Oriented Two‐Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport

Nanofluidic ion transport holds high promise in bio‐sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two‐dimensional cov...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 6; pp. e202113141 - n/a
Main Authors Cao, Li, Liu, Xiaowei, Shinde, Digambar B., Chen, Cailing, Chen, I‐Chun, Li, Zhen, Zhou, Zongyao, Yang, Zhongyu, Han, Yu, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanofluidic ion transport holds high promise in bio‐sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two‐dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2–3 orders of magnitude higher ion flux compared with that of conventional single‐channel nanofluidic devices. The surface‐charge‐governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH‐responsivity of imine and phenol hydroxyl groups, the COF‐DT membranes attained an actively modulable ion transport with a high pH‐gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features. We report smart nanofluidic devices based on oriented two‐dimensional covalent organic framework membranes that offer vertically aligned nanofluidic channel arrays, leading to an ultrahigh ion flux and pH‐gating nanofluidic transport.
AbstractList Nanofluidic ion transport holds high promise in bio‐sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two‐dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2–3 orders of magnitude higher ion flux compared with that of conventional single‐channel nanofluidic devices. The surface‐charge‐governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH‐responsivity of imine and phenol hydroxyl groups, the COF‐DT membranes attained an actively modulable ion transport with a high pH‐gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features.
Nanofluidic ion transport holds high promise in bio‐sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two‐dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2–3 orders of magnitude higher ion flux compared with that of conventional single‐channel nanofluidic devices. The surface‐charge‐governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH‐responsivity of imine and phenol hydroxyl groups, the COF‐DT membranes attained an actively modulable ion transport with a high pH‐gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features. We report smart nanofluidic devices based on oriented two‐dimensional covalent organic framework membranes that offer vertically aligned nanofluidic channel arrays, leading to an ultrahigh ion flux and pH‐gating nanofluidic transport.
Nanofluidic ion transport holds high promise in bio-sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two-dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2-3 orders of magnitude higher ion flux compared with that of conventional single-channel nanofluidic devices. The surface-charge-governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH-responsivity of imine and phenol hydroxyl groups, the COF-DT membranes attained an actively modulable ion transport with a high pH-gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features.Nanofluidic ion transport holds high promise in bio-sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two-dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2-3 orders of magnitude higher ion flux compared with that of conventional single-channel nanofluidic devices. The surface-charge-governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH-responsivity of imine and phenol hydroxyl groups, the COF-DT membranes attained an actively modulable ion transport with a high pH-gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features.
Author Liu, Xiaowei
Chen, I‐Chun
Li, Zhen
Lai, Zhiping
Chen, Cailing
Zhou, Zongyao
Shinde, Digambar B.
Cao, Li
Han, Yu
Yang, Zhongyu
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0002-7087-9431
  surname: Cao
  fullname: Cao, Li
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Digambar B.
  surname: Shinde
  fullname: Shinde, Digambar B.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Cailing
  surname: Chen
  fullname: Chen, Cailing
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: I‐Chun
  surname: Chen
  fullname: Chen, I‐Chun
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Zongyao
  surname: Zhou
  fullname: Zhou, Zongyao
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Zhongyu
  surname: Yang
  fullname: Yang, Zhongyu
  organization: North Dakota State University
– sequence: 9
  givenname: Yu
  surname: Han
  fullname: Han, Yu
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 10
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34816574$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v2yAYxtHUaf2zXXeckHbZxSkvYIyPVda0kdrmsOyMsI1TOhsysJfl1o_Qz7hPMqK0m1Sp6gkEv-d54XmO0YHzziD0EcgECKGn2lkzoYQCMODwBh1BTiFjRcEO0p4zlhUyh0N0HONd4qUk4h06ZFyCyAt-hLaLYI0bTIOXG__n_uGr7Y2L1jvd4an_pbt0iRdhlebUeBZ0bzY-_MDXpq-CdibijR1u8aVd3eK5d3jWjb-xdg3-1usw4As9WLfCN9r5thttkzyWSRbXPgzv0dtWd9F8eFxP0PfZ-XJ6mV0tLubTs6usZgWDTAPPjajasgJqTJsXhIoC6hbyEhpJ2e6cVU3BRF7yAqTgmkgwuq6klqUo2Qn6svddB_9zNHFQvY216br0fD9GRQWBUgLkLKGfn6F3fgwpih1FKaeloJCoT4_UWPWmUetg02e36inUBPA9UAcfYzCtqu2QkvBuCNp2Cojadad23al_3SXZ5JnsyflFQbkXbGxntq_Q6uxmfv5f-xf2bawQ
CitedBy_id crossref_primary_10_1002_smll_202303131
crossref_primary_10_1021_jacs_4c11709
crossref_primary_10_1002_ange_202116910
crossref_primary_10_1002_adma_202208640
crossref_primary_10_1002_ange_202422333
crossref_primary_10_1016_j_micromeso_2023_112971
crossref_primary_10_1002_adfm_202312452
crossref_primary_10_1021_jacs_3c03198
crossref_primary_10_1002_adma_202302511
crossref_primary_10_1021_accountsmr_3c00067
crossref_primary_10_1002_anie_202116910
crossref_primary_10_1002_anie_202218321
crossref_primary_10_1002_smll_202308499
crossref_primary_10_1002_smtd_202401120
crossref_primary_10_1016_j_cej_2023_142304
crossref_primary_10_1002_adfm_202300386
crossref_primary_10_1002_anie_202317876
crossref_primary_10_1002_anie_202421661
crossref_primary_10_1002_anie_202314763
crossref_primary_10_1016_j_enchem_2022_100079
crossref_primary_10_1016_j_cej_2024_154457
crossref_primary_10_1021_jacs_4c07255
crossref_primary_10_1080_19475411_2023_2288954
crossref_primary_10_1002_ange_202218321
crossref_primary_10_1016_j_cej_2023_144082
crossref_primary_10_1021_acsami_4c02299
crossref_primary_10_1002_smtd_202301558
crossref_primary_10_1016_j_memsci_2025_123908
crossref_primary_10_1002_smll_202206382
crossref_primary_10_1021_jacs_2c06623
crossref_primary_10_1016_j_nanoen_2023_108693
crossref_primary_10_1002_adfm_202208095
crossref_primary_10_1002_smll_202404605
crossref_primary_10_1002_smtd_202300278
crossref_primary_10_1002_ange_202314763
crossref_primary_10_1038_s41467_022_31183_w
crossref_primary_10_1002_ange_202317876
crossref_primary_10_1002_ange_202421661
crossref_primary_10_1002_adfm_202402208
crossref_primary_10_1002_adma_202204894
crossref_primary_10_1038_s44286_024_00096_4
crossref_primary_10_1002_smll_202303757
crossref_primary_10_1021_acsnano_3c08028
crossref_primary_10_1021_acsnano_2c07641
crossref_primary_10_1039_D5SC00109A
crossref_primary_10_1021_acsami_4c12069
crossref_primary_10_1021_acssuschemeng_3c04167
crossref_primary_10_1002_adfm_202309869
crossref_primary_10_1021_acs_est_3c10497
crossref_primary_10_1002_anie_202300167
crossref_primary_10_1021_acs_analchem_4c03716
crossref_primary_10_1039_D3SC00487B
crossref_primary_10_1002_smll_202310791
crossref_primary_10_1039_D3NH00494E
crossref_primary_10_1021_jacs_3c11542
crossref_primary_10_1002_anie_202422333
crossref_primary_10_1021_acsami_3c17579
crossref_primary_10_1016_j_desal_2022_115976
crossref_primary_10_1021_jacs_2c11071
crossref_primary_10_1021_acs_analchem_2c01595
crossref_primary_10_1016_j_mtsust_2024_100939
crossref_primary_10_1038_s41893_024_01493_6
crossref_primary_10_1039_D2CC03941A
crossref_primary_10_1002_smll_202307743
crossref_primary_10_1021_acsnano_2c07813
crossref_primary_10_1021_jacs_2c04223
crossref_primary_10_3389_fchem_2022_986908
crossref_primary_10_1002_ange_202300167
Cites_doi 10.1038/s41565-018-0181-4
10.1038/nchem.548
10.1039/c0cs00053a
10.1016/j.chempr.2017.12.011
10.1021/jacs.9b08628
10.1039/B909366B
10.1103/PhysRevLett.93.035901
10.1002/adma.201905776
10.1038/ncomms7786
10.1126/science.1120411
10.1126/science.1202747
10.1002/anie.201906191
10.1038/ncomms8602
10.1021/acs.chemmater.8b01425
10.1002/adma.202005565
10.1038/s41563-021-00934-3
10.1021/acs.chemrev.9b00550
10.1103/PhysRevLett.99.044501
10.1002/prot.22807
10.1039/D0CS00793E
10.1021/acsnano.9b05758
10.1021/nl0509677
10.1002/adma.201503668
10.1021/jacs.9b09956
10.1021/ja308167f
10.1002/adma.201302441
10.1126/science.aaf5289
10.1021/ar040274h
10.1038/s41563-020-0625-8
10.1038/s41467-021-22141-z
10.1002/adma.202001284
10.1021/jacs.0c11159
10.1038/nnano.2013.240
10.1002/adfm.202009970
10.1038/nnano.2015.219
10.1002/smll.201903879
10.1021/jacs.7b01240
10.1039/C9CC01548E
10.1021/acsnano.0c04099
10.1039/C9CS00827F
10.1007/s10404-010-0641-0
10.1021/jacs.8b06460
10.1021/acsnano.8b06708
10.1038/nmat2127
10.1021/acsnano.6b07692
10.1073/pnas.2003898117
10.1021/jacs.6b11100
10.1126/science.aar7883
10.1038/nature18593
10.1038/s41586-018-0292-y
10.1126/science.1181799
10.1002/adma.201907289
10.1039/c001349h
10.1038/nature11876
10.1021/acs.chemmater.0c04382
10.1063/1.4794973
10.1002/ange.201906191
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202113141
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 34816574
10_1002_anie_202113141
ANIE202113141
Genre article
Journal Article
GrantInformation_xml – fundername: KAUST baseline
  funderid: BAS/1/1375-01
– fundername: KAUST Centre Competitive Fund
  funderid: FCC/1/1972-19
– fundername: KAUST baseline
  grantid: BAS/1/1375-01
– fundername: KAUST Centre Competitive Fund
  grantid: FCC/1/1972-19
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AASGY
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3731-a145e6bf9b12eef5702671cf1591d8239b123bd73659471864a081eacb8a89693
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:52:51 EDT 2025
Fri Jul 25 12:03:44 EDT 2025
Wed Feb 19 02:28:03 EST 2025
Thu Apr 24 22:54:47 EDT 2025
Tue Jul 01 01:18:12 EDT 2025
Wed Jan 22 16:26:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords high-ion flux
ion gating
nanofluidic transport
oriented COF membranes
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-a145e6bf9b12eef5702671cf1591d8239b123bd73659471864a081eacb8a89693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7087-9431
0000-0001-9555-6009
PMID 34816574
PQID 2622429621
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2601981153
proquest_journals_2622429621
pubmed_primary_34816574
crossref_citationtrail_10_1002_anie_202113141
crossref_primary_10_1002_anie_202113141
wiley_primary_10_1002_anie_202113141_ANIE202113141
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 1, 2022
2022-02-00
2022-Feb-01
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 1, 2022
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2013; 25
2021; 20
2020; 120
2019; 55
2019; 13
2006; 39
2020; 16
2008; 7
2020; 14
2013; 7
2013; 8
2020; 19
2021; 31
2012; 134
2018; 4
2021; 33
2020; 49
2018; 30
2010; 2
2016; 351
2010; 9
2010; 78
2015; 6
2021; 3
2018; 140
2010; 327
2005; 310
2020; 142
2010; 39
2011; 40
2015; 10
2020; 32
2021; 143
2021; 50
2019; 141
2007; 99
2011; 332
2019 2019; 58 131
2017; 139
2021; 12
2004; 93
2018; 559
2016; 536
2017; 11
2005; 5
2020; 117
2013; 494
2018; 12
2016; 28
2018; 13
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_36_2
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
Bing S. (e_1_2_6_43_1) 2021; 3
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 6
  start-page: 6786
  year: 2015
  publication-title: Nat. Commun.
– volume: 141
  start-page: 19831
  year: 2019
  end-page: 19838
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 4550
  year: 2019
  end-page: 4553
  publication-title: Chem. Commun.
– volume: 3
  start-page: 0
  year: 2021
  publication-title: Matter
– volume: 93
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 303
  year: 2008
  end-page: 307
  publication-title: Nat. Mater.
– volume: 12
  start-page: 1844
  year: 2021
  publication-title: Nat. Commun.
– volume: 28
  start-page: 144
  year: 2016
  end-page: 150
  publication-title: Adv. Mater.
– volume: 12
  start-page: 12464
  year: 2018
  end-page: 12471
  publication-title: ACS Nano
– volume: 11
  start-page: 2706
  year: 2017
  end-page: 2713
  publication-title: ACS Nano
– volume: 25
  start-page: 6064
  year: 2013
  end-page: 6068
  publication-title: Adv. Mater.
– volume: 559
  start-page: 236
  year: 2018
  end-page: 240
  publication-title: Nature
– volume: 332
  start-page: 228
  year: 2011
  end-page: 231
  publication-title: Science
– volume: 142
  start-page: 783
  year: 2020
  end-page: 791
  publication-title: J. Am. Chem. Soc.
– volume: 78
  start-page: 2886
  year: 2010
  end-page: 2894
  publication-title: Proteins Struct. Funct. Bioinf.
– volume: 4
  start-page: 308
  year: 2018
  end-page: 317
  publication-title: Chem
– volume: 39
  start-page: 239
  year: 2006
  end-page: 248
  publication-title: Acc. Chem. Res.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 50
  start-page: 1813
  year: 2021
  end-page: 1845
  publication-title: Chem. Soc. Rev.
– volume: 7
  year: 2013
  publication-title: Biomicrofluidics
– volume: 19
  start-page: 254
  year: 2020
  end-page: 256
  publication-title: Nat. Mater.
– volume: 120
  start-page: 8814
  year: 2020
  end-page: 8933
  publication-title: Chem. Rev.
– volume: 361
  start-page: 52
  year: 2018
  end-page: 57
  publication-title: Science
– volume: 39
  start-page: 899
  year: 2010
  end-page: 900
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 10941
  year: 2018
  end-page: 10945
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 1142
  year: 2021
  end-page: 1148
  publication-title: Nat. Mater.
– volume: 10
  start-page: 1070
  year: 2015
  end-page: 1076
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 1215
  year: 2010
  end-page: 1224
  publication-title: Microfluid. Nanofluid.
– volume: 139
  start-page: 4999
  year: 2017
  end-page: 5002
  publication-title: J. Am. Chem. Soc.
– volume: 327
  start-page: 64
  year: 2010
  end-page: 67
  publication-title: Science
– volume: 49
  start-page: 708
  year: 2020
  end-page: 735
  publication-title: Chem. Soc. Rev.
– volume: 143
  start-page: 1466
  year: 2021
  end-page: 1473
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 5069
  year: 2018
  end-page: 5086
  publication-title: Chem. Mater.
– volume: 2
  start-page: 235
  year: 2010
  end-page: 238
  publication-title: Nat. Chem.
– volume: 13
  start-page: 685
  year: 2018
  end-page: 690
  publication-title: Nat. Nanotechnol.
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  publication-title: Science
– volume: 39
  start-page: 1073
  year: 2010
  end-page: 1095
  publication-title: Chem. Soc. Rev.
– volume: 40
  start-page: 2385
  year: 2011
  end-page: 2401
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 11793
  year: 2019
  end-page: 11799
  publication-title: ACS Nano
– volume: 536
  start-page: 197
  year: 2016
  end-page: 200
  publication-title: Nature
– volume: 6
  start-page: 7602
  year: 2015
  publication-title: Nat. Commun.
– volume: 494
  start-page: 455
  year: 2013
  end-page: 458
  publication-title: Nature
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 1633
  year: 2005
  end-page: 1637
  publication-title: Nano Lett.
– volume: 139
  start-page: 6314
  year: 2017
  end-page: 6320
  publication-title: J. Am. Chem. Soc.
– volume: 351
  start-page: 1395
  year: 2016
  end-page: 1396
  publication-title: Science
– volume: 33
  start-page: 1341
  year: 2021
  end-page: 1352
  publication-title: Chem. Mater.
– volume: 8
  start-page: 939
  year: 2013
  end-page: 945
  publication-title: Nat. Nanotechnol.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 117
  start-page: 13959
  year: 2020
  end-page: 13966
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 58 131
  start-page: 11785 11911
  year: 2019 2019
  end-page: 11790 11916
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 16528
  year: 2012
  end-page: 16531
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 9042
  year: 2020
  end-page: 9049
  publication-title: ACS Nano
– ident: e_1_2_6_25_1
  doi: 10.1038/s41565-018-0181-4
– ident: e_1_2_6_32_1
  doi: 10.1038/nchem.548
– ident: e_1_2_6_1_1
  doi: 10.1039/c0cs00053a
– ident: e_1_2_6_40_1
  doi: 10.1016/j.chempr.2017.12.011
– ident: e_1_2_6_48_1
  doi: 10.1021/jacs.9b08628
– ident: e_1_2_6_5_1
  doi: 10.1039/B909366B
– ident: e_1_2_6_6_1
  doi: 10.1103/PhysRevLett.93.035901
– ident: e_1_2_6_49_1
  doi: 10.1002/adma.201905776
– ident: e_1_2_6_31_1
  doi: 10.1038/ncomms7786
– ident: e_1_2_6_28_1
  doi: 10.1126/science.1120411
– ident: e_1_2_6_45_1
  doi: 10.1126/science.1202747
– ident: e_1_2_6_36_1
  doi: 10.1002/anie.201906191
– ident: e_1_2_6_22_1
  doi: 10.1038/ncomms8602
– ident: e_1_2_6_33_1
  doi: 10.1021/acs.chemmater.8b01425
– ident: e_1_2_6_38_1
  doi: 10.1002/adma.202005565
– ident: e_1_2_6_53_1
  doi: 10.1038/s41563-021-00934-3
– ident: e_1_2_6_27_1
  doi: 10.1021/acs.chemrev.9b00550
– ident: e_1_2_6_15_1
  doi: 10.1103/PhysRevLett.99.044501
– ident: e_1_2_6_55_1
  doi: 10.1002/prot.22807
– ident: e_1_2_6_34_1
  doi: 10.1039/D0CS00793E
– ident: e_1_2_6_26_1
  doi: 10.1021/acsnano.9b05758
– ident: e_1_2_6_7_1
  doi: 10.1021/nl0509677
– ident: e_1_2_6_10_1
  doi: 10.1002/adma.201503668
– ident: e_1_2_6_46_1
  doi: 10.1021/jacs.9b09956
– ident: e_1_2_6_19_1
  doi: 10.1021/ja308167f
– ident: e_1_2_6_20_1
  doi: 10.1002/adma.201302441
– ident: e_1_2_6_4_1
  doi: 10.1126/science.aaf5289
– ident: e_1_2_6_18_1
  doi: 10.1021/ar040274h
– ident: e_1_2_6_3_1
  doi: 10.1038/s41563-020-0625-8
– ident: e_1_2_6_35_1
  doi: 10.1038/s41467-021-22141-z
– ident: e_1_2_6_39_1
  doi: 10.1002/adma.202001284
– ident: e_1_2_6_54_1
  doi: 10.1021/jacs.0c11159
– ident: e_1_2_6_9_1
  doi: 10.1038/nnano.2013.240
– ident: e_1_2_6_41_1
  doi: 10.1002/adfm.202009970
– volume: 3
  start-page: 0
  year: 2021
  ident: e_1_2_6_43_1
  publication-title: Matter
– ident: e_1_2_6_8_1
  doi: 10.1038/nnano.2015.219
– ident: e_1_2_6_42_1
  doi: 10.1002/smll.201903879
– ident: e_1_2_6_50_1
  doi: 10.1021/jacs.7b01240
– ident: e_1_2_6_56_1
  doi: 10.1039/C9CC01548E
– ident: e_1_2_6_21_1
  doi: 10.1021/acsnano.0c04099
– ident: e_1_2_6_29_1
  doi: 10.1039/C9CS00827F
– ident: e_1_2_6_51_1
  doi: 10.1007/s10404-010-0641-0
– ident: e_1_2_6_44_1
  doi: 10.1021/jacs.8b06460
– ident: e_1_2_6_11_1
  doi: 10.1021/acsnano.8b06708
– ident: e_1_2_6_12_1
  doi: 10.1038/nmat2127
– ident: e_1_2_6_47_1
  doi: 10.1021/acsnano.6b07692
– ident: e_1_2_6_57_1
  doi: 10.1073/pnas.2003898117
– ident: e_1_2_6_23_1
  doi: 10.1021/jacs.6b11100
– ident: e_1_2_6_30_1
  doi: 10.1126/science.aar7883
– ident: e_1_2_6_13_1
  doi: 10.1038/nature18593
– ident: e_1_2_6_24_1
  doi: 10.1038/s41586-018-0292-y
– ident: e_1_2_6_17_1
  doi: 10.1126/science.1181799
– ident: e_1_2_6_37_1
  doi: 10.1002/adma.201907289
– ident: e_1_2_6_2_1
  doi: 10.1039/c001349h
– ident: e_1_2_6_14_1
  doi: 10.1038/nature11876
– ident: e_1_2_6_52_1
  doi: 10.1021/acs.chemmater.0c04382
– ident: e_1_2_6_16_1
  doi: 10.1063/1.4794973
– ident: e_1_2_6_36_2
  doi: 10.1002/ange.201906191
SSID ssj0028806
Score 2.5833442
Snippet Nanofluidic ion transport holds high promise in bio‐sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and...
Nanofluidic ion transport holds high promise in bio-sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202113141
SubjectTerms Channel gating
Devices
Energy conversion
Fluctuations
Fluidics
high-ion flux
Hydroxyl groups
Ion charge
Ion flux
ion gating
Ion transport
Ions
Membranes
Nanochannels
nanofluidic transport
Nanofluids
oriented COF membranes
pH effects
Phenols
Surface charge
Title Oriented Two‐Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202113141
https://www.ncbi.nlm.nih.gov/pubmed/34816574
https://www.proquest.com/docview/2622429621
https://www.proquest.com/docview/2601981153
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqLu0F6C9baOVKSJwM6584yRFt2UIlQKIgcYs8Xkeq2E1Q2QjaUx-hz9gn6Uy8SbutUKX2mNhOHHvG_saZ-YaxbWNtUOXQCC_BCmPACTBWCxjmQTltwAcyFI9P7OGFeX-ZXP4SxR_5IfoDN9KMdr0mBXdws_eTNJQisNG-QwNGyzZynRy2CBWd9fxRCoUzhhdpLSgLfcfaOFR7y82Xd6U_oOYycm23nvEac12no8fJ1W4zh13_5Tc-x__5qnW2usClfD8K0mP2IFRP2MNRlw7uKft8SozIiE_5-W39_eu3t5QWIFJ68FGN8oqFPEZ2ej7uXL74cZhhd3A95XTiy8mthB_VFR9Pmzvuqgn_MEPh5e8cuV9zXOvrctp8nOAzetr1Z-xifHA-OhSLvA3C61RL4aRJgoUyB6lCKJOUslxJXyJykpNMabqvYZLifOW0N1rjEJjgDgCZy3Kb6-dspaqrsMF4UpYegrMSBQhNuTSD3EivQQ9zUA6SARPdvBV-QWpOuTWmRaRjVgUNaNEP6IDt9PWvI53HvTW3OjEoFmp9UyiLiEflVmHxm74YJ4L-suBY1g3VQdScIdDWA_Yiik__Kop6tklqBky1QvCXPhT7J0cH_dXLf2m0yR4pCtho_cy32Mr8UxNeIYyaw-tWVX4AKOwT2A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5V7aFceEMDBRYJxMlt9uG1feBQJQ0JbYIEqdSb8W7WEiK1qzZWH6f-BP4Kf4WfwC9hxi8UEEJC6oGjvWt7H_Ncz3wD8EJp7UTaVZ7lRntKmcQzSkvPdCMnEqmMdeQojid6eKDeHvqHK_C1yYWp8CHaAzfijFJeE4PTgfT2T9RQSsFGBw89GMkVr-Mq99zFGXptp69Hfdzil0IMdqe9oVcXFvCsDCT3Eq58p00aGS6cS_2AyjBxm6Jq57NQSLovzSyQ2o9IeGuVoOZEEWXCJIw04S-h1F-jMuIE199_3yJWCWSHKqFJSo_q3jc4kV2xvTzeZT34m3G7bCuXym5wC741y1TFuHzeKhZmy17-giD5X63jbbhZm95sp-KVO7Disruw3msq3t2Di3cE-owmOJue5d-vvvSp8kGFWsJ6ObIkNrIqedWyQRPVxsbuCOePKoPRoTajyBk2yjM2mBfnLMlm7MMR8id7k1CEOUN1lqfz4tMM39Eiy9-Hg2uZ-QNYzfLMbQDz09Qal2iOPILeahCaSHErjexGRiTG74DXEEpsa9x2Kh8yjyvEaRHTBsbtBnbgVdv_uEIs-WPPzYbu4lpyncZCo1EnIi2w-XnbjBtBP5JwLfOC-qBjEKIvITvwsKLX9lOU2K39QHVAlFT3lzHEO5PRbnv16F8eegbrw-l4P94fTfYeww1B-SllWP0mrC5OCvcErcaFeVryKYOP103QPwB4_275
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1FQQIu7MtAgEYCcerEvbhtHzhEMzEZQgYEiZSbcdttCTGxIzJWCCc-gU_hV_gFvoQqb2hACAkpB452t-1eam1XvQJ4pI1xsvA0z4Q1XGubcquN4taLnEyVtpkjR3F3Zrb39fMD_2AFvva5MC0-xHDgRpzRyGti8KO82PgJGkoZ2OjfoQOjhBZdWOWOOz1Bp-346XSCO_xYynhrb7zNu7oCPFOBEjwV2nfGFpEV0rnCD6gKk8gK1OwiD6Wi-8rmgTJ-RLLb6BQVJ0ooG6ZhZAh-CYX-OW28iIpFTF4PgFUSuaHNZ1KKU9n7HibSkxvL411Wg7_ZtsumcqPr4svwrV-lNsTl_Xq9sOvZp18AJP-nZbwClzrDm222nHIVVlx5DS6M-3p31-H0JUE-owHO9k6q75-_TKjuQYtZwsYVMiQ2sjZ1NWNxH9PGdt0hTh8VBqMjbUZxM2xalSye1x9ZWubszSFyJ3uWUnw5Q2VWFfP6XY7vGHDlb8D-mcz8JqyWVeluA_OLIrMuNQI5BH3VILSRFpmyyousTK0_At7TSZJ1qO1UPGSetHjTMqENTIYNHMGTof9Ri1fyx55rPdklndw6TqRBk05GRmLzw6EZN4J-I-FaVjX1QbcgRE9CjeBWS67Dpyit2_iBHoFsiO4vY0g2Z9Ot4erOvzz0AM6_msTJi-ls5y5clJSc0sTUr8Hq4kPt7qHJuLD3Gy5l8Pas6fkHldxtqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oriented+Two-Dimensional+Covalent+Organic+Framework+Membranes+with+High+Ion+Flux+and+Smart+Gating+Nanofluidic+Transport&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cao%2C+Li&rft.au=Liu%2C+Xiaowei&rft.au=Shinde%2C+Digambar+B&rft.au=Chen%2C+Cailing&rft.date=2022-02-01&rft.eissn=1521-3773&rft.volume=61&rft.issue=6&rft.spage=e202113141&rft_id=info:doi/10.1002%2Fanie.202113141&rft_id=info%3Apmid%2F34816574&rft.externalDocID=34816574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon