Regulating the Topologies and Photoresponsive Properties of Lanthanum‐Organic Frameworks

Metal‐organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used t...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 30; no. 66; pp. e202402581 - n/a
Main Authors Ren, Xin‐Ye, Chen, Fan‐Yao, Zhang, Chun‐Hua, Liang, Zhen‐Gang, Yu, Xiao‐Yue, Han, Song‐De, Wang, Guo‐Ming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 26.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal‐organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single‐ligand‐guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2′‐bipyridine‐4,4′‐dicarboxylic acid, H2bpdc; 1,10‐phenanthroline‐2,9‐dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]⋅2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)‐connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus. Two lanthanum‐organic frameworks with dinuclear lanthanum as building blocks and distinct bipyridinedicarboxylate as likers are prepared. Their structural differences result in the diversities of photoresponsive functionalities in terms of photochromism, photomodulated fluorescence and proton conductivity.
AbstractList Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single-ligand-guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2'-bipyridine-4,4'-dicarboxylic acid, H bpdc; 1,10-phenanthroline-2,9-dicarboxylic acid, H pda) and LaCl generate two PMOFs, [La(bpdc)(H O)Cl] (1) and [La(pda)(H O) Cl]⋅2H O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)-connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus.
Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single-ligand-guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2'-bipyridine-4,4'-dicarboxylic acid, H2bpdc; 1,10-phenanthroline-2,9-dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]⋅2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)-connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus.Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single-ligand-guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2'-bipyridine-4,4'-dicarboxylic acid, H2bpdc; 1,10-phenanthroline-2,9-dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]⋅2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)-connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus.
Metal‐organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single‐ligand‐guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2′‐bipyridine‐4,4′‐dicarboxylic acid, H 2 bpdc; 1,10‐phenanthroline‐2,9‐dicarboxylic acid, H 2 pda) and LaCl 3 generate two PMOFs, [La(bpdc)(H 2 O)Cl] ( 1 ) and [La(pda)(H 2 O) 2 Cl]⋅2H 2 O ( 2 ). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)‐connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus.
Metal‐organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single‐ligand‐guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2′‐bipyridine‐4,4′‐dicarboxylic acid, H2bpdc; 1,10‐phenanthroline‐2,9‐dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]⋅2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)‐connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus.
Metal‐organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single‐ligand‐guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2′‐bipyridine‐4,4′‐dicarboxylic acid, H2bpdc; 1,10‐phenanthroline‐2,9‐dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]⋅2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)‐connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus. Two lanthanum‐organic frameworks with dinuclear lanthanum as building blocks and distinct bipyridinedicarboxylate as likers are prepared. Their structural differences result in the diversities of photoresponsive functionalities in terms of photochromism, photomodulated fluorescence and proton conductivity.
Author Ren, Xin‐Ye
Yu, Xiao‐Yue
Han, Song‐De
Zhang, Chun‐Hua
Liang, Zhen‐Gang
Chen, Fan‐Yao
Wang, Guo‐Ming
Author_xml – sequence: 1
  givenname: Xin‐Ye
  surname: Ren
  fullname: Ren, Xin‐Ye
  organization: Qingdao University
– sequence: 2
  givenname: Fan‐Yao
  surname: Chen
  fullname: Chen, Fan‐Yao
  organization: Qingdao University
– sequence: 3
  givenname: Chun‐Hua
  surname: Zhang
  fullname: Zhang, Chun‐Hua
  organization: Qingdao University
– sequence: 4
  givenname: Zhen‐Gang
  surname: Liang
  fullname: Liang, Zhen‐Gang
  organization: Qingdao University
– sequence: 5
  givenname: Xiao‐Yue
  surname: Yu
  fullname: Yu, Xiao‐Yue
  organization: Qingdao University
– sequence: 6
  givenname: Song‐De
  orcidid: 0000-0001-6335-8083
  surname: Han
  fullname: Han, Song‐De
  email: hansongde@qdu.edu.cn
  organization: Qingdao University
– sequence: 7
  givenname: Guo‐Ming
  surname: Wang
  fullname: Wang, Guo‐Ming
  organization: Qingdao University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39143837$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaTYf1x6LoZdevBlpJMs6liUfhS0JZU-9CNkr7yq1JVeyE3LrT8hv7C-pl00TCJSe5jDPMzPMe0QOfPCWkPcU5hSAndVb280ZMA5MlPQNmVHBaI6yEAdkBorLvBCoDslRSrcAoArEd-QQFeVYopyR79_sZmzN4PwmG7Y2W4U-tGHjbMqMX2c32zCEaFMffHJ3NruJobdx2LVDky2NH7bGj93vX4_XcWO8q7OLaDp7H-KPdELeNqZN9vSpHpPVxflqcZUvry-_LD4v8xol0tyoUtSlkkJKI01V0bJgAhmIpuRFY0rOeEk5ABpVQYMoBch1IypYN5xWgMfk035sH8PP0aZBdy7Vtm2Nt2FMGkEhlSi5mtCPr9DbMEY_HaeRIpMSRVFM1Icnaqw6u9Z9dJ2JD_rv0yZgvgfqGFKKtnlGKOhdKnqXin5OZRL4K6F2w_Tz4IdoXPtvTe21e9fah_8s0Yur868v7h_O2KFp
CitedBy_id crossref_primary_10_1016_j_ccr_2024_216350
crossref_primary_10_1016_j_dyepig_2025_112764
crossref_primary_10_1039_D4CE01073F
crossref_primary_10_1002_asia_202401464
crossref_primary_10_1021_acs_cgd_4c01202
crossref_primary_10_1016_j_ica_2024_122455
crossref_primary_10_1016_j_molstruc_2024_141117
crossref_primary_10_1039_D4CE00952E
crossref_primary_10_1021_acs_inorgchem_4c04313
crossref_primary_10_1021_acs_inorgchem_4c04679
crossref_primary_10_1039_D4SC04632C
crossref_primary_10_1002_zaac_202400164
crossref_primary_10_1016_j_foodchem_2024_141554
crossref_primary_10_1016_j_molstruc_2024_140704
crossref_primary_10_1002_aoc_7887
crossref_primary_10_1016_j_saa_2025_126089
crossref_primary_10_1002_aoc_7866
crossref_primary_10_1002_aoc_7946
crossref_primary_10_1039_D4DT03075C
crossref_primary_10_1002_aoc_7848
crossref_primary_10_1021_acs_inorgchem_4c05572
crossref_primary_10_1016_j_molstruc_2024_140530
crossref_primary_10_1016_j_molstruc_2024_141245
crossref_primary_10_1039_D4CE01119H
crossref_primary_10_1039_D4CE01107D
crossref_primary_10_1039_D4TC03372H
Cites_doi 10.1039/c3dt32861a
10.1002/anie.202303262
10.1021/acs.inorgchem.1c00280
10.1016/j.ccr.2020.213579
10.1002/anie.201408862
10.1002/advs.201500224
10.1002/anie.202215591
10.1039/C9QI00730J
10.1016/j.ccr.2021.214301
10.1021/cr00072a005
10.1002/anie.202105491
10.1021/acs.inorgchem.6b00077
10.1016/j.mtsust.2022.100149
10.1021/jacs.0c10183
10.1021/acs.inorgchem.3c00835
10.1002/chem.202100696
10.1016/j.ccr.2017.10.029
10.1039/B917890B
10.1039/C5SC04450B
10.1021/acs.inorgchem.1c03661
10.1021/jacs.9b04930
10.1088/1742-6596/1818/1/012054
10.1016/j.ccr.2022.214921
10.1021/acsami.2c21847
10.1039/D3CE01060K
10.1039/D1CS00004G
10.1021/ic025725d
10.1002/anie.200902045
10.1016/j.dyepig.2018.12.037
10.1002/anie.201707290
10.1002/anie.200705545
10.1093/nsr/nwab222
10.1039/D2CC00288D
10.1016/j.ccr.2022.214892
10.1002/anie.202114100
10.1039/C9CC07121K
10.1039/C8TC02903B
10.1021/acsmaterialslett.3c00284
10.1021/acsami.2c19779
10.1021/acs.inorgchem.1c01521
10.1039/D0DT03929B
10.1021/ic900737q
10.1021/acs.chemrev.9b00350
10.1021/jacs.7b10101
10.1038/s41563-022-01317-y
10.1107/S0021889800007202
10.1021/acsami.1c23512
10.1039/C9CC02229E
10.1107/S2053229614024218
10.1002/anie.201311124
10.1021/acs.inorgchem.8b03042
10.1016/j.cclet.2022.03.091
10.1021/acsami.9b06375
10.1002/adfm.202212907
10.1016/j.ccr.2017.03.027
10.1016/j.snb.2022.132261
10.1039/C9CC06416H
10.1016/j.ccr.2021.214304
10.1039/C9RA09938G
10.1039/D0CC01627F
10.1039/C9TC00851A
10.1021/ic402182j
10.1039/C4SC03224A
10.1016/j.matt.2022.06.005
10.1002/smll.201803468
10.1021/acs.inorgchem.7b00323
10.1021/jacs.1c11984
10.1016/j.ccr.2022.214918
10.1039/C2CC37497H
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202402581
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 39143837
10_1002_chem_202402581
CHEM202402581
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2021MB064
– fundername: National Natural Science Foundation of China
  funderid: 22071126
– fundername: National Natural Science Foundation of China
  grantid: 22071126
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021MB064
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
CITATION
AEUQT
AFPWT
NPM
RGC
RWI
WRC
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3731-a985c897577a7abb186253205f846fa8424814003a9b0f337507df5b0df41b03
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 01:30:41 EDT 2025
Fri Jul 25 11:41:55 EDT 2025
Wed Feb 19 02:10:12 EST 2025
Thu Apr 24 23:00:17 EDT 2025
Tue Jul 01 00:44:06 EDT 2025
Wed Jun 11 08:28:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 66
Keywords Electron transfer
Photogenerated radicals
Photochromism
Pyridinecarboxylate
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-a985c897577a7abb186253205f846fa8424814003a9b0f337507df5b0df41b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6335-8083
PMID 39143837
PQID 3132773566
PQPubID 986340
PageCount 7
ParticipantIDs proquest_miscellaneous_3093173749
proquest_journals_3132773566
pubmed_primary_39143837
crossref_primary_10_1002_chem_202402581
crossref_citationtrail_10_1002_chem_202402581
wiley_primary_10_1002_chem_202402581_CHEM202402581
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 26, 2024
PublicationDateYYYYMMDD 2024-11-26
PublicationDate_xml – month: 11
  year: 2024
  text: November 26, 2024
  day: 26
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 452
2021; 27
2023; 33
2023; 34
2015; 71
2023; 5
2020; 120
2019; 55
2019; 11
2019; 15
2019; 58
2020; 56
2022; 21
2020; 10
2019; 163
2009; 48
2018; 6
2023; 62
2023; 25
1986; 86
2003; 42
2022; 369
2014; 53
2019; 7
2015; 6
2018; 140
2019; 6
2013; 49
2023; 15
2021; 427
2013; 42
2015; 54
2021; 1818
2021; 143
2021; 50
2019; 141
2016; 55
2022; 144
2016; 7
2010; 46
2016; 3
2022; 5
2022; 61
2023; 476
2023; 475
2000; 33
2022; 9
2017; 56
2008; 47
2022; 58
2022; 14
2019; 378
2021; 60
2017; 344
2022; 18
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 42
  start-page: 6553
  year: 2013
  end-page: 6563
  publication-title: Dalton Trans.
– volume: 50
  start-page: 6349
  year: 2021
  end-page: 6368
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 546
  year: 2021
  end-page: 552
  publication-title: Dalton Trans.
– volume: 15
  start-page: 13600
  year: 2023
  end-page: 13608
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 4208
  year: 2023
  end-page: 4215
  publication-title: ACS Appl. Mater. Interfaces
– volume: 60
  start-page: 9278
  year: 2021
  end-page: 9281
  publication-title: Inorg. Chem.
– volume: 58
  start-page: 4024
  year: 2022
  end-page: 4027
  publication-title: Chem. Commun.
– volume: 27
  start-page: 7842
  year: 2021
  end-page: 7846
  publication-title: Chem. Eur. J.
– volume: 144
  start-page: 4457
  year: 2022
  end-page: 4468
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 12829
  year: 2019
  end-page: 12832
  publication-title: Chem. Commun.
– volume: 163
  start-page: 656
  year: 2019
  end-page: 659
  publication-title: Dyes Pigm.
– volume: 54
  start-page: 430
  year: 2015
  end-page: 435
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 18
  year: 2022
  publication-title: Mater. Today Sustain.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 3593
  year: 2020
  end-page: 3605
  publication-title: RSC Adv.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 140
  start-page: 2805
  year: 2018
  end-page: 2811
  publication-title: J. Am. Chem. Soc.
– volume: 452
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 378
  start-page: 533
  year: 2019
  end-page: 560
  publication-title: Coord. Chem. Rev.
– volume: 56
  start-page: 14458
  year: 2017
  end-page: 14462
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 30713
  year: 2019
  end-page: 30718
  publication-title: ACS Appl. Mater. Interfaces
– volume: 71
  start-page: 3
  year: 2015
  end-page: 8
  publication-title: Acta Crystallogr. Sect. C
– volume: 427
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 62
  start-page: 8663
  year: 2023
  end-page: 8669
  publication-title: Inorg. Chem.
– volume: 56
  start-page: 5929
  year: 2020
  end-page: 5932
  publication-title: Chem. Commun.
– volume: 6
  start-page: 1420
  year: 2015
  end-page: 1425
  publication-title: Chem. Sci.
– volume: 7
  start-page: 2195
  year: 2016
  end-page: 2200
  publication-title: Chem. Sci.
– volume: 33
  start-page: 1193
  year: 2000
  publication-title: J. Appl. Crystallogr.
– volume: 9
  year: 2022
  publication-title: Natl. Sci. Rev.
– volume: 48
  start-page: 7853
  year: 2009
  end-page: 7863
  publication-title: Inorg. Chem.
– volume: 56
  start-page: 6244
  year: 2017
  end-page: 6250
  publication-title: Inorg. Chem.
– volume: 60
  start-page: 18223
  year: 2021
  end-page: 18230
  publication-title: Angew. Chem. Int. Ed.
– volume: 143
  start-page: 2232
  year: 2021
  end-page: 2238
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2918
  year: 2022
  end-page: 2932
  publication-title: Matter
– volume: 61
  start-page: 3607
  year: 2022
  end-page: 3615
  publication-title: Inorg. Chem.
– volume: 49
  start-page: 406
  year: 2013
  end-page: 408
  publication-title: Chem. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 12663
  year: 2019
  end-page: 12672
  publication-title: J. Am. Chem. Soc.
– volume: 86
  start-page: 401
  year: 1986
  end-page: 449
  publication-title: Chem. Rev.
– volume: 120
  start-page: 8790
  year: 2020
  end-page: 8813
  publication-title: Chem. Rev.
– volume: 55
  start-page: 4373
  year: 2016
  end-page: 4380
  publication-title: Inorg. Chem.
– volume: 14
  start-page: 8458
  year: 2022
  end-page: 8463
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 5631
  year: 2019
  end-page: 5634
  publication-title: Chem. Commun.
– volume: 60
  start-page: 4375
  year: 2021
  end-page: 4379
  publication-title: Inorg. Chem.
– volume: 46
  start-page: 361
  year: 2010
  end-page: 376
  publication-title: Chem. Commun.
– volume: 25
  start-page: 6777
  year: 2023
  end-page: 6785
  publication-title: CrystEngComm
– volume: 369
  year: 2022
  publication-title: Sens. Actuators B
– volume: 1818
  year: 2021
  publication-title: J. Phys. Conf. Ser.
– volume: 6
  start-page: 9341
  year: 2018
  end-page: 9344
  publication-title: J. Mater. Chem. C
– volume: 15
  year: 2019
  publication-title: Small
– volume: 7
  start-page: 3920
  year: 2019
  end-page: 3923
  publication-title: J. Mater. Chem. C
– volume: 47
  start-page: 3565
  year: 2008
  end-page: 3567
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 847
  year: 2014
  end-page: 851
  publication-title: Inorg. Chem.
– volume: 42
  start-page: 1616
  year: 2003
  end-page: 1624
  publication-title: Inorg. Chem.
– volume: 53
  start-page: 9298
  year: 2014
  end-page: 9301
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  year: 2023
  publication-title: Chin. Chem. Lett.
– volume: 344
  start-page: 54
  year: 2017
  end-page: 82
  publication-title: Coord. Chem. Rev.
– volume: 58
  start-page: 3058
  year: 2019
  end-page: 3064
  publication-title: Inorg. Chem.
– volume: 6
  start-page: 2435
  year: 2019
  end-page: 2440
  publication-title: Inorg. Chem. Front.
– volume: 5
  start-page: 1317
  year: 2023
  end-page: 1331
  publication-title: ACS Materials Lett.
– volume: 475
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 21
  start-page: 1334
  year: 2022
  end-page: 1340
  publication-title: Nat. Mater.
– volume: 48
  start-page: 6476
  year: 2009
  end-page: 6479
  publication-title: Angew. Chem. Int. Ed.
– volume: 476
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 55
  start-page: 13824
  year: 2019
  end-page: 13827
  publication-title: Chem. Commun.
– ident: e_1_2_8_60_1
  doi: 10.1039/c3dt32861a
– ident: e_1_2_8_1_1
  doi: 10.1002/anie.202303262
– ident: e_1_2_8_11_1
  doi: 10.1021/acs.inorgchem.1c00280
– ident: e_1_2_8_18_1
  doi: 10.1016/j.ccr.2020.213579
– ident: e_1_2_8_36_1
  doi: 10.1002/anie.201408862
– ident: e_1_2_8_48_1
  doi: 10.1002/advs.201500224
– ident: e_1_2_8_54_1
  doi: 10.1002/anie.202215591
– ident: e_1_2_8_43_1
  doi: 10.1039/C9QI00730J
– ident: e_1_2_8_68_1
  doi: 10.1016/j.ccr.2021.214301
– ident: e_1_2_8_65_1
  doi: 10.1021/cr00072a005
– ident: e_1_2_8_23_1
  doi: 10.1002/anie.202105491
– ident: e_1_2_8_57_1
  doi: 10.1021/acs.inorgchem.6b00077
– ident: e_1_2_8_40_1
  doi: 10.1016/j.mtsust.2022.100149
– ident: e_1_2_8_52_1
  doi: 10.1021/jacs.0c10183
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.inorgchem.3c00835
– ident: e_1_2_8_50_1
  doi: 10.1002/chem.202100696
– ident: e_1_2_8_16_1
  doi: 10.1016/j.ccr.2017.10.029
– ident: e_1_2_8_20_1
  doi: 10.1039/B917890B
– ident: e_1_2_8_33_1
  doi: 10.1039/C5SC04450B
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.inorgchem.1c03661
– ident: e_1_2_8_28_1
  doi: 10.1021/jacs.9b04930
– ident: e_1_2_8_69_1
  doi: 10.1088/1742-6596/1818/1/012054
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ccr.2022.214921
– ident: e_1_2_8_6_1
  doi: 10.1021/acsami.2c21847
– ident: e_1_2_8_9_1
  doi: 10.1039/D3CE01060K
– ident: e_1_2_8_67_1
  doi: 10.1039/D1CS00004G
– ident: e_1_2_8_62_1
  doi: 10.1021/ic025725d
– ident: e_1_2_8_64_1
  doi: 10.1002/anie.200902045
– ident: e_1_2_8_45_1
  doi: 10.1016/j.dyepig.2018.12.037
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.201707290
– ident: e_1_2_8_46_1
  doi: 10.1002/anie.200705545
– ident: e_1_2_8_3_1
  doi: 10.1093/nsr/nwab222
– ident: e_1_2_8_31_1
  doi: 10.1039/D2CC00288D
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ccr.2022.214892
– ident: e_1_2_8_47_1
  doi: 10.1002/anie.202114100
– ident: e_1_2_8_26_1
  doi: 10.1039/C9CC07121K
– ident: e_1_2_8_42_1
  doi: 10.1039/C8TC02903B
– ident: e_1_2_8_12_1
  doi: 10.1021/acsmaterialslett.3c00284
– ident: e_1_2_8_5_1
  doi: 10.1021/acsami.2c19779
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.inorgchem.1c01521
– ident: e_1_2_8_51_1
  doi: 10.1039/D0DT03929B
– ident: e_1_2_8_63_1
  doi: 10.1021/ic900737q
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.chemrev.9b00350
– ident: e_1_2_8_22_1
  doi: 10.1021/jacs.7b10101
– ident: e_1_2_8_39_1
  doi: 10.1038/s41563-022-01317-y
– ident: e_1_2_8_56_1
  doi: 10.1107/S0021889800007202
– ident: e_1_2_8_32_1
  doi: 10.1021/acsami.1c23512
– ident: e_1_2_8_41_1
  doi: 10.1039/C9CC02229E
– ident: e_1_2_8_70_1
  doi: 10.1107/S2053229614024218
– ident: e_1_2_8_37_1
  doi: 10.1002/anie.201311124
– ident: e_1_2_8_61_1
  doi: 10.1021/acs.inorgchem.8b03042
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cclet.2022.03.091
– ident: e_1_2_8_27_1
  doi: 10.1021/acsami.9b06375
– ident: e_1_2_8_53_1
  doi: 10.1002/adfm.202212907
– ident: e_1_2_8_66_1
  doi: 10.1016/j.ccr.2017.03.027
– ident: e_1_2_8_10_1
  doi: 10.1016/j.snb.2022.132261
– ident: e_1_2_8_25_1
  doi: 10.1039/C9CC06416H
– ident: e_1_2_8_14_1
  doi: 10.1016/j.ccr.2021.214304
– ident: e_1_2_8_58_1
  doi: 10.1039/C9RA09938G
– ident: e_1_2_8_24_1
  doi: 10.1039/D0CC01627F
– ident: e_1_2_8_55_1
– ident: e_1_2_8_44_1
  doi: 10.1039/C9TC00851A
– ident: e_1_2_8_49_1
  doi: 10.1021/ic402182j
– ident: e_1_2_8_34_1
  doi: 10.1039/C4SC03224A
– ident: e_1_2_8_2_1
  doi: 10.1016/j.matt.2022.06.005
– ident: e_1_2_8_29_1
  doi: 10.1002/smll.201803468
– ident: e_1_2_8_59_1
  doi: 10.1021/acs.inorgchem.7b00323
– ident: e_1_2_8_38_1
  doi: 10.1021/jacs.1c11984
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ccr.2022.214918
– ident: e_1_2_8_35_1
  doi: 10.1039/C2CC37497H
SSID ssj0009633
Score 2.6259956
Snippet Metal‐organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers...
Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202402581
SubjectTerms Assembly
Construction standards
Dicarboxylic acids
Electron transfer
Lanthanum
Lanthanum chlorides
Ligands
Metal-organic frameworks
Photochromism
Photogenerated radicals
Pyridinecarboxylate
Topology
Title Regulating the Topologies and Photoresponsive Properties of Lanthanum‐Organic Frameworks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202402581
https://www.ncbi.nlm.nih.gov/pubmed/39143837
https://www.proquest.com/docview/3132773566
https://www.proquest.com/docview/3093173749
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-UwFD6IG92MzxnriwjCrKppk960SxEvIioid0DclKRNEGbsFe-9Llz5E_yN_hLPadrqnWEQdNfShDaP0_MlOef7AHbR56Fjl0VoeY-HUqQuNJQFomzcs1rbwpaUnHx23jv-JU-ukqt3WfyeH6LbcCPLqP_XZODajPbfSEOxTZRJTqcDSZ17TQFbhIou3_ijcHZ5LXmpQuJgbVkbebw_XX3aK_0DNaeRa-16-gug24_2ESe_9yZjs1c8_sXn-JVWLcK3BpeyAz-RlmDGVsswd9jKwa3A9aVXrUdXxxA0soFXV8CFNtNVyS5uhrh6bwJuHyy7oE3-e2JrZUPHTnH8bnQ1uX15evbZnwXrt2Fho1UY9I8Gh8dhI8wQFkKJKNRZmhRpphKltNLGRLgsIoGJxCGacTqVsSQiLS50ZrgTAlGJKl1ieOlkZLj4DrPVsLJrwCInojJNSdRKSa7LLCoR08gkSrXBtZULIGzHJS8a0nLSzviTe7rlOKcOy7sOC-BnV_7O03X8t-RmO8x5Y7ajnHgslRIIcQPY6R5jR9Mpiq7scIJleIaYSyiZBfDDT4_uVSIjNXmhAojrQf7gG3Kiveju1j9TaQPm6ZqyI-PeJsyO7yd2C2HS2GzXpvAKH6sI3w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZVE2vCmBAkYCsUrrxM44WbBALaMpnVZVNUgVG8tJ7BYBCZoHCFZ8Ap_Cr_ALfAn3xkmqASEkpC5YJnESP659jx_3HIBH6PPQscsitHzAQylSF-YUBaJsPLDG2MKWFJy8fzAYvZQvjpPjFfjWxcJ4foh-wY16RjNeUwenBemtM9ZQLBSFktP2QJJG7bnKPfvpI87aZk93d7CJH8fx8PlkexS2wgJhIZSIQpOlSZFmKlHKKJPnEcJ6EkhIHHpjZ1IZSyKC4sJkOXdCoFdVpUtyXjoZ5VzgZy_ARVIRJ7b-naMzwio0Zy9eL1VIpK8dTSSPt5azu-wGf8O2y1C58XXDK_C9qyV_xOXN5mKebxaffyGQ_J-q8SpcboE3e-Z7yjVYsdV1WNvu9O5uwKsje9JomVUnDFExm3j5iNd2xkxVssPTel5P2xPFHyw7pF2MKdHRstqxMRroqakW7358-erDWws27M69zW7C5DxKdgtWq7qyt4FFTkRlmpJql5LclFlUImiTSZSaHCePLoCwswNdtKzsJA7yVns-6VhT--i-fQJ40qd_7_lI_phyozMr3Y5LM01EnUoJxPABPOwfY0XTNpGpbL3ANDxDUCmUzAJY9-bY_0pkEXHbqgDixqj-kgdNvB791Z1_eekBrI0m-2M93j3YuwuX6D6FgsaDDVidTxf2HmLCeX6_6YYM9Dnb608NiGIU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtUwEB2VIgEb3oVAASOBWKV1YidOFixQL1ctLdVVdZEqNpaT2C0Ckuo-QHTVT-if9Ff4Br6EmbyqC0JISF2wTOIkfsxkjmPPOQDPMOZhYJe5b3nMfSkS52eUBaJsGFtjbG4LSk5-uxtvvpNv9qP9JTjrcmEafoj-hxt5Rv29Jgc_Ktz6OWkotokyyWl1IEqCdlvltv32FSdt05dbAxzh52E4fD3e2PRbXQE_F0oEvkmTKE9SFSlllMmyAFE96SNEDoOxM4kMJfFAcWHSjDshMKiqwkUZL5wMMi7wsZfgsox5SloRg71zviq05ka7XiqfOF87lkgeri9WdzEK_gZtF5FyHeqGN-B710nNDpePa_NZtpYf_8If-R_14k243sJu9qrxk1uwZMvbcHWjU7u7A-_37EGtZFYeMMTEbNyIR3ywU2bKgo0Oq1k1afcTf7FsRGsYEyKjZZVjO2ieh6acf_5xctokt-Zs2O16m96F8UW0bAWWy6q094EFTgRFkpBml5LcFGlQIGSTUZCYDKeOzgO_MwOdt5zsJA3ySTds0qGm8dH9-Hjwoi9_1LCR_LHkamdVuv0qTTXRdColEMF78LS_jB1Ni0SmtNUcy_AUIaVQMvXgXmON_atEGhCzrfIgrG3qL3XQxOrRHz34l5uewJXRYKh3tna3H8I1Ok15oGG8Csuzydw-QkA4yx7XTshAX7C5_gRYd2DD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+Topologies+and+Photoresponsive+Properties+of+Lanthanum-Organic+Frameworks&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Ren%2C+Xin-Ye&rft.au=Chen%2C+Fan-Yao&rft.au=Zhang%2C+Chun-Hua&rft.au=Liang%2C+Zhen-Gang&rft.date=2024-11-26&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=30&rft.issue=66&rft.spage=e202402581&rft_id=info:doi/10.1002%2Fchem.202402581&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon