Polyacrylamide/Copper‐Alginate Double Network Hydrogel Electrolyte with Excellent Mechanical Properties and Strain‐Sensitivity

The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel electrolyte is success...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular bioscience Vol. 22; no. 2; pp. e2100361 - n/a
Main Authors Zhang, Zeyu, Lin, Tingrui, Li, Shuangxiao, Chen, Xibang, Que, Xueyan, Sheng, Lang, Hu, Yang, Peng, Jing, Ma, Huiling, Li, Jiuqiang, Zhang, Wenjuan, Zhai, Maolin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel electrolyte is successfully synthesized by radiation‐induced polymerization and cross‐linking process of acrylamide with N, N’‐methylene‐bis‐acrylamide and subsequent cupric ion (Cu2+) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu2+ are investigated in detail for improving the overall properties of PAM/Cu‐alg DN hydrogel electrolyte. The PAM/Cu‐alg DN hydrogel electrolyte synthesizes by radiation technique and Cu2+ crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm−1. PAM/Cu‐alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X‐ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu‐alg DN hydrogel electrolyte exhibits excellent strain‐sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties. A new method of γ radiation and Cu2+ crosslinking is developed to obtain the polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel. The resultant hydrogel has superior tensile properties and excellent energy dissipation mechanism. Furthermore, PAM/Cu‐alg DN hydrogel electrolyte has high ionic conductivity and excellent strain‐sensitivity and cyclic stability, which can be used in the field of hydrogel‐based sensors materials.
AbstractList Abstract The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel electrolyte is successfully synthesized by radiation‐induced polymerization and cross‐linking process of acrylamide with N, N’ ‐methylene‐ bis ‐acrylamide and subsequent cupric ion (Cu 2+ ) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu 2+ are investigated in detail for improving the overall properties of PAM/Cu‐alg DN hydrogel electrolyte. The PAM/Cu‐alg DN hydrogel electrolyte synthesizes by radiation technique and Cu 2+ crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm −1 . PAM/Cu‐alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X‐ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu‐alg DN hydrogel electrolyte exhibits excellent strain‐sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties.
The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel electrolyte is successfully synthesized by radiation‐induced polymerization and cross‐linking process of acrylamide with N, N’‐methylene‐bis‐acrylamide and subsequent cupric ion (Cu2+) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu2+ are investigated in detail for improving the overall properties of PAM/Cu‐alg DN hydrogel electrolyte. The PAM/Cu‐alg DN hydrogel electrolyte synthesizes by radiation technique and Cu2+ crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm−1. PAM/Cu‐alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X‐ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu‐alg DN hydrogel electrolyte exhibits excellent strain‐sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties. A new method of γ radiation and Cu2+ crosslinking is developed to obtain the polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel. The resultant hydrogel has superior tensile properties and excellent energy dissipation mechanism. Furthermore, PAM/Cu‐alg DN hydrogel electrolyte has high ionic conductivity and excellent strain‐sensitivity and cyclic stability, which can be used in the field of hydrogel‐based sensors materials.
The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper-alginate double network (PAM/Cu-alg DN) hydrogel electrolyte is successfully synthesized by radiation-induced polymerization and cross-linking process of acrylamide with N, N'-methylene-bis-acrylamide and subsequent cupric ion (Cu ) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu are investigated in detail for improving the overall properties of PAM/Cu-alg DN hydrogel electrolyte. The PAM/Cu-alg DN hydrogel electrolyte synthesizes by radiation technique and Cu crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm . PAM/Cu-alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu-alg DN hydrogel electrolyte exhibits excellent strain-sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties.
The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel electrolyte is successfully synthesized by radiation‐induced polymerization and cross‐linking process of acrylamide with N, N’‐methylene‐bis‐acrylamide and subsequent cupric ion (Cu2+) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu2+ are investigated in detail for improving the overall properties of PAM/Cu‐alg DN hydrogel electrolyte. The PAM/Cu‐alg DN hydrogel electrolyte synthesizes by radiation technique and Cu2+ crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm−1. PAM/Cu‐alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X‐ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu‐alg DN hydrogel electrolyte exhibits excellent strain‐sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties.
Author Que, Xueyan
Sheng, Lang
Li, Jiuqiang
Ma, Huiling
Li, Shuangxiao
Zhang, Zeyu
Chen, Xibang
Lin, Tingrui
Peng, Jing
Zhang, Wenjuan
Hu, Yang
Zhai, Maolin
Author_xml – sequence: 1
  givenname: Zeyu
  surname: Zhang
  fullname: Zhang, Zeyu
  organization: Beijing Institute of Fashion Technology
– sequence: 2
  givenname: Tingrui
  surname: Lin
  fullname: Lin, Tingrui
  organization: Skshu Paint Co., Ltd
– sequence: 3
  givenname: Shuangxiao
  surname: Li
  fullname: Li, Shuangxiao
  organization: Peking University
– sequence: 4
  givenname: Xibang
  surname: Chen
  fullname: Chen, Xibang
  organization: Institute of Chemical Defense
– sequence: 5
  givenname: Xueyan
  surname: Que
  fullname: Que, Xueyan
  organization: Peking University
– sequence: 6
  givenname: Lang
  surname: Sheng
  fullname: Sheng, Lang
  organization: Peking University
– sequence: 7
  givenname: Yang
  surname: Hu
  fullname: Hu, Yang
  organization: Peking University
– sequence: 8
  givenname: Jing
  surname: Peng
  fullname: Peng, Jing
  organization: Peking University
– sequence: 9
  givenname: Huiling
  surname: Ma
  fullname: Ma, Huiling
  organization: Beijing Institute of Fashion Technology
– sequence: 10
  givenname: Jiuqiang
  surname: Li
  fullname: Li, Jiuqiang
  organization: Peking University
– sequence: 11
  givenname: Wenjuan
  surname: Zhang
  fullname: Zhang, Wenjuan
  email: zhangwj@bift.edu.cn
  organization: Beijing Institute of Fashion Technology
– sequence: 12
  givenname: Maolin
  orcidid: 0000-0002-6038-3512
  surname: Zhai
  fullname: Zhai, Maolin
  email: mlzhai@pku.edu.cn
  organization: Peking University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34761522$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URH9gyxJFYsNmprEdO_FyGKa0UguV2r3lODeti2MPtsOQXcUT8Iw8CR5NGSQ2rO690vmOrvQdowPnHSD0GpdzXJbkdFCtmZOS5INy_AwdYY75jGHBDvZ7Ux-i4xgfyhLXjSAv0CGtao4ZIUfox7W3k9JhsmowHZwu_XoN4dfjz4W9M04lKD74sbVQfIK08eFLcT51wd-BLVYWdAo5nZmNSffF6rsGa8Gl4gr0vXJGK1tcB599yUAslOuKmxSUcVl_Ay6aZL6ZNL1Ez3tlI7x6mifo9mx1uzyfXX7-eLFcXM40rSmeqbIVLWOk5kzUle4rLTg0XAmAthMV8L4hBGhDBMVYVLjGQKiuK9E2Pcc9PUHvdtp18F9HiEkOJm4_Vg78GCVhgleMY4Iz-vYf9MGPweXnJOGkIbwijGZqvqN08DEG6OU6mEGFSeJSbsuR23LkvpwcePOkHdsBuj3-p40MiB2wMRam_-jk1eL9xV_5b749oHM
CitedBy_id crossref_primary_10_3390_ijms232415757
crossref_primary_10_1038_s41598_024_62503_3
crossref_primary_10_1016_j_polymer_2024_126735
crossref_primary_10_1039_D3MA00740E
crossref_primary_10_1080_1539445X_2024_2358002
crossref_primary_10_1016_j_eurpolymj_2023_111856
crossref_primary_10_3390_polym15143012
crossref_primary_10_3390_molecules27165326
crossref_primary_10_3390_polym14235247
crossref_primary_10_3390_gels9050430
crossref_primary_10_1016_j_reactfunctpolym_2023_105676
crossref_primary_10_1021_acsapm_2c01494
crossref_primary_10_1039_D3RA04118B
crossref_primary_10_1039_D3RA08235K
crossref_primary_10_3390_bios13080823
crossref_primary_10_1021_acsami_4c04310
crossref_primary_10_3390_molecules27020358
crossref_primary_10_1557_s43578_023_01266_5
crossref_primary_10_1039_D3RA01478A
crossref_primary_10_3390_nano12172897
Cites_doi 10.1021/acsami.0c13654
10.1021/acsami.8b11377
10.1002/admi.201701491
10.1021/acs.iecr.9b06769
10.1016/j.colsurfa.2020.125692
10.1039/D0TA05036A
10.1016/j.compositesb.2020.108046
10.1007/s10965-015-0822-3
10.1002/adfm.201504755
10.1016/j.colsurfa.2019.124402
10.1021/acs.biomac.0c01821
10.1016/j.colsurfa.2018.12.019
10.1007/s00396-020-04796-0
10.1002/adem.201600272
10.1016/j.compscitech.2020.108173
10.1016/j.apcatb.2017.01.051
10.1016/j.cej.2018.08.053
10.1038/nchem.2492
10.1016/j.ijbiomac.2020.06.180
10.1021/acsapm.9b00960
10.1039/C6TA02738E
10.1016/j.carbpol.2018.05.082
10.1016/j.carbpol.2010.01.020
10.1002/mame.201900227
10.1016/j.carbpol.2020.117595
10.1016/j.cej.2019.123912
10.1038/nature11409
10.1016/j.jcis.2020.06.015
10.1021/acs.biomac.0c01401
10.1021/am403966x
10.1021/acsnano.1c01751
10.1021/acsami.1c01343
10.1016/j.matt.2019.10.020
10.1002/adfm.202104928
10.1016/j.nanoen.2021.106502
10.1016/j.carbpol.2018.03.086
10.1016/j.carbpol.2018.07.070
10.1002/jctb.6767
10.1016/j.jcis.2012.01.041
10.1007/s13233-011-0706-2
10.1016/j.carbpol.2018.05.078
10.1039/D1TA06408H
10.1039/D0TC05242F
10.1039/c1sm05345k
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
DOI 10.1002/mabi.202100361
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1616-5195
EndPage n/a
ExternalDocumentID 10_1002_mabi_202100361
34761522
MABI202100361
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11875078; 12075010
– fundername: National Natural Science Foundation of China
  grantid: 12075010
– fundername: National Natural Science Foundation of China
  grantid: 11875078
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZY4
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c3731-a0b9b552765974cf4c96e86a9eebd94e6f822e382931194171e23c749b8f61f3
IEDL.DBID DR2
ISSN 1616-5187
IngestDate Fri Aug 16 07:43:46 EDT 2024
Thu Oct 10 19:24:48 EDT 2024
Fri Aug 23 01:38:11 EDT 2024
Sat Sep 28 08:21:25 EDT 2024
Sat Aug 24 00:57:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords sodium alginate
strain-sensitivity
polyacrylamide
radiation synthesis
cupric ion crosslinking
mechanical properties
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-a0b9b552765974cf4c96e86a9eebd94e6f822e382931194171e23c749b8f61f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6038-3512
PMID 34761522
PQID 2628264253
PQPubID 2034242
PageCount 12
ParticipantIDs proquest_miscellaneous_2596456121
proquest_journals_2628264253
crossref_primary_10_1002_mabi_202100361
pubmed_primary_34761522
wiley_primary_10_1002_mabi_202100361_MABI202100361
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular bioscience
PublicationTitleAlternate Macromol Biosci
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2017; 3
2021; 22
2020; 162
2020; 385
2019; 1
2018; 200
2020; 589
2019; 567
2020; 59
2020; 12
2019; 304
2016; 18
2012; 489
2010; 80
2011; 19
2013; 5
2021; 96
2021; 90
2011; 7
2016; 4
2018; 197
2020; 8
2020; 7
2021; 13
2012; 372
2021; 15
2018; 193
2021; 31
2020; 2
2018; 5
2021; 256
2020; 195
2021; 299
2021; 610
2018; 354
2015; 22
2020; 194
2020; 578
2018; 10
2016; 26
2016; 8
2017; 206
e_1_2_8_28_1
e_1_2_8_29_1
Pu X. (e_1_2_8_44_1) 2017; 3
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Ghobashy M. M. (e_1_2_8_30_1) 2020; 7
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 9
  start-page: 3635
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 5
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 256
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 15
  start-page: 7765
  year: 2021
  publication-title: ACSn Nano
– volume: 7
  start-page: 6231
  year: 2011
  publication-title: Soft. Matter
– volume: 193
  start-page: 73
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 390
  year: 2020
  publication-title: Matter
– volume: 354
  start-page: 817
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 22
  start-page: 534
  year: 2021
  publication-title: Biomacromolecules
– volume: 578
  start-page: 598
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 162
  start-page: 618
  year: 2020
  publication-title: Int. J. Biol. Macromol.
– volume: 7
  year: 2020
  publication-title: Adv. Polym. Technol.
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 372
  start-page: 245
  year: 2012
  publication-title: J. Colloid Interface Sci.
– volume: 489
  start-page: 133
  year: 2012
  publication-title: Nature
– volume: 299
  start-page: 783
  year: 2021
  publication-title: Colloid Polym. Sci.
– volume: 197
  start-page: 497
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 80
  start-page: 1028
  year: 2010
  publication-title: Carbohyd. Polym.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 304
  year: 2019
  publication-title: Macromol. Mater. Eng.
– volume: 197
  start-page: 292
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 206
  start-page: 328
  year: 2017
  publication-title: Appl. Catal., B
– volume: 589
  year: 2020
  publication-title: Colloids Surf. A
– volume: 96
  start-page: 2382
  year: 2021
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 26
  start-page: 1678
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 3222
  year: 2019
  publication-title: ACS Appl. Polym. Mater.
– volume: 8
  start-page: 618
  year: 2016
  publication-title: Nat. Chem.
– volume: 194
  year: 2020
  publication-title: Composites, Part B
– volume: 195
  year: 2020
  publication-title: Compos. Sci. Technol.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 610
  year: 2021
  publication-title: Colloids Surf., A
– volume: 385
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 22
  start-page: 1312
  year: 2021
  publication-title: Biomacromolecules
– volume: 19
  start-page: 739
  year: 2011
  publication-title: Macromol. Res.
– volume: 200
  start-page: 72
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 1799
  year: 2016
  publication-title: Adv. Eng. Mater.
– volume: 59
  start-page: 4829
  year: 2020
  publication-title: Ind. Eng. Chem. Res.
– volume: 567
  start-page: 184
  year: 2019
  publication-title: Colloids Surf. A
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 181
  year: 2015
  publication-title: J. Polym. Res.
– ident: e_1_2_8_39_1
  doi: 10.1021/acsami.0c13654
– ident: e_1_2_8_25_1
  doi: 10.1021/acsami.8b11377
– ident: e_1_2_8_29_1
  doi: 10.1002/admi.201701491
– ident: e_1_2_8_1_1
  doi: 10.1021/acs.iecr.9b06769
– ident: e_1_2_8_26_1
  doi: 10.1016/j.colsurfa.2020.125692
– ident: e_1_2_8_28_1
  doi: 10.1039/D0TA05036A
– ident: e_1_2_8_32_1
  doi: 10.1016/j.compositesb.2020.108046
– ident: e_1_2_8_33_1
  doi: 10.1007/s10965-015-0822-3
– ident: e_1_2_8_43_1
  doi: 10.1002/adfm.201504755
– ident: e_1_2_8_34_1
  doi: 10.1016/j.colsurfa.2019.124402
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.biomac.0c01821
– ident: e_1_2_8_35_1
  doi: 10.1016/j.colsurfa.2018.12.019
– ident: e_1_2_8_15_1
  doi: 10.1007/s00396-020-04796-0
– ident: e_1_2_8_27_1
  doi: 10.1002/adem.201600272
– ident: e_1_2_8_31_1
  doi: 10.1016/j.compscitech.2020.108173
– ident: e_1_2_8_37_1
  doi: 10.1016/j.apcatb.2017.01.051
– ident: e_1_2_8_24_1
  doi: 10.1016/j.cej.2018.08.053
– ident: e_1_2_8_4_1
  doi: 10.1038/nchem.2492
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ijbiomac.2020.06.180
– ident: e_1_2_8_19_1
  doi: 10.1021/acsapm.9b00960
– ident: e_1_2_8_2_1
  doi: 10.1039/C6TA02738E
– ident: e_1_2_8_17_1
  doi: 10.1016/j.carbpol.2018.05.082
– ident: e_1_2_8_13_1
  doi: 10.1016/j.carbpol.2010.01.020
– ident: e_1_2_8_23_1
  doi: 10.1002/mame.201900227
– ident: e_1_2_8_12_1
  doi: 10.1016/j.carbpol.2020.117595
– volume: 7
  start-page: 1901475
  year: 2020
  ident: e_1_2_8_30_1
  publication-title: Adv. Polym. Technol.
  contributor:
    fullname: Ghobashy M. M.
– ident: e_1_2_8_46_1
  doi: 10.1016/j.cej.2019.123912
– ident: e_1_2_8_9_1
  doi: 10.1038/nature11409
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jcis.2020.06.015
– ident: e_1_2_8_10_1
  doi: 10.1021/acs.biomac.0c01401
– ident: e_1_2_8_18_1
  doi: 10.1021/am403966x
– ident: e_1_2_8_22_1
  doi: 10.1021/acsnano.1c01751
– ident: e_1_2_8_45_1
  doi: 10.1021/acsami.1c01343
– ident: e_1_2_8_3_1
  doi: 10.1016/j.matt.2019.10.020
– ident: e_1_2_8_20_1
  doi: 10.1002/adfm.202104928
– ident: e_1_2_8_21_1
  doi: 10.1016/j.nanoen.2021.106502
– ident: e_1_2_8_6_1
  doi: 10.1016/j.carbpol.2018.03.086
– ident: e_1_2_8_8_1
  doi: 10.1016/j.carbpol.2018.07.070
– ident: e_1_2_8_36_1
  doi: 10.1002/jctb.6767
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jcis.2012.01.041
– ident: e_1_2_8_14_1
  doi: 10.1007/s13233-011-0706-2
– volume: 3
  start-page: e17000151
  year: 2017
  ident: e_1_2_8_44_1
  publication-title: Sci. Adv.
  contributor:
    fullname: Pu X.
– ident: e_1_2_8_40_1
  doi: 10.1016/j.carbpol.2018.05.078
– ident: e_1_2_8_42_1
  doi: 10.1039/D1TA06408H
– ident: e_1_2_8_7_1
  doi: 10.1039/D0TC05242F
– ident: e_1_2_8_16_1
  doi: 10.1039/c1sm05345k
SSID ssj0017892
Score 2.479194
Snippet The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent...
Abstract The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2100361
SubjectTerms Acrylamide
Acrylic Resins
Alginates - chemistry
Alginic acid
Copper
Copper - chemistry
cupric ion crosslinking
Cupric ions
Durability
Electrolytes
Energy dissipation
Fourier analysis
Fourier transforms
Hydrogels
Hydrogels - chemistry
Infrared analysis
Infrared reflection
Infrared spectroscopy
Ion currents
Mechanical properties
Photoelectron spectroscopy
Photoelectrons
Polyacrylamide
Radiation
Radiation crosslinking
radiation synthesis
Scanning electron microscopy
Sensitivity
Sodium alginate
Spectroscopic analysis
Spectrum analysis
Strain
strain‐sensitivity
Tensile strength
Thermogravimetric analysis
Title Polyacrylamide/Copper‐Alginate Double Network Hydrogel Electrolyte with Excellent Mechanical Properties and Strain‐Sensitivity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmabi.202100361
https://www.ncbi.nlm.nih.gov/pubmed/34761522
https://www.proquest.com/docview/2628264253
https://search.proquest.com/docview/2596456121
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL3Dhp_wtlMpISJzSrR3HSY7LstWCtFVFi9RbZDsTVDUkqzQrsZyqPgHPyJMwE28CCwckOOQQxXacmXH8jT3-hrFXMnEa9ZoHCUgVqFBGgY2lDaxUucPLaEcL-otjPf-o3p9H57-c4vf8EMOCG42M7n9NA9zYq_FP0tDPxl6gf4cuC_6Eyf8RYUwxXW8_DPxRIk66rMiIanQQiSTuWRsP5Xi7-vas9AfU3Eau3dRzdI-ZvtM-4uTyYNXaA_f1Nz7H__mq--zuBpfyiTekB-wWVLvs9rRPB_eQ3ZzU5dq4Zo0mdJHDeFovl9B8v_42KSm1QwscsbgtgR_7wHI-X-dN_QlKPvOZdso1lqFlXz770m0XVC1fAB08JjvhJ7Qr0BC9KzdVzk-73BXY_ClF2PsUF4_Y2dHsbDoPNgkcAhfGoQjMoU0tUbxpcltcoVyqIdEmBbB5qkAXCE8gTBByCJEqEQuQoYtVapNCiyJ8zHaquoKnjEcFTuYoFAMRKFAGTYi2IJMoFoVGRDRir3v9ZUtP05F5QmaZkUizQaQjtterN9sM16tMavQ80ROLwhF7OTxGAZM4TAX1CstEqSa0KbGJJ94shleFKkZkKOWIyU65f-lDtpi8eTfcPfuXSs_ZHUkHMbr48T220zYreIHwqLX73RD4AbVhCXE
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOZQL_z8LLRgJiVO6je04yXFZttpCd1XRReIWxc6kqgjJKmQltqeKJ-AZeZLOxJughQMSHHKIYjvOeCb-xh5_w9grEVmN45p5EQjlKSkCz4TCeEaozOKVaksL-rO5nn5U7z4FXTQhnYVx_BD9ghtZRvu_JgOnBenhL9bQL6m5QAcPfRb8C6MDdBNtXlL2hrcfegYpP4zavMiIa7QX-FHY8TYeiuF2_e156Q-wuY1d28nn6A4zXbddzMnng1VjDuzlb4yO__Vdd9ntDTTlI6dL99gNKO-z3XGXEe4B-35aFevU1mvUoosMhuNquYT659WPUUHZHRrgCMdNAXzuYsv5dJ3V1TkUfOKS7RRrLEMrv3zyrd0xKBs-Azp7TKrCT2ljoCaGV56WGT9r01dg82cUZO-yXDxki6PJYjz1NjkcPCtD6XvpoYkNsbxp8lxsrmysIdJpDGCyWIHOEaGAjBB1-H6s_NAHIW2oYhPl2s_lI7ZTViU8YTzIcT5HoaQQgAKVohbRLmQUhH6uERQN2OtuAJOlY-pIHCezSEikSS_SAdvrxjfZWOzXRGh0PtEZC-SAvewfo4BJHGkJ1QrLBLEmwCmwicdOL_pXSRUiOBRiwEQ7un_pQzIbvTnu757-S6UXbHe6mJ0kJ8fz98_YLUHnMtpw8j2209Qr2Ee01JjnrT1cAzclDYk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbQIgGX5R8KCxgJiVO2G8dxkmMprbpAq4pdpL1FtjNBK7JJFVKJckI8Ac_IkzATN4HCAQkOOUSxHWdmHH9jj79h7JmIrUK9Zl4MQnoyEKFnImE8I2Rm8dLK0oL-fKFm7-Srs_Dsl1P8jh-iX3CjkdH-r2mAr7J8-JM09EKbc_Tv0GXBnzD6P5elQvhLsOhtTyDlR3GbFhlhjfJCP4462sYjMdytvzst_YE1d6FrO_dMrzPd9dqFnHw4XDfm0H7-jdDxfz7rBtvfAlM-cpZ0k12C8ha7Ou7ywd1mX5dVsdG23qANnWcwHFerFdTfv3wbFZTboQGOYNwUwBcuspzPNlldvYeCT1yqnWKDZWjdl08-tfsFZcPnQCePyVD4krYFauJ35brM-EmbvAKbP6EQe5fj4g47nU5OxzNvm8HBs0EU-J4-MokhjjdFfovNpU0UxEonACZLJKgc8QkEMWIO30-kH_kgAhvJxMS58vPgLtsrqxLuMx7mOJujUDSEIEFqtCHag4zDyM8VQqIBe97pL105no7UMTKLlESa9iIdsINOvel2vH5MhULXE12xMBiwp_1jFDCJQ5dQrbFMmCiCmwKbuOfMon9VICOEhkIMmGiV-5c-pPPRi-P-7sG_VHrCrixfTtM3x4vXD9k1QYcy2ljyA7bX1Gt4hFCpMY_b0fADBm4MOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyacrylamide%2FCopper-Alginate+Double+Network+Hydrogel+Electrolyte+with+Excellent+Mechanical+Properties+and+Strain-Sensitivity&rft.jtitle=Macromolecular+bioscience&rft.au=Zhang%2C+Zeyu&rft.au=Lin%2C+Tingrui&rft.au=Li%2C+Shuangxiao&rft.au=Chen%2C+Xibang&rft.date=2022-02-01&rft.eissn=1616-5195&rft.volume=22&rft.issue=2&rft.spage=e2100361&rft.epage=e2100361&rft_id=info:doi/10.1002%2Fmabi.202100361&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-5187&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-5187&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-5187&client=summon