Oriented Two‐Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport
Nanofluidic ion transport holds high promise in bio‐sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two‐dimensional cov...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 6; pp. e202113141 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanofluidic ion transport holds high promise in bio‐sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two‐dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2–3 orders of magnitude higher ion flux compared with that of conventional single‐channel nanofluidic devices. The surface‐charge‐governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH‐responsivity of imine and phenol hydroxyl groups, the COF‐DT membranes attained an actively modulable ion transport with a high pH‐gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features.
We report smart nanofluidic devices based on oriented two‐dimensional covalent organic framework membranes that offer vertically aligned nanofluidic channel arrays, leading to an ultrahigh ion flux and pH‐gating nanofluidic transport. |
---|---|
AbstractList | Nanofluidic ion transport holds high promise in bio‐sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two‐dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2–3 orders of magnitude higher ion flux compared with that of conventional single‐channel nanofluidic devices. The surface‐charge‐governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH‐responsivity of imine and phenol hydroxyl groups, the COF‐DT membranes attained an actively modulable ion transport with a high pH‐gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features. Nanofluidic ion transport holds high promise in bio‐sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two‐dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2–3 orders of magnitude higher ion flux compared with that of conventional single‐channel nanofluidic devices. The surface‐charge‐governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH‐responsivity of imine and phenol hydroxyl groups, the COF‐DT membranes attained an actively modulable ion transport with a high pH‐gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features. We report smart nanofluidic devices based on oriented two‐dimensional covalent organic framework membranes that offer vertically aligned nanofluidic channel arrays, leading to an ultrahigh ion flux and pH‐gating nanofluidic transport. Nanofluidic ion transport holds high promise in bio-sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two-dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2-3 orders of magnitude higher ion flux compared with that of conventional single-channel nanofluidic devices. The surface-charge-governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH-responsivity of imine and phenol hydroxyl groups, the COF-DT membranes attained an actively modulable ion transport with a high pH-gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features.Nanofluidic ion transport holds high promise in bio-sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two-dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2-3 orders of magnitude higher ion flux compared with that of conventional single-channel nanofluidic devices. The surface-charge-governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH-responsivity of imine and phenol hydroxyl groups, the COF-DT membranes attained an actively modulable ion transport with a high pH-gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features. |
Author | Liu, Xiaowei Chen, I‐Chun Li, Zhen Lai, Zhiping Chen, Cailing Zhou, Zongyao Shinde, Digambar B. Cao, Li Han, Yu Yang, Zhongyu |
Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0002-7087-9431 surname: Cao fullname: Cao, Li organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Digambar B. surname: Shinde fullname: Shinde, Digambar B. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Cailing surname: Chen fullname: Chen, Cailing organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: I‐Chun surname: Chen fullname: Chen, I‐Chun organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Zhen surname: Li fullname: Li, Zhen organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Zongyao surname: Zhou fullname: Zhou, Zongyao organization: King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Zhongyu surname: Yang fullname: Yang, Zhongyu organization: North Dakota State University – sequence: 9 givenname: Yu surname: Han fullname: Han, Yu organization: King Abdullah University of Science and Technology (KAUST) – sequence: 10 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34816574$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v2yAYxtHUaf2zXXeckHbZxSkvYIyPVda0kdrmsOyMsI1TOhsysJfl1o_Qz7hPMqK0m1Sp6gkEv-d54XmO0YHzziD0EcgECKGn2lkzoYQCMODwBh1BTiFjRcEO0p4zlhUyh0N0HONd4qUk4h06ZFyCyAt-hLaLYI0bTIOXG__n_uGr7Y2L1jvd4an_pbt0iRdhlebUeBZ0bzY-_MDXpq-CdibijR1u8aVd3eK5d3jWjb-xdg3-1usw4As9WLfCN9r5thttkzyWSRbXPgzv0dtWd9F8eFxP0PfZ-XJ6mV0tLubTs6usZgWDTAPPjajasgJqTJsXhIoC6hbyEhpJ2e6cVU3BRF7yAqTgmkgwuq6klqUo2Qn6svddB_9zNHFQvY216br0fD9GRQWBUgLkLKGfn6F3fgwpih1FKaeloJCoT4_UWPWmUetg02e36inUBPA9UAcfYzCtqu2QkvBuCNp2Cojadad23al_3SXZ5JnsyflFQbkXbGxntq_Q6uxmfv5f-xf2bawQ |
CitedBy_id | crossref_primary_10_1002_smll_202303131 crossref_primary_10_1021_jacs_4c11709 crossref_primary_10_1002_ange_202116910 crossref_primary_10_1002_adma_202208640 crossref_primary_10_1002_ange_202422333 crossref_primary_10_1016_j_micromeso_2023_112971 crossref_primary_10_1002_adfm_202312452 crossref_primary_10_1021_jacs_3c03198 crossref_primary_10_1002_adma_202302511 crossref_primary_10_1021_accountsmr_3c00067 crossref_primary_10_1002_anie_202116910 crossref_primary_10_1002_anie_202218321 crossref_primary_10_1002_smll_202308499 crossref_primary_10_1002_smtd_202401120 crossref_primary_10_1016_j_cej_2023_142304 crossref_primary_10_1002_adfm_202300386 crossref_primary_10_1002_anie_202317876 crossref_primary_10_1002_anie_202421661 crossref_primary_10_1002_anie_202314763 crossref_primary_10_1016_j_enchem_2022_100079 crossref_primary_10_1016_j_cej_2024_154457 crossref_primary_10_1021_jacs_4c07255 crossref_primary_10_1080_19475411_2023_2288954 crossref_primary_10_1002_ange_202218321 crossref_primary_10_1016_j_cej_2023_144082 crossref_primary_10_1021_acsami_4c02299 crossref_primary_10_1002_smtd_202301558 crossref_primary_10_1016_j_memsci_2025_123908 crossref_primary_10_1002_smll_202206382 crossref_primary_10_1021_jacs_2c06623 crossref_primary_10_1016_j_nanoen_2023_108693 crossref_primary_10_1002_adfm_202208095 crossref_primary_10_1002_smll_202404605 crossref_primary_10_1002_smtd_202300278 crossref_primary_10_1002_ange_202314763 crossref_primary_10_1038_s41467_022_31183_w crossref_primary_10_1002_ange_202317876 crossref_primary_10_1002_ange_202421661 crossref_primary_10_1002_adfm_202402208 crossref_primary_10_1002_adma_202204894 crossref_primary_10_1038_s44286_024_00096_4 crossref_primary_10_1002_smll_202303757 crossref_primary_10_1021_acsnano_3c08028 crossref_primary_10_1021_acsnano_2c07641 crossref_primary_10_1039_D5SC00109A crossref_primary_10_1021_acsami_4c12069 crossref_primary_10_1021_acssuschemeng_3c04167 crossref_primary_10_1002_adfm_202309869 crossref_primary_10_1021_acs_est_3c10497 crossref_primary_10_1002_anie_202300167 crossref_primary_10_1021_acs_analchem_4c03716 crossref_primary_10_1039_D3SC00487B crossref_primary_10_1002_smll_202310791 crossref_primary_10_1039_D3NH00494E crossref_primary_10_1021_jacs_3c11542 crossref_primary_10_1002_anie_202422333 crossref_primary_10_1021_acsami_3c17579 crossref_primary_10_1016_j_desal_2022_115976 crossref_primary_10_1021_jacs_2c11071 crossref_primary_10_1021_acs_analchem_2c01595 crossref_primary_10_1016_j_mtsust_2024_100939 crossref_primary_10_1038_s41893_024_01493_6 crossref_primary_10_1039_D2CC03941A crossref_primary_10_1002_smll_202307743 crossref_primary_10_1021_acsnano_2c07813 crossref_primary_10_1021_jacs_2c04223 crossref_primary_10_3389_fchem_2022_986908 crossref_primary_10_1002_ange_202300167 |
Cites_doi | 10.1038/s41565-018-0181-4 10.1038/nchem.548 10.1039/c0cs00053a 10.1016/j.chempr.2017.12.011 10.1021/jacs.9b08628 10.1039/B909366B 10.1103/PhysRevLett.93.035901 10.1002/adma.201905776 10.1038/ncomms7786 10.1126/science.1120411 10.1126/science.1202747 10.1002/anie.201906191 10.1038/ncomms8602 10.1021/acs.chemmater.8b01425 10.1002/adma.202005565 10.1038/s41563-021-00934-3 10.1021/acs.chemrev.9b00550 10.1103/PhysRevLett.99.044501 10.1002/prot.22807 10.1039/D0CS00793E 10.1021/acsnano.9b05758 10.1021/nl0509677 10.1002/adma.201503668 10.1021/jacs.9b09956 10.1021/ja308167f 10.1002/adma.201302441 10.1126/science.aaf5289 10.1021/ar040274h 10.1038/s41563-020-0625-8 10.1038/s41467-021-22141-z 10.1002/adma.202001284 10.1021/jacs.0c11159 10.1038/nnano.2013.240 10.1002/adfm.202009970 10.1038/nnano.2015.219 10.1002/smll.201903879 10.1021/jacs.7b01240 10.1039/C9CC01548E 10.1021/acsnano.0c04099 10.1039/C9CS00827F 10.1007/s10404-010-0641-0 10.1021/jacs.8b06460 10.1021/acsnano.8b06708 10.1038/nmat2127 10.1021/acsnano.6b07692 10.1073/pnas.2003898117 10.1021/jacs.6b11100 10.1126/science.aar7883 10.1038/nature18593 10.1038/s41586-018-0292-y 10.1126/science.1181799 10.1002/adma.201907289 10.1039/c001349h 10.1038/nature11876 10.1021/acs.chemmater.0c04382 10.1063/1.4794973 10.1002/ange.201906191 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202113141 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 34816574 10_1002_anie_202113141 ANIE202113141 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: KAUST baseline funderid: BAS/1/1375-01 – fundername: KAUST Centre Competitive Fund funderid: FCC/1/1972-19 – fundername: KAUST baseline grantid: BAS/1/1375-01 – fundername: KAUST Centre Competitive Fund grantid: FCC/1/1972-19 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AANHP AASGY AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACBWZ ACRPL ACYXJ ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3731-a145e6bf9b12eef5702671cf1591d8239b123bd73659471864a081eacb8a89693 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:52:51 EDT 2025 Fri Jul 25 12:03:44 EDT 2025 Wed Feb 19 02:28:03 EST 2025 Thu Apr 24 22:54:47 EDT 2025 Tue Jul 01 01:18:12 EDT 2025 Wed Jan 22 16:26:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | high-ion flux ion gating nanofluidic transport oriented COF membranes |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-a145e6bf9b12eef5702671cf1591d8239b123bd73659471864a081eacb8a89693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7087-9431 0000-0001-9555-6009 |
PMID | 34816574 |
PQID | 2622429621 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2601981153 proquest_journals_2622429621 pubmed_primary_34816574 crossref_citationtrail_10_1002_anie_202113141 crossref_primary_10_1002_anie_202113141 wiley_primary_10_1002_anie_202113141_ANIE202113141 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 1, 2022 2022-02-00 2022-Feb-01 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 1, 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2013; 25 2021; 20 2020; 120 2019; 55 2019; 13 2006; 39 2020; 16 2008; 7 2020; 14 2013; 7 2013; 8 2020; 19 2021; 31 2012; 134 2018; 4 2021; 33 2020; 49 2018; 30 2010; 2 2016; 351 2010; 9 2010; 78 2015; 6 2021; 3 2018; 140 2010; 327 2005; 310 2020; 142 2010; 39 2011; 40 2015; 10 2020; 32 2021; 143 2021; 50 2019; 141 2007; 99 2011; 332 2019 2019; 58 131 2017; 139 2021; 12 2004; 93 2018; 559 2016; 536 2017; 11 2005; 5 2020; 117 2013; 494 2018; 12 2016; 28 2018; 13 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_36_2 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 Bing S. (e_1_2_6_43_1) 2021; 3 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 6 start-page: 6786 year: 2015 publication-title: Nat. Commun. – volume: 141 start-page: 19831 year: 2019 end-page: 19838 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 4550 year: 2019 end-page: 4553 publication-title: Chem. Commun. – volume: 3 start-page: 0 year: 2021 publication-title: Matter – volume: 93 year: 2004 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 303 year: 2008 end-page: 307 publication-title: Nat. Mater. – volume: 12 start-page: 1844 year: 2021 publication-title: Nat. Commun. – volume: 28 start-page: 144 year: 2016 end-page: 150 publication-title: Adv. Mater. – volume: 12 start-page: 12464 year: 2018 end-page: 12471 publication-title: ACS Nano – volume: 11 start-page: 2706 year: 2017 end-page: 2713 publication-title: ACS Nano – volume: 25 start-page: 6064 year: 2013 end-page: 6068 publication-title: Adv. Mater. – volume: 559 start-page: 236 year: 2018 end-page: 240 publication-title: Nature – volume: 332 start-page: 228 year: 2011 end-page: 231 publication-title: Science – volume: 142 start-page: 783 year: 2020 end-page: 791 publication-title: J. Am. Chem. Soc. – volume: 78 start-page: 2886 year: 2010 end-page: 2894 publication-title: Proteins Struct. Funct. Bioinf. – volume: 4 start-page: 308 year: 2018 end-page: 317 publication-title: Chem – volume: 39 start-page: 239 year: 2006 end-page: 248 publication-title: Acc. Chem. Res. – volume: 16 year: 2020 publication-title: Small – volume: 50 start-page: 1813 year: 2021 end-page: 1845 publication-title: Chem. Soc. Rev. – volume: 7 year: 2013 publication-title: Biomicrofluidics – volume: 19 start-page: 254 year: 2020 end-page: 256 publication-title: Nat. Mater. – volume: 120 start-page: 8814 year: 2020 end-page: 8933 publication-title: Chem. Rev. – volume: 361 start-page: 52 year: 2018 end-page: 57 publication-title: Science – volume: 39 start-page: 899 year: 2010 end-page: 900 publication-title: Chem. Soc. Rev. – volume: 140 start-page: 10941 year: 2018 end-page: 10945 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 1142 year: 2021 end-page: 1148 publication-title: Nat. Mater. – volume: 10 start-page: 1070 year: 2015 end-page: 1076 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 1215 year: 2010 end-page: 1224 publication-title: Microfluid. Nanofluid. – volume: 139 start-page: 4999 year: 2017 end-page: 5002 publication-title: J. Am. Chem. Soc. – volume: 327 start-page: 64 year: 2010 end-page: 67 publication-title: Science – volume: 49 start-page: 708 year: 2020 end-page: 735 publication-title: Chem. Soc. Rev. – volume: 143 start-page: 1466 year: 2021 end-page: 1473 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 5069 year: 2018 end-page: 5086 publication-title: Chem. Mater. – volume: 2 start-page: 235 year: 2010 end-page: 238 publication-title: Nat. Chem. – volume: 13 start-page: 685 year: 2018 end-page: 690 publication-title: Nat. Nanotechnol. – volume: 310 start-page: 1166 year: 2005 end-page: 1170 publication-title: Science – volume: 39 start-page: 1073 year: 2010 end-page: 1095 publication-title: Chem. Soc. Rev. – volume: 40 start-page: 2385 year: 2011 end-page: 2401 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 11793 year: 2019 end-page: 11799 publication-title: ACS Nano – volume: 536 start-page: 197 year: 2016 end-page: 200 publication-title: Nature – volume: 6 start-page: 7602 year: 2015 publication-title: Nat. Commun. – volume: 494 start-page: 455 year: 2013 end-page: 458 publication-title: Nature – volume: 99 year: 2007 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 1633 year: 2005 end-page: 1637 publication-title: Nano Lett. – volume: 139 start-page: 6314 year: 2017 end-page: 6320 publication-title: J. Am. Chem. Soc. – volume: 351 start-page: 1395 year: 2016 end-page: 1396 publication-title: Science – volume: 33 start-page: 1341 year: 2021 end-page: 1352 publication-title: Chem. Mater. – volume: 8 start-page: 939 year: 2013 end-page: 945 publication-title: Nat. Nanotechnol. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 117 start-page: 13959 year: 2020 end-page: 13966 publication-title: Proc. Natl. Acad. Sci. USA – volume: 58 131 start-page: 11785 11911 year: 2019 2019 end-page: 11790 11916 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 16528 year: 2012 end-page: 16531 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 9042 year: 2020 end-page: 9049 publication-title: ACS Nano – ident: e_1_2_6_25_1 doi: 10.1038/s41565-018-0181-4 – ident: e_1_2_6_32_1 doi: 10.1038/nchem.548 – ident: e_1_2_6_1_1 doi: 10.1039/c0cs00053a – ident: e_1_2_6_40_1 doi: 10.1016/j.chempr.2017.12.011 – ident: e_1_2_6_48_1 doi: 10.1021/jacs.9b08628 – ident: e_1_2_6_5_1 doi: 10.1039/B909366B – ident: e_1_2_6_6_1 doi: 10.1103/PhysRevLett.93.035901 – ident: e_1_2_6_49_1 doi: 10.1002/adma.201905776 – ident: e_1_2_6_31_1 doi: 10.1038/ncomms7786 – ident: e_1_2_6_28_1 doi: 10.1126/science.1120411 – ident: e_1_2_6_45_1 doi: 10.1126/science.1202747 – ident: e_1_2_6_36_1 doi: 10.1002/anie.201906191 – ident: e_1_2_6_22_1 doi: 10.1038/ncomms8602 – ident: e_1_2_6_33_1 doi: 10.1021/acs.chemmater.8b01425 – ident: e_1_2_6_38_1 doi: 10.1002/adma.202005565 – ident: e_1_2_6_53_1 doi: 10.1038/s41563-021-00934-3 – ident: e_1_2_6_27_1 doi: 10.1021/acs.chemrev.9b00550 – ident: e_1_2_6_15_1 doi: 10.1103/PhysRevLett.99.044501 – ident: e_1_2_6_55_1 doi: 10.1002/prot.22807 – ident: e_1_2_6_34_1 doi: 10.1039/D0CS00793E – ident: e_1_2_6_26_1 doi: 10.1021/acsnano.9b05758 – ident: e_1_2_6_7_1 doi: 10.1021/nl0509677 – ident: e_1_2_6_10_1 doi: 10.1002/adma.201503668 – ident: e_1_2_6_46_1 doi: 10.1021/jacs.9b09956 – ident: e_1_2_6_19_1 doi: 10.1021/ja308167f – ident: e_1_2_6_20_1 doi: 10.1002/adma.201302441 – ident: e_1_2_6_4_1 doi: 10.1126/science.aaf5289 – ident: e_1_2_6_18_1 doi: 10.1021/ar040274h – ident: e_1_2_6_3_1 doi: 10.1038/s41563-020-0625-8 – ident: e_1_2_6_35_1 doi: 10.1038/s41467-021-22141-z – ident: e_1_2_6_39_1 doi: 10.1002/adma.202001284 – ident: e_1_2_6_54_1 doi: 10.1021/jacs.0c11159 – ident: e_1_2_6_9_1 doi: 10.1038/nnano.2013.240 – ident: e_1_2_6_41_1 doi: 10.1002/adfm.202009970 – volume: 3 start-page: 0 year: 2021 ident: e_1_2_6_43_1 publication-title: Matter – ident: e_1_2_6_8_1 doi: 10.1038/nnano.2015.219 – ident: e_1_2_6_42_1 doi: 10.1002/smll.201903879 – ident: e_1_2_6_50_1 doi: 10.1021/jacs.7b01240 – ident: e_1_2_6_56_1 doi: 10.1039/C9CC01548E – ident: e_1_2_6_21_1 doi: 10.1021/acsnano.0c04099 – ident: e_1_2_6_29_1 doi: 10.1039/C9CS00827F – ident: e_1_2_6_51_1 doi: 10.1007/s10404-010-0641-0 – ident: e_1_2_6_44_1 doi: 10.1021/jacs.8b06460 – ident: e_1_2_6_11_1 doi: 10.1021/acsnano.8b06708 – ident: e_1_2_6_12_1 doi: 10.1038/nmat2127 – ident: e_1_2_6_47_1 doi: 10.1021/acsnano.6b07692 – ident: e_1_2_6_57_1 doi: 10.1073/pnas.2003898117 – ident: e_1_2_6_23_1 doi: 10.1021/jacs.6b11100 – ident: e_1_2_6_30_1 doi: 10.1126/science.aar7883 – ident: e_1_2_6_13_1 doi: 10.1038/nature18593 – ident: e_1_2_6_24_1 doi: 10.1038/s41586-018-0292-y – ident: e_1_2_6_17_1 doi: 10.1126/science.1181799 – ident: e_1_2_6_37_1 doi: 10.1002/adma.201907289 – ident: e_1_2_6_2_1 doi: 10.1039/c001349h – ident: e_1_2_6_14_1 doi: 10.1038/nature11876 – ident: e_1_2_6_52_1 doi: 10.1021/acs.chemmater.0c04382 – ident: e_1_2_6_16_1 doi: 10.1063/1.4794973 – ident: e_1_2_6_36_2 doi: 10.1002/ange.201906191 |
SSID | ssj0028806 |
Score | 2.5833442 |
Snippet | Nanofluidic ion transport holds high promise in bio‐sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and... Nanofluidic ion transport holds high promise in bio-sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202113141 |
SubjectTerms | Channel gating Devices Energy conversion Fluctuations Fluidics high-ion flux Hydroxyl groups Ion charge Ion flux ion gating Ion transport Ions Membranes Nanochannels nanofluidic transport Nanofluids oriented COF membranes pH effects Phenols Surface charge |
Title | Oriented Two‐Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202113141 https://www.ncbi.nlm.nih.gov/pubmed/34816574 https://www.proquest.com/docview/2622429621 https://www.proquest.com/docview/2601981153 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqLu0F6C9baOVKSJwM6584yRFt2UIlQKIgcYs8Xkeq2E1Q2QjaUx-hz9gn6Uy8SbutUKX2mNhOHHvG_saZ-YaxbWNtUOXQCC_BCmPACTBWCxjmQTltwAcyFI9P7OGFeX-ZXP4SxR_5IfoDN9KMdr0mBXdws_eTNJQisNG-QwNGyzZynRy2CBWd9fxRCoUzhhdpLSgLfcfaOFR7y82Xd6U_oOYycm23nvEac12no8fJ1W4zh13_5Tc-x__5qnW2usClfD8K0mP2IFRP2MNRlw7uKft8SozIiE_5-W39_eu3t5QWIFJ68FGN8oqFPEZ2ej7uXL74cZhhd3A95XTiy8mthB_VFR9Pmzvuqgn_MEPh5e8cuV9zXOvrctp8nOAzetr1Z-xifHA-OhSLvA3C61RL4aRJgoUyB6lCKJOUslxJXyJykpNMabqvYZLifOW0N1rjEJjgDgCZy3Kb6-dspaqrsMF4UpYegrMSBQhNuTSD3EivQQ9zUA6SARPdvBV-QWpOuTWmRaRjVgUNaNEP6IDt9PWvI53HvTW3OjEoFmp9UyiLiEflVmHxm74YJ4L-suBY1g3VQdScIdDWA_Yiik__Kop6tklqBky1QvCXPhT7J0cH_dXLf2m0yR4pCtho_cy32Mr8UxNeIYyaw-tWVX4AKOwT2A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5V7aFceEMDBRYJxMlt9uG1feBQJQ0JbYIEqdSb8W7WEiK1qzZWH6f-BP4Kf4WfwC9hxi8UEEJC6oGjvWt7H_Ncz3wD8EJp7UTaVZ7lRntKmcQzSkvPdCMnEqmMdeQojid6eKDeHvqHK_C1yYWp8CHaAzfijFJeE4PTgfT2T9RQSsFGBw89GMkVr-Mq99zFGXptp69Hfdzil0IMdqe9oVcXFvCsDCT3Eq58p00aGS6cS_2AyjBxm6Jq57NQSLovzSyQ2o9IeGuVoOZEEWXCJIw04S-h1F-jMuIE199_3yJWCWSHKqFJSo_q3jc4kV2xvTzeZT34m3G7bCuXym5wC741y1TFuHzeKhZmy17-giD5X63jbbhZm95sp-KVO7Disruw3msq3t2Di3cE-owmOJue5d-vvvSp8kGFWsJ6ObIkNrIqedWyQRPVxsbuCOePKoPRoTajyBk2yjM2mBfnLMlm7MMR8id7k1CEOUN1lqfz4tMM39Eiy9-Hg2uZ-QNYzfLMbQDz09Qal2iOPILeahCaSHErjexGRiTG74DXEEpsa9x2Kh8yjyvEaRHTBsbtBnbgVdv_uEIs-WPPzYbu4lpyncZCo1EnIi2w-XnbjBtBP5JwLfOC-qBjEKIvITvwsKLX9lOU2K39QHVAlFT3lzHEO5PRbnv16F8eegbrw-l4P94fTfYeww1B-SllWP0mrC5OCvcErcaFeVryKYOP103QPwB4_275 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1FQQIu7MtAgEYCcerEvbhtHzhEMzEZQgYEiZSbcdttCTGxIzJWCCc-gU_hV_gFvoQqb2hACAkpB452t-1eam1XvQJ4pI1xsvA0z4Q1XGubcquN4taLnEyVtpkjR3F3Zrb39fMD_2AFvva5MC0-xHDgRpzRyGti8KO82PgJGkoZ2OjfoQOjhBZdWOWOOz1Bp-346XSCO_xYynhrb7zNu7oCPFOBEjwV2nfGFpEV0rnCD6gKk8gK1OwiD6Wi-8rmgTJ-RLLb6BQVJ0ooG6ZhZAh-CYX-OW28iIpFTF4PgFUSuaHNZ1KKU9n7HibSkxvL411Wg7_ZtsumcqPr4svwrV-lNsTl_Xq9sOvZp18AJP-nZbwClzrDm222nHIVVlx5DS6M-3p31-H0JUE-owHO9k6q75-_TKjuQYtZwsYVMiQ2sjZ1NWNxH9PGdt0hTh8VBqMjbUZxM2xalSye1x9ZWubszSFyJ3uWUnw5Q2VWFfP6XY7vGHDlb8D-mcz8JqyWVeluA_OLIrMuNQI5BH3VILSRFpmyyousTK0_At7TSZJ1qO1UPGSetHjTMqENTIYNHMGTof9Ri1fyx55rPdklndw6TqRBk05GRmLzw6EZN4J-I-FaVjX1QbcgRE9CjeBWS67Dpyit2_iBHoFsiO4vY0g2Z9Ot4erOvzz0AM6_msTJi-ls5y5clJSc0sTUr8Hq4kPt7qHJuLD3Gy5l8Pas6fkHldxtqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oriented+Two-Dimensional+Covalent+Organic+Framework+Membranes+with+High+Ion+Flux+and+Smart+Gating+Nanofluidic+Transport&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cao%2C+Li&rft.au=Liu%2C+Xiaowei&rft.au=Shinde%2C+Digambar+B&rft.au=Chen%2C+Cailing&rft.date=2022-02-01&rft.eissn=1521-3773&rft.volume=61&rft.issue=6&rft.spage=e202113141&rft_id=info:doi/10.1002%2Fanie.202113141&rft_id=info%3Apmid%2F34816574&rft.externalDocID=34816574 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |