.2022.124028 10.1002/admt.202000918 10.1088/1361-665X/ac2c5f 10.1039/C4NR01934B 10.1002/adma.201600133 10.1016/j.ijnonlinmec.2014.06.005 10.1016/j.xcrp.2021.100666 10.1016/j.nanoen.2021.106159 10.1088/1361-6463/ab7792 10.1088/1361-6501/ac5b2b 10.1016/j.nanoen.2020.104980 10.3390/s21123976 10.1002/adma.201400021 10.3389/fmats.2021.692273 10.1109/JSEN.2014.2309176 10.1177/1045389X10390249 10.1002/ente.202000400 10.1088/2399-6528/ac871e 10.1021/acsanm.2c02562 10.1002/admt.201800019 10.1007/s40820-022-00981-8 10.1016/j.nanoen.2022.107271 10.1016/j.nanoen.2019.103973 10.1016/j.rser.2009.11.003 10.1007/s11012-020-01291-2 10.1021/nn404614z 10.26789/AMS.2018.01.003 10.1016/j.nanoen.2022.107165 10.1016/j.ymssp.2020.107368 10.1016/j.phpro.2012.02.144 10.1016/j.nanoen.2021.106058 10.1038/s41467-019-10061-y 10.1016/j.nanoen.2019.104277 10.1016/j.eml.2020.100718 10.1016/j.enconman.2022.115969 10.1021/acsnano.6b07633 10.3390/s22114287 10.1016/j.est.2018.09.002 10.1002/admt.202000159 10.1039/C5EE01532D 10.1016/j.nanoen.2022.107292 10.1039/C8TA05198D 10.1002/adfm.202001720 10.1039/C7RA09911H 10.1088/1361-6439/ab0241 10.1016/j.nanoen.2021.106366 10.1016/j.nanoen.2019.05.073 10.1016/j.nanoen.2019.104122 10.1016/j.nanoen.2022.107209 10.1109/JSEN.2017.2694458 10.1016/j.nanoen.2018.04.024 10.1016/j.nanoen.2016.03.004 10.1002/admt.202170016 10.1007/s12541-011-0151-3 10.1021/nn500694y 10.1016/j.sna.2007.11.021 10.3390/s22103752 10.3390/mi12020218 10.1016/j.engstruct.2020.110789 10.1016/j.nanoen.2020.105177 10.1016/j.nanoen.2021.106746 10.1039/C8NR02039F 10.1021/acsnano.7b03818 10.1021/nl4001053 10.1109/JMEMS.2014.2317718 10.1038/ncomms4426 10.1109/JSEN.2021.3132664 10.1002/aenm.202002929 10.1016/j.nanoen.2022.107530 10.1016/j.mattod.2020.10.031 10.1016/j.nanoen.2022.107211 10.1002/eom2.12062 10.1002/aelm.202001006 10.1021/nn405209u 10.1109/TUFFC.2008.837 10.1109/TMECH.2020.2993336 10.3390/en13215528 10.1109/TIM.2010.2089090 10.1080/10667857.2021.1964216 10.1109/JMEMS.2016.2611677 10.1007/s12274-021-3968-9 10.1088/0957-4484/27/8/085401 10.1016/j.nanoen.2014.11.034 10.1016/j.nanoen.2020.105547 10.1016/j.egyr.2020.09.007 10.1080/15435075.2022.2086001 10.1002/admt.202200003 10.1021/acsami.1c06031 10.3390/en15030947 10.3390/mi12050567 10.1016/j.nanoen.2017.02.036 10.1016/j.ijnonlinmec.2018.05.006 10.1038/s41467-018-07911-6 10.1039/D0SE01201G 10.1016/S0140-3664(02)00248-7 10.1016/j.nanoen.2018.11.022 10.1117/12.2080991 10.1016/j.nanoen.2017.05.018 10.1021/nn502618f 10.1002/adma.201505839 10.1016/j.nanoen.2016.12.024 10.1002/aenm.201902460 10.1021/acsnano.5b06329 10.1021/acsnano.8b09798 10.1002/adfm.201805216 10.1016/j.nanoen.2021.106576 10.1007/s12274-014-0555-3 10.1063/5.0040657 10.1002/aenm.201702432 10.1016/j.jsv.2017.11.036 10.1002/adem.201700318 10.1016/j.rser.2017.01.073 10.3390/s20041063 10.1002/er.3986 10.1021/acsami.1c23309 10.3390/mi11010080 10.1016/j.nanoen.2017.11.039 10.1016/j.energy.2019.116871 10.1016/j.energy.2020.118885 10.1016/j.apenergy.2021.116825 10.1016/j.rser.2016.05.022 10.1007/s12274-013-0364-0 10.1016/j.nanoen.2018.11.056 10.1016/j.nanoen.2019.104131 10.1063/1.3629551 10.1016/j.nanoen.2020.105245 10.3390/nano12081248 10.1021/acsami.5b04516 10.3390/mi11040347 10.1007/s12274-015-0827-6 10.1002/adma.201401184 10.3389/fchem.2020.00023 10.1016/j.nanoen.2017.06.035 10.1016/j.eml.2020.101021 10.1016/0924-4247(96)80118-X 10.1088/0964-1726/13/5/018 10.1016/j.nanoen.2019.103926 10.1002/mame.202000666 10.1007/s11431-015-5790-7 10.1016/j.nanoen.2017.01.059 10.1016/j.jii.2021.100224 10.1016/j.energy.2021.120595 10.1016/j.nanoen.2021.105887 10.1016/j.bios.2022.114595 10.1016/j.energy.2020.118462 10.1016/j.cap.2016.07.014 10.1021/nn5054365 10.3390/nano11123431 10.1016/j.nanoen.2015.05.033 10.1016/j.joule.2017.09.004 10.1016/j.apenergy.2019.114069 10.1016/j.nanoen.2020.104605 10.1177/1045389X13476149 10.1016/j.nanoen.2016.11.038 10.1088/0957-0233/21/2/022001 10.1021/acsnano.5b06327 10.1002/er.5643 10.1177/09544062211013055 10.1109/TNANO.2016.2540958 10.1007/s11431-013-5270-x 10.1002/aenm.201700565 10.1016/j.nanoen.2015.06.012 10.1016/j.nanoen.2020.105075 10.1016/j.nanoen.2020.105555 10.1016/j.rser.2005.08.004 10.1021/acs.nanolett.2c01912 10.1021/acsami.0c21246 10.1021/nl400738p 10.1177/1045389X19844012 10.1007/s12274-016-1109-7 10.1039/C6TA05816G 10.1109/JSEN.2020.3007000 10.1002/aenm.202103654 10.1002/adfm.201304211 10.1021/es052254w 10.1016/j.nanoen.2012.01.004 10.1016/j.mattod.2021.10.027 10.1088/0964-1726/15/5/030 10.1109/63.988662 10.1021/acsnano.9b10142 10.1016/j.nanoen.2018.08.066 10.1002/aisy.201900129 10.1016/j.envint.2006.06.022 10.1016/j.nanoen.2022.107773 10.1002/aenm.201802159 10.1038/s41598-019-44683-5 10.1016/j.nanoen.2017.08.024 10.1016/j.nanoen.2022.107339 10.1016/j.apenergy.2022.118739 10.1016/j.nanoen.2018.11.055 10.1002/aenm.201802906 10.1021/acsnano.0c09803 10.1016/j.ymssp.2022.109185 10.1016/j.mattod.2019.05.016 10.1002/aenm.202201132 10.1002/adfm.201302453 10.1016/j.nanoen.2020.104674 10.1002/adma.201802898 10.1002/adfm.202105825 10.1002/adma.201302397 10.1016/j.nanoen.2019.104086 10.1016/j.sna.2007.07.004 10.1016/j.ndteint.2005.08.008 10.1016/j.nanoen.2019.01.066 10.1016/j.sna.2017.06.012 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202300401 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36840670 10_1002_smll_202300401 SMLL202300401 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 3132022211 – fundername: Dalian Outstanding Young Scientific and Technological Talents Project funderid: 2021RJ11 – fundername: Scientific Research Fund of the Educational Department of Liaoning Province funderid: LJKZ0055 – fundername: National Natural Science Foundation of China funderid: 52101345; 52101400 – fundername: National Natural Science Foundation of China grantid: 52101400 – fundername: Fundamental Research Funds for the Central Universities grantid: 3132022211 – fundername: Scientific Research Fund of the Educational Department of Liaoning Province grantid: LJKZ0055 – fundername: Dalian Outstanding Young Scientific and Technological Talents Project grantid: 2021RJ11 – fundername: National Natural Science Foundation of China grantid: 52101345 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3731-bdbb7a6db2750249d889b1487655a5148dafabab80e54c99f6acdcd7c6e7073 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 03:17:44 EDT 2025 Fri Jul 25 12:04:22 EDT 2025 Thu Apr 03 07:01:20 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Tue Jul 01 02:54:26 EDT 2025 Wed Jan 22 16:22:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | triboelectric nanogenerators mechanical engineering mechanical vibration vibration energy harvesting |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-bdbb7a6db2750249d889b1487655a5148dafabab80e54c99f6acdcd7c6e7073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3772-8340 |
PMID | 36840670 |
PQID | 2821263269 |
PQPubID | 1046358 |
PageCount | 27 |
ParticipantIDs | proquest_miscellaneous_2780065912 proquest_journals_2821263269 pubmed_primary_36840670 crossref_primary_10_1002_smll_202300401 crossref_citationtrail_10_1002_smll_202300401 wiley_primary_10_1002_smll_202300401_SMLL202300401 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 1, 2023 2023-06-00 2023-Jun 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 1, 2023 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 177 2021; 65 2010; 14 2020; 20 2019; 13 2006; 39 2014; 26 2018 2014; 105 65 2020; 14 2014; 24 2020; 11 2022; 22 2013; 7 2020 2020; 25 14 2018; 43 2018; 42 2013; 6 2018; 49 2014 2014; 8 5 2017; 74 2018; 8 2018; 3 2015 2018 2022; 9 6 97 2008 2008 2008; 142 145–146 55 2013; 56 2014 2016 2016 2017 2017 2021 2020 2021 2022; 6 28 15 263 19 42 30 21 98 2019 2020; 10 2 2014 2019 2019 2021 2021; 8 58 56 306 31 2014; 14 2018; 30 2022; 33 2012; 24 2015 2015; 9302 24 2021; 84 2021; 80 2019; 8 2018; 28 2019; 9 2022; 92 2019; 30 2011 2002; 12 17 2020; 37 2007; 11 2016; 16 2021 2021; 151 56 2017 2017 2020; 7 32 221 2016; 4 2014 2020 2016; 4 194 10 2006; 40 2016 2020; 27 67 2022; 5 2022; 6 2022; 7 2022; 9814 2022; 12 2022; 14 2022; 15 2020 2021; 11 7 2022; 97 2017 2018 2021 2019 2021 2022 2015 2017 2015 2019 2020; 33 53 21 66 5 312 16 34 8 62 212 2022; 98 2022; 10 2014 2014; 8 26 2016; 28 2018; 10 2016; 9 2016; 23 2022; 103 2021 2022; 12 98 2017; 7 2013; 25 2021; 23 2021 2019; 8 10 2017 2018 2020 2019; 40 416 6 30 2013; 24 2019 2021; 9 15 2003 2004 2006; 26 13 15 2007; 33 2021; 30 2016 2021; 8 45 2020; 8 2021; 37 2020; 5 2013 2013; 13 13 2020; 2 2020; 53 2019; 64 2017; 39 2019; 66 2013; 13 2019; 65 2017; 38 2021 2022; 291 252 2020; 258 2013 2011 2018; 20 60 20 2014; 8 2011 2010 2010; 99 21 21 2009; 22 2015; 15 2015; 14 2021; 6 2021; 86 2015; 5 2021; 2 2012 2017; 26 2021 2020 2019; 12 20 29 2021 2021 2022 2021 2020; 11 90 101 87 76 2021; 228 1996; 52 2020; 78 2015; 7 2021; 90 2021; 92 2021; 13 2021; 11 2012; 1 2019 2015; 55 58 2017; 17 2021; 214 2020; 72 2017 2019 2019 2022 2013 2015 2020 2020 2019; 1 66 56 216 7 8 75 13 31 2017; 11 2017 2020 2021; 31 71 43 2018 2016; 62 2022; 52 2021 2022; 235 22 2014 2022; 268 e_1_2_8_41_7 e_1_2_8_41_6 e_1_2_8_26_1 e_1_2_8_41_9 e_1_2_8_49_1 e_1_2_8_41_8 Lin Z. W. (e_1_2_8_139_2) e_1_2_8_132_1 e_1_2_8_9_1 e_1_2_8_41_3 e_1_2_8_117_1 e_1_2_8_41_2 e_1_2_8_41_5 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_117_3 e_1_2_8_41_4 e_1_2_8_117_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_78_10 e_1_2_8_78_12 e_1_2_8_78_11 e_1_2_8_91_2 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_91_5 e_1_2_8_30_1 e_1_2_8_91_4 e_1_2_8_91_3 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_86_1 e_1_2_8_118_1 Yang J. (e_1_2_8_67_1) 2014; 4 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_14_1 e_1_2_8_129_3 e_1_2_8_37_1 e_1_2_8_90_2 e_1_2_8_90_1 e_1_2_8_121_2 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_98_2 e_1_2_8_106_1 e_1_2_8_106_2 e_1_2_8_129_2 e_1_2_8_75_1 e_1_2_8_106_3 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_28_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_134_1 e_1_2_8_134_2 e_1_2_8_17_1 e_1_2_8_78_9 e_1_2_8_78_8 e_1_2_8_78_7 e_1_2_8_78_6 e_1_2_8_78_5 e_1_2_8_78_4 e_1_2_8_78_3 e_1_2_8_78_2 Zou Y. J. (e_1_2_8_144_1) 2021; 6 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_107_2 e_1_2_8_93_3 e_1_2_8_93_2 e_1_2_8_145_1 e_1_2_8_93_1 Du T. L. (e_1_2_8_147_1) 2022; 10 e_1_2_8_27_1 e_1_2_8_80_1 He J. (e_1_2_8_84_1) 2021; 65 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_135_4 e_1_2_8_65_1 e_1_2_8_135_5 e_1_2_8_112_2 e_1_2_8_135_2 e_1_2_8_112_1 e_1_2_8_135_3 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_31_2 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_123_1 e_1_2_8_92_2 e_1_2_8_146_1 e_1_2_8_68_1 Shabana A. A. (e_1_2_8_36_1) 2018 e_1_2_8_5_3 e_1_2_8_5_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_34_3 e_1_2_8_34_2 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_95_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_67_2 e_1_2_8_67_3 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_137_2 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_82_2 e_1_2_8_114_2 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_79_1 Xie L. G. (e_1_2_8_5_1) 2013; 20 e_1_2_8_94_1 e_1_2_8_94_2 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_2 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_130_2 e_1_2_8_115_2 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_141_3 e_1_2_8_141_4 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_103_3 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_103_2 e_1_2_8_69_4 e_1_2_8_69_2 e_1_2_8_46_1 e_1_2_8_69_3 e_1_2_8_69_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_61_1 e_1_2_8_35_6 Khan F. U. (e_1_2_8_11_1) 2016; 8 e_1_2_8_35_5 e_1_2_8_35_8 e_1_2_8_35_7 e_1_2_8_35_2 e_1_2_8_35_1 e_1_2_8_35_4 e_1_2_8_35_3 e_1_2_8_58_1 Lin T. R. (e_1_2_8_19_1) 2009; 22 e_1_2_8_35_9 e_1_2_8_142_2 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_2 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 Yang X. R. (e_1_2_8_141_2) |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 53 year: 2020 publication-title: J Phys D Appl Phys – volume: 37 start-page: 1611 year: 2021 publication-title: Mater. Technol. – volume: 24 start-page: 961 year: 2012 publication-title: Phys. Procedia – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 9 15 start-page: 258 year: 2019 2021 publication-title: Adv. Energy Mater. ACS Nano – volume: 9814 year: 2022 publication-title: Nano Energy – volume: 14 start-page: 2035 year: 2014 publication-title: IEEE Sens. J. – volume: 39 start-page: 293 year: 2006 publication-title: NDT E Int. – volume: 42 start-page: 1866 year: 2018 publication-title: Int. J. Energy Res. – volume: 65 year: 2021 publication-title: Sci China Life Sci – volume: 25 14 start-page: 2188 3328 year: 2020 2020 publication-title: IEEE ASME Trans Mechatron ACS Nano – volume: 214 year: 2021 publication-title: Energy – volume: 9 start-page: 2226 year: 2016 publication-title: Nano Res. – volume: 28 start-page: 5188 year: 2016 publication-title: Adv. Mater. – volume: 22 start-page: 5584 year: 2022 publication-title: Nano Lett. – year: 2014 – volume: 8 58 56 306 31 start-page: 7405 447 443 year: 2014 2019 2019 2021 2021 publication-title: ACS Nano Nano Energy Nano Energy Macromol. Mater. Eng. Adv. Funct. Mater. – volume: 52 start-page: 8 year: 1996 publication-title: Sens Actuators A Phys – volume: 105 65 start-page: 268 226 year: 2018 2014 publication-title: Int J Non Linear Mech Int J Non Linear Mech – volume: 99 21 21 start-page: 1867 year: 2011 2010 2010 publication-title: Appl. Phys. Lett. J Intell Mater Syst Struct Meas. Sci. Technol. – volume: 25 start-page: 6094 year: 2013 publication-title: Adv. Mater. – volume: 228 year: 2021 publication-title: Energy – volume: 8 10 start-page: 2158 year: 2021 2019 publication-title: Front. Mater. Nat. Commun. – volume: 11 start-page: 1728 year: 2017 publication-title: ACS Nano – volume: 8 start-page: 1526 year: 2019 publication-title: Electronics – volume: 52 start-page: 348 year: 2022 publication-title: Mater. Today – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 23 year: 2021 publication-title: J. Ind. Inf. Integr. – volume: 98 year: 2022 publication-title: Nano Energy – volume: 20 60 20 start-page: 6 1838 67 year: 2013 2011 2018 publication-title: IEEE Wireless Commun. IEEE Trans. Instrum. Meas. J. Energy Storage – volume: 3 year: 2018 publication-title: Adv. Mater. Technol. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 11 start-page: 3431 year: 2021 publication-title: Nanomaterials – volume: 72 year: 2020 publication-title: Nano Energy – volume: 64 start-page: 7484 year: 2019 publication-title: Nano Energy Nano Res. – volume: 26 13 15 start-page: 1131 1131 1413 year: 2003 2004 2006 publication-title: Comput Commun Smart Mater. Struct. Smart Mater. Struct. – volume: 10 2 start-page: 9 year: 2019 2020 publication-title: Nat. Commun. EcoMat – volume: 80 start-page: 11 year: 2021 publication-title: Nano Energy – volume: 177 start-page: 15 year: 2022 publication-title: Mech Syst Signal Process – volume: 142 145–146 55 start-page: 329 405 2104 year: 2008 2008 2008 publication-title: Sens. Actuators, A Sens. Actuators, A IEEE Trans Ultrason Ferroelectr Freq Control – volume: 30 year: 2021 publication-title: Smart Mater. Struct. – volume: 10 start-page: 13 year: 2022 publication-title: J Mar Sci Eng – volume: 14 start-page: 2475 year: 2020 publication-title: ACS Nano – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 268 year: 2022 publication-title: Energy Convers. Manage. – volume: 15 start-page: 766 year: 2015 publication-title: Nano Energy – volume: 14 start-page: 5497 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 328 year: 2012 publication-title: Nano Energy – volume: 13 13 start-page: 2226 2282 year: 2013 2013 publication-title: Nano Lett. Nano Lett. – volume: 24 start-page: 4090 year: 2014 publication-title: Adv. Funct. Mater. – volume: 9 6 97 year: 2015 2018 2022 publication-title: ACS Nano J. Mater. Chem. A Nano Energy – volume: 8 year: 2020 publication-title: Energy Technol. – volume: 13 start-page: 6331 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 1248 year: 2022 publication-title: Nanomaterials – volume: 62 start-page: 1092 year: 2016 publication-title: Renewable Sustainable Energy Rev. – volume: 2 start-page: 17 year: 2020 publication-title: Adv. Intell. Syst. – volume: 235 22 start-page: 6427 2250 year: 2021 2022 publication-title: Proc. Inst. Mech. Eng., Part C IEEE Sens. J. – volume: 6 start-page: 880 year: 2013 publication-title: Nano Res. – volume: 11 90 101 87 76 year: 2021 2021 2022 2021 2020 publication-title: Adv. Energy Mater. Nano Energy Nano Energy Nano Energy Nano Energy – volume: 103 start-page: 9 year: 2022 publication-title: Nano Energy – volume: 84 year: 2021 publication-title: Nano Energy – volume: 4 194 10 start-page: 9 1017 year: 2014 2020 2016 publication-title: Adv. Energy Mater. Energy ACS Nano – volume: 24 start-page: 1291 year: 2013 publication-title: J. Intell. Mater Syst. Struct. – volume: 65 year: 2019 publication-title: Nano Energy – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 14 start-page: 899 year: 2010 publication-title: Renewable Sustainable Energy Rev. – volume: 13 start-page: 1932 year: 2019 publication-title: ACS Nano – volume: 8 45 start-page: 65 year: 2016 2021 publication-title: J. Renewable Energy Int. J. Energy Res. – volume: 11 start-page: 7440 year: 2017 publication-title: ACS Nano – volume: 151 56 start-page: 461 year: 2021 2021 publication-title: Mech. Syst. Signal Process. Meccanica – volume: 2 year: 2021 publication-title: Cell Rep Phys Sci – volume: 43 start-page: 326 year: 2018 publication-title: Nano Energy – volume: 14 start-page: 161 year: 2015 publication-title: Nano Energy – volume: 33 53 21 66 5 312 16 34 8 62 212 start-page: 515 362 1514 212 516 549 3272 691 year: 2017 2018 2021 2019 2021 2022 2015 2017 2015 2019 2020 publication-title: Nano Energy Nano Energy Int. J. Green Energy Sensors Nano Energy Sustainable Energy Fuels Appl. Energy Nano Energy Nano Energy Nano Res. Nano Energy Energy – volume: 38 start-page: 185 year: 2017 publication-title: Nano Energy – volume: 11 start-page: 1117 year: 2007 publication-title: Renewable Sustainable Energy Rev. – volume: 27 67 year: 2016 2020 publication-title: Nanotechnology Nano Energy – year: 2018 – volume: 1 66 56 216 7 8 75 13 31 start-page: 480 307 15 9533 2250 5528 year: 2017 2019 2019 2022 2013 2015 2020 2020 2019 publication-title: Joule Nano Energy Nano Energy Biosens. Bioelectron. ACS Nano Energy Environ. Sci. Nano Energy Energies Adv. Mater. – volume: 74 start-page: 1 year: 2017 publication-title: Renewable Sustainable Energy Rev. – volume: 6 28 15 263 19 42 30 21 98 start-page: 7842 2744 435 317 3976 9 year: 2014 2016 2016 2017 2017 2021 2020 2021 2022 publication-title: Nanoscale Adv. Mater. IEEE Trans. Nanotechnol. Sens Actuators A Phys Adv. Eng. Mater. Extreme Mech Lett Adv. Funct. Mater. Sensors Nano Energy – volume: 22 start-page: 730 year: 2009 publication-title: Mar. Corros. Offshore Struct., Pap. Symp. – volume: 37 year: 2020 publication-title: Extreme Mech Lett – volume: 49 start-page: 51 year: 2018 publication-title: Nano Energy – volume: 8 5 start-page: 722 3426 year: 2014 2014 publication-title: Nano Res. Nat. Commun. – volume: 30 start-page: 34 year: 2019 publication-title: Mater. Today – volume: 26 start-page: 5037 year: 2014 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 12 20 29 start-page: 218 year: 2021 2020 2019 publication-title: Micromachines IEEE Sens. J. J. Micromech. Microeng. – volume: 16 start-page: 1364 year: 2016 publication-title: Curr Appl Phys – volume: 86 year: 2021 publication-title: Nano Energy – volume: 33 start-page: 108 year: 2007 publication-title: Environ. Int. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 11 7 start-page: 347 year: 2020 2021 publication-title: Micromachines Adv. Electron. Mater. – volume: 55 58 start-page: 463 842 year: 2019 2015 publication-title: Nano Energy Sci. China Technol. Sci. – volume: 39 start-page: 9 year: 2017 publication-title: Nano Energy – volume: 24 start-page: 1401 year: 2014 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 3246 year: 2022 publication-title: Nano Res. – volume: 11 start-page: 80 year: 2020 publication-title: Micromachines – volume: 92 year: 2021 publication-title: Rev. Sci. Instrum. – volume: 15 start-page: 947 year: 2022 publication-title: Energies – volume: 7 year: 2022 publication-title: Adv. Mater. Technol. – volume: 7 year: 2013 publication-title: ACS Nano – volume: 22 start-page: 3752 year: 2022 publication-title: Sensors – volume: 5 year: 2022 publication-title: ACS Appl. Nano Mater. – volume: 26 start-page: 1 year: 2017 publication-title: J. Microelectromech. Syst. – volume: 6 year: 2022 publication-title: J Phys Commun – volume: 15 start-page: 14 year: 2022 publication-title: Nano‐Micro Lett. – volume: 9 start-page: 8223 year: 2019 publication-title: Sci. Rep. – volume: 13 start-page: 847 year: 2013 publication-title: Nano Lett. – volume: 31 71 43 start-page: 233 38 37 year: 2017 2020 2021 publication-title: Nano Energy COMPEL Nano Energy Mater. Today – volume: 6 start-page: 16 year: 2021 publication-title: Adv. Mater. Technol. – volume: 22 start-page: 4287 year: 2022 publication-title: Sensors – volume: 90 year: 2021 publication-title: Nano Energy – volume: 10 year: 2018 publication-title: Nanoscale – volume: 56 start-page: 1835 year: 2013 publication-title: Sci. China Technol. Sci. – volume: 97 year: 2022 publication-title: Nano Energy – volume: 66 year: 2019 publication-title: Nano Energy – volume: 12 17 start-page: 1129 8 year: 2011 2002 publication-title: Int. J. Precis. Eng. Manuf. IEEE Trans Power Electron – volume: 291 252 start-page: 11 year: 2021 2022 publication-title: Appl. Energy Energy – year: 2012 – volume: 6 year: 2021 publication-title: Adv. Mater. Technol. – volume: 17 start-page: 3853 year: 2017 publication-title: IEEE Sens. J. – volume: 20 start-page: 1063 year: 2020 publication-title: Sensors – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 8 year: 2014 publication-title: ACS Nano – volume: 9302 24 start-page: 91 year: 2015 2015 publication-title: J. Microelectromech. Syst. – volume: 7 32 221 start-page: 105 year: 2017 2017 2020 publication-title: Adv. Energy Mater. Nano Energy Eng. Struct. – volume: 40 start-page: 2629 year: 2006 publication-title: Environ. Sci. Technol. – volume: 30 start-page: 9 year: 2018 publication-title: Adv. Mater. – volume: 258 year: 2020 publication-title: Appl. Energy – volume: 92 year: 2022 publication-title: Nano Energy – volume: 40 416 6 30 start-page: 300 111 2490 1745 year: 2017 2018 2020 2019 publication-title: Nano Energy J Sound Vib Energy Rep. J. Intell. Mater. Syst. Struct. – volume: 8 26 start-page: 3836 3788 year: 2014 2014 publication-title: ACS Nano Adv. Mater. – volume: 80 year: 2021 publication-title: Nano Energy – volume: 33 year: 2022 publication-title: Meas. Sci. Technol. – volume: 23 start-page: 50 year: 2016 publication-title: Nano Energy – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 12 98 start-page: 567 10 year: 2021 2022 publication-title: Micromachines Nano Energy – volume: 8 start-page: 23 year: 2020 publication-title: Front Chem – ident: e_1_2_8_90_2 doi: 10.1021/acsnano.9b08998 – ident: e_1_2_8_46_1 doi: 10.3390/electronics8121526 – ident: e_1_2_8_92_2 doi: 10.1021/nl4008985 – ident: e_1_2_8_133_1 doi: 10.1038/srep16409 – ident: e_1_2_8_78_4 doi: 10.3390/s21041514 – ident: e_1_2_8_134_2 doi: 10.1016/j.energy.2022.124028 – ident: e_1_2_8_143_1 doi: 10.1002/admt.202000918 – volume: 6 start-page: 16 year: 2021 ident: e_1_2_8_144_1 publication-title: Adv. Mater. Technol. – ident: e_1_2_8_131_1 doi: 10.1088/1361-665X/ac2c5f – ident: e_1_2_8_41_1 doi: 10.1039/C4NR01934B – ident: e_1_2_8_86_1 doi: 10.1002/adma.201600133 – ident: e_1_2_8_107_2 doi: 10.1016/j.ijnonlinmec.2014.06.005 – ident: e_1_2_8_113_1 doi: 10.1016/j.xcrp.2021.100666 – ident: e_1_2_8_135_4 doi: 10.1016/j.nanoen.2021.106159 – ident: e_1_2_8_101_1 doi: 10.1088/1361-6463/ab7792 – ident: e_1_2_8_122_1 doi: 10.1088/1361-6501/ac5b2b – ident: e_1_2_8_35_7 doi: 10.1016/j.nanoen.2020.104980 – ident: e_1_2_8_41_8 doi: 10.3390/s21123976 – ident: e_1_2_8_114_2 doi: 10.1002/adma.201400021 – ident: e_1_2_8_142_1 doi: 10.3389/fmats.2021.692273 – ident: e_1_2_8_10_1 doi: 10.1109/JSEN.2014.2309176 – ident: e_1_2_8_106_2 doi: 10.1177/1045389X10390249 – ident: e_1_2_8_108_1 doi: 10.1002/ente.202000400 – ident: e_1_2_8_57_1 doi: 10.1088/2399-6528/ac871e – ident: e_1_2_8_66_1 doi: 10.1021/acsanm.2c02562 – ident: e_1_2_8_100_1 doi: 10.1002/admt.201800019 – ident: e_1_2_8_38_1 doi: 10.1007/s40820-022-00981-8 – ident: e_1_2_8_118_1 doi: 10.1016/j.nanoen.2022.107271 – ident: e_1_2_8_70_1 doi: 10.1016/j.nanoen.2019.103973 – ident: e_1_2_8_9_1 doi: 10.1016/j.rser.2009.11.003 – ident: e_1_2_8_82_2 doi: 10.1007/s11012-020-01291-2 – ident: e_1_2_8_35_5 doi: 10.1021/nn404614z – ident: e_1_2_8_59_1 doi: 10.26789/AMS.2018.01.003 – ident: e_1_2_8_49_1 doi: 10.1016/j.nanoen.2022.107165 – volume: 8 year: 2016 ident: e_1_2_8_11_1 publication-title: J. Renewable Energy – ident: e_1_2_8_82_1 doi: 10.1016/j.ymssp.2020.107368 – ident: e_1_2_8_4_1 doi: 10.1016/j.phpro.2012.02.144 – ident: e_1_2_8_14_1 doi: 10.1016/j.nanoen.2021.106058 – ident: e_1_2_8_142_2 doi: 10.1038/s41467-019-10061-y – ident: e_1_2_8_115_2 doi: 10.1016/j.nanoen.2019.104277 – ident: e_1_2_8_136_1 doi: 10.1016/j.eml.2020.100718 – ident: e_1_2_8_71_1 doi: 10.1016/j.enconman.2022.115969 – ident: e_1_2_8_89_1 doi: 10.1021/acsnano.6b07633 – ident: e_1_2_8_45_1 doi: 10.3390/s22114287 – volume: 10 start-page: 13 year: 2022 ident: e_1_2_8_147_1 publication-title: J Mar Sci Eng – ident: e_1_2_8_5_3 doi: 10.1016/j.est.2018.09.002 – ident: e_1_2_8_109_1 doi: 10.1002/admt.202000159 – ident: e_1_2_8_35_6 doi: 10.1039/C5EE01532D – ident: e_1_2_8_73_2 doi: 10.1016/j.nanoen.2022.107292 – ident: e_1_2_8_117_2 doi: 10.1039/C8TA05198D – volume: 65 year: 2021 ident: e_1_2_8_84_1 publication-title: Sci China Life Sci – ident: e_1_2_8_41_7 doi: 10.1002/adfm.202001720 – ident: e_1_2_8_85_1 doi: 10.1039/C7RA09911H – ident: e_1_2_8_34_3 doi: 10.1088/1361-6439/ab0241 – ident: e_1_2_8_55_1 doi: 10.1016/j.nanoen.2021.106366 – ident: e_1_2_8_78_11 doi: 10.1016/j.nanoen.2019.05.073 – ident: e_1_2_8_78_5 doi: 10.1016/j.nanoen.2019.104122 – ident: e_1_2_8_40_1 doi: 10.1016/j.nanoen.2022.107209 – ident: e_1_2_8_68_1 doi: 10.1109/JSEN.2017.2694458 – ident: e_1_2_8_126_1 doi: 10.1016/j.nanoen.2018.04.024 – ident: e_1_2_8_53_1 doi: 10.1016/j.nanoen.2016.03.004 – ident: e_1_2_8_32_1 doi: 10.1002/admt.202170016 – ident: e_1_2_8_94_1 doi: 10.1007/s12541-011-0151-3 – ident: e_1_2_8_114_1 doi: 10.1021/nn500694y – ident: e_1_2_8_103_2 doi: 10.1016/j.sna.2007.11.021 – ident: e_1_2_8_77_1 doi: 10.3390/s22103752 – ident: e_1_2_8_34_1 doi: 10.3390/mi12020218 – ident: e_1_2_8_129_3 doi: 10.1016/j.engstruct.2020.110789 – ident: e_1_2_8_48_1 doi: 10.1016/j.nanoen.2020.105177 – ident: e_1_2_8_83_1 doi: 10.1016/j.nanoen.2021.106746 – ident: e_1_2_8_140_1 doi: 10.1039/C8NR02039F – ident: e_1_2_8_56_1 doi: 10.1021/acsnano.7b03818 – ident: e_1_2_8_62_1 doi: 10.1021/nl4001053 – ident: e_1_2_8_98_2 doi: 10.1109/JMEMS.2014.2317718 – ident: e_1_2_8_112_2 doi: 10.1038/ncomms4426 – ident: e_1_2_8_130_2 doi: 10.1109/JSEN.2021.3132664 – ident: e_1_2_8_135_1 doi: 10.1002/aenm.202002929 – ident: e_1_2_8_135_3 doi: 10.1016/j.nanoen.2022.107530 – ident: e_1_2_8_141_4 doi: 10.1016/j.mattod.2020.10.031 – ident: e_1_2_8_117_3 doi: 10.1016/j.nanoen.2022.107211 – ident: e_1_2_8_33_2 doi: 10.1002/eom2.12062 – ident: e_1_2_8_137_2 doi: 10.1002/aelm.202001006 – ident: e_1_2_8_63_1 doi: 10.1021/nn405209u – ident: e_1_2_8_103_3 doi: 10.1109/TUFFC.2008.837 – ident: e_1_2_8_90_1 doi: 10.1109/TMECH.2020.2993336 – ident: e_1_2_8_35_8 doi: 10.3390/en13215528 – ident: e_1_2_8_5_2 doi: 10.1109/TIM.2010.2089090 – ident: e_1_2_8_88_1 doi: 10.1080/10667857.2021.1964216 – ident: e_1_2_8_26_1 doi: 10.1109/JMEMS.2016.2611677 – ident: e_1_2_8_119_1 doi: 10.1007/s12274-021-3968-9 – ident: e_1_2_8_115_1 doi: 10.1088/0957-4484/27/8/085401 – ident: e_1_2_8_28_1 doi: 10.1016/j.nanoen.2014.11.034 – ident: e_1_2_8_37_1 doi: 10.1016/j.nanoen.2020.105547 – ident: e_1_2_8_21_1 – ident: e_1_2_8_69_3 doi: 10.1016/j.egyr.2020.09.007 – ident: e_1_2_8_78_3 doi: 10.1080/15435075.2022.2086001 – ident: e_1_2_8_54_1 doi: 10.1002/admt.202200003 – ident: e_1_2_8_74_1 doi: 10.1021/acsami.1c06031 – ident: e_1_2_8_25_1 doi: 10.3390/en15030947 – ident: e_1_2_8_73_1 doi: 10.3390/mi12050567 – ident: e_1_2_8_78_9 doi: 10.1016/j.nanoen.2017.02.036 – ident: e_1_2_8_107_1 doi: 10.1016/j.ijnonlinmec.2018.05.006 – ident: e_1_2_8_33_1 doi: 10.1038/s41467-018-07911-6 – ident: e_1_2_8_78_6 doi: 10.1039/D0SE01201G – ident: e_1_2_8_93_1 doi: 10.1016/S0140-3664(02)00248-7 – ident: e_1_2_8_121_1 doi: 10.1016/j.nanoen.2018.11.022 – ident: e_1_2_8_98_1 doi: 10.1117/12.2080991 – ident: e_1_2_8_123_1 doi: 10.1016/j.nanoen.2017.05.018 – ident: e_1_2_8_91_1 doi: 10.1021/nn502618f – ident: e_1_2_8_41_2 doi: 10.1002/adma.201505839 – ident: e_1_2_8_129_2 doi: 10.1016/j.nanoen.2016.12.024 – ident: e_1_2_8_47_1 doi: 10.1002/aenm.201902460 – ident: e_1_2_8_67_3 doi: 10.1021/acsnano.5b06329 – ident: e_1_2_8_116_1 doi: 10.1021/acsnano.8b09798 – ident: e_1_2_8_2_1 doi: 10.1002/adfm.201805216 – ident: e_1_2_8_135_2 doi: 10.1016/j.nanoen.2021.106576 – ident: e_1_2_8_112_1 doi: 10.1007/s12274-014-0555-3 – ident: e_1_2_8_79_1 doi: 10.1063/5.0040657 – ident: e_1_2_8_81_1 doi: 10.1002/aenm.201702432 – ident: e_1_2_8_69_2 doi: 10.1016/j.jsv.2017.11.036 – ident: e_1_2_8_41_5 doi: 10.1002/adem.201700318 – ident: e_1_2_8_12_1 doi: 10.1016/j.rser.2017.01.073 – ident: e_1_2_8_111_1 doi: 10.3390/s20041063 – ident: e_1_2_8_18_1 doi: 10.1002/er.3986 – ident: e_1_2_8_44_1 doi: 10.1021/acsami.1c23309 – ident: e_1_2_8_23_1 doi: 10.3390/mi11010080 – ident: e_1_2_8_124_1 doi: 10.1016/j.nanoen.2017.11.039 – ident: e_1_2_8_67_2 doi: 10.1016/j.energy.2019.116871 – ident: e_1_2_8_99_1 doi: 10.1016/j.energy.2020.118885 – ident: e_1_2_8_134_1 doi: 10.1016/j.apenergy.2021.116825 – ident: e_1_2_8_7_1 doi: 10.1016/j.rser.2016.05.022 – ident: e_1_2_8_96_1 doi: 10.1007/s12274-013-0364-0 – ident: e_1_2_8_35_3 doi: 10.1016/j.nanoen.2018.11.056 – ident: e_1_2_8_50_1 doi: 10.1016/j.nanoen.2019.104131 – ident: e_1_2_8_106_1 doi: 10.1063/1.3629551 – volume: 20 start-page: 6 year: 2013 ident: e_1_2_8_5_1 publication-title: IEEE Wireless Commun. – ident: e_1_2_8_42_1 doi: 10.1016/j.nanoen.2020.105245 – ident: e_1_2_8_138_1 doi: 10.3390/nano12081248 – ident: e_1_2_8_128_1 doi: 10.1021/acsami.5b04516 – ident: e_1_2_8_137_1 doi: 10.3390/mi11040347 – ident: e_1_2_8_78_10 doi: 10.1007/s12274-015-0827-6 – ident: e_1_2_8_65_1 doi: 10.1002/adma.201401184 – ident: e_1_2_8_145_1 doi: 10.3389/fchem.2020.00023 – ident: e_1_2_8_29_1 doi: 10.1016/j.nanoen.2017.06.035 – ident: e_1_2_8_41_6 doi: 10.1016/j.eml.2020.101021 – ident: e_1_2_8_102_1 doi: 10.1016/0924-4247(96)80118-X – ident: e_1_2_8_93_2 doi: 10.1088/0964-1726/13/5/018 – ident: e_1_2_8_139_1 doi: 10.1016/j.nanoen.2019.103926 – volume: 4 start-page: 9 year: 2014 ident: e_1_2_8_67_1 publication-title: Adv. Energy Mater. – ident: e_1_2_8_91_4 doi: 10.1002/mame.202000666 – volume-title: Theory of Vibration: An Introduction year: 2018 ident: e_1_2_8_36_1 – ident: e_1_2_8_121_2 doi: 10.1007/s11431-015-5790-7 – ident: e_1_2_8_78_1 doi: 10.1016/j.nanoen.2017.01.059 – ident: e_1_2_8_1_1 doi: 10.1016/j.jii.2021.100224 – ident: e_1_2_8_22_1 doi: 10.1016/j.energy.2021.120595 – ident: e_1_2_8_30_1 doi: 10.1016/j.nanoen.2021.105887 – ident: e_1_2_8_35_4 doi: 10.1016/j.bios.2022.114595 – start-page: 7484 ident: e_1_2_8_139_2 publication-title: Nano Res. – ident: e_1_2_8_78_12 doi: 10.1016/j.energy.2020.118462 – ident: e_1_2_8_120_1 doi: 10.1016/j.cap.2016.07.014 – ident: e_1_2_8_51_1 doi: 10.1021/nn5054365 – ident: e_1_2_8_13_1 doi: 10.3390/nano11123431 – ident: e_1_2_8_127_1 doi: 10.1016/j.nanoen.2015.05.033 – ident: e_1_2_8_35_1 doi: 10.1016/j.joule.2017.09.004 – ident: e_1_2_8_15_1 doi: 10.1016/j.apenergy.2019.114069 – ident: e_1_2_8_141_3 doi: 10.1016/j.nanoen.2020.104605 – ident: e_1_2_8_16_1 doi: 10.1177/1045389X13476149 – ident: e_1_2_8_141_1 doi: 10.1016/j.nanoen.2016.11.038 – ident: e_1_2_8_106_3 doi: 10.1088/0957-0233/21/2/022001 – ident: e_1_2_8_117_1 doi: 10.1021/acsnano.5b06327 – ident: e_1_2_8_11_2 doi: 10.1002/er.5643 – ident: e_1_2_8_130_1 doi: 10.1177/09544062211013055 – ident: e_1_2_8_41_3 doi: 10.1109/TNANO.2016.2540958 – ident: e_1_2_8_104_1 doi: 10.1007/s11431-013-5270-x – ident: e_1_2_8_129_1 doi: 10.1002/aenm.201700565 – ident: e_1_2_8_78_8 doi: 10.1016/j.nanoen.2015.06.012 – ident: e_1_2_8_3_1 – start-page: 38 ident: e_1_2_8_141_2 publication-title: COMPEL – ident: e_1_2_8_135_5 doi: 10.1016/j.nanoen.2020.105075 – ident: e_1_2_8_72_1 doi: 10.1016/j.nanoen.2020.105555 – ident: e_1_2_8_8_1 doi: 10.1016/j.rser.2005.08.004 – ident: e_1_2_8_105_1 doi: 10.1021/acs.nanolett.2c01912 – ident: e_1_2_8_132_1 doi: 10.1021/acsami.0c21246 – ident: e_1_2_8_92_1 doi: 10.1021/nl400738p – ident: e_1_2_8_69_4 doi: 10.1177/1045389X19844012 – ident: e_1_2_8_97_1 doi: 10.1007/s12274-016-1109-7 – ident: e_1_2_8_87_1 doi: 10.1039/C6TA05816G – ident: e_1_2_8_34_2 doi: 10.1109/JSEN.2020.3007000 – ident: e_1_2_8_64_1 doi: 10.1002/aenm.202103654 – ident: e_1_2_8_75_1 doi: 10.1002/adfm.201304211 – ident: e_1_2_8_17_1 doi: 10.1021/es052254w – ident: e_1_2_8_27_1 doi: 10.1016/j.nanoen.2012.01.004 – ident: e_1_2_8_58_1 doi: 10.1016/j.mattod.2021.10.027 – ident: e_1_2_8_93_3 doi: 10.1088/0964-1726/15/5/030 – ident: e_1_2_8_94_2 doi: 10.1109/63.988662 – ident: e_1_2_8_52_1 doi: 10.1021/acsnano.9b10142 – ident: e_1_2_8_78_2 doi: 10.1016/j.nanoen.2018.08.066 – ident: e_1_2_8_146_1 doi: 10.1002/aisy.201900129 – ident: e_1_2_8_6_1 doi: 10.1016/j.envint.2006.06.022 – ident: e_1_2_8_39_1 doi: 10.1016/j.nanoen.2022.107773 – ident: e_1_2_8_43_1 doi: 10.1002/aenm.201802159 – ident: e_1_2_8_80_1 doi: 10.1038/s41598-019-44683-5 – ident: e_1_2_8_69_1 doi: 10.1016/j.nanoen.2017.08.024 – ident: e_1_2_8_41_9 doi: 10.1016/j.nanoen.2022.107339 – ident: e_1_2_8_78_7 doi: 10.1016/j.apenergy.2022.118739 – ident: e_1_2_8_91_3 doi: 10.1016/j.nanoen.2018.11.055 – ident: e_1_2_8_31_1 doi: 10.1002/aenm.201802906 – ident: e_1_2_8_31_2 doi: 10.1021/acsnano.0c09803 – ident: e_1_2_8_95_1 doi: 10.1016/j.ymssp.2022.109185 – ident: e_1_2_8_60_1 doi: 10.1016/j.mattod.2019.05.016 – ident: e_1_2_8_61_1 doi: 10.1002/aenm.202201132 – ident: e_1_2_8_110_1 doi: 10.1002/adfm.201302453 – ident: e_1_2_8_125_1 doi: 10.1016/j.nanoen.2020.104674 – ident: e_1_2_8_24_1 – ident: e_1_2_8_35_9 doi: 10.1002/adma.201802898 – ident: e_1_2_8_91_5 doi: 10.1002/adfm.202105825 – ident: e_1_2_8_76_1 doi: 10.1002/adma.201302397 – ident: e_1_2_8_35_2 doi: 10.1016/j.nanoen.2019.104086 – volume: 22 start-page: 730 year: 2009 ident: e_1_2_8_19_1 publication-title: Mar. Corros. Offshore Struct., Pap. Symp. – ident: e_1_2_8_103_1 doi: 10.1016/j.sna.2007.07.004 – ident: e_1_2_8_20_1 doi: 10.1016/j.ndteint.2005.08.008 – ident: e_1_2_8_91_2 doi: 10.1016/j.nanoen.2019.01.066 – ident: e_1_2_8_41_4 doi: 10.1016/j.sna.2017.06.012 |
SSID | ssj0031247 |
Score | 2.5870135 |
SecondaryResourceType | review_article |
Snippet | With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2300401 |
SubjectTerms | Broadband Energy conversion Energy harvesting Internet of Things Mechanical engineering mechanical vibration Nanogenerators Nanotechnology Power supply triboelectric nanogenerators Vibration vibration energy harvesting Wireless sensor networks |
Title | Recent Advances in Mechanical Vibration Energy Harvesters Based on Triboelectric Nanogenerators |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300401 https://www.ncbi.nlm.nih.gov/pubmed/36840670 https://www.proquest.com/docview/2821263269 https://www.proquest.com/docview/2780065912 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hPcGhL2ibFpCRKvUU1pvEcXIExGpVAYdSELfIr1Sr0gSR3Qu_nhl7N-yCqkrtJUpkW3E8Hs_neOYbgC-ICLi1ZR5rw2WcmbqOdS5KvNQ6E6Lmxngv34t8cpV9uxE3K1H8gR-i_-FGmuHXa1JwpbvhE2lo9_uWjg4SoozyAVzksEWo6HvPH5Wi8fLZVdBmxUS8tWRt5Mlwvfm6VXoBNdeRqzc949eglp0OHie_DuczfWgenvE5_s9XvYFXC1zKjsJEegsbrnkHWytshdtQIcREE8WOgttAx6YNO3cUOUyCZtf0XhIzO_XxhIzSDnkeho4do620DIuIqKQNqXemhuHS3v70vNeU82cHLsenP04m8SI_Q2xSmY5ibbWWihJSIezAbZwtilLj9krmQigEYoVVtdJKF9yJzJRlnStjjZUmdxJXlvcwaNrGfQSWpVYI6ZLSCpOZEde4LHCulZDW2dqpCOKldCqzoC6nDBq3VSBdTioatqoftgi-9vXvAmnHH2vuLoVdLZS3q3AXOiIa-7yM4KAvRrWjsxTVuHaOdWRB6K0cJRF8CJOkf1VKBDq55BEkXtR_6UN1eX521j99-pdGn2GT7oML2y4MZvdzt4dgaab3vUI8AtShDII |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9QwEMdHpRyAA-9HaAEjgTildR6OkwOHQltt6W4PtKCeasWPoIo2W5FdIfhS_Sp8JGacBywIISH1wGWl3TjZJJ7x_J2MfwPwDBUBt7bIQm24DFNTVaHORIEflU6FqLgxPst3Lxu9S98cisMlOO_XwrR8iOGBG3mGH6_JwemB9PoPamhzekLvDmJiRvGoy6vcdV8-46ytebmziV38PI63tw5ej8KusEBoEplEobZay5IqKWG8xPmHzfNC47xAZkKUqCByW1alLnXOnUhNUVRZaayx0mROokvgUS_BZSoiTrD-zbcDryrBYOmruWCMDAn01VMieby-eLaLUfA3abuolH2o274B3_qb1Ga4fFybz_Sa-foLP_I_uos34Xonu9lG6ye3YMnVt-HaTzDGO6BQQWMEZhttVkTDjms2cbQwmuyYvafLJCtmW365JKOqSh4z0bBXKAUsw03EYZm2lYWODcPINf3gsd5U0ugu7F_A9d2D5XpauwfA0sQKIV1cWGFSE3GNox7nuhTSOlu5MoCwNwZlOjI7FQg5US1TOlbUSWropABeDO3PWibJH1uu9ralurGpUTjJjojSnxUBPB0246hCr4rK2k3n2EbmJE6LKA7gfmuTw18lxAfKJA8g9pb1l3NQ-5PxePj28F92egJXRgeTsRrv7O2uwFX6vc3WW4Xl2ae5e4S6cKYfe19kcHSxRvsd0KlqVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiF6oDxLaAEjgTildR6OkwOHwnbV0m2FKKCesOJHUEXJVmRXCH4Uf4W_xIzzgAUhJKQeuERK7CR2POP5Jh5_A_AQEQG3tshCbbgMU1NVoc5EgYdKp0JU3Bgf5XuY7b5Onx-L4yX42u-Fafkhhh9upBl-viYFP7PV1g_S0ObDKS0dxEQZxaMurHLfff6ETlvzZG-EI_wojsc7r57thl1egdAkMolCbbWWJSVSQnOJ7ofN80KjWyAzIUoEELktq1KXOudOpKYoqqw01lhpMidRI_CpF-BimvGCUkWMXg50VQnaSp_MBU1kSDxfPUkkj7cWW7toBH9DtotA2Vu68Sp8679RG-DyfnM-05vmyy_0kf_PR7wKVzrQzbZbLbkGS66-Dis_UTHeAIX4Ge0v225jIhp2UrMDR9uiSYrZG-olyTDb8ZslGeVU8iQTDXuKQMAyLCIWlmmbV-jEMLRb03ee1JsSGt2Eo3Po3y1Yrqe1uw0sTawQ0sWFFSY1Edc453GuSyGts5UrAwh7WVCm42Wn9CCnqmWUjhUNkhoGKYDHQ_2zlpHkjzU3etFS3czUKHSxI-Loz4oAHgzFOKfQQlFZu-kc68icoGkRxQGstSI5vCohdqBM8gBiL1h_aYM6OphMhrM7_3LTfbj0YjRWk73D_XW4TJfbUL0NWJ59nLu7CApn-p7XRAZvz1dmvwMP7WkE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Mechanical+Vibration+Energy+Harvesters+Based+on+Triboelectric+Nanogenerators&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Du%2C+Taili&rft.au=Dong%2C+Fangyang&rft.au=Xi%2C+Ziyue&rft.au=Zhu%2C+Meixian&rft.date=2023-06-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=19&rft.issue=22&rft.spage=e2300401&rft_id=info:doi/10.1002%2Fsmll.202300401&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |