Polyphosphazene and Non‐Catechol‐Based Antibacterial Injectable Hydrogel for Adhesion of Wet Tissues as Wound Dressing

Wound dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel‐inspired catechol‐based wet adhesives have been reported, opening a pathway for the treatment of...

Full description

Saved in:
Bibliographic Details
Published inAdvanced healthcare materials Vol. 11; no. 1; pp. e2101421 - n/a
Main Authors Ni, Zhipeng, Yu, Haojie, Wang, Li, Liu, Xiaowei, Shen, Di, Chen, Xiang, Liu, Jiyang, Wang, Nan, Huang, Yudi, Sheng, Yan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wound dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel‐inspired catechol‐based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol‐based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non‐catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation–π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti‐mechanical damage, and hemostatic behavior are investigated to confirm multi‐functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation–π and π–π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti‐infection and hemostasis. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester‐based adhesive hydrogels are prepared by combining the cation–π structure‐modified polyphosphazene with polyvinyl alcohol. The dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma.
AbstractList Wound dressings with excellent adhesiveness, antibacterial, self-healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel-inspired catechol-based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol-based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non-catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation-π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti-mechanical damage, and hemostatic behavior are investigated to confirm multi-functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation-π and π-π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti-infection and hemostasis.
Wound dressings with excellent adhesiveness, antibacterial, self-healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel-inspired catechol-based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol-based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non-catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation-π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti-mechanical damage, and hemostatic behavior are investigated to confirm multi-functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation-π and π-π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti-infection and hemostasis.Wound dressings with excellent adhesiveness, antibacterial, self-healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel-inspired catechol-based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol-based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non-catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation-π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti-mechanical damage, and hemostatic behavior are investigated to confirm multi-functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation-π and π-π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti-infection and hemostasis.
Wound dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel‐inspired catechol‐based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol‐based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non‐catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation– π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti‐mechanical damage, and hemostatic behavior are investigated to confirm multi‐functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation– π and π – π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti‐infection and hemostasis.
Wound dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel‐inspired catechol‐based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol‐based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non‐catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation–π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti‐mechanical damage, and hemostatic behavior are investigated to confirm multi‐functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation–π and π–π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti‐infection and hemostasis. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester‐based adhesive hydrogels are prepared by combining the cation–π structure‐modified polyphosphazene with polyvinyl alcohol. The dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma.
Author Liu, Xiaowei
Ni, Zhipeng
Liu, Jiyang
Yu, Haojie
Shen, Di
Wang, Li
Wang, Nan
Huang, Yudi
Sheng, Yan
Chen, Xiang
Author_xml – sequence: 1
  givenname: Zhipeng
  surname: Ni
  fullname: Ni, Zhipeng
  organization: Zhejiang University
– sequence: 2
  givenname: Haojie
  orcidid: 0000-0002-7405-7881
  surname: Yu
  fullname: Yu, Haojie
  email: hjyu@zju.edu.cn
  organization: Zhejiang University
– sequence: 3
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  organization: Zhejiang University
– sequence: 4
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
  organization: Zhejiang University
– sequence: 5
  givenname: Di
  surname: Shen
  fullname: Shen, Di
  organization: Zhejiang University
– sequence: 6
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  organization: Zhejiang University
– sequence: 7
  givenname: Jiyang
  surname: Liu
  fullname: Liu, Jiyang
  organization: Zhejiang University
– sequence: 8
  givenname: Nan
  surname: Wang
  fullname: Wang, Nan
  organization: Zhejiang University
– sequence: 9
  givenname: Yudi
  surname: Huang
  fullname: Huang, Yudi
  organization: Zhejiang University
– sequence: 10
  givenname: Yan
  surname: Sheng
  fullname: Sheng, Yan
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34704383$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9uEzEQhy1UREvplSOyxKWXBP_ZtXePIQVSqQUORT2uHHu268ixg-0VSk88As_Ik9RV2iBVqvBl5vB949H8XqMDHzwg9JaSKSWEfVBmWE8ZYZTQitEX6IjRlk2YqNuDfV-RQ3SS0oqUJ2oqGvoKHfJKkoo3_Ajdfg9uuxlC2gzqFjxg5Q3-Gvzf33_mKoMegivtR5XA4JnPdql0hmiVw-d-BTqrpQO82JoYbsDhPkQ8MwMkGzwOPb6GjK9sSiMkrBK-DmOZfhYhJetv3qCXvXIJTh7qMfrx-dPVfDG5-PblfD67mGguOZ00QjZSGNCkr5pW1lRrw5jqBVmKSjeNrk0Be2nalplaEWM4bVolue65lnXNj9Hpbu4mhp9lk9ytbdLgnPIQxtSxupGEUFK1BX3_BF2FMfqyXccEFVXLJJWFevdAjcs1mG4T7VrFbfd41QJMd4COIaUI_R6hpLtPrrtPrtsnV4TqiaBtVrlcMUdl3fNau9N-WQfb_3zSzc4Wl__cO88ersk
CitedBy_id crossref_primary_10_1002_mabi_202300127
crossref_primary_10_1016_j_eurpolymj_2023_112425
crossref_primary_10_1002_SMMD_20230024
crossref_primary_10_1016_j_carbpol_2022_120103
crossref_primary_10_3390_nano14241992
crossref_primary_10_1002_mabi_202100475
crossref_primary_10_1016_j_bioactmat_2024_07_011
crossref_primary_10_1016_j_mtbio_2023_100582
crossref_primary_10_1002_anbr_202200115
crossref_primary_10_1021_acsami_2c15411
crossref_primary_10_1007_s10570_023_05297_3
crossref_primary_10_1016_j_biomaterials_2024_123017
crossref_primary_10_1002_adfm_202310233
crossref_primary_10_1016_j_cis_2023_102982
crossref_primary_10_1039_D3TB00251A
crossref_primary_10_1002_macp_202400123
crossref_primary_10_1039_D3MH01403G
crossref_primary_10_1016_j_ijbiomac_2023_125801
crossref_primary_10_1016_j_cej_2023_141732
crossref_primary_10_1007_s40883_023_00318_w
crossref_primary_10_1002_adhm_202401556
crossref_primary_10_1002_wnan_1914
crossref_primary_10_1002_adfm_202105721
crossref_primary_10_1002_adhm_202301264
crossref_primary_10_1016_j_cclet_2024_110767
crossref_primary_10_1021_acsami_3c16540
crossref_primary_10_3389_fbioe_2023_1335211
crossref_primary_10_1002_adfm_202302846
crossref_primary_10_1002_vnl_21962
crossref_primary_10_3390_biomedicines12040923
crossref_primary_10_1002_adhm_202400513
crossref_primary_10_1016_j_ijbiomac_2024_130764
crossref_primary_10_1007_s10570_022_04909_8
crossref_primary_10_1016_j_ijbiomac_2024_131772
crossref_primary_10_1039_D2TB02115C
crossref_primary_10_1016_j_cej_2024_156387
crossref_primary_10_3390_ijms232415993
crossref_primary_10_1039_D3TB02040A
crossref_primary_10_1007_s40883_022_00278_7
crossref_primary_10_1016_j_ijbiomac_2024_138327
crossref_primary_10_1016_j_colsurfb_2024_114157
crossref_primary_10_1002_app_52894
crossref_primary_10_1002_adfm_202411959
crossref_primary_10_1016_j_polymer_2023_125808
crossref_primary_10_1016_j_compositesb_2022_109762
crossref_primary_10_1002_advs_202206585
crossref_primary_10_1016_j_jconrel_2024_10_053
crossref_primary_10_1021_acsapm_3c00559
crossref_primary_10_1016_j_ccr_2022_214823
crossref_primary_10_1016_j_cej_2022_138201
crossref_primary_10_1002_adhm_202304321
crossref_primary_10_1051_bioconf_202411102011
crossref_primary_10_1016_j_cej_2024_151891
crossref_primary_10_1016_j_compositesb_2024_111869
crossref_primary_10_1021_acsami_4c23040
crossref_primary_10_1039_D3BM00061C
crossref_primary_10_1186_s40824_023_00392_9
crossref_primary_10_1016_j_ijbiomac_2025_139945
crossref_primary_10_1016_j_actbio_2024_04_042
crossref_primary_10_1021_acsami_3c06371
crossref_primary_10_1021_acsami_2c15686
crossref_primary_10_1016_j_carbpol_2023_120937
crossref_primary_10_1039_D3TA03086E
crossref_primary_10_1002_advs_202303326
crossref_primary_10_3390_mi14091786
crossref_primary_10_1016_j_eurpolymj_2024_113260
Cites_doi 10.1038/s41467-019-13171-9
10.1039/C7CC07215E
10.1039/C4CS00332B
10.1038/s41467-019-13512-8
10.1016/j.progpolymsci.2021.101388
10.1021/acs.biomac.0c01069
10.1002/adma.201704640
10.1002/adfm.202005689
10.1002/anie.201210365
10.1021/ma00115a010
10.1016/j.jmps.2019.06.013
10.1038/nchem.2720
10.1038/s41467-019-13993-7
10.1002/adfm.202009334
10.1126/science.aab0556
10.1002/adhm.201801568
10.1016/j.progpolymsci.2011.08.005
10.1038/379219a0
10.1021/jacs.9b02677
10.1016/j.biomaterials.2018.08.044
10.1039/D0TA08987G
10.1039/C5RA06649B
10.1038/s41467-019-10004-7
10.1038/s41586-019-1710-5
10.1002/adfm.201604894
10.1021/cr9603744
10.1021/acsami.9b07522
10.1002/adma.202001628
10.1016/j.progpolymsci.2011.12.003
10.1021/acsmacrolett.9b00325
10.1002/adma.201202343
10.1039/c2py20170d
10.1016/j.jmps.2014.05.014
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
DOI 10.1002/adhm.202101421
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Immunology Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
EndPage n/a
ExternalDocumentID 34704383
10_1002_adhm_202101421
ADHM202101421
Genre article
Journal Article
GroupedDBID 05W
0R~
1OC
33P
53G
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAIPD
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EMOBN
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
O9-
P2W
PQQKQ
ROL
SUPJJ
SV3
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
C45
CITATION
EJD
GODZA
OVD
TEORI
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c3731-867876dec0f489751ccd22af60b64c88c5dc37f7d992d5a0dd3189a73cf3c7553
ISSN 2192-2640
2192-2659
IngestDate Thu Jul 10 23:18:40 EDT 2025
Fri Jul 25 12:02:43 EDT 2025
Wed Feb 19 02:26:46 EST 2025
Tue Jul 01 03:06:45 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
Wed Jan 22 16:28:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords antibacterial activity
polyphosphazene
wound dressing
adhesives
Language English
License 2021 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3731-867876dec0f489751ccd22af60b64c88c5dc37f7d992d5a0dd3189a73cf3c7553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7405-7881
PMID 34704383
PQID 2616492717
PQPubID 2032434
PageCount 12
ParticipantIDs proquest_miscellaneous_2587001049
proquest_journals_2616492717
pubmed_primary_34704383
crossref_primary_10_1002_adhm_202101421
crossref_citationtrail_10_1002_adhm_202101421
wiley_primary_10_1002_adhm_202101421_ADHM202101421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv Healthc Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2020; 8
2017; 53
2021; 31
2015; 5
1996 2012 2019; 379 37 10
2020 2019 2014; 32 131 70
2018; 183
2012 2012; 37 3
1995; 28
2020; 30
2019; 10
2015; 44
2019 2019; 8 11
2017 1997 2013; 9 97 52
2019; 575
2017 2013 2021; 27 25 116
2018; 30
2020; 11
2015; 349
2020; 21
2019; 141
e_1_2_7_4_3
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_18_2
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_23_3
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 9 97 52
  start-page: 473 1303 3944
  year: 2017 1997 2013
  publication-title: Nat. Chem. Chem. Rev. Angew. Chem.
– volume: 8
  year: 2019
  publication-title: Adv. Healthcare Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 53
  year: 2017
  publication-title: Chem. Commun.
– volume: 21
  start-page: 3966
  year: 2020
  publication-title: Biomacromolecules
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 37 3
  start-page: 281 2082
  year: 2012 2012
  publication-title: Prog. Polym. Sci. Polym. Chem.
– volume: 183
  start-page: 185
  year: 2018
  publication-title: Biomaterials
– volume: 10
  start-page: 5562
  year: 2019
  publication-title: Nat. Commun.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 8 11
  start-page: 754
  year: 2019 2019
  publication-title: ACS Macro Lett. ACS Appl. Mater. Interfaces
– volume: 349
  start-page: 628
  year: 2015
  publication-title: Science
– volume: 28
  start-page: 3813
  year: 1995
  publication-title: Macromolecules
– volume: 32 131 70
  start-page: 1 227
  year: 2020 2019 2014
  publication-title: Adv. Mater. J. Mech. Phys. Solids J. Mech. Phys. Solids
– volume: 27 25 116
  start-page: 653
  year: 2017 2013 2021
  publication-title: Adv. Funct. Mater. Adv. Mater. Prog. Polym. Sci.
– volume: 44
  start-page: 1820
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 379 37 10
  start-page: 219 1031 2060
  year: 1996 2012 2019
  publication-title: Nature Prog. Polym. Sci. Nat. Commun.
– volume: 575
  start-page: 169
  year: 2019
  publication-title: Nature
– volume: 141
  start-page: 8058
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 5127
  year: 2019
  publication-title: Nat. Commun.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 1
  year: 2020
  publication-title: Nat. Commun.
– ident: e_1_2_7_10_1
  doi: 10.1038/s41467-019-13171-9
– ident: e_1_2_7_15_1
  doi: 10.1039/C7CC07215E
– ident: e_1_2_7_22_1
  doi: 10.1039/C4CS00332B
– ident: e_1_2_7_1_1
  doi: 10.1038/s41467-019-13512-8
– ident: e_1_2_7_5_3
  doi: 10.1016/j.progpolymsci.2021.101388
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.biomac.0c01069
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201704640
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.202005689
– ident: e_1_2_7_11_3
  doi: 10.1002/anie.201210365
– ident: e_1_2_7_20_1
  doi: 10.1021/ma00115a010
– ident: e_1_2_7_23_2
  doi: 10.1016/j.jmps.2019.06.013
– ident: e_1_2_7_11_1
  doi: 10.1038/nchem.2720
– ident: e_1_2_7_13_1
  doi: 10.1038/s41467-019-13993-7
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.202009334
– ident: e_1_2_7_17_1
  doi: 10.1126/science.aab0556
– ident: e_1_2_7_3_1
  doi: 10.1002/adhm.201801568
– ident: e_1_2_7_18_1
  doi: 10.1016/j.progpolymsci.2011.08.005
– ident: e_1_2_7_4_1
  doi: 10.1038/379219a0
– ident: e_1_2_7_8_1
  doi: 10.1021/jacs.9b02677
– ident: e_1_2_7_21_1
  doi: 10.1016/j.biomaterials.2018.08.044
– ident: e_1_2_7_19_1
  doi: 10.1039/D0TA08987G
– ident: e_1_2_7_16_1
  doi: 10.1039/C5RA06649B
– ident: e_1_2_7_4_3
  doi: 10.1038/s41467-019-10004-7
– ident: e_1_2_7_7_1
  doi: 10.1038/s41586-019-1710-5
– ident: e_1_2_7_5_1
  doi: 10.1002/adfm.201604894
– ident: e_1_2_7_11_2
  doi: 10.1021/cr9603744
– ident: e_1_2_7_9_2
  doi: 10.1021/acsami.9b07522
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.202001628
– ident: e_1_2_7_4_2
  doi: 10.1016/j.progpolymsci.2011.12.003
– ident: e_1_2_7_9_1
  doi: 10.1021/acsmacrolett.9b00325
– ident: e_1_2_7_5_2
  doi: 10.1002/adma.201202343
– ident: e_1_2_7_18_2
  doi: 10.1039/c2py20170d
– ident: e_1_2_7_23_3
  doi: 10.1016/j.jmps.2014.05.014
SSID ssj0000651681
Score 2.5326014
Snippet Wound dressings with excellent adhesiveness, antibacterial, self‐healing, hemostasis properties, and therapeutic effects have great significance for the...
Wound dressings with excellent adhesiveness, antibacterial, self-healing, hemostasis properties, and therapeutic effects have great significance for the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2101421
SubjectTerms Adhesive bonding
Adhesive strength
adhesives
Anti-Bacterial Agents - pharmacology
antibacterial activity
Bandages
Bleeding
Bonding strength
Catechol
Catechols - pharmacology
Cations
First aid
Hemostasis
Hemostatics
Hydrogels
Hydrogen bonding
Mechanical properties
Medical dressings
Organophosphorus Compounds
Polymers
polyphosphazene
Polyphosphazenes
Polyvinyl alcohol
Trauma
wound dressing
Wound healing
Title Polyphosphazene and Non‐Catechol‐Based Antibacterial Injectable Hydrogel for Adhesion of Wet Tissues as Wound Dressing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202101421
https://www.ncbi.nlm.nih.gov/pubmed/34704383
https://www.proquest.com/docview/2616492717
https://www.proquest.com/docview/2587001049
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJqHtAXGnYyAjIfEwBRrn4uSxrKAKtRMSm9a3yLcsQaWp1nZo-_UcO3bS0k1cXqLWOXXafp-Pj2_fQehtLJhMUojcCOepF_JYtzmd3wRCbU54Lntcr-iOT-LhWfhlEk06nau1XUurJX8vbm49V_I_qEIZ4KpPyf4Dsk2lUACvAV-4AsJw_SuMv1bT63lRLeYFuwGfZRYCTqqZd8y0NGs19T5CHyW1QEDJa1Vmo6yhp17MianhtbysLpQ5wnjUl4Va2PDxXC0BRZOYTyeiOde5l44GZsus7emccK3bQlC0-8ggBq5_fLvmYZZAinKu7KdNJjDT67Hqe9kuD9nJ61HpSkalMZuUrPqpyvUpCkLWpiiUcWXgFoENsdX-dn7X3-JX7UQV0QmE64PTWx6-VoxlstAyArcYAkLzHwbvIKRGiLXt6Zr9h-7WPbRLYHgB_nG3PxiPvjWzcxCY-XHiO5XPHvmw-cQ9dN_VsRnQbI1SNgc9Jmo5fYge2OEG7tfceYQ6avYY7a-JUD5BV7-xCAOL8DaL8AaLcMsi7FiEgUXYsQhXOQYWYcsizBbYsAg7Fj1FZ58_nR4PPZuNwxMBDXwvgbCGxlKJXh4mKY18ISQhLI97PA5FkohIgmFOZZoSGbGelNBdpIwGIg8EjaLgGdqZVTP1AmEBgaKQ4CZCGM7zSHGmqPIlRO5BEOVKdpHn_tJMWKl6nTFlmtUi2yTTaGQNGl30rrGf1yItd1oeOoQy25AXGYn9OEwJ9WkXvWlug5vVa2dspqoV2EQJNVpWaRc9r5FtHuWY0EXEQP2H75D1B8Nx8-7gzupeor22MR2ineXlSr2CCHjJX1u6_gLpfK7b
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyphosphazene+and+Non-Catechol-Based+Antibacterial+Injectable+Hydrogel+for+Adhesion+of+Wet+Tissues+as+Wound+Dressing&rft.jtitle=Advanced+healthcare+materials&rft.au=Ni%2C+Zhipeng&rft.au=Yu%2C+Haojie&rft.au=Wang%2C+Li&rft.au=Liu%2C+Xiaowei&rft.date=2022-01-01&rft.eissn=2192-2659&rft.volume=11&rft.issue=1&rft.spage=e2101421&rft_id=info:doi/10.1002%2Fadhm.202101421&rft_id=info%3Apmid%2F34704383&rft.externalDocID=34704383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon