Exploring Geometric Chirality in Nanocrystals for Boosting Solar‐to‐Hydrogen Conversion
Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field....
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 45; pp. e202411871 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
04.11.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202411871 |
Cover
Loading…
Abstract | Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two‐dimensional C3N4 nanosheets, significantly boosting photocatalytic H2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C3N4‐chiral Au NP interface and chiral induced spin polarization, and exploits high‐activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo‐induced carrier separation behavior, revealing a distinct chiral‐dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes.
The potential of geometric chiral effect was explored to enhance photocatalytic H2 evolution using a chiral composite of geometric chiral Au nanoparticles (NPs) and C3N4 nanosheets. The chiral Au NPs enable efficient charge carrier separation and high‐activity facets, boosting performance over achiral counterparts and resulting in a quantum yield of 44.64 % at 400 nm. Chiral‐dependent photocatalytic performance was also revealed. |
---|---|
AbstractList | Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two‐dimensional C3N4 nanosheets, significantly boosting photocatalytic H2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C3N4‐chiral Au NP interface and chiral induced spin polarization, and exploits high‐activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo‐induced carrier separation behavior, revealing a distinct chiral‐dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes.
The potential of geometric chiral effect was explored to enhance photocatalytic H2 evolution using a chiral composite of geometric chiral Au nanoparticles (NPs) and C3N4 nanosheets. The chiral Au NPs enable efficient charge carrier separation and high‐activity facets, boosting performance over achiral counterparts and resulting in a quantum yield of 44.64 % at 400 nm. Chiral‐dependent photocatalytic performance was also revealed. Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two‐dimensional C3N4 nanosheets, significantly boosting photocatalytic H2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C3N4‐chiral Au NP interface and chiral induced spin polarization, and exploits high‐activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo‐induced carrier separation behavior, revealing a distinct chiral‐dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes. Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two-dimensional C3N4 nanosheets, significantly boosting photocatalytic H2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C3N4-chiral Au NP interface and chiral induced spin polarization, and exploits high-activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo-induced carrier separation behavior, revealing a distinct chiral-dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes.Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two-dimensional C3N4 nanosheets, significantly boosting photocatalytic H2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C3N4-chiral Au NP interface and chiral induced spin polarization, and exploits high-activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo-induced carrier separation behavior, revealing a distinct chiral-dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes. Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two‐dimensional C 3 N 4 nanosheets, significantly boosting photocatalytic H 2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C 3 N 4 ‐chiral Au NP interface and chiral induced spin polarization, and exploits high‐activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H 2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo‐induced carrier separation behavior, revealing a distinct chiral‐dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes. |
Author | Gao, Qi Jiang, Biao Zhang, Chunyang Fu, Wenlong Wang, Peng‐peng Xiao, Chengyu Liu, Maochang Tan, Lili |
Author_xml | – sequence: 1 givenname: Wenlong surname: Fu fullname: Fu, Wenlong organization: Xi'an Jiaotong University – sequence: 2 givenname: Qi surname: Gao fullname: Gao, Qi organization: Xi'an Jiaotong University – sequence: 3 givenname: Chunyang surname: Zhang fullname: Zhang, Chunyang organization: Xi'an Jiaotong University – sequence: 4 givenname: Lili surname: Tan fullname: Tan, Lili organization: Xi'an Jiaotong University – sequence: 5 givenname: Biao surname: Jiang fullname: Jiang, Biao organization: Xi'an Jiaotong University – sequence: 6 givenname: Chengyu surname: Xiao fullname: Xiao, Chengyu organization: Xi'an Jiaotong University – sequence: 7 givenname: Maochang surname: Liu fullname: Liu, Maochang organization: Xi'an Jiaotong University – sequence: 8 givenname: Peng‐peng orcidid: 0000-0003-4054-8903 surname: Wang fullname: Wang, Peng‐peng email: ppwang@xjtu.edu.cn organization: Xi'an Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39054405$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT9PAyEYh4mp0VZdHc0lLi5X4QDhRm1qa2J0UCcHwnGcYq5Qgaq3-RH8jH4SaeqfxMS4AMPzvPnx_gagZ53VAOwiOEQQFofSGj0sYEEQ4gytgT6iBcoxY7iX3gTjnHGKNsEghIfEcw6PNsAmLiElBNI-uB2_zFvnjb3LJtrNdPRGZaN742VrYpcZm11I65TvQpRtyBrnsxPnQlwKV66V_v31Lbp0TLvauztts5GzT9oH4-w2WG-SpHc-7y1wczq-Hk3z88vJ2ej4PFeYYZRzrmpVSy5pxVHJMUoxta4qznhxRCtJGiQ1oQwrSlGTctOmKnBdl4QTWNY13gIHq7lz7x4XOkQxM0HptpVWu0UQGHLCWNoLTej-L_TBLbxN6QRGBcS8KCFM1N4ntahmuhZzb2bSd-JrbQkgK0B5F4LXjVAmypj-HL00rUBQLNsRy3bEdztJG_7Svib_KZQr4dm0uvuHFscXZ-Mf9wOZ4qO9 |
CitedBy_id | crossref_primary_10_1038_s41467_025_57624_w crossref_primary_10_1002_advs_202416597 |
Cites_doi | 10.1016/j.apcatb.2019.01.075 10.1021/acsami.3c05833 10.1002/aenm.201700025 10.1038/s41565-022-01279-x 10.1002/anie.201201557 10.1021/j100015a030 10.1016/j.matchemphys.2011.01.029 10.1038/s41467-023-36778-5 10.1002/anie.201103710 10.1021/acsenergylett.1c00682 10.1038/s41598-020-73464-8 10.1021/jacs.6b12971 10.1021/acscatal.9b04671 10.1038/s41566-018-0232-2 10.1021/acsenergylett.0c02537 10.1103/PhysRevLett.84.1015 10.1021/acsnano.3c04337 10.1016/j.apsusc.2018.02.105 10.1038/s41570-019-0087-1 10.1016/S1872-2067(18)63173-0 10.1021/ic200504n 10.1039/D1CS00648G 10.1021/jz300793y 10.1021/acscatal.2c05789 10.1002/adsu.202100264 10.1126/science.283.5403.814 10.1002/advs.202201063 10.1038/s41467-023-40367-x 10.1016/j.chempr.2022.10.017 10.1039/C7TA03808A 10.1016/j.apcatb.2019.118211 10.1021/acs.chemrev.8b00584 10.1038/nature19820 10.1126/science.adj5328 10.1021/jacs.1c13698 10.1016/j.apsusc.2020.145830 10.1021/jacs.3c12965 10.1063/1.2404600 10.1039/D2SC03549A 10.1039/C8CP04241A 10.1021/acsenergylett.8b01454 10.1038/35081014 10.1007/s12598-022-02226-4 10.1038/s41467-023-38052-0 10.1039/D1DT00910A 10.1016/j.cplett.2009.02.068 10.1007/s12598-022-01960-z 10.1002/smll.202105045 10.1021/cs300686m 10.1007/s12274-023-5504-6 10.1038/s41560-019-0490-3 10.1038/s41586-018-0034-1 10.1021/ar200293n 10.1038/s42254-021-00302-9 10.1038/s41560-021-00795-9 10.1126/science.1140484 10.1021/acsnano.0c04544 10.34133/energymatadv.0039 10.1021/acsnano.6b00602 10.1039/C7CY02219K 10.1039/D2EE03853F 10.1021/acs.inorgchem.2c00171 10.1002/aenm.201601190 10.1016/j.ijhydene.2017.11.057 10.1016/j.apcatb.2022.121322 10.1038/natrevmats.2017.50 10.1007/s12274-023-5866-9 10.1021/acs.chemrev.1c00473 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley‐VCH GmbH. 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202411871 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 39054405 10_1002_anie_202411871 ANIE202411871 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22075224; 22001201; 52306271 – fundername: China Postdoctoral Science Foundation funderid: 2022M722516 – fundername: Natural Science Foundation of Shaanxi Province funderid: 2023-JC-QN-0623 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3731-88cdcda8a5b819831028eebb878265ba4f1ae4573c551f5445fb23dd948409dd3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 07:08:41 EDT 2025 Fri Jul 25 11:54:34 EDT 2025 Mon Jul 21 06:08:52 EDT 2025 Sun Jul 06 05:08:26 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Wed Aug 20 07:24:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Keywords | Geometric chirality, Nanoparticles, Photocatalytic hydrogen evolution reaction, Chiral effect |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-88cdcda8a5b819831028eebb878265ba4f1ae4573c551f5445fb23dd948409dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4054-8903 |
PMID | 39054405 |
PQID | 3120382900 |
PQPubID | 946352 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3084775215 proquest_journals_3120382900 pubmed_primary_39054405 crossref_citationtrail_10_1002_anie_202411871 crossref_primary_10_1002_anie_202411871 wiley_primary_10_1002_anie_202411871_ANIE202411871 |
PublicationCentury | 2000 |
PublicationDate | November 4, 2024 |
PublicationDateYYYYMMDD | 2024-11-04 |
PublicationDate_xml | – month: 11 year: 2024 text: November 4, 2024 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2013; 3 2017; 2 2023; 4 2023; 382 2023; 9 2018; 442 2019; 248 1999; 283 2020; 14 2024; 146 2020; 10 2009; 472 2018; 43 2012; 51 2017; 316 2022; 122 2011; 126 2018; 8 2013; 15 2018; 3 2019; 119 2022; 310 2011; 411 2021; 6 2019; 4 2023; 13 2023; 14 2019; 3 2021; 3 2023; 17 2020; 261 2023; 18 2023; 15 1995; 15 2013; 46 2023; 16 2022; 51 2016; 10 2022; 41 2021; 50 2018; 20 2017; 139 2022; 144 2023; 42 2016; 6 2012; 3 2019; 40 2006; 89 2016; 539 2022 2018; 556 2022; 61 2022; 6 2022; 9 2011; 50 2022; 13 2000; 84 2020; 513 2018; 12 2022; 18 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Yu J. (e_1_2_7_6_1) 2022 |
References_xml | – volume: 14 start-page: 2534 year: 2023 publication-title: Nat. Commun. – volume: 18 year: 2022 publication-title: Small – volume: 122 start-page: 10484 year: 2022 end-page: 10537 publication-title: Chem. Rev. – volume: 442 start-page: 361 year: 2018 end-page: 367 publication-title: Appl. Surf. Sci. – volume: 10 start-page: 458 year: 2020 end-page: 462 publication-title: ACS Catal. – volume: 411 start-page: 770 year: 2011 end-page: 772 publication-title: Nature – volume: 51 start-page: 3794 year: 2022 end-page: 3818 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 388 year: 2021 end-page: 397 publication-title: Nat. Energy – volume: 472 start-page: 69 year: 2009 end-page: 73 publication-title: Chem. Phys. Lett. – volume: 17 start-page: 16326 year: 2023 end-page: 16347 publication-title: ACS Nano – volume: 261 year: 2020 publication-title: Appl. Catal. B – volume: 283 start-page: 814 year: 1999 end-page: 816 publication-title: Science – volume: 316 start-page: 732 year: 2017 end-page: 735 publication-title: Science – volume: 3 start-page: 95 year: 2013 end-page: 102 publication-title: ACS Catal. – volume: 46 start-page: 191 year: 2013 end-page: 202 publication-title: Acc. Chem. Res. – volume: 51 start-page: 7656 year: 2012 end-page: 7673 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 16426 year: 2020 publication-title: Sci. Rep. – volume: 13 start-page: 12340 year: 2022 end-page: 12347 publication-title: Chem. Sci. – volume: 10 start-page: 4559 year: 2016 end-page: 4564 publication-title: ACS Nano – volume: 6 year: 2022 publication-title: Adv. Sustainable Syst. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 139 start-page: 2794 year: 2017 end-page: 2798 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 5445 year: 1995 end-page: 5456 publication-title: J. Phys. Chem. – volume: 310 year: 2022 publication-title: Appl. Catal. B – volume: 50 start-page: 8106 year: 2011 end-page: 8111 publication-title: Inorg. Chem. – volume: 84 start-page: 1015 year: 2000 end-page: 1018 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 6280 year: 2023 end-page: 6288 publication-title: ACS Catal. – volume: 50 start-page: 9529 year: 2021 end-page: 9539 publication-title: Dalton Trans. – volume: 14 start-page: 10552 year: 2020 end-page: 10561 publication-title: ACS Nano – volume: 20 start-page: 22296 year: 2018 end-page: 22307 publication-title: Phys. Chem. Chem. Phys. – volume: 126 start-page: 546 year: 2011 end-page: 554 publication-title: Mater. Chem. Phys. – volume: 18 start-page: 124 year: 2023 end-page: 130 publication-title: Nat. Nanotechnol. – volume: 40 start-page: 390 year: 2019 end-page: 402 publication-title: Chin. J. Catal. – volume: 15 start-page: 39926 year: 2013 end-page: 39945 publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 1877 year: 2023 end-page: 1887 publication-title: Rare Met. – volume: 3 start-page: 2178 year: 2012 end-page: 2187 publication-title: J. Phys. Chem. Lett. – volume: 556 start-page: 360 year: 2018 end-page: 365 publication-title: Nature – volume: 3 start-page: 250 year: 2019 end-page: 260 publication-title: Nat. Chem. Rev. – volume: 16 start-page: 1187 year: 2023 end-page: 1199 publication-title: Energy Environ. Sci. – volume: 43 start-page: 601 year: 2018 end-page: 613 publication-title: Int. J. Hydrogen Energy – volume: 61 start-page: 4760 year: 2022 end-page: 4768 publication-title: Inorg. Chem. – volume: 539 start-page: 509 year: 2016 end-page: 517 publication-title: Nature – volume: 2 start-page: 17050 year: 2017 publication-title: Nat. Rev. Mater. – volume: 14 start-page: 4562 year: 2023 publication-title: Nat. Commun. – volume: 41 start-page: 2118 year: 2022 end-page: 2128 publication-title: Rare Met. – volume: 6 start-page: 2129 year: 2021 end-page: 2137 publication-title: ACS Energy Lett. – volume: 3 start-page: 2308 year: 2018 end-page: 2313 publication-title: ACS Energy Lett. – volume: 14 start-page: 1117 year: 2023 publication-title: Nat. Commun. – volume: 146 start-page: 2798 year: 2024 end-page: 2804 publication-title: J. Am. Chem. Soc. – volume: 248 start-page: 538 year: 2019 end-page: 551 publication-title: Appl. Catal. B – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 513 year: 2020 publication-title: Appl. Surf. Sci. – year: 2022 publication-title: Energy Mater. Adv. – volume: 12 start-page: 516 year: 2018 end-page: 527 publication-title: Nat. Photonics – volume: 144 start-page: 5074 year: 2022 end-page: 5086 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 328 year: 2021 end-page: 343 publication-title: Nat. Rev. Phys. – volume: 4 start-page: 957 year: 2019 end-page: 968 publication-title: Nat. Energy – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 50 start-page: 10246 year: 2011 end-page: 10250 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1183 year: 2018 end-page: 1193 publication-title: Catal. Sci. Technol. – volume: 6 start-page: 1405 year: 2021 end-page: 1412 publication-title: ACS Energy Lett. – volume: 4 start-page: 39 year: 2023 publication-title: Energy Mater. Adv. – volume: 15 start-page: 11444 year: 2023 end-page: 11449 publication-title: Nano Res. – volume: 382 start-page: 197 year: 2023 end-page: 201 publication-title: Science – volume: 119 start-page: 5192 year: 2019 end-page: 5247 publication-title: Chem. Rev. – volume: 5 start-page: 19649 year: 2017 end-page: 19655 publication-title: J. Mater. Chem. A – volume: 9 start-page: 460 year: 2023 end-page: 471 publication-title: Chem – volume: 16 start-page: 8782 year: 2023 end-page: 8792 publication-title: Nano Res. – volume: 89 year: 2006 publication-title: Appl. Phys. Lett. – ident: e_1_2_7_32_1 doi: 10.1016/j.apcatb.2019.01.075 – ident: e_1_2_7_42_1 doi: 10.1021/acsami.3c05833 – ident: e_1_2_7_41_1 doi: 10.1002/aenm.201700025 – ident: e_1_2_7_54_1 doi: 10.1038/s41565-022-01279-x – ident: e_1_2_7_58_1 doi: 10.1002/anie.201201557 – ident: e_1_2_7_56_1 doi: 10.1021/j100015a030 – ident: e_1_2_7_27_1 doi: 10.1016/j.matchemphys.2011.01.029 – ident: e_1_2_7_5_1 doi: 10.1038/s41467-023-36778-5 – ident: e_1_2_7_46_1 doi: 10.1002/anie.201103710 – ident: e_1_2_7_53_1 doi: 10.1021/acsenergylett.1c00682 – ident: e_1_2_7_57_1 doi: 10.1038/s41598-020-73464-8 – ident: e_1_2_7_15_1 doi: 10.1021/jacs.6b12971 – ident: e_1_2_7_38_1 doi: 10.1021/acscatal.9b04671 – ident: e_1_2_7_63_1 doi: 10.1038/s41566-018-0232-2 – ident: e_1_2_7_11_1 doi: 10.1021/acsenergylett.0c02537 – ident: e_1_2_7_66_1 doi: 10.1103/PhysRevLett.84.1015 – ident: e_1_2_7_12_1 doi: 10.1021/acsnano.3c04337 – ident: e_1_2_7_30_1 doi: 10.1016/j.apsusc.2018.02.105 – ident: e_1_2_7_67_1 doi: 10.1038/s41570-019-0087-1 – ident: e_1_2_7_39_1 doi: 10.1016/S1872-2067(18)63173-0 – ident: e_1_2_7_21_1 doi: 10.1021/ic200504n – ident: e_1_2_7_8_1 doi: 10.1039/D1CS00648G – ident: e_1_2_7_69_1 doi: 10.1021/jz300793y – ident: e_1_2_7_40_1 doi: 10.1021/acscatal.2c05789 – ident: e_1_2_7_26_1 doi: 10.1002/adsu.202100264 – ident: e_1_2_7_51_1 doi: 10.1126/science.283.5403.814 – ident: e_1_2_7_10_1 doi: 10.1002/advs.202201063 – ident: e_1_2_7_13_1 doi: 10.1038/s41467-023-40367-x – year: 2022 ident: e_1_2_7_6_1 publication-title: Energy Mater. Adv. – ident: e_1_2_7_14_1 doi: 10.1016/j.chempr.2022.10.017 – ident: e_1_2_7_43_1 doi: 10.1039/C7TA03808A – ident: e_1_2_7_48_1 doi: 10.1016/j.apcatb.2019.118211 – ident: e_1_2_7_19_1 doi: 10.1021/acs.chemrev.8b00584 – ident: e_1_2_7_68_1 doi: 10.1038/nature19820 – ident: e_1_2_7_52_1 doi: 10.1126/science.adj5328 – ident: e_1_2_7_18_1 doi: 10.1021/jacs.1c13698 – ident: e_1_2_7_34_1 doi: 10.1016/j.apsusc.2020.145830 – ident: e_1_2_7_17_1 doi: 10.1021/jacs.3c12965 – ident: e_1_2_7_64_1 doi: 10.1063/1.2404600 – ident: e_1_2_7_44_1 doi: 10.1039/D2SC03549A – ident: e_1_2_7_28_1 doi: 10.1039/C8CP04241A – ident: e_1_2_7_62_1 doi: 10.1021/acsenergylett.8b01454 – ident: e_1_2_7_65_1 doi: 10.1038/35081014 – ident: e_1_2_7_23_1 doi: 10.1007/s12598-022-02226-4 – ident: e_1_2_7_2_1 doi: 10.1038/s41467-023-38052-0 – ident: e_1_2_7_31_1 doi: 10.1039/D1DT00910A – ident: e_1_2_7_55_1 doi: 10.1016/j.cplett.2009.02.068 – ident: e_1_2_7_25_1 doi: 10.1007/s12598-022-01960-z – ident: e_1_2_7_45_1 doi: 10.1002/smll.202105045 – ident: e_1_2_7_47_1 doi: 10.1021/cs300686m – ident: e_1_2_7_7_1 doi: 10.1007/s12274-023-5504-6 – ident: e_1_2_7_20_1 doi: 10.1038/s41560-019-0490-3 – ident: e_1_2_7_22_1 doi: 10.1038/s41586-018-0034-1 – ident: e_1_2_7_61_1 doi: 10.1021/ar200293n – ident: e_1_2_7_50_1 doi: 10.1038/s42254-021-00302-9 – ident: e_1_2_7_49_1 doi: 10.1038/s41560-021-00795-9 – ident: e_1_2_7_60_1 doi: 10.1126/science.1140484 – ident: e_1_2_7_24_1 doi: 10.1021/acsnano.0c04544 – ident: e_1_2_7_3_1 doi: 10.34133/energymatadv.0039 – ident: e_1_2_7_59_1 doi: 10.1021/acsnano.6b00602 – ident: e_1_2_7_36_1 doi: 10.1039/C7CY02219K – ident: e_1_2_7_16_1 doi: 10.1039/D2EE03853F – ident: e_1_2_7_37_1 doi: 10.1021/acs.inorgchem.2c00171 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201601190 – ident: e_1_2_7_35_1 doi: 10.1016/j.ijhydene.2017.11.057 – ident: e_1_2_7_33_1 doi: 10.1016/j.apcatb.2022.121322 – ident: e_1_2_7_1_1 doi: 10.1038/natrevmats.2017.50 – ident: e_1_2_7_9_1 doi: 10.1007/s12274-023-5866-9 – ident: e_1_2_7_4_1 doi: 10.1021/acs.chemrev.1c00473 |
SSID | ssj0028806 |
Score | 2.498919 |
Snippet | Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202411871 |
SubjectTerms | Carbon nitride Catalysis Chiral effect Chirality Current carriers Energy conversion Flat surfaces Geometric chirality Gold Hydrogen evolution Nanoparticles Photocatalysis Photocatalytic hydrogen evolution reaction Polarization (spin alignment) Renewable energy Separation Synergistic effect |
Title | Exploring Geometric Chirality in Nanocrystals for Boosting Solar‐to‐Hydrogen Conversion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202411871 https://www.ncbi.nlm.nih.gov/pubmed/39054405 https://www.proquest.com/docview/3120382900 https://www.proquest.com/docview/3084775215 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ4YL3rx_cBXamLiCQUKC3vUjbqauAd1ExMPpC0lblzB7OOwnvwJ_kZ_iTNlQVdjTPRCILShtJ32-2DmG4A9X0sRpELZdSVTJCgKTQq5kK2FqwTSibRmch1etmrNtn9xG9x-iuIv9CGqD25kGWa9JgMXsn_4IRpKEdjI73AHciMTRE4OW4SKrir9KA8nZxFexLlNWehL1UbHO5ysPrkrfYOak8jVbD2n8yDKRhceJw8Hw4E8UM9f9Bz_81YLMDfGpeyomEiLMKWzJZhplOngluGu8tZjZzp_pERcijXuOz0D5FknY7hQ56o3QrjZ7TPEwuw4z_vkVc2uiT-_vbwOcjw0R0kvx2nLGuTwbr7WrUD79OSm0bTHmRlsxUPu2lGkEpWISAQSEQXlKvMiraWMEG_UAin81BXaD0KuEJClpPeTSo8nSd0nPpkkfBWmszzT68CQn8kgVUIGCTJFz5F-iKTJEbIe6UiENQvscmRiNZYtp-wZ3bgQXPZi6rK46jIL9qvyT4Vgx48lt8qBjseG24-56zmcfi47FuxWt7Gr6T-KyHQ-xDIObukh4p7AgrViglSP4nXEwAiCLfDMMP_ShviodX5SXW38pdImzNK5iY_0t2B60BvqbQRKA7ljjOEd_zsL1g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOMCFfQmrkZA4pSRx0qRHKEvZegAqIXGIbMcRFSVBXQ5w4hP4Rr6EmaQJKgghwaVSWkdJbU_8njPzHsCOq6XwYqHMmpIxEhSFIYVcyNTCVgLpRFzNvA4vm9VGyz279YpsQqqFyfUhyg03iozseU0BThvSe5-qoVSCjQQPlyA7oCryCbL1JhODw6tSQcrB6ZkXGHFukg99odtoOXuj54-uS9_A5ih2zRaf4xmQxW3nOScPlUFfVtTLF0XHf_2vWZgeQlO2n8-lORjTyTxM1gtHuAW4KxP22IlOH8mLS7H6fbubYXnWThg-q1PVfUbE2ekxhMPsIE17lFjNrolCv7--9VP8aDxH3RRnLqtTznu2YbcIreOjm3rDHJozmIr73DaDQEUqEoHwJIIKsitzAq2lDBByVD0p3NgW2vV8rhCTxST5E0uHR1HNJUoZRXwJxpM00SvAkKJJL1ZCehGSRceSro-8yRKyFuhA-FUDzGJoQjVULicDjU6Yay47IXVZWHaZAbtl-6dcs-PHluvFSIfD2O2F3HYsTu-XLQO2y5-xq-lVikh0OsA2Fq7qPkIfz4DlfIaUl-I1hMGIgw1wsnH-5R7C_ebpUXm0-peTtmCycXN5EV6cNs_XYIq-z8ol3XUY73cHegNxU19uZpHxAbHrD_A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CmwR7YWPsklE2IyHxlDaJc-tjV1raAdUEq1SJh8i3aBNbMvXyMJ72E_Yb-SWckzQZ3YSQ4CVSEltxbB_7-2yf7wC89Y0UQSqU3VYyRYKi0KSQC9lGuEognUjDItbh51E4GPsnk2Dymxd_qQ9RL7iRZRTjNRn4tU5b96Kh5IGN_A5nIDcmJ_J1P0SLIVj0pRaQ8rB3lv5FnNsUhr6SbXS81mr-1WnpEdZcha7F3NPfBFGVujxy8r25mMum-vFA0PF_fmsLni-BKeuUPekFPDHZNjzrVvHgXsK3-rge-2DyK4rEpVj3_GJaIHl2kTEcqXM1vUG8eTljCIbZcZ7P6Fg1-0oE-uft3TzHy-BGT3Pst6xLJ96L5bodGPd7Z92BvQzNYCsecdeOY6WVFrEIJEIKClbmxcZIGSPgCAMp_NQVxg8irhCRpST4k0qPa932iVBqzXdhLcszsw8MCZoMUiVkoJEqeo70I2RNjpDt2MQiCi2wq5ZJ1FK3nMJnXCal4rKXUJUldZVZ8K5Of10qdvwxZaNq6GRpubOEu57DaXfZseBN_RqrmjZSRGbyBaZxcE6PEPgEFuyVHaT-FG8jCEYUbIFXNPNfypB0RsNefXfwL5mO4Onp-37yaTj6-Ao26HHhK-k3YG0-XZjXCJrm8rCwi1-PyQ6o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Geometric+Chirality+in+Nanocrystals+for+Boosting+Solar-to-Hydrogen+Conversion&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fu%2C+Wenlong&rft.au=Gao%2C+Qi&rft.au=Zhang%2C+Chunyang&rft.au=Tan%2C+Lili&rft.date=2024-11-04&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=63&rft.issue=45&rft.spage=e202411871&rft_id=info:doi/10.1002%2Fanie.202411871&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |