Polyacrylamide/Copper‐Alginate Double Network Hydrogel Electrolyte with Excellent Mechanical Properties and Strain‐Sensitivity
The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel electrolyte is success...
Saved in:
Published in | Macromolecular bioscience Vol. 22; no. 2; pp. e2100361 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel electrolyte is successfully synthesized by radiation‐induced polymerization and cross‐linking process of acrylamide with N, N’‐methylene‐bis‐acrylamide and subsequent cupric ion (Cu2+) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu2+ are investigated in detail for improving the overall properties of PAM/Cu‐alg DN hydrogel electrolyte. The PAM/Cu‐alg DN hydrogel electrolyte synthesizes by radiation technique and Cu2+ crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm−1. PAM/Cu‐alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X‐ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu‐alg DN hydrogel electrolyte exhibits excellent strain‐sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties.
A new method of γ radiation and Cu2+ crosslinking is developed to obtain the polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel. The resultant hydrogel has superior tensile properties and excellent energy dissipation mechanism. Furthermore, PAM/Cu‐alg DN hydrogel electrolyte has high ionic conductivity and excellent strain‐sensitivity and cyclic stability, which can be used in the field of hydrogel‐based sensors materials. |
---|---|
AbstractList | Abstract
The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel electrolyte is successfully synthesized by radiation‐induced polymerization and cross‐linking process of acrylamide with
N, N’
‐methylene‐
bis
‐acrylamide and subsequent cupric ion (Cu
2+
) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu
2+
are investigated in detail for improving the overall properties of PAM/Cu‐alg DN hydrogel electrolyte. The PAM/Cu‐alg DN hydrogel electrolyte synthesizes by radiation technique and Cu
2+
crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm
−1
. PAM/Cu‐alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X‐ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu‐alg DN hydrogel electrolyte exhibits excellent strain‐sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties. The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel electrolyte is successfully synthesized by radiation‐induced polymerization and cross‐linking process of acrylamide with N, N’‐methylene‐bis‐acrylamide and subsequent cupric ion (Cu2+) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu2+ are investigated in detail for improving the overall properties of PAM/Cu‐alg DN hydrogel electrolyte. The PAM/Cu‐alg DN hydrogel electrolyte synthesizes by radiation technique and Cu2+ crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm−1. PAM/Cu‐alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X‐ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu‐alg DN hydrogel electrolyte exhibits excellent strain‐sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties. A new method of γ radiation and Cu2+ crosslinking is developed to obtain the polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel. The resultant hydrogel has superior tensile properties and excellent energy dissipation mechanism. Furthermore, PAM/Cu‐alg DN hydrogel electrolyte has high ionic conductivity and excellent strain‐sensitivity and cyclic stability, which can be used in the field of hydrogel‐based sensors materials. The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper-alginate double network (PAM/Cu-alg DN) hydrogel electrolyte is successfully synthesized by radiation-induced polymerization and cross-linking process of acrylamide with N, N'-methylene-bis-acrylamide and subsequent cupric ion (Cu ) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu are investigated in detail for improving the overall properties of PAM/Cu-alg DN hydrogel electrolyte. The PAM/Cu-alg DN hydrogel electrolyte synthesizes by radiation technique and Cu crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm . PAM/Cu-alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu-alg DN hydrogel electrolyte exhibits excellent strain-sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties. The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent mechanical properties is still a big challenge. Here, polyacrylamide/copper‐alginate double network (PAM/Cu‐alg DN) hydrogel electrolyte is successfully synthesized by radiation‐induced polymerization and cross‐linking process of acrylamide with N, N’‐methylene‐bis‐acrylamide and subsequent cupric ion (Cu2+) crosslinking of alginate. The content of sodium alginate, absorbed dose, and the concentration of Cu2+ are investigated in detail for improving the overall properties of PAM/Cu‐alg DN hydrogel electrolyte. The PAM/Cu‐alg DN hydrogel electrolyte synthesizes by radiation technique and Cu2+ crosslinking shows superior mechanical properties with a tensile strength of 2.25 ± 0.02 MPa, excellent energy dissipation mechanism, and the high ionic conductivity of 4.08 ± 0.17 mS cm−1. PAM/Cu‐alg DN hydrogel is characterized with attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X‐ray photoelectron spectroscopy analyses and the reason for the improvement of mechanical properties is illustrated. Furthermore, PAM/Cu‐alg DN hydrogel electrolyte exhibits excellent strain‐sensitivity, cyclic stability, and durability. This work paves for the new way for the preparation of DN hydrogel electrolytes with excellent properties. |
Author | Que, Xueyan Sheng, Lang Li, Jiuqiang Ma, Huiling Li, Shuangxiao Zhang, Zeyu Chen, Xibang Lin, Tingrui Peng, Jing Zhang, Wenjuan Hu, Yang Zhai, Maolin |
Author_xml | – sequence: 1 givenname: Zeyu surname: Zhang fullname: Zhang, Zeyu organization: Beijing Institute of Fashion Technology – sequence: 2 givenname: Tingrui surname: Lin fullname: Lin, Tingrui organization: Skshu Paint Co., Ltd – sequence: 3 givenname: Shuangxiao surname: Li fullname: Li, Shuangxiao organization: Peking University – sequence: 4 givenname: Xibang surname: Chen fullname: Chen, Xibang organization: Institute of Chemical Defense – sequence: 5 givenname: Xueyan surname: Que fullname: Que, Xueyan organization: Peking University – sequence: 6 givenname: Lang surname: Sheng fullname: Sheng, Lang organization: Peking University – sequence: 7 givenname: Yang surname: Hu fullname: Hu, Yang organization: Peking University – sequence: 8 givenname: Jing surname: Peng fullname: Peng, Jing organization: Peking University – sequence: 9 givenname: Huiling surname: Ma fullname: Ma, Huiling organization: Beijing Institute of Fashion Technology – sequence: 10 givenname: Jiuqiang surname: Li fullname: Li, Jiuqiang organization: Peking University – sequence: 11 givenname: Wenjuan surname: Zhang fullname: Zhang, Wenjuan email: zhangwj@bift.edu.cn organization: Beijing Institute of Fashion Technology – sequence: 12 givenname: Maolin orcidid: 0000-0002-6038-3512 surname: Zhai fullname: Zhai, Maolin email: mlzhai@pku.edu.cn organization: Peking University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34761522$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URH9gyxJFYsNmprEdO_FyGKa0UguV2r3lODeti2MPtsOQXcUT8Iw8CR5NGSQ2rO690vmOrvQdowPnHSD0GpdzXJbkdFCtmZOS5INy_AwdYY75jGHBDvZ7Ux-i4xgfyhLXjSAv0CGtao4ZIUfox7W3k9JhsmowHZwu_XoN4dfjz4W9M04lKD74sbVQfIK08eFLcT51wd-BLVYWdAo5nZmNSffF6rsGa8Gl4gr0vXJGK1tcB599yUAslOuKmxSUcVl_Ay6aZL6ZNL1Ez3tlI7x6mifo9mx1uzyfXX7-eLFcXM40rSmeqbIVLWOk5kzUle4rLTg0XAmAthMV8L4hBGhDBMVYVLjGQKiuK9E2Pcc9PUHvdtp18F9HiEkOJm4_Vg78GCVhgleMY4Iz-vYf9MGPweXnJOGkIbwijGZqvqN08DEG6OU6mEGFSeJSbsuR23LkvpwcePOkHdsBuj3-p40MiB2wMRam_-jk1eL9xV_5b749oHM |
CitedBy_id | crossref_primary_10_3390_ijms232415757 crossref_primary_10_1038_s41598_024_62503_3 crossref_primary_10_1016_j_polymer_2024_126735 crossref_primary_10_1039_D3MA00740E crossref_primary_10_1080_1539445X_2024_2358002 crossref_primary_10_1016_j_eurpolymj_2023_111856 crossref_primary_10_3390_polym15143012 crossref_primary_10_3390_molecules27165326 crossref_primary_10_3390_polym14235247 crossref_primary_10_3390_gels9050430 crossref_primary_10_1016_j_reactfunctpolym_2023_105676 crossref_primary_10_1021_acsapm_2c01494 crossref_primary_10_1039_D3RA04118B crossref_primary_10_1039_D3RA08235K crossref_primary_10_3390_bios13080823 crossref_primary_10_1021_acsami_4c04310 crossref_primary_10_3390_molecules27020358 crossref_primary_10_1557_s43578_023_01266_5 crossref_primary_10_1039_D3RA01478A crossref_primary_10_3390_nano12172897 |
Cites_doi | 10.1021/acsami.0c13654 10.1021/acsami.8b11377 10.1002/admi.201701491 10.1021/acs.iecr.9b06769 10.1016/j.colsurfa.2020.125692 10.1039/D0TA05036A 10.1016/j.compositesb.2020.108046 10.1007/s10965-015-0822-3 10.1002/adfm.201504755 10.1016/j.colsurfa.2019.124402 10.1021/acs.biomac.0c01821 10.1016/j.colsurfa.2018.12.019 10.1007/s00396-020-04796-0 10.1002/adem.201600272 10.1016/j.compscitech.2020.108173 10.1016/j.apcatb.2017.01.051 10.1016/j.cej.2018.08.053 10.1038/nchem.2492 10.1016/j.ijbiomac.2020.06.180 10.1021/acsapm.9b00960 10.1039/C6TA02738E 10.1016/j.carbpol.2018.05.082 10.1016/j.carbpol.2010.01.020 10.1002/mame.201900227 10.1016/j.carbpol.2020.117595 10.1016/j.cej.2019.123912 10.1038/nature11409 10.1016/j.jcis.2020.06.015 10.1021/acs.biomac.0c01401 10.1021/am403966x 10.1021/acsnano.1c01751 10.1021/acsami.1c01343 10.1016/j.matt.2019.10.020 10.1002/adfm.202104928 10.1016/j.nanoen.2021.106502 10.1016/j.carbpol.2018.03.086 10.1016/j.carbpol.2018.07.070 10.1002/jctb.6767 10.1016/j.jcis.2012.01.041 10.1007/s13233-011-0706-2 10.1016/j.carbpol.2018.05.078 10.1039/D1TA06408H 10.1039/D0TC05242F 10.1039/c1sm05345k |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/mabi.202100361 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1616-5195 |
EndPage | n/a |
ExternalDocumentID | 10_1002_mabi_202100361 34761522 MABI202100361 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11875078; 12075010 – fundername: National Natural Science Foundation of China grantid: 12075010 – fundername: National Natural Science Foundation of China grantid: 11875078 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZY4 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3731-a0b9b552765974cf4c96e86a9eebd94e6f822e382931194171e23c749b8f61f3 |
IEDL.DBID | DR2 |
ISSN | 1616-5187 |
IngestDate | Fri Aug 16 07:43:46 EDT 2024 Thu Oct 10 19:24:48 EDT 2024 Fri Aug 23 01:38:11 EDT 2024 Sat Sep 28 08:21:25 EDT 2024 Sat Aug 24 00:57:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | sodium alginate strain-sensitivity polyacrylamide radiation synthesis cupric ion crosslinking mechanical properties |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-a0b9b552765974cf4c96e86a9eebd94e6f822e382931194171e23c749b8f61f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6038-3512 |
PMID | 34761522 |
PQID | 2628264253 |
PQPubID | 2034242 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2596456121 proquest_journals_2628264253 crossref_primary_10_1002_mabi_202100361 pubmed_primary_34761522 wiley_primary_10_1002_mabi_202100361_MABI202100361 |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular bioscience |
PublicationTitleAlternate | Macromol Biosci |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2017; 3 2021; 22 2020; 162 2020; 385 2019; 1 2018; 200 2020; 589 2019; 567 2020; 59 2020; 12 2019; 304 2016; 18 2012; 489 2010; 80 2011; 19 2013; 5 2021; 96 2021; 90 2011; 7 2016; 4 2018; 197 2020; 8 2020; 7 2021; 13 2012; 372 2021; 15 2018; 193 2021; 31 2020; 2 2018; 5 2021; 256 2020; 195 2021; 299 2021; 610 2018; 354 2015; 22 2020; 194 2020; 578 2018; 10 2016; 26 2016; 8 2017; 206 e_1_2_8_28_1 e_1_2_8_29_1 Pu X. (e_1_2_8_44_1) 2017; 3 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Ghobashy M. M. (e_1_2_8_30_1) 2020; 7 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 9 start-page: 3635 year: 2021 publication-title: J. Mater. Chem. C – volume: 5 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 256 year: 2021 publication-title: Carbohydr. Polym. – volume: 15 start-page: 7765 year: 2021 publication-title: ACSn Nano – volume: 7 start-page: 6231 year: 2011 publication-title: Soft. Matter – volume: 193 start-page: 73 year: 2018 publication-title: Carbohydr. Polym. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 390 year: 2020 publication-title: Matter – volume: 354 start-page: 817 year: 2018 publication-title: Chem. Eng. J. – volume: 22 start-page: 534 year: 2021 publication-title: Biomacromolecules – volume: 578 start-page: 598 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 162 start-page: 618 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 7 year: 2020 publication-title: Adv. Polym. Technol. – volume: 90 year: 2021 publication-title: Nano Energy – volume: 372 start-page: 245 year: 2012 publication-title: J. Colloid Interface Sci. – volume: 489 start-page: 133 year: 2012 publication-title: Nature – volume: 299 start-page: 783 year: 2021 publication-title: Colloid Polym. Sci. – volume: 197 start-page: 497 year: 2018 publication-title: Carbohydr. Polym. – volume: 80 start-page: 1028 year: 2010 publication-title: Carbohyd. Polym. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 304 year: 2019 publication-title: Macromol. Mater. Eng. – volume: 197 start-page: 292 year: 2018 publication-title: Carbohydr. Polym. – volume: 206 start-page: 328 year: 2017 publication-title: Appl. Catal., B – volume: 589 year: 2020 publication-title: Colloids Surf. A – volume: 96 start-page: 2382 year: 2021 publication-title: J. Chem. Technol. Biotechnol. – volume: 26 start-page: 1678 year: 2016 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 3222 year: 2019 publication-title: ACS Appl. Polym. Mater. – volume: 8 start-page: 618 year: 2016 publication-title: Nat. Chem. – volume: 194 year: 2020 publication-title: Composites, Part B – volume: 195 year: 2020 publication-title: Compos. Sci. Technol. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 610 year: 2021 publication-title: Colloids Surf., A – volume: 385 year: 2020 publication-title: Chem. Eng. J. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 22 start-page: 1312 year: 2021 publication-title: Biomacromolecules – volume: 19 start-page: 739 year: 2011 publication-title: Macromol. Res. – volume: 200 start-page: 72 year: 2018 publication-title: Carbohydr. Polym. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 1799 year: 2016 publication-title: Adv. Eng. Mater. – volume: 59 start-page: 4829 year: 2020 publication-title: Ind. Eng. Chem. Res. – volume: 567 start-page: 184 year: 2019 publication-title: Colloids Surf. A – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 22 start-page: 181 year: 2015 publication-title: J. Polym. Res. – ident: e_1_2_8_39_1 doi: 10.1021/acsami.0c13654 – ident: e_1_2_8_25_1 doi: 10.1021/acsami.8b11377 – ident: e_1_2_8_29_1 doi: 10.1002/admi.201701491 – ident: e_1_2_8_1_1 doi: 10.1021/acs.iecr.9b06769 – ident: e_1_2_8_26_1 doi: 10.1016/j.colsurfa.2020.125692 – ident: e_1_2_8_28_1 doi: 10.1039/D0TA05036A – ident: e_1_2_8_32_1 doi: 10.1016/j.compositesb.2020.108046 – ident: e_1_2_8_33_1 doi: 10.1007/s10965-015-0822-3 – ident: e_1_2_8_43_1 doi: 10.1002/adfm.201504755 – ident: e_1_2_8_34_1 doi: 10.1016/j.colsurfa.2019.124402 – ident: e_1_2_8_38_1 doi: 10.1021/acs.biomac.0c01821 – ident: e_1_2_8_35_1 doi: 10.1016/j.colsurfa.2018.12.019 – ident: e_1_2_8_15_1 doi: 10.1007/s00396-020-04796-0 – ident: e_1_2_8_27_1 doi: 10.1002/adem.201600272 – ident: e_1_2_8_31_1 doi: 10.1016/j.compscitech.2020.108173 – ident: e_1_2_8_37_1 doi: 10.1016/j.apcatb.2017.01.051 – ident: e_1_2_8_24_1 doi: 10.1016/j.cej.2018.08.053 – ident: e_1_2_8_4_1 doi: 10.1038/nchem.2492 – ident: e_1_2_8_11_1 doi: 10.1016/j.ijbiomac.2020.06.180 – ident: e_1_2_8_19_1 doi: 10.1021/acsapm.9b00960 – ident: e_1_2_8_2_1 doi: 10.1039/C6TA02738E – ident: e_1_2_8_17_1 doi: 10.1016/j.carbpol.2018.05.082 – ident: e_1_2_8_13_1 doi: 10.1016/j.carbpol.2010.01.020 – ident: e_1_2_8_23_1 doi: 10.1002/mame.201900227 – ident: e_1_2_8_12_1 doi: 10.1016/j.carbpol.2020.117595 – volume: 7 start-page: 1901475 year: 2020 ident: e_1_2_8_30_1 publication-title: Adv. Polym. Technol. contributor: fullname: Ghobashy M. M. – ident: e_1_2_8_46_1 doi: 10.1016/j.cej.2019.123912 – ident: e_1_2_8_9_1 doi: 10.1038/nature11409 – ident: e_1_2_8_41_1 doi: 10.1016/j.jcis.2020.06.015 – ident: e_1_2_8_10_1 doi: 10.1021/acs.biomac.0c01401 – ident: e_1_2_8_18_1 doi: 10.1021/am403966x – ident: e_1_2_8_22_1 doi: 10.1021/acsnano.1c01751 – ident: e_1_2_8_45_1 doi: 10.1021/acsami.1c01343 – ident: e_1_2_8_3_1 doi: 10.1016/j.matt.2019.10.020 – ident: e_1_2_8_20_1 doi: 10.1002/adfm.202104928 – ident: e_1_2_8_21_1 doi: 10.1016/j.nanoen.2021.106502 – ident: e_1_2_8_6_1 doi: 10.1016/j.carbpol.2018.03.086 – ident: e_1_2_8_8_1 doi: 10.1016/j.carbpol.2018.07.070 – ident: e_1_2_8_36_1 doi: 10.1002/jctb.6767 – ident: e_1_2_8_5_1 doi: 10.1016/j.jcis.2012.01.041 – ident: e_1_2_8_14_1 doi: 10.1007/s13233-011-0706-2 – volume: 3 start-page: e17000151 year: 2017 ident: e_1_2_8_44_1 publication-title: Sci. Adv. contributor: fullname: Pu X. – ident: e_1_2_8_40_1 doi: 10.1016/j.carbpol.2018.05.078 – ident: e_1_2_8_42_1 doi: 10.1039/D1TA06408H – ident: e_1_2_8_7_1 doi: 10.1039/D0TC05242F – ident: e_1_2_8_16_1 doi: 10.1039/c1sm05345k |
SSID | ssj0017892 |
Score | 2.479194 |
Snippet | The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with excellent... Abstract The double network (DN) hydrogel has attracted great attention due to its wide applications in daily life. However, synthesis DN hydrogel with... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2100361 |
SubjectTerms | Acrylamide Acrylic Resins Alginates - chemistry Alginic acid Copper Copper - chemistry cupric ion crosslinking Cupric ions Durability Electrolytes Energy dissipation Fourier analysis Fourier transforms Hydrogels Hydrogels - chemistry Infrared analysis Infrared reflection Infrared spectroscopy Ion currents Mechanical properties Photoelectron spectroscopy Photoelectrons Polyacrylamide Radiation Radiation crosslinking radiation synthesis Scanning electron microscopy Sensitivity Sodium alginate Spectroscopic analysis Spectrum analysis Strain strain‐sensitivity Tensile strength Thermogravimetric analysis |
Title | Polyacrylamide/Copper‐Alginate Double Network Hydrogel Electrolyte with Excellent Mechanical Properties and Strain‐Sensitivity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmabi.202100361 https://www.ncbi.nlm.nih.gov/pubmed/34761522 https://www.proquest.com/docview/2628264253 https://search.proquest.com/docview/2596456121 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL3Dhp_wtlMpISJzSrR3HSY7LstWCtFVFi9RbZDsTVDUkqzQrsZyqPgHPyJMwE28CCwckOOQQxXacmXH8jT3-hrFXMnEa9ZoHCUgVqFBGgY2lDaxUucPLaEcL-otjPf-o3p9H57-c4vf8EMOCG42M7n9NA9zYq_FP0tDPxl6gf4cuC_6Eyf8RYUwxXW8_DPxRIk66rMiIanQQiSTuWRsP5Xi7-vas9AfU3Eau3dRzdI-ZvtM-4uTyYNXaA_f1Nz7H__mq--zuBpfyiTekB-wWVLvs9rRPB_eQ3ZzU5dq4Zo0mdJHDeFovl9B8v_42KSm1QwscsbgtgR_7wHI-X-dN_QlKPvOZdso1lqFlXz770m0XVC1fAB08JjvhJ7Qr0BC9KzdVzk-73BXY_ClF2PsUF4_Y2dHsbDoPNgkcAhfGoQjMoU0tUbxpcltcoVyqIdEmBbB5qkAXCE8gTBByCJEqEQuQoYtVapNCiyJ8zHaquoKnjEcFTuYoFAMRKFAGTYi2IJMoFoVGRDRir3v9ZUtP05F5QmaZkUizQaQjtterN9sM16tMavQ80ROLwhF7OTxGAZM4TAX1CstEqSa0KbGJJ94shleFKkZkKOWIyU65f-lDtpi8eTfcPfuXSs_ZHUkHMbr48T220zYreIHwqLX73RD4AbVhCXE |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOZQL_z8LLRgJiVO6je04yXFZttpCd1XRReIWxc6kqgjJKmQltqeKJ-AZeZLOxJughQMSHHKIYjvOeCb-xh5_w9grEVmN45p5EQjlKSkCz4TCeEaozOKVaksL-rO5nn5U7z4FXTQhnYVx_BD9ghtZRvu_JgOnBenhL9bQL6m5QAcPfRb8C6MDdBNtXlL2hrcfegYpP4zavMiIa7QX-FHY8TYeiuF2_e156Q-wuY1d28nn6A4zXbddzMnng1VjDuzlb4yO__Vdd9ntDTTlI6dL99gNKO-z3XGXEe4B-35aFevU1mvUoosMhuNquYT659WPUUHZHRrgCMdNAXzuYsv5dJ3V1TkUfOKS7RRrLEMrv3zyrd0xKBs-Azp7TKrCT2ljoCaGV56WGT9r01dg82cUZO-yXDxki6PJYjz1NjkcPCtD6XvpoYkNsbxp8lxsrmysIdJpDGCyWIHOEaGAjBB1-H6s_NAHIW2oYhPl2s_lI7ZTViU8YTzIcT5HoaQQgAKVohbRLmQUhH6uERQN2OtuAJOlY-pIHCezSEikSS_SAdvrxjfZWOzXRGh0PtEZC-SAvewfo4BJHGkJ1QrLBLEmwCmwicdOL_pXSRUiOBRiwEQ7un_pQzIbvTnu757-S6UXbHe6mJ0kJ8fz98_YLUHnMtpw8j2209Qr2Ee01JjnrT1cAzclDYk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbQIgGX5R8KCxgJiVO2G8dxkmMprbpAq4pdpL1FtjNBK7JJFVKJckI8Ac_IkzATN4HCAQkOOUSxHWdmHH9jj79h7JmIrUK9Zl4MQnoyEKFnImE8I2Rm8dLK0oL-fKFm7-Srs_Dsl1P8jh-iX3CjkdH-r2mAr7J8-JM09EKbc_Tv0GXBnzD6P5elQvhLsOhtTyDlR3GbFhlhjfJCP4462sYjMdytvzst_YE1d6FrO_dMrzPd9dqFnHw4XDfm0H7-jdDxfz7rBtvfAlM-cpZ0k12C8ha7Ou7ywd1mX5dVsdG23qANnWcwHFerFdTfv3wbFZTboQGOYNwUwBcuspzPNlldvYeCT1yqnWKDZWjdl08-tfsFZcPnQCePyVD4krYFauJ35brM-EmbvAKbP6EQe5fj4g47nU5OxzNvm8HBs0EU-J4-MokhjjdFfovNpU0UxEonACZLJKgc8QkEMWIO30-kH_kgAhvJxMS58vPgLtsrqxLuMx7mOJujUDSEIEFqtCHag4zDyM8VQqIBe97pL105no7UMTKLlESa9iIdsINOvel2vH5MhULXE12xMBiwp_1jFDCJQ5dQrbFMmCiCmwKbuOfMon9VICOEhkIMmGiV-5c-pPPRi-P-7sG_VHrCrixfTtM3x4vXD9k1QYcy2ljyA7bX1Gt4hFCpMY_b0fADBm4MOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyacrylamide%2FCopper-Alginate+Double+Network+Hydrogel+Electrolyte+with+Excellent+Mechanical+Properties+and+Strain-Sensitivity&rft.jtitle=Macromolecular+bioscience&rft.au=Zhang%2C+Zeyu&rft.au=Lin%2C+Tingrui&rft.au=Li%2C+Shuangxiao&rft.au=Chen%2C+Xibang&rft.date=2022-02-01&rft.eissn=1616-5195&rft.volume=22&rft.issue=2&rft.spage=e2100361&rft.epage=e2100361&rft_id=info:doi/10.1002%2Fmabi.202100361&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-5187&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-5187&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-5187&client=summon |