Recent Advances in Mechanical Vibration Energy Harvesters Based on Triboelectric Nanogenerators

With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cabl...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 22; pp. e2300401 - n/a
Main Authors Du, Taili, Dong, Fangyang, Xi, Ziyue, Zhu, Meixian, Zou, Yongjiu, Sun, Peiting, Xu, Minyi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by‐product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact–separation (C‐S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT. This work systematically reviews latest achievement in VEH based on TENG in the fields of mechanical engineering. The future development of VEH based on TENG is prospected and challenged.
AbstractList With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by‐product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact–separation (C‐S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT. This work systematically reviews latest achievement in VEH based on TENG in the fields of mechanical engineering. The future development of VEH based on TENG is prospected and challenged.
With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by‐product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact–separation (C‐S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT.
With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by-product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact-separation (C-S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT.With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by-product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact-separation (C-S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT.
With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by‐product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact–separation (C‐S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT.
Author Xi, Ziyue
Du, Taili
Zou, Yongjiu
Dong, Fangyang
Xu, Minyi
Zhu, Meixian
Sun, Peiting
Author_xml – sequence: 1
  givenname: Taili
  surname: Du
  fullname: Du, Taili
  organization: Dalian Maritime University
– sequence: 2
  givenname: Fangyang
  surname: Dong
  fullname: Dong, Fangyang
  organization: Dalian Maritime University
– sequence: 3
  givenname: Ziyue
  surname: Xi
  fullname: Xi, Ziyue
  organization: Dalian Maritime University
– sequence: 4
  givenname: Meixian
  surname: Zhu
  fullname: Zhu, Meixian
  organization: Dalian Maritime University
– sequence: 5
  givenname: Yongjiu
  surname: Zou
  fullname: Zou, Yongjiu
  email: zouyj0421@dlmu.edu.cn
  organization: Dalian Maritime University
– sequence: 6
  givenname: Peiting
  surname: Sun
  fullname: Sun, Peiting
  email: sunptg@dlmu.edu.cn
  organization: Dalian Maritime University
– sequence: 7
  givenname: Minyi
  orcidid: 0000-0002-3772-8340
  surname: Xu
  fullname: Xu, Minyi
  email: xuminyi@dlmu.edu.cn
  organization: Dalian Maritime University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36840670$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rVDEQx4NU7A-9epSAl152neS9l7x3rKVaYatgi9cwyZutKdmkJm8r-9-buu0WCuIpA_l8Zob5HrK9mCIx9lbAXADID2UVwlyCbABaEC_YgVCimaleDnu7WsA-OyzlBqARstWv2H6j-haUhgNmvpOjOPGT8Q6jo8J95BfkfmL0DgP_4W3GyafIzyLl6w0_x3xHZaJc-EcsNPL6dZW9TRTITdk7_hVjuqZK45Ryec1eLjEUevPwHrHLT2dXp-ezxbfPX05PFjPX6EbM7GitRjVaqTuQ7TD2_WBF22vVddjVYsQlWrQ9UNe6YVgqdKMbtVOkQTdH7Hjb9TanX-u6n1n54igEjJTWxUjdA6huELKi75-hN2mdY93NyF4KqRqphkq9e6DWdkWjuc1-hXljHg9XgfkWcDmVkmm5QwSY-2TMfTJml0wV2meC89Pf004Zffi3Nmy13z7Q5j9DzOXFYvHk_gEoQaMv
CitedBy_id crossref_primary_10_1016_j_mtcomm_2025_111551
crossref_primary_10_1002_aesr_202400116
crossref_primary_10_1016_j_nanoen_2024_109383
crossref_primary_10_3390_polym16172459
crossref_primary_10_3390_batteries9100487
crossref_primary_10_1021_acsami_4c10322
crossref_primary_10_1021_acsaelm_3c01381
crossref_primary_10_1021_acsami_4c07571
crossref_primary_10_1002_aenm_202302353
crossref_primary_10_1557_s43577_025_00862_6
crossref_primary_10_1002_admt_202400451
crossref_primary_10_1007_s12274_023_6309_3
crossref_primary_10_1002_smll_202304591
crossref_primary_10_1088_2515_7655_ad307c
crossref_primary_10_1002_aenm_202400585
crossref_primary_10_1016_j_mne_2024_100287
crossref_primary_10_1002_sus2_196
crossref_primary_10_1002_adsu_202400575
crossref_primary_10_3390_mi15050645
crossref_primary_10_1038_s44172_024_00249_6
crossref_primary_10_4018_IJeC_349742
crossref_primary_10_1016_j_cej_2024_152532
crossref_primary_10_1016_j_nanoen_2024_109419
crossref_primary_10_3390_s24123817
crossref_primary_10_1016_j_nanoen_2024_109558
crossref_primary_10_1016_j_sna_2025_116278
crossref_primary_10_1155_2023_5568046
crossref_primary_10_3390_app15063196
Cites_doi 10.1021/acsnano.9b08998
10.3390/electronics8121526
10.1021/nl4008985
10.1038/srep16409
10.3390/s21041514
10.1016/j.energy.2022.124028
10.1002/admt.202000918
10.1088/1361-665X/ac2c5f
10.1039/C4NR01934B
10.1002/adma.201600133
10.1016/j.ijnonlinmec.2014.06.005
10.1016/j.xcrp.2021.100666
10.1016/j.nanoen.2021.106159
10.1088/1361-6463/ab7792
10.1088/1361-6501/ac5b2b
10.1016/j.nanoen.2020.104980
10.3390/s21123976
10.1002/adma.201400021
10.3389/fmats.2021.692273
10.1109/JSEN.2014.2309176
10.1177/1045389X10390249
10.1002/ente.202000400
10.1088/2399-6528/ac871e
10.1021/acsanm.2c02562
10.1002/admt.201800019
10.1007/s40820-022-00981-8
10.1016/j.nanoen.2022.107271
10.1016/j.nanoen.2019.103973
10.1016/j.rser.2009.11.003
10.1007/s11012-020-01291-2
10.1021/nn404614z
10.26789/AMS.2018.01.003
10.1016/j.nanoen.2022.107165
10.1016/j.ymssp.2020.107368
10.1016/j.phpro.2012.02.144
10.1016/j.nanoen.2021.106058
10.1038/s41467-019-10061-y
10.1016/j.nanoen.2019.104277
10.1016/j.eml.2020.100718
10.1016/j.enconman.2022.115969
10.1021/acsnano.6b07633
10.3390/s22114287
10.1016/j.est.2018.09.002
10.1002/admt.202000159
10.1039/C5EE01532D
10.1016/j.nanoen.2022.107292
10.1039/C8TA05198D
10.1002/adfm.202001720
10.1039/C7RA09911H
10.1088/1361-6439/ab0241
10.1016/j.nanoen.2021.106366
10.1016/j.nanoen.2019.05.073
10.1016/j.nanoen.2019.104122
10.1016/j.nanoen.2022.107209
10.1109/JSEN.2017.2694458
10.1016/j.nanoen.2018.04.024
10.1016/j.nanoen.2016.03.004
10.1002/admt.202170016
10.1007/s12541-011-0151-3
10.1021/nn500694y
10.1016/j.sna.2007.11.021
10.3390/s22103752
10.3390/mi12020218
10.1016/j.engstruct.2020.110789
10.1016/j.nanoen.2020.105177
10.1016/j.nanoen.2021.106746
10.1039/C8NR02039F
10.1021/acsnano.7b03818
10.1021/nl4001053
10.1109/JMEMS.2014.2317718
10.1038/ncomms4426
10.1109/JSEN.2021.3132664
10.1002/aenm.202002929
10.1016/j.nanoen.2022.107530
10.1016/j.mattod.2020.10.031
10.1016/j.nanoen.2022.107211
10.1002/eom2.12062
10.1002/aelm.202001006
10.1021/nn405209u
10.1109/TUFFC.2008.837
10.1109/TMECH.2020.2993336
10.3390/en13215528
10.1109/TIM.2010.2089090
10.1080/10667857.2021.1964216
10.1109/JMEMS.2016.2611677
10.1007/s12274-021-3968-9
10.1088/0957-4484/27/8/085401
10.1016/j.nanoen.2014.11.034
10.1016/j.nanoen.2020.105547
10.1016/j.egyr.2020.09.007
10.1080/15435075.2022.2086001
10.1002/admt.202200003
10.1021/acsami.1c06031
10.3390/en15030947
10.3390/mi12050567
10.1016/j.nanoen.2017.02.036
10.1016/j.ijnonlinmec.2018.05.006
10.1038/s41467-018-07911-6
10.1039/D0SE01201G
10.1016/S0140-3664(02)00248-7
10.1016/j.nanoen.2018.11.022
10.1117/12.2080991
10.1016/j.nanoen.2017.05.018
10.1021/nn502618f
10.1002/adma.201505839
10.1016/j.nanoen.2016.12.024
10.1002/aenm.201902460
10.1021/acsnano.5b06329
10.1021/acsnano.8b09798
10.1002/adfm.201805216
10.1016/j.nanoen.2021.106576
10.1007/s12274-014-0555-3
10.1063/5.0040657
10.1002/aenm.201702432
10.1016/j.jsv.2017.11.036
10.1002/adem.201700318
10.1016/j.rser.2017.01.073
10.3390/s20041063
10.1002/er.3986
10.1021/acsami.1c23309
10.3390/mi11010080
10.1016/j.nanoen.2017.11.039
10.1016/j.energy.2019.116871
10.1016/j.energy.2020.118885
10.1016/j.apenergy.2021.116825
10.1016/j.rser.2016.05.022
10.1007/s12274-013-0364-0
10.1016/j.nanoen.2018.11.056
10.1016/j.nanoen.2019.104131
10.1063/1.3629551
10.1016/j.nanoen.2020.105245
10.3390/nano12081248
10.1021/acsami.5b04516
10.3390/mi11040347
10.1007/s12274-015-0827-6
10.1002/adma.201401184
10.3389/fchem.2020.00023
10.1016/j.nanoen.2017.06.035
10.1016/j.eml.2020.101021
10.1016/0924-4247(96)80118-X
10.1088/0964-1726/13/5/018
10.1016/j.nanoen.2019.103926
10.1002/mame.202000666
10.1007/s11431-015-5790-7
10.1016/j.nanoen.2017.01.059
10.1016/j.jii.2021.100224
10.1016/j.energy.2021.120595
10.1016/j.nanoen.2021.105887
10.1016/j.bios.2022.114595
10.1016/j.energy.2020.118462
10.1016/j.cap.2016.07.014
10.1021/nn5054365
10.3390/nano11123431
10.1016/j.nanoen.2015.05.033
10.1016/j.joule.2017.09.004
10.1016/j.apenergy.2019.114069
10.1016/j.nanoen.2020.104605
10.1177/1045389X13476149
10.1016/j.nanoen.2016.11.038
10.1088/0957-0233/21/2/022001
10.1021/acsnano.5b06327
10.1002/er.5643
10.1177/09544062211013055
10.1109/TNANO.2016.2540958
10.1007/s11431-013-5270-x
10.1002/aenm.201700565
10.1016/j.nanoen.2015.06.012
10.1016/j.nanoen.2020.105075
10.1016/j.nanoen.2020.105555
10.1016/j.rser.2005.08.004
10.1021/acs.nanolett.2c01912
10.1021/acsami.0c21246
10.1021/nl400738p
10.1177/1045389X19844012
10.1007/s12274-016-1109-7
10.1039/C6TA05816G
10.1109/JSEN.2020.3007000
10.1002/aenm.202103654
10.1002/adfm.201304211
10.1021/es052254w
10.1016/j.nanoen.2012.01.004
10.1016/j.mattod.2021.10.027
10.1088/0964-1726/15/5/030
10.1109/63.988662
10.1021/acsnano.9b10142
10.1016/j.nanoen.2018.08.066
10.1002/aisy.201900129
10.1016/j.envint.2006.06.022
10.1016/j.nanoen.2022.107773
10.1002/aenm.201802159
10.1038/s41598-019-44683-5
10.1016/j.nanoen.2017.08.024
10.1016/j.nanoen.2022.107339
10.1016/j.apenergy.2022.118739
10.1016/j.nanoen.2018.11.055
10.1002/aenm.201802906
10.1021/acsnano.0c09803
10.1016/j.ymssp.2022.109185
10.1016/j.mattod.2019.05.016
10.1002/aenm.202201132
10.1002/adfm.201302453
10.1016/j.nanoen.2020.104674
10.1002/adma.201802898
10.1002/adfm.202105825
10.1002/adma.201302397
10.1016/j.nanoen.2019.104086
10.1016/j.sna.2007.07.004
10.1016/j.ndteint.2005.08.008
10.1016/j.nanoen.2019.01.066
10.1016/j.sna.2017.06.012
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202300401
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36840670
10_1002_smll_202300401
SMLL202300401
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 3132022211
– fundername: Dalian Outstanding Young Scientific and Technological Talents Project
  funderid: 2021RJ11
– fundername: Scientific Research Fund of the Educational Department of Liaoning Province
  funderid: LJKZ0055
– fundername: National Natural Science Foundation of China
  funderid: 52101345; 52101400
– fundername: National Natural Science Foundation of China
  grantid: 52101400
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3132022211
– fundername: Scientific Research Fund of the Educational Department of Liaoning Province
  grantid: LJKZ0055
– fundername: Dalian Outstanding Young Scientific and Technological Talents Project
  grantid: 2021RJ11
– fundername: National Natural Science Foundation of China
  grantid: 52101345
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3731-bdbb7a6db2750249d889b1487655a5148dafabab80e54c99f6acdcd7c6e7073
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 03:17:44 EDT 2025
Fri Jul 25 12:04:22 EDT 2025
Thu Apr 03 07:01:20 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Tue Jul 01 02:54:26 EDT 2025
Wed Jan 22 16:22:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords triboelectric nanogenerators
mechanical engineering
mechanical vibration
vibration energy harvesting
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-bdbb7a6db2750249d889b1487655a5148dafabab80e54c99f6acdcd7c6e7073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3772-8340
PMID 36840670
PQID 2821263269
PQPubID 1046358
PageCount 27
ParticipantIDs proquest_miscellaneous_2780065912
proquest_journals_2821263269
pubmed_primary_36840670
crossref_primary_10_1002_smll_202300401
crossref_citationtrail_10_1002_smll_202300401
wiley_primary_10_1002_smll_202300401_SMLL202300401
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2023
2023-06-00
2023-Jun
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 1, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 177
2021; 65
2010; 14
2020; 20
2019; 13
2006; 39
2014; 26
2018 2014; 105 65
2020; 14
2014; 24
2020; 11
2022; 22
2013; 7
2020 2020; 25 14
2018; 43
2018; 42
2013; 6
2018; 49
2014 2014; 8 5
2017; 74
2018; 8
2018; 3
2015 2018 2022; 9 6 97
2008 2008 2008; 142 145–146 55
2013; 56
2014 2016 2016 2017 2017 2021 2020 2021 2022; 6 28 15 263 19 42 30 21 98
2019 2020; 10 2
2014 2019 2019 2021 2021; 8 58 56 306 31
2014; 14
2018; 30
2022; 33
2012; 24
2015 2015; 9302 24
2021; 84
2021; 80
2019; 8
2018; 28
2019; 9
2022; 92
2019; 30
2011 2002; 12 17
2020; 37
2007; 11
2016; 16
2021 2021; 151 56
2017 2017 2020; 7 32 221
2016; 4
2014 2020 2016; 4 194 10
2006; 40
2016 2020; 27 67
2022; 5
2022; 6
2022; 7
2022; 9814
2022; 12
2022; 14
2022; 15
2020 2021; 11 7
2022; 97
2017 2018 2021 2019 2021 2022 2015 2017 2015 2019 2020; 33 53 21 66 5 312 16 34 8 62 212
2022; 98
2022; 10
2014 2014; 8 26
2016; 28
2018; 10
2016; 9
2016; 23
2022; 103
2021 2022; 12 98
2017; 7
2013; 25
2021; 23
2021 2019; 8 10
2017 2018 2020 2019; 40 416 6 30
2013; 24
2019 2021; 9 15
2003 2004 2006; 26 13 15
2007; 33
2021; 30
2016 2021; 8 45
2020; 8
2021; 37
2020; 5
2013 2013; 13 13
2020; 2
2020; 53
2019; 64
2017; 39
2019; 66
2013; 13
2019; 65
2017; 38
2021 2022; 291 252
2020; 258
2013 2011 2018; 20 60 20
2014; 8
2011 2010 2010; 99 21 21
2009; 22
2015; 15
2015; 14
2021; 6
2021; 86
2015; 5
2021; 2
2012
2017; 26
2021 2020 2019; 12 20 29
2021 2021 2022 2021 2020; 11 90 101 87 76
2021; 228
1996; 52
2020; 78
2015; 7
2021; 90
2021; 92
2021; 13
2021; 11
2012; 1
2019 2015; 55 58
2017; 17
2021; 214
2020; 72
2017 2019 2019 2022 2013 2015 2020 2020 2019; 1 66 56 216 7 8 75 13 31
2017; 11
2017 2020 2021; 31 71 43
2018
2016; 62
2022; 52
2021 2022; 235 22
2014
2022; 268
e_1_2_8_41_7
e_1_2_8_41_6
e_1_2_8_26_1
e_1_2_8_41_9
e_1_2_8_49_1
e_1_2_8_41_8
Lin Z. W. (e_1_2_8_139_2)
e_1_2_8_132_1
e_1_2_8_9_1
e_1_2_8_41_3
e_1_2_8_117_1
e_1_2_8_41_2
e_1_2_8_41_5
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_117_3
e_1_2_8_41_4
e_1_2_8_117_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_78_10
e_1_2_8_78_12
e_1_2_8_78_11
e_1_2_8_91_2
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_91_5
e_1_2_8_30_1
e_1_2_8_91_4
e_1_2_8_91_3
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_86_1
e_1_2_8_118_1
Yang J. (e_1_2_8_67_1) 2014; 4
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_14_1
e_1_2_8_129_3
e_1_2_8_37_1
e_1_2_8_90_2
e_1_2_8_90_1
e_1_2_8_121_2
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_98_2
e_1_2_8_106_1
e_1_2_8_106_2
e_1_2_8_129_2
e_1_2_8_75_1
e_1_2_8_106_3
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_28_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_134_1
e_1_2_8_134_2
e_1_2_8_17_1
e_1_2_8_78_9
e_1_2_8_78_8
e_1_2_8_78_7
e_1_2_8_78_6
e_1_2_8_78_5
e_1_2_8_78_4
e_1_2_8_78_3
e_1_2_8_78_2
Zou Y. J. (e_1_2_8_144_1) 2021; 6
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_107_2
e_1_2_8_93_3
e_1_2_8_93_2
e_1_2_8_145_1
e_1_2_8_93_1
Du T. L. (e_1_2_8_147_1) 2022; 10
e_1_2_8_27_1
e_1_2_8_80_1
He J. (e_1_2_8_84_1) 2021; 65
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_135_4
e_1_2_8_65_1
e_1_2_8_135_5
e_1_2_8_112_2
e_1_2_8_135_2
e_1_2_8_112_1
e_1_2_8_135_3
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_31_2
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_123_1
e_1_2_8_92_2
e_1_2_8_146_1
e_1_2_8_68_1
Shabana A. A. (e_1_2_8_36_1) 2018
e_1_2_8_5_3
e_1_2_8_5_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_34_3
e_1_2_8_34_2
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_95_1
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_67_2
e_1_2_8_67_3
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_137_2
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_82_2
e_1_2_8_114_2
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_79_1
Xie L. G. (e_1_2_8_5_1) 2013; 20
e_1_2_8_94_1
e_1_2_8_94_2
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_2
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_130_2
e_1_2_8_115_2
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_141_3
e_1_2_8_141_4
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_103_3
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_103_2
e_1_2_8_69_4
e_1_2_8_69_2
e_1_2_8_46_1
e_1_2_8_69_3
e_1_2_8_69_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_61_1
e_1_2_8_35_6
Khan F. U. (e_1_2_8_11_1) 2016; 8
e_1_2_8_35_5
e_1_2_8_35_8
e_1_2_8_35_7
e_1_2_8_35_2
e_1_2_8_35_1
e_1_2_8_35_4
e_1_2_8_35_3
e_1_2_8_58_1
Lin T. R. (e_1_2_8_19_1) 2009; 22
e_1_2_8_35_9
e_1_2_8_142_2
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_2
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
Yang X. R. (e_1_2_8_141_2)
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 53
  year: 2020
  publication-title: J Phys D Appl Phys
– volume: 37
  start-page: 1611
  year: 2021
  publication-title: Mater. Technol.
– volume: 24
  start-page: 961
  year: 2012
  publication-title: Phys. Procedia
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9 15
  start-page: 258
  year: 2019 2021
  publication-title: Adv. Energy Mater. ACS Nano
– volume: 9814
  year: 2022
  publication-title: Nano Energy
– volume: 14
  start-page: 2035
  year: 2014
  publication-title: IEEE Sens. J.
– volume: 39
  start-page: 293
  year: 2006
  publication-title: NDT E Int.
– volume: 42
  start-page: 1866
  year: 2018
  publication-title: Int. J. Energy Res.
– volume: 65
  year: 2021
  publication-title: Sci China Life Sci
– volume: 25 14
  start-page: 2188 3328
  year: 2020 2020
  publication-title: IEEE ASME Trans Mechatron ACS Nano
– volume: 214
  year: 2021
  publication-title: Energy
– volume: 9
  start-page: 2226
  year: 2016
  publication-title: Nano Res.
– volume: 28
  start-page: 5188
  year: 2016
  publication-title: Adv. Mater.
– volume: 22
  start-page: 5584
  year: 2022
  publication-title: Nano Lett.
– year: 2014
– volume: 8 58 56 306 31
  start-page: 7405 447 443
  year: 2014 2019 2019 2021 2021
  publication-title: ACS Nano Nano Energy Nano Energy Macromol. Mater. Eng. Adv. Funct. Mater.
– volume: 52
  start-page: 8
  year: 1996
  publication-title: Sens Actuators A Phys
– volume: 105 65
  start-page: 268 226
  year: 2018 2014
  publication-title: Int J Non Linear Mech Int J Non Linear Mech
– volume: 99 21 21
  start-page: 1867
  year: 2011 2010 2010
  publication-title: Appl. Phys. Lett. J Intell Mater Syst Struct Meas. Sci. Technol.
– volume: 25
  start-page: 6094
  year: 2013
  publication-title: Adv. Mater.
– volume: 228
  year: 2021
  publication-title: Energy
– volume: 8 10
  start-page: 2158
  year: 2021 2019
  publication-title: Front. Mater. Nat. Commun.
– volume: 11
  start-page: 1728
  year: 2017
  publication-title: ACS Nano
– volume: 8
  start-page: 1526
  year: 2019
  publication-title: Electronics
– volume: 52
  start-page: 348
  year: 2022
  publication-title: Mater. Today
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 23
  year: 2021
  publication-title: J. Ind. Inf. Integr.
– volume: 98
  year: 2022
  publication-title: Nano Energy
– volume: 20 60 20
  start-page: 6 1838 67
  year: 2013 2011 2018
  publication-title: IEEE Wireless Commun. IEEE Trans. Instrum. Meas. J. Energy Storage
– volume: 3
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 3431
  year: 2021
  publication-title: Nanomaterials
– volume: 72
  year: 2020
  publication-title: Nano Energy
– volume: 64
  start-page: 7484
  year: 2019
  publication-title: Nano Energy Nano Res.
– volume: 26 13 15
  start-page: 1131 1131 1413
  year: 2003 2004 2006
  publication-title: Comput Commun Smart Mater. Struct. Smart Mater. Struct.
– volume: 10 2
  start-page: 9
  year: 2019 2020
  publication-title: Nat. Commun. EcoMat
– volume: 80
  start-page: 11
  year: 2021
  publication-title: Nano Energy
– volume: 177
  start-page: 15
  year: 2022
  publication-title: Mech Syst Signal Process
– volume: 142 145–146 55
  start-page: 329 405 2104
  year: 2008 2008 2008
  publication-title: Sens. Actuators, A Sens. Actuators, A IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 30
  year: 2021
  publication-title: Smart Mater. Struct.
– volume: 10
  start-page: 13
  year: 2022
  publication-title: J Mar Sci Eng
– volume: 14
  start-page: 2475
  year: 2020
  publication-title: ACS Nano
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 268
  year: 2022
  publication-title: Energy Convers. Manage.
– volume: 15
  start-page: 766
  year: 2015
  publication-title: Nano Energy
– volume: 14
  start-page: 5497
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 328
  year: 2012
  publication-title: Nano Energy
– volume: 13 13
  start-page: 2226 2282
  year: 2013 2013
  publication-title: Nano Lett. Nano Lett.
– volume: 24
  start-page: 4090
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 9 6 97
  year: 2015 2018 2022
  publication-title: ACS Nano J. Mater. Chem. A Nano Energy
– volume: 8
  year: 2020
  publication-title: Energy Technol.
– volume: 13
  start-page: 6331
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 1248
  year: 2022
  publication-title: Nanomaterials
– volume: 62
  start-page: 1092
  year: 2016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 2
  start-page: 17
  year: 2020
  publication-title: Adv. Intell. Syst.
– volume: 235 22
  start-page: 6427 2250
  year: 2021 2022
  publication-title: Proc. Inst. Mech. Eng., Part C IEEE Sens. J.
– volume: 6
  start-page: 880
  year: 2013
  publication-title: Nano Res.
– volume: 11 90 101 87 76
  year: 2021 2021 2022 2021 2020
  publication-title: Adv. Energy Mater. Nano Energy Nano Energy Nano Energy Nano Energy
– volume: 103
  start-page: 9
  year: 2022
  publication-title: Nano Energy
– volume: 84
  year: 2021
  publication-title: Nano Energy
– volume: 4 194 10
  start-page: 9 1017
  year: 2014 2020 2016
  publication-title: Adv. Energy Mater. Energy ACS Nano
– volume: 24
  start-page: 1291
  year: 2013
  publication-title: J. Intell. Mater Syst. Struct.
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 14
  start-page: 899
  year: 2010
  publication-title: Renewable Sustainable Energy Rev.
– volume: 13
  start-page: 1932
  year: 2019
  publication-title: ACS Nano
– volume: 8 45
  start-page: 65
  year: 2016 2021
  publication-title: J. Renewable Energy Int. J. Energy Res.
– volume: 11
  start-page: 7440
  year: 2017
  publication-title: ACS Nano
– volume: 151 56
  start-page: 461
  year: 2021 2021
  publication-title: Mech. Syst. Signal Process. Meccanica
– volume: 2
  year: 2021
  publication-title: Cell Rep Phys Sci
– volume: 43
  start-page: 326
  year: 2018
  publication-title: Nano Energy
– volume: 14
  start-page: 161
  year: 2015
  publication-title: Nano Energy
– volume: 33 53 21 66 5 312 16 34 8 62 212
  start-page: 515 362 1514 212 516 549 3272 691
  year: 2017 2018 2021 2019 2021 2022 2015 2017 2015 2019 2020
  publication-title: Nano Energy Nano Energy Int. J. Green Energy Sensors Nano Energy Sustainable Energy Fuels Appl. Energy Nano Energy Nano Energy Nano Res. Nano Energy Energy
– volume: 38
  start-page: 185
  year: 2017
  publication-title: Nano Energy
– volume: 11
  start-page: 1117
  year: 2007
  publication-title: Renewable Sustainable Energy Rev.
– volume: 27 67
  year: 2016 2020
  publication-title: Nanotechnology Nano Energy
– year: 2018
– volume: 1 66 56 216 7 8 75 13 31
  start-page: 480 307 15 9533 2250 5528
  year: 2017 2019 2019 2022 2013 2015 2020 2020 2019
  publication-title: Joule Nano Energy Nano Energy Biosens. Bioelectron. ACS Nano Energy Environ. Sci. Nano Energy Energies Adv. Mater.
– volume: 74
  start-page: 1
  year: 2017
  publication-title: Renewable Sustainable Energy Rev.
– volume: 6 28 15 263 19 42 30 21 98
  start-page: 7842 2744 435 317 3976 9
  year: 2014 2016 2016 2017 2017 2021 2020 2021 2022
  publication-title: Nanoscale Adv. Mater. IEEE Trans. Nanotechnol. Sens Actuators A Phys Adv. Eng. Mater. Extreme Mech Lett Adv. Funct. Mater. Sensors Nano Energy
– volume: 22
  start-page: 730
  year: 2009
  publication-title: Mar. Corros. Offshore Struct., Pap. Symp.
– volume: 37
  year: 2020
  publication-title: Extreme Mech Lett
– volume: 49
  start-page: 51
  year: 2018
  publication-title: Nano Energy
– volume: 8 5
  start-page: 722 3426
  year: 2014 2014
  publication-title: Nano Res. Nat. Commun.
– volume: 30
  start-page: 34
  year: 2019
  publication-title: Mater. Today
– volume: 26
  start-page: 5037
  year: 2014
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 12 20 29
  start-page: 218
  year: 2021 2020 2019
  publication-title: Micromachines IEEE Sens. J. J. Micromech. Microeng.
– volume: 16
  start-page: 1364
  year: 2016
  publication-title: Curr Appl Phys
– volume: 86
  year: 2021
  publication-title: Nano Energy
– volume: 33
  start-page: 108
  year: 2007
  publication-title: Environ. Int.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 11 7
  start-page: 347
  year: 2020 2021
  publication-title: Micromachines Adv. Electron. Mater.
– volume: 55 58
  start-page: 463 842
  year: 2019 2015
  publication-title: Nano Energy Sci. China Technol. Sci.
– volume: 39
  start-page: 9
  year: 2017
  publication-title: Nano Energy
– volume: 24
  start-page: 1401
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 3246
  year: 2022
  publication-title: Nano Res.
– volume: 11
  start-page: 80
  year: 2020
  publication-title: Micromachines
– volume: 92
  year: 2021
  publication-title: Rev. Sci. Instrum.
– volume: 15
  start-page: 947
  year: 2022
  publication-title: Energies
– volume: 7
  year: 2022
  publication-title: Adv. Mater. Technol.
– volume: 7
  year: 2013
  publication-title: ACS Nano
– volume: 22
  start-page: 3752
  year: 2022
  publication-title: Sensors
– volume: 5
  year: 2022
  publication-title: ACS Appl. Nano Mater.
– volume: 26
  start-page: 1
  year: 2017
  publication-title: J. Microelectromech. Syst.
– volume: 6
  year: 2022
  publication-title: J Phys Commun
– volume: 15
  start-page: 14
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 9
  start-page: 8223
  year: 2019
  publication-title: Sci. Rep.
– volume: 13
  start-page: 847
  year: 2013
  publication-title: Nano Lett.
– volume: 31 71 43
  start-page: 233 38 37
  year: 2017 2020 2021
  publication-title: Nano Energy COMPEL Nano Energy Mater. Today
– volume: 6
  start-page: 16
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 22
  start-page: 4287
  year: 2022
  publication-title: Sensors
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 56
  start-page: 1835
  year: 2013
  publication-title: Sci. China Technol. Sci.
– volume: 97
  year: 2022
  publication-title: Nano Energy
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 12 17
  start-page: 1129 8
  year: 2011 2002
  publication-title: Int. J. Precis. Eng. Manuf. IEEE Trans Power Electron
– volume: 291 252
  start-page: 11
  year: 2021 2022
  publication-title: Appl. Energy Energy
– year: 2012
– volume: 6
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 17
  start-page: 3853
  year: 2017
  publication-title: IEEE Sens. J.
– volume: 20
  start-page: 1063
  year: 2020
  publication-title: Sensors
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 9302 24
  start-page: 91
  year: 2015 2015
  publication-title: J. Microelectromech. Syst.
– volume: 7 32 221
  start-page: 105
  year: 2017 2017 2020
  publication-title: Adv. Energy Mater. Nano Energy Eng. Struct.
– volume: 40
  start-page: 2629
  year: 2006
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: 9
  year: 2018
  publication-title: Adv. Mater.
– volume: 258
  year: 2020
  publication-title: Appl. Energy
– volume: 92
  year: 2022
  publication-title: Nano Energy
– volume: 40 416 6 30
  start-page: 300 111 2490 1745
  year: 2017 2018 2020 2019
  publication-title: Nano Energy J Sound Vib Energy Rep. J. Intell. Mater. Syst. Struct.
– volume: 8 26
  start-page: 3836 3788
  year: 2014 2014
  publication-title: ACS Nano Adv. Mater.
– volume: 80
  year: 2021
  publication-title: Nano Energy
– volume: 33
  year: 2022
  publication-title: Meas. Sci. Technol.
– volume: 23
  start-page: 50
  year: 2016
  publication-title: Nano Energy
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12 98
  start-page: 567 10
  year: 2021 2022
  publication-title: Micromachines Nano Energy
– volume: 8
  start-page: 23
  year: 2020
  publication-title: Front Chem
– ident: e_1_2_8_90_2
  doi: 10.1021/acsnano.9b08998
– ident: e_1_2_8_46_1
  doi: 10.3390/electronics8121526
– ident: e_1_2_8_92_2
  doi: 10.1021/nl4008985
– ident: e_1_2_8_133_1
  doi: 10.1038/srep16409
– ident: e_1_2_8_78_4
  doi: 10.3390/s21041514
– ident: e_1_2_8_134_2
  doi: 10.1016/j.energy.2022.124028
– ident: e_1_2_8_143_1
  doi: 10.1002/admt.202000918
– volume: 6
  start-page: 16
  year: 2021
  ident: e_1_2_8_144_1
  publication-title: Adv. Mater. Technol.
– ident: e_1_2_8_131_1
  doi: 10.1088/1361-665X/ac2c5f
– ident: e_1_2_8_41_1
  doi: 10.1039/C4NR01934B
– ident: e_1_2_8_86_1
  doi: 10.1002/adma.201600133
– ident: e_1_2_8_107_2
  doi: 10.1016/j.ijnonlinmec.2014.06.005
– ident: e_1_2_8_113_1
  doi: 10.1016/j.xcrp.2021.100666
– ident: e_1_2_8_135_4
  doi: 10.1016/j.nanoen.2021.106159
– ident: e_1_2_8_101_1
  doi: 10.1088/1361-6463/ab7792
– ident: e_1_2_8_122_1
  doi: 10.1088/1361-6501/ac5b2b
– ident: e_1_2_8_35_7
  doi: 10.1016/j.nanoen.2020.104980
– ident: e_1_2_8_41_8
  doi: 10.3390/s21123976
– ident: e_1_2_8_114_2
  doi: 10.1002/adma.201400021
– ident: e_1_2_8_142_1
  doi: 10.3389/fmats.2021.692273
– ident: e_1_2_8_10_1
  doi: 10.1109/JSEN.2014.2309176
– ident: e_1_2_8_106_2
  doi: 10.1177/1045389X10390249
– ident: e_1_2_8_108_1
  doi: 10.1002/ente.202000400
– ident: e_1_2_8_57_1
  doi: 10.1088/2399-6528/ac871e
– ident: e_1_2_8_66_1
  doi: 10.1021/acsanm.2c02562
– ident: e_1_2_8_100_1
  doi: 10.1002/admt.201800019
– ident: e_1_2_8_38_1
  doi: 10.1007/s40820-022-00981-8
– ident: e_1_2_8_118_1
  doi: 10.1016/j.nanoen.2022.107271
– ident: e_1_2_8_70_1
  doi: 10.1016/j.nanoen.2019.103973
– ident: e_1_2_8_9_1
  doi: 10.1016/j.rser.2009.11.003
– ident: e_1_2_8_82_2
  doi: 10.1007/s11012-020-01291-2
– ident: e_1_2_8_35_5
  doi: 10.1021/nn404614z
– ident: e_1_2_8_59_1
  doi: 10.26789/AMS.2018.01.003
– ident: e_1_2_8_49_1
  doi: 10.1016/j.nanoen.2022.107165
– volume: 8
  year: 2016
  ident: e_1_2_8_11_1
  publication-title: J. Renewable Energy
– ident: e_1_2_8_82_1
  doi: 10.1016/j.ymssp.2020.107368
– ident: e_1_2_8_4_1
  doi: 10.1016/j.phpro.2012.02.144
– ident: e_1_2_8_14_1
  doi: 10.1016/j.nanoen.2021.106058
– ident: e_1_2_8_142_2
  doi: 10.1038/s41467-019-10061-y
– ident: e_1_2_8_115_2
  doi: 10.1016/j.nanoen.2019.104277
– ident: e_1_2_8_136_1
  doi: 10.1016/j.eml.2020.100718
– ident: e_1_2_8_71_1
  doi: 10.1016/j.enconman.2022.115969
– ident: e_1_2_8_89_1
  doi: 10.1021/acsnano.6b07633
– ident: e_1_2_8_45_1
  doi: 10.3390/s22114287
– volume: 10
  start-page: 13
  year: 2022
  ident: e_1_2_8_147_1
  publication-title: J Mar Sci Eng
– ident: e_1_2_8_5_3
  doi: 10.1016/j.est.2018.09.002
– ident: e_1_2_8_109_1
  doi: 10.1002/admt.202000159
– ident: e_1_2_8_35_6
  doi: 10.1039/C5EE01532D
– ident: e_1_2_8_73_2
  doi: 10.1016/j.nanoen.2022.107292
– ident: e_1_2_8_117_2
  doi: 10.1039/C8TA05198D
– volume: 65
  year: 2021
  ident: e_1_2_8_84_1
  publication-title: Sci China Life Sci
– ident: e_1_2_8_41_7
  doi: 10.1002/adfm.202001720
– ident: e_1_2_8_85_1
  doi: 10.1039/C7RA09911H
– ident: e_1_2_8_34_3
  doi: 10.1088/1361-6439/ab0241
– ident: e_1_2_8_55_1
  doi: 10.1016/j.nanoen.2021.106366
– ident: e_1_2_8_78_11
  doi: 10.1016/j.nanoen.2019.05.073
– ident: e_1_2_8_78_5
  doi: 10.1016/j.nanoen.2019.104122
– ident: e_1_2_8_40_1
  doi: 10.1016/j.nanoen.2022.107209
– ident: e_1_2_8_68_1
  doi: 10.1109/JSEN.2017.2694458
– ident: e_1_2_8_126_1
  doi: 10.1016/j.nanoen.2018.04.024
– ident: e_1_2_8_53_1
  doi: 10.1016/j.nanoen.2016.03.004
– ident: e_1_2_8_32_1
  doi: 10.1002/admt.202170016
– ident: e_1_2_8_94_1
  doi: 10.1007/s12541-011-0151-3
– ident: e_1_2_8_114_1
  doi: 10.1021/nn500694y
– ident: e_1_2_8_103_2
  doi: 10.1016/j.sna.2007.11.021
– ident: e_1_2_8_77_1
  doi: 10.3390/s22103752
– ident: e_1_2_8_34_1
  doi: 10.3390/mi12020218
– ident: e_1_2_8_129_3
  doi: 10.1016/j.engstruct.2020.110789
– ident: e_1_2_8_48_1
  doi: 10.1016/j.nanoen.2020.105177
– ident: e_1_2_8_83_1
  doi: 10.1016/j.nanoen.2021.106746
– ident: e_1_2_8_140_1
  doi: 10.1039/C8NR02039F
– ident: e_1_2_8_56_1
  doi: 10.1021/acsnano.7b03818
– ident: e_1_2_8_62_1
  doi: 10.1021/nl4001053
– ident: e_1_2_8_98_2
  doi: 10.1109/JMEMS.2014.2317718
– ident: e_1_2_8_112_2
  doi: 10.1038/ncomms4426
– ident: e_1_2_8_130_2
  doi: 10.1109/JSEN.2021.3132664
– ident: e_1_2_8_135_1
  doi: 10.1002/aenm.202002929
– ident: e_1_2_8_135_3
  doi: 10.1016/j.nanoen.2022.107530
– ident: e_1_2_8_141_4
  doi: 10.1016/j.mattod.2020.10.031
– ident: e_1_2_8_117_3
  doi: 10.1016/j.nanoen.2022.107211
– ident: e_1_2_8_33_2
  doi: 10.1002/eom2.12062
– ident: e_1_2_8_137_2
  doi: 10.1002/aelm.202001006
– ident: e_1_2_8_63_1
  doi: 10.1021/nn405209u
– ident: e_1_2_8_103_3
  doi: 10.1109/TUFFC.2008.837
– ident: e_1_2_8_90_1
  doi: 10.1109/TMECH.2020.2993336
– ident: e_1_2_8_35_8
  doi: 10.3390/en13215528
– ident: e_1_2_8_5_2
  doi: 10.1109/TIM.2010.2089090
– ident: e_1_2_8_88_1
  doi: 10.1080/10667857.2021.1964216
– ident: e_1_2_8_26_1
  doi: 10.1109/JMEMS.2016.2611677
– ident: e_1_2_8_119_1
  doi: 10.1007/s12274-021-3968-9
– ident: e_1_2_8_115_1
  doi: 10.1088/0957-4484/27/8/085401
– ident: e_1_2_8_28_1
  doi: 10.1016/j.nanoen.2014.11.034
– ident: e_1_2_8_37_1
  doi: 10.1016/j.nanoen.2020.105547
– ident: e_1_2_8_21_1
– ident: e_1_2_8_69_3
  doi: 10.1016/j.egyr.2020.09.007
– ident: e_1_2_8_78_3
  doi: 10.1080/15435075.2022.2086001
– ident: e_1_2_8_54_1
  doi: 10.1002/admt.202200003
– ident: e_1_2_8_74_1
  doi: 10.1021/acsami.1c06031
– ident: e_1_2_8_25_1
  doi: 10.3390/en15030947
– ident: e_1_2_8_73_1
  doi: 10.3390/mi12050567
– ident: e_1_2_8_78_9
  doi: 10.1016/j.nanoen.2017.02.036
– ident: e_1_2_8_107_1
  doi: 10.1016/j.ijnonlinmec.2018.05.006
– ident: e_1_2_8_33_1
  doi: 10.1038/s41467-018-07911-6
– ident: e_1_2_8_78_6
  doi: 10.1039/D0SE01201G
– ident: e_1_2_8_93_1
  doi: 10.1016/S0140-3664(02)00248-7
– ident: e_1_2_8_121_1
  doi: 10.1016/j.nanoen.2018.11.022
– ident: e_1_2_8_98_1
  doi: 10.1117/12.2080991
– ident: e_1_2_8_123_1
  doi: 10.1016/j.nanoen.2017.05.018
– ident: e_1_2_8_91_1
  doi: 10.1021/nn502618f
– ident: e_1_2_8_41_2
  doi: 10.1002/adma.201505839
– ident: e_1_2_8_129_2
  doi: 10.1016/j.nanoen.2016.12.024
– ident: e_1_2_8_47_1
  doi: 10.1002/aenm.201902460
– ident: e_1_2_8_67_3
  doi: 10.1021/acsnano.5b06329
– ident: e_1_2_8_116_1
  doi: 10.1021/acsnano.8b09798
– ident: e_1_2_8_2_1
  doi: 10.1002/adfm.201805216
– ident: e_1_2_8_135_2
  doi: 10.1016/j.nanoen.2021.106576
– ident: e_1_2_8_112_1
  doi: 10.1007/s12274-014-0555-3
– ident: e_1_2_8_79_1
  doi: 10.1063/5.0040657
– ident: e_1_2_8_81_1
  doi: 10.1002/aenm.201702432
– ident: e_1_2_8_69_2
  doi: 10.1016/j.jsv.2017.11.036
– ident: e_1_2_8_41_5
  doi: 10.1002/adem.201700318
– ident: e_1_2_8_12_1
  doi: 10.1016/j.rser.2017.01.073
– ident: e_1_2_8_111_1
  doi: 10.3390/s20041063
– ident: e_1_2_8_18_1
  doi: 10.1002/er.3986
– ident: e_1_2_8_44_1
  doi: 10.1021/acsami.1c23309
– ident: e_1_2_8_23_1
  doi: 10.3390/mi11010080
– ident: e_1_2_8_124_1
  doi: 10.1016/j.nanoen.2017.11.039
– ident: e_1_2_8_67_2
  doi: 10.1016/j.energy.2019.116871
– ident: e_1_2_8_99_1
  doi: 10.1016/j.energy.2020.118885
– ident: e_1_2_8_134_1
  doi: 10.1016/j.apenergy.2021.116825
– ident: e_1_2_8_7_1
  doi: 10.1016/j.rser.2016.05.022
– ident: e_1_2_8_96_1
  doi: 10.1007/s12274-013-0364-0
– ident: e_1_2_8_35_3
  doi: 10.1016/j.nanoen.2018.11.056
– ident: e_1_2_8_50_1
  doi: 10.1016/j.nanoen.2019.104131
– ident: e_1_2_8_106_1
  doi: 10.1063/1.3629551
– volume: 20
  start-page: 6
  year: 2013
  ident: e_1_2_8_5_1
  publication-title: IEEE Wireless Commun.
– ident: e_1_2_8_42_1
  doi: 10.1016/j.nanoen.2020.105245
– ident: e_1_2_8_138_1
  doi: 10.3390/nano12081248
– ident: e_1_2_8_128_1
  doi: 10.1021/acsami.5b04516
– ident: e_1_2_8_137_1
  doi: 10.3390/mi11040347
– ident: e_1_2_8_78_10
  doi: 10.1007/s12274-015-0827-6
– ident: e_1_2_8_65_1
  doi: 10.1002/adma.201401184
– ident: e_1_2_8_145_1
  doi: 10.3389/fchem.2020.00023
– ident: e_1_2_8_29_1
  doi: 10.1016/j.nanoen.2017.06.035
– ident: e_1_2_8_41_6
  doi: 10.1016/j.eml.2020.101021
– ident: e_1_2_8_102_1
  doi: 10.1016/0924-4247(96)80118-X
– ident: e_1_2_8_93_2
  doi: 10.1088/0964-1726/13/5/018
– ident: e_1_2_8_139_1
  doi: 10.1016/j.nanoen.2019.103926
– volume: 4
  start-page: 9
  year: 2014
  ident: e_1_2_8_67_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_8_91_4
  doi: 10.1002/mame.202000666
– volume-title: Theory of Vibration: An Introduction
  year: 2018
  ident: e_1_2_8_36_1
– ident: e_1_2_8_121_2
  doi: 10.1007/s11431-015-5790-7
– ident: e_1_2_8_78_1
  doi: 10.1016/j.nanoen.2017.01.059
– ident: e_1_2_8_1_1
  doi: 10.1016/j.jii.2021.100224
– ident: e_1_2_8_22_1
  doi: 10.1016/j.energy.2021.120595
– ident: e_1_2_8_30_1
  doi: 10.1016/j.nanoen.2021.105887
– ident: e_1_2_8_35_4
  doi: 10.1016/j.bios.2022.114595
– start-page: 7484
  ident: e_1_2_8_139_2
  publication-title: Nano Res.
– ident: e_1_2_8_78_12
  doi: 10.1016/j.energy.2020.118462
– ident: e_1_2_8_120_1
  doi: 10.1016/j.cap.2016.07.014
– ident: e_1_2_8_51_1
  doi: 10.1021/nn5054365
– ident: e_1_2_8_13_1
  doi: 10.3390/nano11123431
– ident: e_1_2_8_127_1
  doi: 10.1016/j.nanoen.2015.05.033
– ident: e_1_2_8_35_1
  doi: 10.1016/j.joule.2017.09.004
– ident: e_1_2_8_15_1
  doi: 10.1016/j.apenergy.2019.114069
– ident: e_1_2_8_141_3
  doi: 10.1016/j.nanoen.2020.104605
– ident: e_1_2_8_16_1
  doi: 10.1177/1045389X13476149
– ident: e_1_2_8_141_1
  doi: 10.1016/j.nanoen.2016.11.038
– ident: e_1_2_8_106_3
  doi: 10.1088/0957-0233/21/2/022001
– ident: e_1_2_8_117_1
  doi: 10.1021/acsnano.5b06327
– ident: e_1_2_8_11_2
  doi: 10.1002/er.5643
– ident: e_1_2_8_130_1
  doi: 10.1177/09544062211013055
– ident: e_1_2_8_41_3
  doi: 10.1109/TNANO.2016.2540958
– ident: e_1_2_8_104_1
  doi: 10.1007/s11431-013-5270-x
– ident: e_1_2_8_129_1
  doi: 10.1002/aenm.201700565
– ident: e_1_2_8_78_8
  doi: 10.1016/j.nanoen.2015.06.012
– ident: e_1_2_8_3_1
– start-page: 38
  ident: e_1_2_8_141_2
  publication-title: COMPEL
– ident: e_1_2_8_135_5
  doi: 10.1016/j.nanoen.2020.105075
– ident: e_1_2_8_72_1
  doi: 10.1016/j.nanoen.2020.105555
– ident: e_1_2_8_8_1
  doi: 10.1016/j.rser.2005.08.004
– ident: e_1_2_8_105_1
  doi: 10.1021/acs.nanolett.2c01912
– ident: e_1_2_8_132_1
  doi: 10.1021/acsami.0c21246
– ident: e_1_2_8_92_1
  doi: 10.1021/nl400738p
– ident: e_1_2_8_69_4
  doi: 10.1177/1045389X19844012
– ident: e_1_2_8_97_1
  doi: 10.1007/s12274-016-1109-7
– ident: e_1_2_8_87_1
  doi: 10.1039/C6TA05816G
– ident: e_1_2_8_34_2
  doi: 10.1109/JSEN.2020.3007000
– ident: e_1_2_8_64_1
  doi: 10.1002/aenm.202103654
– ident: e_1_2_8_75_1
  doi: 10.1002/adfm.201304211
– ident: e_1_2_8_17_1
  doi: 10.1021/es052254w
– ident: e_1_2_8_27_1
  doi: 10.1016/j.nanoen.2012.01.004
– ident: e_1_2_8_58_1
  doi: 10.1016/j.mattod.2021.10.027
– ident: e_1_2_8_93_3
  doi: 10.1088/0964-1726/15/5/030
– ident: e_1_2_8_94_2
  doi: 10.1109/63.988662
– ident: e_1_2_8_52_1
  doi: 10.1021/acsnano.9b10142
– ident: e_1_2_8_78_2
  doi: 10.1016/j.nanoen.2018.08.066
– ident: e_1_2_8_146_1
  doi: 10.1002/aisy.201900129
– ident: e_1_2_8_6_1
  doi: 10.1016/j.envint.2006.06.022
– ident: e_1_2_8_39_1
  doi: 10.1016/j.nanoen.2022.107773
– ident: e_1_2_8_43_1
  doi: 10.1002/aenm.201802159
– ident: e_1_2_8_80_1
  doi: 10.1038/s41598-019-44683-5
– ident: e_1_2_8_69_1
  doi: 10.1016/j.nanoen.2017.08.024
– ident: e_1_2_8_41_9
  doi: 10.1016/j.nanoen.2022.107339
– ident: e_1_2_8_78_7
  doi: 10.1016/j.apenergy.2022.118739
– ident: e_1_2_8_91_3
  doi: 10.1016/j.nanoen.2018.11.055
– ident: e_1_2_8_31_1
  doi: 10.1002/aenm.201802906
– ident: e_1_2_8_31_2
  doi: 10.1021/acsnano.0c09803
– ident: e_1_2_8_95_1
  doi: 10.1016/j.ymssp.2022.109185
– ident: e_1_2_8_60_1
  doi: 10.1016/j.mattod.2019.05.016
– ident: e_1_2_8_61_1
  doi: 10.1002/aenm.202201132
– ident: e_1_2_8_110_1
  doi: 10.1002/adfm.201302453
– ident: e_1_2_8_125_1
  doi: 10.1016/j.nanoen.2020.104674
– ident: e_1_2_8_24_1
– ident: e_1_2_8_35_9
  doi: 10.1002/adma.201802898
– ident: e_1_2_8_91_5
  doi: 10.1002/adfm.202105825
– ident: e_1_2_8_76_1
  doi: 10.1002/adma.201302397
– ident: e_1_2_8_35_2
  doi: 10.1016/j.nanoen.2019.104086
– volume: 22
  start-page: 730
  year: 2009
  ident: e_1_2_8_19_1
  publication-title: Mar. Corros. Offshore Struct., Pap. Symp.
– ident: e_1_2_8_103_1
  doi: 10.1016/j.sna.2007.07.004
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ndteint.2005.08.008
– ident: e_1_2_8_91_2
  doi: 10.1016/j.nanoen.2019.01.066
– ident: e_1_2_8_41_4
  doi: 10.1016/j.sna.2017.06.012
SSID ssj0031247
Score 2.5870135
SecondaryResourceType review_article
Snippet With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2300401
SubjectTerms Broadband
Energy conversion
Energy harvesting
Internet of Things
Mechanical engineering
mechanical vibration
Nanogenerators
Nanotechnology
Power supply
triboelectric nanogenerators
Vibration
vibration energy harvesting
Wireless sensor networks
Title Recent Advances in Mechanical Vibration Energy Harvesters Based on Triboelectric Nanogenerators
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300401
https://www.ncbi.nlm.nih.gov/pubmed/36840670
https://www.proquest.com/docview/2821263269
https://www.proquest.com/docview/2780065912
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hPcGhL2ibFpCRKvUU1pvEcXIExGpVAYdSELfIr1Sr0gSR3Qu_nhl7N-yCqkrtJUpkW3E8Hs_neOYbgC-ICLi1ZR5rw2WcmbqOdS5KvNQ6E6Lmxngv34t8cpV9uxE3K1H8gR-i_-FGmuHXa1JwpbvhE2lo9_uWjg4SoozyAVzksEWo6HvPH5Wi8fLZVdBmxUS8tWRt5Mlwvfm6VXoBNdeRqzc949eglp0OHie_DuczfWgenvE5_s9XvYFXC1zKjsJEegsbrnkHWytshdtQIcREE8WOgttAx6YNO3cUOUyCZtf0XhIzO_XxhIzSDnkeho4do620DIuIqKQNqXemhuHS3v70vNeU82cHLsenP04m8SI_Q2xSmY5ibbWWihJSIezAbZwtilLj9krmQigEYoVVtdJKF9yJzJRlnStjjZUmdxJXlvcwaNrGfQSWpVYI6ZLSCpOZEde4LHCulZDW2dqpCOKldCqzoC6nDBq3VSBdTioatqoftgi-9vXvAmnHH2vuLoVdLZS3q3AXOiIa-7yM4KAvRrWjsxTVuHaOdWRB6K0cJRF8CJOkf1VKBDq55BEkXtR_6UN1eX521j99-pdGn2GT7oML2y4MZvdzt4dgaab3vUI8AtShDII
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9QwEMdHpRyAA-9HaAEjgTildR6OkwOHQltt6W4PtKCeasWPoIo2W5FdIfhS_Sp8JGacBywIISH1wGWl3TjZJJ7x_J2MfwPwDBUBt7bIQm24DFNTVaHORIEflU6FqLgxPst3Lxu9S98cisMlOO_XwrR8iOGBG3mGH6_JwemB9PoPamhzekLvDmJiRvGoy6vcdV8-46ytebmziV38PI63tw5ej8KusEBoEplEobZay5IqKWG8xPmHzfNC47xAZkKUqCByW1alLnXOnUhNUVRZaayx0mROokvgUS_BZSoiTrD-zbcDryrBYOmruWCMDAn01VMieby-eLaLUfA3abuolH2o274B3_qb1Ga4fFybz_Sa-foLP_I_uos34Xonu9lG6ye3YMnVt-HaTzDGO6BQQWMEZhttVkTDjms2cbQwmuyYvafLJCtmW365JKOqSh4z0bBXKAUsw03EYZm2lYWODcPINf3gsd5U0ugu7F_A9d2D5XpauwfA0sQKIV1cWGFSE3GNox7nuhTSOlu5MoCwNwZlOjI7FQg5US1TOlbUSWropABeDO3PWibJH1uu9ralurGpUTjJjojSnxUBPB0246hCr4rK2k3n2EbmJE6LKA7gfmuTw18lxAfKJA8g9pb1l3NQ-5PxePj28F92egJXRgeTsRrv7O2uwFX6vc3WW4Xl2ae5e4S6cKYfe19kcHSxRvsd0KlqVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiF6oDxLaAEjgTildR6OkwOHwnbV0m2FKKCesOJHUEXJVmRXCH4Uf4W_xIzzgAUhJKQeuERK7CR2POP5Jh5_A_AQEQG3tshCbbgMU1NVoc5EgYdKp0JU3Bgf5XuY7b5Onx-L4yX42u-Fafkhhh9upBl-viYFP7PV1g_S0ObDKS0dxEQZxaMurHLfff6ETlvzZG-EI_wojsc7r57thl1egdAkMolCbbWWJSVSQnOJ7ofN80KjWyAzIUoEELktq1KXOudOpKYoqqw01lhpMidRI_CpF-BimvGCUkWMXg50VQnaSp_MBU1kSDxfPUkkj7cWW7toBH9DtotA2Vu68Sp8679RG-DyfnM-05vmyy_0kf_PR7wKVzrQzbZbLbkGS66-Dis_UTHeAIX4Ge0v225jIhp2UrMDR9uiSYrZG-olyTDb8ZslGeVU8iQTDXuKQMAyLCIWlmmbV-jEMLRb03ee1JsSGt2Eo3Po3y1Yrqe1uw0sTawQ0sWFFSY1Edc453GuSyGts5UrAwh7WVCm42Wn9CCnqmWUjhUNkhoGKYDHQ_2zlpHkjzU3etFS3czUKHSxI-Loz4oAHgzFOKfQQlFZu-kc68icoGkRxQGstSI5vCohdqBM8gBiL1h_aYM6OphMhrM7_3LTfbj0YjRWk73D_XW4TJfbUL0NWJ59nLu7CApn-p7XRAZvz1dmvwMP7WkE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Mechanical+Vibration+Energy+Harvesters+Based+on+Triboelectric+Nanogenerators&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Du%2C+Taili&rft.au=Dong%2C+Fangyang&rft.au=Xi%2C+Ziyue&rft.au=Zhu%2C+Meixian&rft.date=2023-06-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=19&rft.issue=22&rft.spage=e2300401&rft_id=info:doi/10.1002%2Fsmll.202300401&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon