Polyphosphazene and Non‐Catechol‐Based Antibacterial Injectable Hydrogel for Adhesion of Wet Tissues as Wound Dressing
Wound dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel‐inspired catechol‐based wet adhesives have been reported, opening a pathway for the treatment of...
Saved in:
Published in | Advanced healthcare materials Vol. 11; no. 1; pp. e2101421 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wound dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel‐inspired catechol‐based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol‐based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non‐catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation–π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti‐mechanical damage, and hemostatic behavior are investigated to confirm multi‐functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation–π and π–π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti‐infection and hemostasis.
Inspired by barnacle cement proteins, a series of dynamic phenylborate ester‐based adhesive hydrogels are prepared by combining the cation–π structure‐modified polyphosphazene with polyvinyl alcohol. The dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. |
---|---|
AbstractList | Wound dressings with excellent adhesiveness, antibacterial, self-healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel-inspired catechol-based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol-based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non-catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation-π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti-mechanical damage, and hemostatic behavior are investigated to confirm multi-functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation-π and π-π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti-infection and hemostasis. Wound dressings with excellent adhesiveness, antibacterial, self-healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel-inspired catechol-based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol-based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non-catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation-π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti-mechanical damage, and hemostatic behavior are investigated to confirm multi-functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation-π and π-π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti-infection and hemostasis.Wound dressings with excellent adhesiveness, antibacterial, self-healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel-inspired catechol-based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol-based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non-catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation-π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti-mechanical damage, and hemostatic behavior are investigated to confirm multi-functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation-π and π-π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti-infection and hemostasis. Wound dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel‐inspired catechol‐based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol‐based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non‐catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation– π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti‐mechanical damage, and hemostatic behavior are investigated to confirm multi‐functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation– π and π – π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti‐infection and hemostasis. Wound dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel‐inspired catechol‐based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol‐based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non‐catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation–π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti‐mechanical damage, and hemostatic behavior are investigated to confirm multi‐functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation–π and π–π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti‐infection and hemostasis. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester‐based adhesive hydrogels are prepared by combining the cation–π structure‐modified polyphosphazene with polyvinyl alcohol. The dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. |
Author | Liu, Xiaowei Ni, Zhipeng Liu, Jiyang Yu, Haojie Shen, Di Wang, Li Wang, Nan Huang, Yudi Sheng, Yan Chen, Xiang |
Author_xml | – sequence: 1 givenname: Zhipeng surname: Ni fullname: Ni, Zhipeng organization: Zhejiang University – sequence: 2 givenname: Haojie orcidid: 0000-0002-7405-7881 surname: Yu fullname: Yu, Haojie email: hjyu@zju.edu.cn organization: Zhejiang University – sequence: 3 givenname: Li surname: Wang fullname: Wang, Li organization: Zhejiang University – sequence: 4 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei organization: Zhejiang University – sequence: 5 givenname: Di surname: Shen fullname: Shen, Di organization: Zhejiang University – sequence: 6 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: Zhejiang University – sequence: 7 givenname: Jiyang surname: Liu fullname: Liu, Jiyang organization: Zhejiang University – sequence: 8 givenname: Nan surname: Wang fullname: Wang, Nan organization: Zhejiang University – sequence: 9 givenname: Yudi surname: Huang fullname: Huang, Yudi organization: Zhejiang University – sequence: 10 givenname: Yan surname: Sheng fullname: Sheng, Yan organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34704383$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9uEzEQhy1UREvplSOyxKWXBP_ZtXePIQVSqQUORT2uHHu268ixg-0VSk88As_Ik9RV2iBVqvBl5vB949H8XqMDHzwg9JaSKSWEfVBmWE8ZYZTQitEX6IjRlk2YqNuDfV-RQ3SS0oqUJ2oqGvoKHfJKkoo3_Ajdfg9uuxlC2gzqFjxg5Q3-Gvzf33_mKoMegivtR5XA4JnPdql0hmiVw-d-BTqrpQO82JoYbsDhPkQ8MwMkGzwOPb6GjK9sSiMkrBK-DmOZfhYhJetv3qCXvXIJTh7qMfrx-dPVfDG5-PblfD67mGguOZ00QjZSGNCkr5pW1lRrw5jqBVmKSjeNrk0Be2nalplaEWM4bVolue65lnXNj9Hpbu4mhp9lk9ytbdLgnPIQxtSxupGEUFK1BX3_BF2FMfqyXccEFVXLJJWFevdAjcs1mG4T7VrFbfd41QJMd4COIaUI_R6hpLtPrrtPrtsnV4TqiaBtVrlcMUdl3fNau9N-WQfb_3zSzc4Wl__cO88ersk |
CitedBy_id | crossref_primary_10_1002_mabi_202300127 crossref_primary_10_1016_j_eurpolymj_2023_112425 crossref_primary_10_1002_SMMD_20230024 crossref_primary_10_1016_j_carbpol_2022_120103 crossref_primary_10_3390_nano14241992 crossref_primary_10_1002_mabi_202100475 crossref_primary_10_1016_j_bioactmat_2024_07_011 crossref_primary_10_1016_j_mtbio_2023_100582 crossref_primary_10_1002_anbr_202200115 crossref_primary_10_1021_acsami_2c15411 crossref_primary_10_1007_s10570_023_05297_3 crossref_primary_10_1016_j_biomaterials_2024_123017 crossref_primary_10_1002_adfm_202310233 crossref_primary_10_1016_j_cis_2023_102982 crossref_primary_10_1039_D3TB00251A crossref_primary_10_1002_macp_202400123 crossref_primary_10_1039_D3MH01403G crossref_primary_10_1016_j_ijbiomac_2023_125801 crossref_primary_10_1016_j_cej_2023_141732 crossref_primary_10_1007_s40883_023_00318_w crossref_primary_10_1002_adhm_202401556 crossref_primary_10_1002_wnan_1914 crossref_primary_10_1002_adfm_202105721 crossref_primary_10_1002_adhm_202301264 crossref_primary_10_1016_j_cclet_2024_110767 crossref_primary_10_1021_acsami_3c16540 crossref_primary_10_3389_fbioe_2023_1335211 crossref_primary_10_1002_adfm_202302846 crossref_primary_10_1002_vnl_21962 crossref_primary_10_3390_biomedicines12040923 crossref_primary_10_1002_adhm_202400513 crossref_primary_10_1016_j_ijbiomac_2024_130764 crossref_primary_10_1007_s10570_022_04909_8 crossref_primary_10_1016_j_ijbiomac_2024_131772 crossref_primary_10_1039_D2TB02115C crossref_primary_10_1016_j_cej_2024_156387 crossref_primary_10_3390_ijms232415993 crossref_primary_10_1039_D3TB02040A crossref_primary_10_1007_s40883_022_00278_7 crossref_primary_10_1016_j_ijbiomac_2024_138327 crossref_primary_10_1016_j_colsurfb_2024_114157 crossref_primary_10_1002_app_52894 crossref_primary_10_1002_adfm_202411959 crossref_primary_10_1016_j_polymer_2023_125808 crossref_primary_10_1016_j_compositesb_2022_109762 crossref_primary_10_1002_advs_202206585 crossref_primary_10_1016_j_jconrel_2024_10_053 crossref_primary_10_1021_acsapm_3c00559 crossref_primary_10_1016_j_ccr_2022_214823 crossref_primary_10_1016_j_cej_2022_138201 crossref_primary_10_1002_adhm_202304321 crossref_primary_10_1051_bioconf_202411102011 crossref_primary_10_1016_j_cej_2024_151891 crossref_primary_10_1016_j_compositesb_2024_111869 crossref_primary_10_1021_acsami_4c23040 crossref_primary_10_1039_D3BM00061C crossref_primary_10_1186_s40824_023_00392_9 crossref_primary_10_1016_j_ijbiomac_2025_139945 crossref_primary_10_1016_j_actbio_2024_04_042 crossref_primary_10_1021_acsami_3c06371 crossref_primary_10_1021_acsami_2c15686 crossref_primary_10_1016_j_carbpol_2023_120937 crossref_primary_10_1039_D3TA03086E crossref_primary_10_1002_advs_202303326 crossref_primary_10_3390_mi14091786 crossref_primary_10_1016_j_eurpolymj_2024_113260 |
Cites_doi | 10.1038/s41467-019-13171-9 10.1039/C7CC07215E 10.1039/C4CS00332B 10.1038/s41467-019-13512-8 10.1016/j.progpolymsci.2021.101388 10.1021/acs.biomac.0c01069 10.1002/adma.201704640 10.1002/adfm.202005689 10.1002/anie.201210365 10.1021/ma00115a010 10.1016/j.jmps.2019.06.013 10.1038/nchem.2720 10.1038/s41467-019-13993-7 10.1002/adfm.202009334 10.1126/science.aab0556 10.1002/adhm.201801568 10.1016/j.progpolymsci.2011.08.005 10.1038/379219a0 10.1021/jacs.9b02677 10.1016/j.biomaterials.2018.08.044 10.1039/D0TA08987G 10.1039/C5RA06649B 10.1038/s41467-019-10004-7 10.1038/s41586-019-1710-5 10.1002/adfm.201604894 10.1021/cr9603744 10.1021/acsami.9b07522 10.1002/adma.202001628 10.1016/j.progpolymsci.2011.12.003 10.1021/acsmacrolett.9b00325 10.1002/adma.201202343 10.1039/c2py20170d 10.1016/j.jmps.2014.05.014 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
DOI | 10.1002/adhm.202101421 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Immunology Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-2659 |
EndPage | n/a |
ExternalDocumentID | 34704383 10_1002_adhm_202101421 ADHM202101421 |
Genre | article Journal Article |
GroupedDBID | 05W 0R~ 1OC 33P 53G 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAIPD AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABLJU ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A D-B DCZOG DRFUL DRMAN DRSTM EBD EBS EMOBN G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXMAN MXSTM MY. MY~ O9- P2W PQQKQ ROL SUPJJ SV3 WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN C45 CITATION EJD GODZA OVD TEORI CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c3731-867876dec0f489751ccd22af60b64c88c5dc37f7d992d5a0dd3189a73cf3c7553 |
ISSN | 2192-2640 2192-2659 |
IngestDate | Thu Jul 10 23:18:40 EDT 2025 Fri Jul 25 12:02:43 EDT 2025 Wed Feb 19 02:26:46 EST 2025 Tue Jul 01 03:06:45 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 Wed Jan 22 16:28:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | antibacterial activity polyphosphazene wound dressing adhesives |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3731-867876dec0f489751ccd22af60b64c88c5dc37f7d992d5a0dd3189a73cf3c7553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7405-7881 |
PMID | 34704383 |
PQID | 2616492717 |
PQPubID | 2032434 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2587001049 proquest_journals_2616492717 pubmed_primary_34704383 crossref_primary_10_1002_adhm_202101421 crossref_citationtrail_10_1002_adhm_202101421 wiley_primary_10_1002_adhm_202101421_ADHM202101421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced healthcare materials |
PublicationTitleAlternate | Adv Healthc Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2020; 8 2017; 53 2021; 31 2015; 5 1996 2012 2019; 379 37 10 2020 2019 2014; 32 131 70 2018; 183 2012 2012; 37 3 1995; 28 2020; 30 2019; 10 2015; 44 2019 2019; 8 11 2017 1997 2013; 9 97 52 2019; 575 2017 2013 2021; 27 25 116 2018; 30 2020; 11 2015; 349 2020; 21 2019; 141 e_1_2_7_4_3 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_18_2 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_23_3 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 9 97 52 start-page: 473 1303 3944 year: 2017 1997 2013 publication-title: Nat. Chem. Chem. Rev. Angew. Chem. – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 53 year: 2017 publication-title: Chem. Commun. – volume: 21 start-page: 3966 year: 2020 publication-title: Biomacromolecules – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 37 3 start-page: 281 2082 year: 2012 2012 publication-title: Prog. Polym. Sci. Polym. Chem. – volume: 183 start-page: 185 year: 2018 publication-title: Biomaterials – volume: 10 start-page: 5562 year: 2019 publication-title: Nat. Commun. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 8 11 start-page: 754 year: 2019 2019 publication-title: ACS Macro Lett. ACS Appl. Mater. Interfaces – volume: 349 start-page: 628 year: 2015 publication-title: Science – volume: 28 start-page: 3813 year: 1995 publication-title: Macromolecules – volume: 32 131 70 start-page: 1 227 year: 2020 2019 2014 publication-title: Adv. Mater. J. Mech. Phys. Solids J. Mech. Phys. Solids – volume: 27 25 116 start-page: 653 year: 2017 2013 2021 publication-title: Adv. Funct. Mater. Adv. Mater. Prog. Polym. Sci. – volume: 44 start-page: 1820 year: 2015 publication-title: Chem. Soc. Rev. – volume: 379 37 10 start-page: 219 1031 2060 year: 1996 2012 2019 publication-title: Nature Prog. Polym. Sci. Nat. Commun. – volume: 575 start-page: 169 year: 2019 publication-title: Nature – volume: 141 start-page: 8058 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 5127 year: 2019 publication-title: Nat. Commun. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 11 start-page: 1 year: 2020 publication-title: Nat. Commun. – ident: e_1_2_7_10_1 doi: 10.1038/s41467-019-13171-9 – ident: e_1_2_7_15_1 doi: 10.1039/C7CC07215E – ident: e_1_2_7_22_1 doi: 10.1039/C4CS00332B – ident: e_1_2_7_1_1 doi: 10.1038/s41467-019-13512-8 – ident: e_1_2_7_5_3 doi: 10.1016/j.progpolymsci.2021.101388 – ident: e_1_2_7_2_1 doi: 10.1021/acs.biomac.0c01069 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201704640 – ident: e_1_2_7_14_1 doi: 10.1002/adfm.202005689 – ident: e_1_2_7_11_3 doi: 10.1002/anie.201210365 – ident: e_1_2_7_20_1 doi: 10.1021/ma00115a010 – ident: e_1_2_7_23_2 doi: 10.1016/j.jmps.2019.06.013 – ident: e_1_2_7_11_1 doi: 10.1038/nchem.2720 – ident: e_1_2_7_13_1 doi: 10.1038/s41467-019-13993-7 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.202009334 – ident: e_1_2_7_17_1 doi: 10.1126/science.aab0556 – ident: e_1_2_7_3_1 doi: 10.1002/adhm.201801568 – ident: e_1_2_7_18_1 doi: 10.1016/j.progpolymsci.2011.08.005 – ident: e_1_2_7_4_1 doi: 10.1038/379219a0 – ident: e_1_2_7_8_1 doi: 10.1021/jacs.9b02677 – ident: e_1_2_7_21_1 doi: 10.1016/j.biomaterials.2018.08.044 – ident: e_1_2_7_19_1 doi: 10.1039/D0TA08987G – ident: e_1_2_7_16_1 doi: 10.1039/C5RA06649B – ident: e_1_2_7_4_3 doi: 10.1038/s41467-019-10004-7 – ident: e_1_2_7_7_1 doi: 10.1038/s41586-019-1710-5 – ident: e_1_2_7_5_1 doi: 10.1002/adfm.201604894 – ident: e_1_2_7_11_2 doi: 10.1021/cr9603744 – ident: e_1_2_7_9_2 doi: 10.1021/acsami.9b07522 – ident: e_1_2_7_23_1 doi: 10.1002/adma.202001628 – ident: e_1_2_7_4_2 doi: 10.1016/j.progpolymsci.2011.12.003 – ident: e_1_2_7_9_1 doi: 10.1021/acsmacrolett.9b00325 – ident: e_1_2_7_5_2 doi: 10.1002/adma.201202343 – ident: e_1_2_7_18_2 doi: 10.1039/c2py20170d – ident: e_1_2_7_23_3 doi: 10.1016/j.jmps.2014.05.014 |
SSID | ssj0000651681 |
Score | 2.5326014 |
Snippet | Wound dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the... Wound dressings with excellent adhesiveness, antibacterial, self-healing, hemostasis properties, and therapeutic effects have great significance for the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2101421 |
SubjectTerms | Adhesive bonding Adhesive strength adhesives Anti-Bacterial Agents - pharmacology antibacterial activity Bandages Bleeding Bonding strength Catechol Catechols - pharmacology Cations First aid Hemostasis Hemostatics Hydrogels Hydrogen bonding Mechanical properties Medical dressings Organophosphorus Compounds Polymers polyphosphazene Polyphosphazenes Polyvinyl alcohol Trauma wound dressing Wound healing |
Title | Polyphosphazene and Non‐Catechol‐Based Antibacterial Injectable Hydrogel for Adhesion of Wet Tissues as Wound Dressing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202101421 https://www.ncbi.nlm.nih.gov/pubmed/34704383 https://www.proquest.com/docview/2616492717 https://www.proquest.com/docview/2587001049 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJqHtAXGnYyAjIfEwBRrn4uSxrKAKtRMSm9a3yLcsQaWp1nZo-_UcO3bS0k1cXqLWOXXafp-Pj2_fQehtLJhMUojcCOepF_JYtzmd3wRCbU54Lntcr-iOT-LhWfhlEk06nau1XUurJX8vbm49V_I_qEIZ4KpPyf4Dsk2lUACvAV-4AsJw_SuMv1bT63lRLeYFuwGfZRYCTqqZd8y0NGs19T5CHyW1QEDJa1Vmo6yhp17MianhtbysLpQ5wnjUl4Va2PDxXC0BRZOYTyeiOde5l44GZsus7emccK3bQlC0-8ggBq5_fLvmYZZAinKu7KdNJjDT67Hqe9kuD9nJ61HpSkalMZuUrPqpyvUpCkLWpiiUcWXgFoENsdX-dn7X3-JX7UQV0QmE64PTWx6-VoxlstAyArcYAkLzHwbvIKRGiLXt6Zr9h-7WPbRLYHgB_nG3PxiPvjWzcxCY-XHiO5XPHvmw-cQ9dN_VsRnQbI1SNgc9Jmo5fYge2OEG7tfceYQ6avYY7a-JUD5BV7-xCAOL8DaL8AaLcMsi7FiEgUXYsQhXOQYWYcsizBbYsAg7Fj1FZ58_nR4PPZuNwxMBDXwvgbCGxlKJXh4mKY18ISQhLI97PA5FkohIgmFOZZoSGbGelNBdpIwGIg8EjaLgGdqZVTP1AmEBgaKQ4CZCGM7zSHGmqPIlRO5BEOVKdpHn_tJMWKl6nTFlmtUi2yTTaGQNGl30rrGf1yItd1oeOoQy25AXGYn9OEwJ9WkXvWlug5vVa2dspqoV2EQJNVpWaRc9r5FtHuWY0EXEQP2H75D1B8Nx8-7gzupeor22MR2ineXlSr2CCHjJX1u6_gLpfK7b |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyphosphazene+and+Non-Catechol-Based+Antibacterial+Injectable+Hydrogel+for+Adhesion+of+Wet+Tissues+as+Wound+Dressing&rft.jtitle=Advanced+healthcare+materials&rft.au=Ni%2C+Zhipeng&rft.au=Yu%2C+Haojie&rft.au=Wang%2C+Li&rft.au=Liu%2C+Xiaowei&rft.date=2022-01-01&rft.eissn=2192-2659&rft.volume=11&rft.issue=1&rft.spage=e2101421&rft_id=info:doi/10.1002%2Fadhm.202101421&rft_id=info%3Apmid%2F34704383&rft.externalDocID=34704383 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon |