Exploring Geometric Chirality in Nanocrystals for Boosting Solar‐to‐Hydrogen Conversion

Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field....

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 45; pp. e202411871 - n/a
Main Authors Fu, Wenlong, Gao, Qi, Zhang, Chunyang, Tan, Lili, Jiang, Biao, Xiao, Chengyu, Liu, Maochang, Wang, Peng‐peng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 04.11.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202411871

Cover

Loading…
Abstract Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two‐dimensional C3N4 nanosheets, significantly boosting photocatalytic H2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C3N4‐chiral Au NP interface and chiral induced spin polarization, and exploits high‐activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo‐induced carrier separation behavior, revealing a distinct chiral‐dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes. The potential of geometric chiral effect was explored to enhance photocatalytic H2 evolution using a chiral composite of geometric chiral Au nanoparticles (NPs) and C3N4 nanosheets. The chiral Au NPs enable efficient charge carrier separation and high‐activity facets, boosting performance over achiral counterparts and resulting in a quantum yield of 44.64 % at 400 nm. Chiral‐dependent photocatalytic performance was also revealed.
AbstractList Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two‐dimensional C3N4 nanosheets, significantly boosting photocatalytic H2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C3N4‐chiral Au NP interface and chiral induced spin polarization, and exploits high‐activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo‐induced carrier separation behavior, revealing a distinct chiral‐dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes. The potential of geometric chiral effect was explored to enhance photocatalytic H2 evolution using a chiral composite of geometric chiral Au nanoparticles (NPs) and C3N4 nanosheets. The chiral Au NPs enable efficient charge carrier separation and high‐activity facets, boosting performance over achiral counterparts and resulting in a quantum yield of 44.64 % at 400 nm. Chiral‐dependent photocatalytic performance was also revealed.
Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two‐dimensional C3N4 nanosheets, significantly boosting photocatalytic H2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C3N4‐chiral Au NP interface and chiral induced spin polarization, and exploits high‐activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo‐induced carrier separation behavior, revealing a distinct chiral‐dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes.
Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two-dimensional C3N4 nanosheets, significantly boosting photocatalytic H2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C3N4-chiral Au NP interface and chiral induced spin polarization, and exploits high-activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo-induced carrier separation behavior, revealing a distinct chiral-dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes.Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two-dimensional C3N4 nanosheets, significantly boosting photocatalytic H2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C3N4-chiral Au NP interface and chiral induced spin polarization, and exploits high-activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo-induced carrier separation behavior, revealing a distinct chiral-dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes.
Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two‐dimensional C 3 N 4 nanosheets, significantly boosting photocatalytic H 2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C 3 N 4 ‐chiral Au NP interface and chiral induced spin polarization, and exploits high‐activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H 2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo‐induced carrier separation behavior, revealing a distinct chiral‐dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes.
Author Gao, Qi
Jiang, Biao
Zhang, Chunyang
Fu, Wenlong
Wang, Peng‐peng
Xiao, Chengyu
Liu, Maochang
Tan, Lili
Author_xml – sequence: 1
  givenname: Wenlong
  surname: Fu
  fullname: Fu, Wenlong
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Qi
  surname: Gao
  fullname: Gao, Qi
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Chunyang
  surname: Zhang
  fullname: Zhang, Chunyang
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Lili
  surname: Tan
  fullname: Tan, Lili
  organization: Xi'an Jiaotong University
– sequence: 5
  givenname: Biao
  surname: Jiang
  fullname: Jiang, Biao
  organization: Xi'an Jiaotong University
– sequence: 6
  givenname: Chengyu
  surname: Xiao
  fullname: Xiao, Chengyu
  organization: Xi'an Jiaotong University
– sequence: 7
  givenname: Maochang
  surname: Liu
  fullname: Liu, Maochang
  organization: Xi'an Jiaotong University
– sequence: 8
  givenname: Peng‐peng
  orcidid: 0000-0003-4054-8903
  surname: Wang
  fullname: Wang, Peng‐peng
  email: ppwang@xjtu.edu.cn
  organization: Xi'an Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39054405$$D View this record in MEDLINE/PubMed
BookMark eNqFkT9PAyEYh4mp0VZdHc0lLi5X4QDhRm1qa2J0UCcHwnGcYq5Qgaq3-RH8jH4SaeqfxMS4AMPzvPnx_gagZ53VAOwiOEQQFofSGj0sYEEQ4gytgT6iBcoxY7iX3gTjnHGKNsEghIfEcw6PNsAmLiElBNI-uB2_zFvnjb3LJtrNdPRGZaN742VrYpcZm11I65TvQpRtyBrnsxPnQlwKV66V_v31Lbp0TLvauztts5GzT9oH4-w2WG-SpHc-7y1wczq-Hk3z88vJ2ej4PFeYYZRzrmpVSy5pxVHJMUoxta4qznhxRCtJGiQ1oQwrSlGTctOmKnBdl4QTWNY13gIHq7lz7x4XOkQxM0HptpVWu0UQGHLCWNoLTej-L_TBLbxN6QRGBcS8KCFM1N4ntahmuhZzb2bSd-JrbQkgK0B5F4LXjVAmypj-HL00rUBQLNsRy3bEdztJG_7Svib_KZQr4dm0uvuHFscXZ-Mf9wOZ4qO9
CitedBy_id crossref_primary_10_1038_s41467_025_57624_w
crossref_primary_10_1002_advs_202416597
Cites_doi 10.1016/j.apcatb.2019.01.075
10.1021/acsami.3c05833
10.1002/aenm.201700025
10.1038/s41565-022-01279-x
10.1002/anie.201201557
10.1021/j100015a030
10.1016/j.matchemphys.2011.01.029
10.1038/s41467-023-36778-5
10.1002/anie.201103710
10.1021/acsenergylett.1c00682
10.1038/s41598-020-73464-8
10.1021/jacs.6b12971
10.1021/acscatal.9b04671
10.1038/s41566-018-0232-2
10.1021/acsenergylett.0c02537
10.1103/PhysRevLett.84.1015
10.1021/acsnano.3c04337
10.1016/j.apsusc.2018.02.105
10.1038/s41570-019-0087-1
10.1016/S1872-2067(18)63173-0
10.1021/ic200504n
10.1039/D1CS00648G
10.1021/jz300793y
10.1021/acscatal.2c05789
10.1002/adsu.202100264
10.1126/science.283.5403.814
10.1002/advs.202201063
10.1038/s41467-023-40367-x
10.1016/j.chempr.2022.10.017
10.1039/C7TA03808A
10.1016/j.apcatb.2019.118211
10.1021/acs.chemrev.8b00584
10.1038/nature19820
10.1126/science.adj5328
10.1021/jacs.1c13698
10.1016/j.apsusc.2020.145830
10.1021/jacs.3c12965
10.1063/1.2404600
10.1039/D2SC03549A
10.1039/C8CP04241A
10.1021/acsenergylett.8b01454
10.1038/35081014
10.1007/s12598-022-02226-4
10.1038/s41467-023-38052-0
10.1039/D1DT00910A
10.1016/j.cplett.2009.02.068
10.1007/s12598-022-01960-z
10.1002/smll.202105045
10.1021/cs300686m
10.1007/s12274-023-5504-6
10.1038/s41560-019-0490-3
10.1038/s41586-018-0034-1
10.1021/ar200293n
10.1038/s42254-021-00302-9
10.1038/s41560-021-00795-9
10.1126/science.1140484
10.1021/acsnano.0c04544
10.34133/energymatadv.0039
10.1021/acsnano.6b00602
10.1039/C7CY02219K
10.1039/D2EE03853F
10.1021/acs.inorgchem.2c00171
10.1002/aenm.201601190
10.1016/j.ijhydene.2017.11.057
10.1016/j.apcatb.2022.121322
10.1038/natrevmats.2017.50
10.1007/s12274-023-5866-9
10.1021/acs.chemrev.1c00473
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley‐VCH GmbH.
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202411871
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 39054405
10_1002_anie_202411871
ANIE202411871
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22075224; 22001201; 52306271
– fundername: China Postdoctoral Science Foundation
  funderid: 2022M722516
– fundername: Natural Science Foundation of Shaanxi Province
  funderid: 2023-JC-QN-0623
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3731-88cdcda8a5b819831028eebb878265ba4f1ae4573c551f5445fb23dd948409dd3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:08:41 EDT 2025
Fri Jul 25 11:54:34 EDT 2025
Mon Jul 21 06:08:52 EDT 2025
Sun Jul 06 05:08:26 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Wed Aug 20 07:24:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords Geometric chirality, Nanoparticles, Photocatalytic hydrogen evolution reaction, Chiral effect
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-88cdcda8a5b819831028eebb878265ba4f1ae4573c551f5445fb23dd948409dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4054-8903
PMID 39054405
PQID 3120382900
PQPubID 946352
PageCount 10
ParticipantIDs proquest_miscellaneous_3084775215
proquest_journals_3120382900
pubmed_primary_39054405
crossref_citationtrail_10_1002_anie_202411871
crossref_primary_10_1002_anie_202411871
wiley_primary_10_1002_anie_202411871_ANIE202411871
PublicationCentury 2000
PublicationDate November 4, 2024
PublicationDateYYYYMMDD 2024-11-04
PublicationDate_xml – month: 11
  year: 2024
  text: November 4, 2024
  day: 04
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2013; 3
2017; 2
2023; 4
2023; 382
2023; 9
2018; 442
2019; 248
1999; 283
2020; 14
2024; 146
2020; 10
2009; 472
2018; 43
2012; 51
2017; 316
2022; 122
2011; 126
2018; 8
2013; 15
2018; 3
2019; 119
2022; 310
2011; 411
2021; 6
2019; 4
2023; 13
2023; 14
2019; 3
2021; 3
2023; 17
2020; 261
2023; 18
2023; 15
1995; 15
2013; 46
2023; 16
2022; 51
2016; 10
2022; 41
2021; 50
2018; 20
2017; 139
2022; 144
2023; 42
2016; 6
2012; 3
2019; 40
2006; 89
2016; 539
2022
2018; 556
2022; 61
2022; 6
2022; 9
2011; 50
2022; 13
2000; 84
2020; 513
2018; 12
2022; 18
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Yu J. (e_1_2_7_6_1) 2022
References_xml – volume: 14
  start-page: 2534
  year: 2023
  publication-title: Nat. Commun.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 122
  start-page: 10484
  year: 2022
  end-page: 10537
  publication-title: Chem. Rev.
– volume: 442
  start-page: 361
  year: 2018
  end-page: 367
  publication-title: Appl. Surf. Sci.
– volume: 10
  start-page: 458
  year: 2020
  end-page: 462
  publication-title: ACS Catal.
– volume: 411
  start-page: 770
  year: 2011
  end-page: 772
  publication-title: Nature
– volume: 51
  start-page: 3794
  year: 2022
  end-page: 3818
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 388
  year: 2021
  end-page: 397
  publication-title: Nat. Energy
– volume: 472
  start-page: 69
  year: 2009
  end-page: 73
  publication-title: Chem. Phys. Lett.
– volume: 17
  start-page: 16326
  year: 2023
  end-page: 16347
  publication-title: ACS Nano
– volume: 261
  year: 2020
  publication-title: Appl. Catal. B
– volume: 283
  start-page: 814
  year: 1999
  end-page: 816
  publication-title: Science
– volume: 316
  start-page: 732
  year: 2017
  end-page: 735
  publication-title: Science
– volume: 3
  start-page: 95
  year: 2013
  end-page: 102
  publication-title: ACS Catal.
– volume: 46
  start-page: 191
  year: 2013
  end-page: 202
  publication-title: Acc. Chem. Res.
– volume: 51
  start-page: 7656
  year: 2012
  end-page: 7673
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 16426
  year: 2020
  publication-title: Sci. Rep.
– volume: 13
  start-page: 12340
  year: 2022
  end-page: 12347
  publication-title: Chem. Sci.
– volume: 10
  start-page: 4559
  year: 2016
  end-page: 4564
  publication-title: ACS Nano
– volume: 6
  year: 2022
  publication-title: Adv. Sustainable Syst.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 139
  start-page: 2794
  year: 2017
  end-page: 2798
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 5445
  year: 1995
  end-page: 5456
  publication-title: J. Phys. Chem.
– volume: 310
  year: 2022
  publication-title: Appl. Catal. B
– volume: 50
  start-page: 8106
  year: 2011
  end-page: 8111
  publication-title: Inorg. Chem.
– volume: 84
  start-page: 1015
  year: 2000
  end-page: 1018
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 6280
  year: 2023
  end-page: 6288
  publication-title: ACS Catal.
– volume: 50
  start-page: 9529
  year: 2021
  end-page: 9539
  publication-title: Dalton Trans.
– volume: 14
  start-page: 10552
  year: 2020
  end-page: 10561
  publication-title: ACS Nano
– volume: 20
  start-page: 22296
  year: 2018
  end-page: 22307
  publication-title: Phys. Chem. Chem. Phys.
– volume: 126
  start-page: 546
  year: 2011
  end-page: 554
  publication-title: Mater. Chem. Phys.
– volume: 18
  start-page: 124
  year: 2023
  end-page: 130
  publication-title: Nat. Nanotechnol.
– volume: 40
  start-page: 390
  year: 2019
  end-page: 402
  publication-title: Chin. J. Catal.
– volume: 15
  start-page: 39926
  year: 2013
  end-page: 39945
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  start-page: 1877
  year: 2023
  end-page: 1887
  publication-title: Rare Met.
– volume: 3
  start-page: 2178
  year: 2012
  end-page: 2187
  publication-title: J. Phys. Chem. Lett.
– volume: 556
  start-page: 360
  year: 2018
  end-page: 365
  publication-title: Nature
– volume: 3
  start-page: 250
  year: 2019
  end-page: 260
  publication-title: Nat. Chem. Rev.
– volume: 16
  start-page: 1187
  year: 2023
  end-page: 1199
  publication-title: Energy Environ. Sci.
– volume: 43
  start-page: 601
  year: 2018
  end-page: 613
  publication-title: Int. J. Hydrogen Energy
– volume: 61
  start-page: 4760
  year: 2022
  end-page: 4768
  publication-title: Inorg. Chem.
– volume: 539
  start-page: 509
  year: 2016
  end-page: 517
  publication-title: Nature
– volume: 2
  start-page: 17050
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 14
  start-page: 4562
  year: 2023
  publication-title: Nat. Commun.
– volume: 41
  start-page: 2118
  year: 2022
  end-page: 2128
  publication-title: Rare Met.
– volume: 6
  start-page: 2129
  year: 2021
  end-page: 2137
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 2308
  year: 2018
  end-page: 2313
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 1117
  year: 2023
  publication-title: Nat. Commun.
– volume: 146
  start-page: 2798
  year: 2024
  end-page: 2804
  publication-title: J. Am. Chem. Soc.
– volume: 248
  start-page: 538
  year: 2019
  end-page: 551
  publication-title: Appl. Catal. B
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 513
  year: 2020
  publication-title: Appl. Surf. Sci.
– year: 2022
  publication-title: Energy Mater. Adv.
– volume: 12
  start-page: 516
  year: 2018
  end-page: 527
  publication-title: Nat. Photonics
– volume: 144
  start-page: 5074
  year: 2022
  end-page: 5086
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 328
  year: 2021
  end-page: 343
  publication-title: Nat. Rev. Phys.
– volume: 4
  start-page: 957
  year: 2019
  end-page: 968
  publication-title: Nat. Energy
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 50
  start-page: 10246
  year: 2011
  end-page: 10250
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 1183
  year: 2018
  end-page: 1193
  publication-title: Catal. Sci. Technol.
– volume: 6
  start-page: 1405
  year: 2021
  end-page: 1412
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 39
  year: 2023
  publication-title: Energy Mater. Adv.
– volume: 15
  start-page: 11444
  year: 2023
  end-page: 11449
  publication-title: Nano Res.
– volume: 382
  start-page: 197
  year: 2023
  end-page: 201
  publication-title: Science
– volume: 119
  start-page: 5192
  year: 2019
  end-page: 5247
  publication-title: Chem. Rev.
– volume: 5
  start-page: 19649
  year: 2017
  end-page: 19655
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 460
  year: 2023
  end-page: 471
  publication-title: Chem
– volume: 16
  start-page: 8782
  year: 2023
  end-page: 8792
  publication-title: Nano Res.
– volume: 89
  year: 2006
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_7_32_1
  doi: 10.1016/j.apcatb.2019.01.075
– ident: e_1_2_7_42_1
  doi: 10.1021/acsami.3c05833
– ident: e_1_2_7_41_1
  doi: 10.1002/aenm.201700025
– ident: e_1_2_7_54_1
  doi: 10.1038/s41565-022-01279-x
– ident: e_1_2_7_58_1
  doi: 10.1002/anie.201201557
– ident: e_1_2_7_56_1
  doi: 10.1021/j100015a030
– ident: e_1_2_7_27_1
  doi: 10.1016/j.matchemphys.2011.01.029
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-023-36778-5
– ident: e_1_2_7_46_1
  doi: 10.1002/anie.201103710
– ident: e_1_2_7_53_1
  doi: 10.1021/acsenergylett.1c00682
– ident: e_1_2_7_57_1
  doi: 10.1038/s41598-020-73464-8
– ident: e_1_2_7_15_1
  doi: 10.1021/jacs.6b12971
– ident: e_1_2_7_38_1
  doi: 10.1021/acscatal.9b04671
– ident: e_1_2_7_63_1
  doi: 10.1038/s41566-018-0232-2
– ident: e_1_2_7_11_1
  doi: 10.1021/acsenergylett.0c02537
– ident: e_1_2_7_66_1
  doi: 10.1103/PhysRevLett.84.1015
– ident: e_1_2_7_12_1
  doi: 10.1021/acsnano.3c04337
– ident: e_1_2_7_30_1
  doi: 10.1016/j.apsusc.2018.02.105
– ident: e_1_2_7_67_1
  doi: 10.1038/s41570-019-0087-1
– ident: e_1_2_7_39_1
  doi: 10.1016/S1872-2067(18)63173-0
– ident: e_1_2_7_21_1
  doi: 10.1021/ic200504n
– ident: e_1_2_7_8_1
  doi: 10.1039/D1CS00648G
– ident: e_1_2_7_69_1
  doi: 10.1021/jz300793y
– ident: e_1_2_7_40_1
  doi: 10.1021/acscatal.2c05789
– ident: e_1_2_7_26_1
  doi: 10.1002/adsu.202100264
– ident: e_1_2_7_51_1
  doi: 10.1126/science.283.5403.814
– ident: e_1_2_7_10_1
  doi: 10.1002/advs.202201063
– ident: e_1_2_7_13_1
  doi: 10.1038/s41467-023-40367-x
– year: 2022
  ident: e_1_2_7_6_1
  publication-title: Energy Mater. Adv.
– ident: e_1_2_7_14_1
  doi: 10.1016/j.chempr.2022.10.017
– ident: e_1_2_7_43_1
  doi: 10.1039/C7TA03808A
– ident: e_1_2_7_48_1
  doi: 10.1016/j.apcatb.2019.118211
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.chemrev.8b00584
– ident: e_1_2_7_68_1
  doi: 10.1038/nature19820
– ident: e_1_2_7_52_1
  doi: 10.1126/science.adj5328
– ident: e_1_2_7_18_1
  doi: 10.1021/jacs.1c13698
– ident: e_1_2_7_34_1
  doi: 10.1016/j.apsusc.2020.145830
– ident: e_1_2_7_17_1
  doi: 10.1021/jacs.3c12965
– ident: e_1_2_7_64_1
  doi: 10.1063/1.2404600
– ident: e_1_2_7_44_1
  doi: 10.1039/D2SC03549A
– ident: e_1_2_7_28_1
  doi: 10.1039/C8CP04241A
– ident: e_1_2_7_62_1
  doi: 10.1021/acsenergylett.8b01454
– ident: e_1_2_7_65_1
  doi: 10.1038/35081014
– ident: e_1_2_7_23_1
  doi: 10.1007/s12598-022-02226-4
– ident: e_1_2_7_2_1
  doi: 10.1038/s41467-023-38052-0
– ident: e_1_2_7_31_1
  doi: 10.1039/D1DT00910A
– ident: e_1_2_7_55_1
  doi: 10.1016/j.cplett.2009.02.068
– ident: e_1_2_7_25_1
  doi: 10.1007/s12598-022-01960-z
– ident: e_1_2_7_45_1
  doi: 10.1002/smll.202105045
– ident: e_1_2_7_47_1
  doi: 10.1021/cs300686m
– ident: e_1_2_7_7_1
  doi: 10.1007/s12274-023-5504-6
– ident: e_1_2_7_20_1
  doi: 10.1038/s41560-019-0490-3
– ident: e_1_2_7_22_1
  doi: 10.1038/s41586-018-0034-1
– ident: e_1_2_7_61_1
  doi: 10.1021/ar200293n
– ident: e_1_2_7_50_1
  doi: 10.1038/s42254-021-00302-9
– ident: e_1_2_7_49_1
  doi: 10.1038/s41560-021-00795-9
– ident: e_1_2_7_60_1
  doi: 10.1126/science.1140484
– ident: e_1_2_7_24_1
  doi: 10.1021/acsnano.0c04544
– ident: e_1_2_7_3_1
  doi: 10.34133/energymatadv.0039
– ident: e_1_2_7_59_1
  doi: 10.1021/acsnano.6b00602
– ident: e_1_2_7_36_1
  doi: 10.1039/C7CY02219K
– ident: e_1_2_7_16_1
  doi: 10.1039/D2EE03853F
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.inorgchem.2c00171
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201601190
– ident: e_1_2_7_35_1
  doi: 10.1016/j.ijhydene.2017.11.057
– ident: e_1_2_7_33_1
  doi: 10.1016/j.apcatb.2022.121322
– ident: e_1_2_7_1_1
  doi: 10.1038/natrevmats.2017.50
– ident: e_1_2_7_9_1
  doi: 10.1007/s12274-023-5866-9
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.chemrev.1c00473
SSID ssj0028806
Score 2.498919
Snippet Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202411871
SubjectTerms Carbon nitride
Catalysis
Chiral effect
Chirality
Current carriers
Energy conversion
Flat surfaces
Geometric chirality
Gold
Hydrogen evolution
Nanoparticles
Photocatalysis
Photocatalytic hydrogen evolution reaction
Polarization (spin alignment)
Renewable energy
Separation
Synergistic effect
Title Exploring Geometric Chirality in Nanocrystals for Boosting Solar‐to‐Hydrogen Conversion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202411871
https://www.ncbi.nlm.nih.gov/pubmed/39054405
https://www.proquest.com/docview/3120382900
https://www.proquest.com/docview/3084775215
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ4YL3rx_cBXamLiCQUKC3vUjbqauAd1ExMPpC0lblzB7OOwnvwJ_kZ_iTNlQVdjTPRCILShtJ32-2DmG4A9X0sRpELZdSVTJCgKTQq5kK2FqwTSibRmch1etmrNtn9xG9x-iuIv9CGqD25kGWa9JgMXsn_4IRpKEdjI73AHciMTRE4OW4SKrir9KA8nZxFexLlNWehL1UbHO5ysPrkrfYOak8jVbD2n8yDKRhceJw8Hw4E8UM9f9Bz_81YLMDfGpeyomEiLMKWzJZhplOngluGu8tZjZzp_pERcijXuOz0D5FknY7hQ56o3QrjZ7TPEwuw4z_vkVc2uiT-_vbwOcjw0R0kvx2nLGuTwbr7WrUD79OSm0bTHmRlsxUPu2lGkEpWISAQSEQXlKvMiraWMEG_UAin81BXaD0KuEJClpPeTSo8nSd0nPpkkfBWmszzT68CQn8kgVUIGCTJFz5F-iKTJEbIe6UiENQvscmRiNZYtp-wZ3bgQXPZi6rK46jIL9qvyT4Vgx48lt8qBjseG24-56zmcfi47FuxWt7Gr6T-KyHQ-xDIObukh4p7AgrViglSP4nXEwAiCLfDMMP_ShviodX5SXW38pdImzNK5iY_0t2B60BvqbQRKA7ljjOEd_zsL1g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOMCFfQmrkZA4pSRx0qRHKEvZegAqIXGIbMcRFSVBXQ5w4hP4Rr6EmaQJKgghwaVSWkdJbU_8njPzHsCOq6XwYqHMmpIxEhSFIYVcyNTCVgLpRFzNvA4vm9VGyz279YpsQqqFyfUhyg03iozseU0BThvSe5-qoVSCjQQPlyA7oCryCbL1JhODw6tSQcrB6ZkXGHFukg99odtoOXuj54-uS9_A5ih2zRaf4xmQxW3nOScPlUFfVtTLF0XHf_2vWZgeQlO2n8-lORjTyTxM1gtHuAW4KxP22IlOH8mLS7H6fbubYXnWThg-q1PVfUbE2ekxhMPsIE17lFjNrolCv7--9VP8aDxH3RRnLqtTznu2YbcIreOjm3rDHJozmIr73DaDQEUqEoHwJIIKsitzAq2lDBByVD0p3NgW2vV8rhCTxST5E0uHR1HNJUoZRXwJxpM00SvAkKJJL1ZCehGSRceSro-8yRKyFuhA-FUDzGJoQjVULicDjU6Yay47IXVZWHaZAbtl-6dcs-PHluvFSIfD2O2F3HYsTu-XLQO2y5-xq-lVikh0OsA2Fq7qPkIfz4DlfIaUl-I1hMGIgw1wsnH-5R7C_ebpUXm0-peTtmCycXN5EV6cNs_XYIq-z8ol3XUY73cHegNxU19uZpHxAbHrD_A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CmwR7YWPsklE2IyHxlDaJc-tjV1raAdUEq1SJh8i3aBNbMvXyMJ72E_Yb-SWckzQZ3YSQ4CVSEltxbB_7-2yf7wC89Y0UQSqU3VYyRYKi0KSQC9lGuEognUjDItbh51E4GPsnk2Dymxd_qQ9RL7iRZRTjNRn4tU5b96Kh5IGN_A5nIDcmJ_J1P0SLIVj0pRaQ8rB3lv5FnNsUhr6SbXS81mr-1WnpEdZcha7F3NPfBFGVujxy8r25mMum-vFA0PF_fmsLni-BKeuUPekFPDHZNjzrVvHgXsK3-rge-2DyK4rEpVj3_GJaIHl2kTEcqXM1vUG8eTljCIbZcZ7P6Fg1-0oE-uft3TzHy-BGT3Pst6xLJ96L5bodGPd7Z92BvQzNYCsecdeOY6WVFrEIJEIKClbmxcZIGSPgCAMp_NQVxg8irhCRpST4k0qPa932iVBqzXdhLcszsw8MCZoMUiVkoJEqeo70I2RNjpDt2MQiCi2wq5ZJ1FK3nMJnXCal4rKXUJUldZVZ8K5Of10qdvwxZaNq6GRpubOEu57DaXfZseBN_RqrmjZSRGbyBaZxcE6PEPgEFuyVHaT-FG8jCEYUbIFXNPNfypB0RsNefXfwL5mO4Onp-37yaTj6-Ao26HHhK-k3YG0-XZjXCJrm8rCwi1-PyQ6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Geometric+Chirality+in+Nanocrystals+for+Boosting+Solar-to-Hydrogen+Conversion&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fu%2C+Wenlong&rft.au=Gao%2C+Qi&rft.au=Zhang%2C+Chunyang&rft.au=Tan%2C+Lili&rft.date=2024-11-04&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=63&rft.issue=45&rft.spage=e202411871&rft_id=info:doi/10.1002%2Fanie.202411871&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon