Regulating the Topologies and Photoresponsive Properties of Lanthanum‐Organic Frameworks
Metal‐organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used t...
Saved in:
Published in | Chemistry : a European journal Vol. 30; no. 66; pp. e202402581 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
26.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal‐organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single‐ligand‐guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2′‐bipyridine‐4,4′‐dicarboxylic acid, H2bpdc; 1,10‐phenanthroline‐2,9‐dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]⋅2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)‐connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus.
Two lanthanum‐organic frameworks with dinuclear lanthanum as building blocks and distinct bipyridinedicarboxylate as likers are prepared. Their structural differences result in the diversities of photoresponsive functionalities in terms of photochromism, photomodulated fluorescence and proton conductivity. |
---|---|
AbstractList | Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single-ligand-guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2'-bipyridine-4,4'-dicarboxylic acid, H
bpdc; 1,10-phenanthroline-2,9-dicarboxylic acid, H
pda) and LaCl
generate two PMOFs, [La(bpdc)(H
O)Cl] (1) and [La(pda)(H
O)
Cl]⋅2H
O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)-connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus. Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single-ligand-guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2'-bipyridine-4,4'-dicarboxylic acid, H2bpdc; 1,10-phenanthroline-2,9-dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]⋅2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)-connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus.Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single-ligand-guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2'-bipyridine-4,4'-dicarboxylic acid, H2bpdc; 1,10-phenanthroline-2,9-dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]⋅2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)-connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus. Metal‐organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single‐ligand‐guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2′‐bipyridine‐4,4′‐dicarboxylic acid, H 2 bpdc; 1,10‐phenanthroline‐2,9‐dicarboxylic acid, H 2 pda) and LaCl 3 generate two PMOFs, [La(bpdc)(H 2 O)Cl] ( 1 ) and [La(pda)(H 2 O) 2 Cl]⋅2H 2 O ( 2 ). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)‐connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus. Metal‐organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single‐ligand‐guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2′‐bipyridine‐4,4′‐dicarboxylic acid, H2bpdc; 1,10‐phenanthroline‐2,9‐dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]⋅2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)‐connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus. Metal‐organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single‐ligand‐guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs (Figure 1d). In this work, the coordination assembly of bipyridinedicarboxylate (2,2′‐bipyridine‐4,4′‐dicarboxylic acid, H2bpdc; 1,10‐phenanthroline‐2,9‐dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]⋅2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)‐connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus. Two lanthanum‐organic frameworks with dinuclear lanthanum as building blocks and distinct bipyridinedicarboxylate as likers are prepared. Their structural differences result in the diversities of photoresponsive functionalities in terms of photochromism, photomodulated fluorescence and proton conductivity. |
Author | Ren, Xin‐Ye Yu, Xiao‐Yue Han, Song‐De Zhang, Chun‐Hua Liang, Zhen‐Gang Chen, Fan‐Yao Wang, Guo‐Ming |
Author_xml | – sequence: 1 givenname: Xin‐Ye surname: Ren fullname: Ren, Xin‐Ye organization: Qingdao University – sequence: 2 givenname: Fan‐Yao surname: Chen fullname: Chen, Fan‐Yao organization: Qingdao University – sequence: 3 givenname: Chun‐Hua surname: Zhang fullname: Zhang, Chun‐Hua organization: Qingdao University – sequence: 4 givenname: Zhen‐Gang surname: Liang fullname: Liang, Zhen‐Gang organization: Qingdao University – sequence: 5 givenname: Xiao‐Yue surname: Yu fullname: Yu, Xiao‐Yue organization: Qingdao University – sequence: 6 givenname: Song‐De orcidid: 0000-0001-6335-8083 surname: Han fullname: Han, Song‐De email: hansongde@qdu.edu.cn organization: Qingdao University – sequence: 7 givenname: Guo‐Ming surname: Wang fullname: Wang, Guo‐Ming organization: Qingdao University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39143837$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaTYf1x6LoZdevBlpJMs6liUfhS0JZU-9CNkr7yq1JVeyE3LrT8hv7C-pl00TCJSe5jDPMzPMe0QOfPCWkPcU5hSAndVb280ZMA5MlPQNmVHBaI6yEAdkBorLvBCoDslRSrcAoArEd-QQFeVYopyR79_sZmzN4PwmG7Y2W4U-tGHjbMqMX2c32zCEaFMffHJ3NruJobdx2LVDky2NH7bGj93vX4_XcWO8q7OLaDp7H-KPdELeNqZN9vSpHpPVxflqcZUvry-_LD4v8xol0tyoUtSlkkJKI01V0bJgAhmIpuRFY0rOeEk5ABpVQYMoBch1IypYN5xWgMfk035sH8PP0aZBdy7Vtm2Nt2FMGkEhlSi5mtCPr9DbMEY_HaeRIpMSRVFM1Icnaqw6u9Z9dJ2JD_rv0yZgvgfqGFKKtnlGKOhdKnqXin5OZRL4K6F2w_Tz4IdoXPtvTe21e9fah_8s0Yur868v7h_O2KFp |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_216350 crossref_primary_10_1016_j_dyepig_2025_112764 crossref_primary_10_1039_D4CE01073F crossref_primary_10_1002_asia_202401464 crossref_primary_10_1021_acs_cgd_4c01202 crossref_primary_10_1016_j_ica_2024_122455 crossref_primary_10_1016_j_molstruc_2024_141117 crossref_primary_10_1039_D4CE00952E crossref_primary_10_1021_acs_inorgchem_4c04313 crossref_primary_10_1021_acs_inorgchem_4c04679 crossref_primary_10_1039_D4SC04632C crossref_primary_10_1002_zaac_202400164 crossref_primary_10_1016_j_foodchem_2024_141554 crossref_primary_10_1016_j_molstruc_2024_140704 crossref_primary_10_1002_aoc_7887 crossref_primary_10_1016_j_saa_2025_126089 crossref_primary_10_1002_aoc_7866 crossref_primary_10_1002_aoc_7946 crossref_primary_10_1039_D4DT03075C crossref_primary_10_1002_aoc_7848 crossref_primary_10_1021_acs_inorgchem_4c05572 crossref_primary_10_1016_j_molstruc_2024_140530 crossref_primary_10_1016_j_molstruc_2024_141245 crossref_primary_10_1039_D4CE01119H crossref_primary_10_1039_D4CE01107D crossref_primary_10_1039_D4TC03372H |
Cites_doi | 10.1039/c3dt32861a 10.1002/anie.202303262 10.1021/acs.inorgchem.1c00280 10.1016/j.ccr.2020.213579 10.1002/anie.201408862 10.1002/advs.201500224 10.1002/anie.202215591 10.1039/C9QI00730J 10.1016/j.ccr.2021.214301 10.1021/cr00072a005 10.1002/anie.202105491 10.1021/acs.inorgchem.6b00077 10.1016/j.mtsust.2022.100149 10.1021/jacs.0c10183 10.1021/acs.inorgchem.3c00835 10.1002/chem.202100696 10.1016/j.ccr.2017.10.029 10.1039/B917890B 10.1039/C5SC04450B 10.1021/acs.inorgchem.1c03661 10.1021/jacs.9b04930 10.1088/1742-6596/1818/1/012054 10.1016/j.ccr.2022.214921 10.1021/acsami.2c21847 10.1039/D3CE01060K 10.1039/D1CS00004G 10.1021/ic025725d 10.1002/anie.200902045 10.1016/j.dyepig.2018.12.037 10.1002/anie.201707290 10.1002/anie.200705545 10.1093/nsr/nwab222 10.1039/D2CC00288D 10.1016/j.ccr.2022.214892 10.1002/anie.202114100 10.1039/C9CC07121K 10.1039/C8TC02903B 10.1021/acsmaterialslett.3c00284 10.1021/acsami.2c19779 10.1021/acs.inorgchem.1c01521 10.1039/D0DT03929B 10.1021/ic900737q 10.1021/acs.chemrev.9b00350 10.1021/jacs.7b10101 10.1038/s41563-022-01317-y 10.1107/S0021889800007202 10.1021/acsami.1c23512 10.1039/C9CC02229E 10.1107/S2053229614024218 10.1002/anie.201311124 10.1021/acs.inorgchem.8b03042 10.1016/j.cclet.2022.03.091 10.1021/acsami.9b06375 10.1002/adfm.202212907 10.1016/j.ccr.2017.03.027 10.1016/j.snb.2022.132261 10.1039/C9CC06416H 10.1016/j.ccr.2021.214304 10.1039/C9RA09938G 10.1039/D0CC01627F 10.1039/C9TC00851A 10.1021/ic402182j 10.1039/C4SC03224A 10.1016/j.matt.2022.06.005 10.1002/smll.201803468 10.1021/acs.inorgchem.7b00323 10.1021/jacs.1c11984 10.1016/j.ccr.2022.214918 10.1039/C2CC37497H |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202402581 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 39143837 10_1002_chem_202402581 CHEM202402581 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province funderid: ZR2021MB064 – fundername: National Natural Science Foundation of China funderid: 22071126 – fundername: National Natural Science Foundation of China grantid: 22071126 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2021MB064 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX CITATION AEUQT AFPWT NPM RGC RWI WRC 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3731-a985c897577a7abb186253205f846fa8424814003a9b0f337507df5b0df41b03 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 01:30:41 EDT 2025 Fri Jul 25 11:41:55 EDT 2025 Wed Feb 19 02:10:12 EST 2025 Thu Apr 24 23:00:17 EDT 2025 Tue Jul 01 00:44:06 EDT 2025 Wed Jun 11 08:28:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 66 |
Keywords | Electron transfer Photogenerated radicals Photochromism Pyridinecarboxylate |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-a985c897577a7abb186253205f846fa8424814003a9b0f337507df5b0df41b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6335-8083 |
PMID | 39143837 |
PQID | 3132773566 |
PQPubID | 986340 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3093173749 proquest_journals_3132773566 pubmed_primary_39143837 crossref_primary_10_1002_chem_202402581 crossref_citationtrail_10_1002_chem_202402581 wiley_primary_10_1002_chem_202402581_CHEM202402581 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 26, 2024 |
PublicationDateYYYYMMDD | 2024-11-26 |
PublicationDate_xml | – month: 11 year: 2024 text: November 26, 2024 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 452 2021; 27 2023; 33 2023; 34 2015; 71 2023; 5 2020; 120 2019; 55 2019; 11 2019; 15 2019; 58 2020; 56 2022; 21 2020; 10 2019; 163 2009; 48 2018; 6 2023; 62 2023; 25 1986; 86 2003; 42 2022; 369 2014; 53 2019; 7 2015; 6 2018; 140 2019; 6 2013; 49 2023; 15 2021; 427 2013; 42 2015; 54 2021; 1818 2021; 143 2021; 50 2019; 141 2016; 55 2022; 144 2016; 7 2010; 46 2016; 3 2022; 5 2022; 61 2023; 476 2023; 475 2000; 33 2022; 9 2017; 56 2008; 47 2022; 58 2022; 14 2019; 378 2021; 60 2017; 344 2022; 18 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 42 start-page: 6553 year: 2013 end-page: 6563 publication-title: Dalton Trans. – volume: 50 start-page: 6349 year: 2021 end-page: 6368 publication-title: Chem. Soc. Rev. – volume: 50 start-page: 546 year: 2021 end-page: 552 publication-title: Dalton Trans. – volume: 15 start-page: 13600 year: 2023 end-page: 13608 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 4208 year: 2023 end-page: 4215 publication-title: ACS Appl. Mater. Interfaces – volume: 60 start-page: 9278 year: 2021 end-page: 9281 publication-title: Inorg. Chem. – volume: 58 start-page: 4024 year: 2022 end-page: 4027 publication-title: Chem. Commun. – volume: 27 start-page: 7842 year: 2021 end-page: 7846 publication-title: Chem. Eur. J. – volume: 144 start-page: 4457 year: 2022 end-page: 4468 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 12829 year: 2019 end-page: 12832 publication-title: Chem. Commun. – volume: 163 start-page: 656 year: 2019 end-page: 659 publication-title: Dyes Pigm. – volume: 54 start-page: 430 year: 2015 end-page: 435 publication-title: Angew. Chem. Int. Ed. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 18 year: 2022 publication-title: Mater. Today Sustain. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 3593 year: 2020 end-page: 3605 publication-title: RSC Adv. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 140 start-page: 2805 year: 2018 end-page: 2811 publication-title: J. Am. Chem. Soc. – volume: 452 year: 2022 publication-title: Coord. Chem. Rev. – volume: 378 start-page: 533 year: 2019 end-page: 560 publication-title: Coord. Chem. Rev. – volume: 56 start-page: 14458 year: 2017 end-page: 14462 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 30713 year: 2019 end-page: 30718 publication-title: ACS Appl. Mater. Interfaces – volume: 71 start-page: 3 year: 2015 end-page: 8 publication-title: Acta Crystallogr. Sect. C – volume: 427 year: 2021 publication-title: Coord. Chem. Rev. – volume: 62 start-page: 8663 year: 2023 end-page: 8669 publication-title: Inorg. Chem. – volume: 56 start-page: 5929 year: 2020 end-page: 5932 publication-title: Chem. Commun. – volume: 6 start-page: 1420 year: 2015 end-page: 1425 publication-title: Chem. Sci. – volume: 7 start-page: 2195 year: 2016 end-page: 2200 publication-title: Chem. Sci. – volume: 33 start-page: 1193 year: 2000 publication-title: J. Appl. Crystallogr. – volume: 9 year: 2022 publication-title: Natl. Sci. Rev. – volume: 48 start-page: 7853 year: 2009 end-page: 7863 publication-title: Inorg. Chem. – volume: 56 start-page: 6244 year: 2017 end-page: 6250 publication-title: Inorg. Chem. – volume: 60 start-page: 18223 year: 2021 end-page: 18230 publication-title: Angew. Chem. Int. Ed. – volume: 143 start-page: 2232 year: 2021 end-page: 2238 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2918 year: 2022 end-page: 2932 publication-title: Matter – volume: 61 start-page: 3607 year: 2022 end-page: 3615 publication-title: Inorg. Chem. – volume: 49 start-page: 406 year: 2013 end-page: 408 publication-title: Chem. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 12663 year: 2019 end-page: 12672 publication-title: J. Am. Chem. Soc. – volume: 86 start-page: 401 year: 1986 end-page: 449 publication-title: Chem. Rev. – volume: 120 start-page: 8790 year: 2020 end-page: 8813 publication-title: Chem. Rev. – volume: 55 start-page: 4373 year: 2016 end-page: 4380 publication-title: Inorg. Chem. – volume: 14 start-page: 8458 year: 2022 end-page: 8463 publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 5631 year: 2019 end-page: 5634 publication-title: Chem. Commun. – volume: 60 start-page: 4375 year: 2021 end-page: 4379 publication-title: Inorg. Chem. – volume: 46 start-page: 361 year: 2010 end-page: 376 publication-title: Chem. Commun. – volume: 25 start-page: 6777 year: 2023 end-page: 6785 publication-title: CrystEngComm – volume: 369 year: 2022 publication-title: Sens. Actuators B – volume: 1818 year: 2021 publication-title: J. Phys. Conf. Ser. – volume: 6 start-page: 9341 year: 2018 end-page: 9344 publication-title: J. Mater. Chem. C – volume: 15 year: 2019 publication-title: Small – volume: 7 start-page: 3920 year: 2019 end-page: 3923 publication-title: J. Mater. Chem. C – volume: 47 start-page: 3565 year: 2008 end-page: 3567 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 847 year: 2014 end-page: 851 publication-title: Inorg. Chem. – volume: 42 start-page: 1616 year: 2003 end-page: 1624 publication-title: Inorg. Chem. – volume: 53 start-page: 9298 year: 2014 end-page: 9301 publication-title: Angew. Chem. Int. Ed. – volume: 34 year: 2023 publication-title: Chin. Chem. Lett. – volume: 344 start-page: 54 year: 2017 end-page: 82 publication-title: Coord. Chem. Rev. – volume: 58 start-page: 3058 year: 2019 end-page: 3064 publication-title: Inorg. Chem. – volume: 6 start-page: 2435 year: 2019 end-page: 2440 publication-title: Inorg. Chem. Front. – volume: 5 start-page: 1317 year: 2023 end-page: 1331 publication-title: ACS Materials Lett. – volume: 475 year: 2023 publication-title: Coord. Chem. Rev. – volume: 21 start-page: 1334 year: 2022 end-page: 1340 publication-title: Nat. Mater. – volume: 48 start-page: 6476 year: 2009 end-page: 6479 publication-title: Angew. Chem. Int. Ed. – volume: 476 year: 2023 publication-title: Coord. Chem. Rev. – volume: 55 start-page: 13824 year: 2019 end-page: 13827 publication-title: Chem. Commun. – ident: e_1_2_8_60_1 doi: 10.1039/c3dt32861a – ident: e_1_2_8_1_1 doi: 10.1002/anie.202303262 – ident: e_1_2_8_11_1 doi: 10.1021/acs.inorgchem.1c00280 – ident: e_1_2_8_18_1 doi: 10.1016/j.ccr.2020.213579 – ident: e_1_2_8_36_1 doi: 10.1002/anie.201408862 – ident: e_1_2_8_48_1 doi: 10.1002/advs.201500224 – ident: e_1_2_8_54_1 doi: 10.1002/anie.202215591 – ident: e_1_2_8_43_1 doi: 10.1039/C9QI00730J – ident: e_1_2_8_68_1 doi: 10.1016/j.ccr.2021.214301 – ident: e_1_2_8_65_1 doi: 10.1021/cr00072a005 – ident: e_1_2_8_23_1 doi: 10.1002/anie.202105491 – ident: e_1_2_8_57_1 doi: 10.1021/acs.inorgchem.6b00077 – ident: e_1_2_8_40_1 doi: 10.1016/j.mtsust.2022.100149 – ident: e_1_2_8_52_1 doi: 10.1021/jacs.0c10183 – ident: e_1_2_8_8_1 doi: 10.1021/acs.inorgchem.3c00835 – ident: e_1_2_8_50_1 doi: 10.1002/chem.202100696 – ident: e_1_2_8_16_1 doi: 10.1016/j.ccr.2017.10.029 – ident: e_1_2_8_20_1 doi: 10.1039/B917890B – ident: e_1_2_8_33_1 doi: 10.1039/C5SC04450B – ident: e_1_2_8_13_1 doi: 10.1021/acs.inorgchem.1c03661 – ident: e_1_2_8_28_1 doi: 10.1021/jacs.9b04930 – ident: e_1_2_8_69_1 doi: 10.1088/1742-6596/1818/1/012054 – ident: e_1_2_8_4_1 doi: 10.1016/j.ccr.2022.214921 – ident: e_1_2_8_6_1 doi: 10.1021/acsami.2c21847 – ident: e_1_2_8_9_1 doi: 10.1039/D3CE01060K – ident: e_1_2_8_67_1 doi: 10.1039/D1CS00004G – ident: e_1_2_8_62_1 doi: 10.1021/ic025725d – ident: e_1_2_8_64_1 doi: 10.1002/anie.200902045 – ident: e_1_2_8_45_1 doi: 10.1016/j.dyepig.2018.12.037 – ident: e_1_2_8_30_1 doi: 10.1002/anie.201707290 – ident: e_1_2_8_46_1 doi: 10.1002/anie.200705545 – ident: e_1_2_8_3_1 doi: 10.1093/nsr/nwab222 – ident: e_1_2_8_31_1 doi: 10.1039/D2CC00288D – ident: e_1_2_8_17_1 doi: 10.1016/j.ccr.2022.214892 – ident: e_1_2_8_47_1 doi: 10.1002/anie.202114100 – ident: e_1_2_8_26_1 doi: 10.1039/C9CC07121K – ident: e_1_2_8_42_1 doi: 10.1039/C8TC02903B – ident: e_1_2_8_12_1 doi: 10.1021/acsmaterialslett.3c00284 – ident: e_1_2_8_5_1 doi: 10.1021/acsami.2c19779 – ident: e_1_2_8_21_1 doi: 10.1021/acs.inorgchem.1c01521 – ident: e_1_2_8_51_1 doi: 10.1039/D0DT03929B – ident: e_1_2_8_63_1 doi: 10.1021/ic900737q – ident: e_1_2_8_19_1 doi: 10.1021/acs.chemrev.9b00350 – ident: e_1_2_8_22_1 doi: 10.1021/jacs.7b10101 – ident: e_1_2_8_39_1 doi: 10.1038/s41563-022-01317-y – ident: e_1_2_8_56_1 doi: 10.1107/S0021889800007202 – ident: e_1_2_8_32_1 doi: 10.1021/acsami.1c23512 – ident: e_1_2_8_41_1 doi: 10.1039/C9CC02229E – ident: e_1_2_8_70_1 doi: 10.1107/S2053229614024218 – ident: e_1_2_8_37_1 doi: 10.1002/anie.201311124 – ident: e_1_2_8_61_1 doi: 10.1021/acs.inorgchem.8b03042 – ident: e_1_2_8_7_1 doi: 10.1016/j.cclet.2022.03.091 – ident: e_1_2_8_27_1 doi: 10.1021/acsami.9b06375 – ident: e_1_2_8_53_1 doi: 10.1002/adfm.202212907 – ident: e_1_2_8_66_1 doi: 10.1016/j.ccr.2017.03.027 – ident: e_1_2_8_10_1 doi: 10.1016/j.snb.2022.132261 – ident: e_1_2_8_25_1 doi: 10.1039/C9CC06416H – ident: e_1_2_8_14_1 doi: 10.1016/j.ccr.2021.214304 – ident: e_1_2_8_58_1 doi: 10.1039/C9RA09938G – ident: e_1_2_8_24_1 doi: 10.1039/D0CC01627F – ident: e_1_2_8_55_1 – ident: e_1_2_8_44_1 doi: 10.1039/C9TC00851A – ident: e_1_2_8_49_1 doi: 10.1021/ic402182j – ident: e_1_2_8_34_1 doi: 10.1039/C4SC03224A – ident: e_1_2_8_2_1 doi: 10.1016/j.matt.2022.06.005 – ident: e_1_2_8_29_1 doi: 10.1002/smll.201803468 – ident: e_1_2_8_59_1 doi: 10.1021/acs.inorgchem.7b00323 – ident: e_1_2_8_38_1 doi: 10.1021/jacs.1c11984 – ident: e_1_2_8_15_1 doi: 10.1016/j.ccr.2022.214918 – ident: e_1_2_8_35_1 doi: 10.1039/C2CC37497H |
SSID | ssj0009633 |
Score | 2.6259956 |
Snippet | Metal‐organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers... Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202402581 |
SubjectTerms | Assembly Construction standards Dicarboxylic acids Electron transfer Lanthanum Lanthanum chlorides Ligands Metal-organic frameworks Photochromism Photogenerated radicals Pyridinecarboxylate Topology |
Title | Regulating the Topologies and Photoresponsive Properties of Lanthanum‐Organic Frameworks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202402581 https://www.ncbi.nlm.nih.gov/pubmed/39143837 https://www.proquest.com/docview/3132773566 https://www.proquest.com/docview/3093173749 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-UwFD6IG92MzxnriwjCrKppk960SxEvIioid0DclKRNEGbsFe-9Llz5E_yN_hLPadrqnWEQdNfShDaP0_MlOef7AHbR56Fjl0VoeY-HUqQuNJQFomzcs1rbwpaUnHx23jv-JU-ukqt3WfyeH6LbcCPLqP_XZODajPbfSEOxTZRJTqcDSZ17TQFbhIou3_ijcHZ5LXmpQuJgbVkbebw_XX3aK_0DNaeRa-16-gug24_2ESe_9yZjs1c8_sXn-JVWLcK3BpeyAz-RlmDGVsswd9jKwa3A9aVXrUdXxxA0soFXV8CFNtNVyS5uhrh6bwJuHyy7oE3-e2JrZUPHTnH8bnQ1uX15evbZnwXrt2Fho1UY9I8Gh8dhI8wQFkKJKNRZmhRpphKltNLGRLgsIoGJxCGacTqVsSQiLS50ZrgTAlGJKl1ieOlkZLj4DrPVsLJrwCInojJNSdRKSa7LLCoR08gkSrXBtZULIGzHJS8a0nLSzviTe7rlOKcOy7sOC-BnV_7O03X8t-RmO8x5Y7ajnHgslRIIcQPY6R5jR9Mpiq7scIJleIaYSyiZBfDDT4_uVSIjNXmhAojrQf7gG3Kiveju1j9TaQPm6ZqyI-PeJsyO7yd2C2HS2GzXpvAKH6sI3w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZVE2vCmBAkYCsUrrxM44WbBALaMpnVZVNUgVG8tJ7BYBCZoHCFZ8Ap_Cr_ALfAn3xkmqASEkpC5YJnESP659jx_3HIBH6PPQscsitHzAQylSF-YUBaJsPLDG2MKWFJy8fzAYvZQvjpPjFfjWxcJ4foh-wY16RjNeUwenBemtM9ZQLBSFktP2QJJG7bnKPfvpI87aZk93d7CJH8fx8PlkexS2wgJhIZSIQpOlSZFmKlHKKJPnEcJ6EkhIHHpjZ1IZSyKC4sJkOXdCoFdVpUtyXjoZ5VzgZy_ARVIRJ7b-naMzwio0Zy9eL1VIpK8dTSSPt5azu-wGf8O2y1C58XXDK_C9qyV_xOXN5mKebxaffyGQ_J-q8SpcboE3e-Z7yjVYsdV1WNvu9O5uwKsje9JomVUnDFExm3j5iNd2xkxVssPTel5P2xPFHyw7pF2MKdHRstqxMRroqakW7358-erDWws27M69zW7C5DxKdgtWq7qyt4FFTkRlmpJql5LclFlUImiTSZSaHCePLoCwswNdtKzsJA7yVns-6VhT--i-fQJ40qd_7_lI_phyozMr3Y5LM01EnUoJxPABPOwfY0XTNpGpbL3ANDxDUCmUzAJY9-bY_0pkEXHbqgDixqj-kgdNvB791Z1_eekBrI0m-2M93j3YuwuX6D6FgsaDDVidTxf2HmLCeX6_6YYM9Dnb608NiGIU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtUwEB2VIgEb3oVAASOBWKV1YidOFixQL1ctLdVVdZEqNpaT2C0Ckuo-QHTVT-if9Ff4Br6EmbyqC0JISF2wTOIkfsxkjmPPOQDPMOZhYJe5b3nMfSkS52eUBaJsGFtjbG4LSk5-uxtvvpNv9qP9JTjrcmEafoj-hxt5Rv29Jgc_Ktz6OWkotokyyWl1IEqCdlvltv32FSdt05dbAxzh52E4fD3e2PRbXQE_F0oEvkmTKE9SFSlllMmyAFE96SNEDoOxM4kMJfFAcWHSjDshMKiqwkUZL5wMMi7wsZfgsox5SloRg71zviq05ka7XiqfOF87lkgeri9WdzEK_gZtF5FyHeqGN-B710nNDpePa_NZtpYf_8If-R_14k243sJu9qrxk1uwZMvbcHWjU7u7A-_37EGtZFYeMMTEbNyIR3ywU2bKgo0Oq1k1afcTf7FsRGsYEyKjZZVjO2ieh6acf_5xctokt-Zs2O16m96F8UW0bAWWy6q094EFTgRFkpBml5LcFGlQIGSTUZCYDKeOzgO_MwOdt5zsJA3ySTds0qGm8dH9-Hjwoi9_1LCR_LHkamdVuv0qTTXRdColEMF78LS_jB1Ni0SmtNUcy_AUIaVQMvXgXmON_atEGhCzrfIgrG3qL3XQxOrRHz34l5uewJXRYKh3tna3H8I1Ok15oGG8Csuzydw-QkA4yx7XTshAX7C5_gRYd2DD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+Topologies+and+Photoresponsive+Properties+of+Lanthanum-Organic+Frameworks&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Ren%2C+Xin-Ye&rft.au=Chen%2C+Fan-Yao&rft.au=Zhang%2C+Chun-Hua&rft.au=Liang%2C+Zhen-Gang&rft.date=2024-11-26&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=30&rft.issue=66&rft.spage=e202402581&rft_id=info:doi/10.1002%2Fchem.202402581&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |