Research Advances in Amorphous‐Crystalline Heterostructures Toward Efficient Electrochemical Applications

Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous‐crystalline heterostructur...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 10; pp. e2206081 - n/a
Main Authors Jin, Yachao, Zhang, Mengxian, Song, Li, Zhang, Mingdao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous‐crystalline heterostructures have lately surged since they combine the superior advantages of amorphous‐ and crystalline‐phase structures, showing unusual atomic arrangements in heterointerfaces. Nonetheless, there has been much less efforts in systematic analysis and summary of the amorphous‐crystalline heterostructures to examine their complicated interfacial interactions and elusory active sites. The critical structure‐activity correlation and electrocatalytic mechanism remain rather elusive. In this review, the recent advances of amorphous‐crystalline heterostructures in electrochemical energy conversion and storage fields are amply discussed and presented, along with remarks on the challenges and perspectives. Initially, the fundamental characteristics of amorphous‐crystalline heterostructures are introduced to provide scientific viewpoints for structural understanding. Subsequently, the superiorities and current achievements of amorphous‐crystalline heterostructures as highly efficient electrocatalysts/electrodes for hydrogen evolution reaction, oxygen evolution reaction, supercapacitor, lithium‐ion battery, and lithium‐sulfur battery applications are elaborated. At the end of this review, future outlooks and opportunities on amorphous‐crystalline heterostructures are also put forward to promote their further development and application in the field of clean energy. The emerging amorphous‐crystalline heterostructures with distinctive atomic arrangement at the heterointerfaces are promising candidates for next‐generation high‐performance electrocatalysts/electrodes. This review discusses for the first time these ever‐increasing novel multifunctional nanomaterials toward various electrochemical applications, aiming to offer cross‐sectional insights into the structure‐property relationships and provide guidance for the rational design of amorphous‐crystalline heterostructures with desired performance.
AbstractList Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous‐crystalline heterostructures have lately surged since they combine the superior advantages of amorphous‐ and crystalline‐phase structures, showing unusual atomic arrangements in heterointerfaces. Nonetheless, there has been much less efforts in systematic analysis and summary of the amorphous‐crystalline heterostructures to examine their complicated interfacial interactions and elusory active sites. The critical structure‐activity correlation and electrocatalytic mechanism remain rather elusive. In this review, the recent advances of amorphous‐crystalline heterostructures in electrochemical energy conversion and storage fields are amply discussed and presented, along with remarks on the challenges and perspectives. Initially, the fundamental characteristics of amorphous‐crystalline heterostructures are introduced to provide scientific viewpoints for structural understanding. Subsequently, the superiorities and current achievements of amorphous‐crystalline heterostructures as highly efficient electrocatalysts/electrodes for hydrogen evolution reaction, oxygen evolution reaction, supercapacitor, lithium‐ion battery, and lithium‐sulfur battery applications are elaborated. At the end of this review, future outlooks and opportunities on amorphous‐crystalline heterostructures are also put forward to promote their further development and application in the field of clean energy.
Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous‐crystalline heterostructures have lately surged since they combine the superior advantages of amorphous‐ and crystalline‐phase structures, showing unusual atomic arrangements in heterointerfaces. Nonetheless, there has been much less efforts in systematic analysis and summary of the amorphous‐crystalline heterostructures to examine their complicated interfacial interactions and elusory active sites. The critical structure‐activity correlation and electrocatalytic mechanism remain rather elusive. In this review, the recent advances of amorphous‐crystalline heterostructures in electrochemical energy conversion and storage fields are amply discussed and presented, along with remarks on the challenges and perspectives. Initially, the fundamental characteristics of amorphous‐crystalline heterostructures are introduced to provide scientific viewpoints for structural understanding. Subsequently, the superiorities and current achievements of amorphous‐crystalline heterostructures as highly efficient electrocatalysts/electrodes for hydrogen evolution reaction, oxygen evolution reaction, supercapacitor, lithium‐ion battery, and lithium‐sulfur battery applications are elaborated. At the end of this review, future outlooks and opportunities on amorphous‐crystalline heterostructures are also put forward to promote their further development and application in the field of clean energy. The emerging amorphous‐crystalline heterostructures with distinctive atomic arrangement at the heterointerfaces are promising candidates for next‐generation high‐performance electrocatalysts/electrodes. This review discusses for the first time these ever‐increasing novel multifunctional nanomaterials toward various electrochemical applications, aiming to offer cross‐sectional insights into the structure‐property relationships and provide guidance for the rational design of amorphous‐crystalline heterostructures with desired performance.
Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous-crystalline heterostructures have lately surged since they combine the superior advantages of amorphous- and crystalline-phase structures, showing unusual atomic arrangements in heterointerfaces. Nonetheless, there has been much less efforts in systematic analysis and summary of the amorphous-crystalline heterostructures to examine their complicated interfacial interactions and elusory active sites. The critical structure-activity correlation and electrocatalytic mechanism remain rather elusive. In this review, the recent advances of amorphous-crystalline heterostructures in electrochemical energy conversion and storage fields are amply discussed and presented, along with remarks on the challenges and perspectives. Initially, the fundamental characteristics of amorphous-crystalline heterostructures are introduced to provide scientific viewpoints for structural understanding. Subsequently, the superiorities and current achievements of amorphous-crystalline heterostructures as highly efficient electrocatalysts/electrodes for hydrogen evolution reaction, oxygen evolution reaction, supercapacitor, lithium-ion battery, and lithium-sulfur battery applications are elaborated. At the end of this review, future outlooks and opportunities on amorphous-crystalline heterostructures are also put forward to promote their further development and application in the field of clean energy.Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous-crystalline heterostructures have lately surged since they combine the superior advantages of amorphous- and crystalline-phase structures, showing unusual atomic arrangements in heterointerfaces. Nonetheless, there has been much less efforts in systematic analysis and summary of the amorphous-crystalline heterostructures to examine their complicated interfacial interactions and elusory active sites. The critical structure-activity correlation and electrocatalytic mechanism remain rather elusive. In this review, the recent advances of amorphous-crystalline heterostructures in electrochemical energy conversion and storage fields are amply discussed and presented, along with remarks on the challenges and perspectives. Initially, the fundamental characteristics of amorphous-crystalline heterostructures are introduced to provide scientific viewpoints for structural understanding. Subsequently, the superiorities and current achievements of amorphous-crystalline heterostructures as highly efficient electrocatalysts/electrodes for hydrogen evolution reaction, oxygen evolution reaction, supercapacitor, lithium-ion battery, and lithium-sulfur battery applications are elaborated. At the end of this review, future outlooks and opportunities on amorphous-crystalline heterostructures are also put forward to promote their further development and application in the field of clean energy.
Author Jin, Yachao
Song, Li
Zhang, Mingdao
Zhang, Mengxian
Author_xml – sequence: 1
  givenname: Yachao
  orcidid: 0000-0002-7517-4633
  surname: Jin
  fullname: Jin, Yachao
  email: jinyachao@nuist.edu.cn
  organization: Nanjing University of Information Science & Technology
– sequence: 2
  givenname: Mengxian
  surname: Zhang
  fullname: Zhang, Mengxian
  organization: Nanjing University of Information Science & Technology
– sequence: 3
  givenname: Li
  surname: Song
  fullname: Song, Li
  organization: Nanjing University of Information Science & Technology
– sequence: 4
  givenname: Mingdao
  surname: Zhang
  fullname: Zhang, Mingdao
  email: zhangmd@nuist.edu.cn
  organization: Nanjing University of Information Science & Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36526597$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rGzEQhkVJaT7aa49loZde7Opjtdo9GuMmBZdAmp6FVh5hpVppK2kTfOtP6G_ML6lS5wMCJaeZw_MMM_MeowMfPCD0nuA5wZh-ToNzc4opxQ1uySt0RBrCZk1Lu4PHnuBDdJzSFcaM0Fq8QYes4bThnThCPy8ggYp6Wy0218prSJX11WIIcdyGKd3-_rOMu5SVc9ZDdQYZYkg5TjpPsbCX4UbFTbUyxmoLPlcrBzrHoLcwWK1ctRhHV5psg09v0WujXIJ39_UE_fiyulyezdbnp1-Xi_VMM8HIrKWNYH1HFCfYcN10dVtr1gtGRdtQTDqtMZiuUaQgpu2FULTn2JC61yCIYSfo037uGMOvCVKWg00anFMeyk2SCs654JjVBf34DL0KU_Rlu0K1nLSk5qJQH-6pqR9gI8doBxV38uGNBaj3gC7fSRGM1Db_OzpHZZ0kWN6lJe_Sko9pFW3-THuY_F-h2ws31sHuBVp-_7ZeP7l_AfSIqUc
CitedBy_id crossref_primary_10_1002_smll_202304181
crossref_primary_10_1002_smll_202310387
crossref_primary_10_1016_j_jssc_2024_124702
crossref_primary_10_1016_j_cej_2024_150897
crossref_primary_10_1002_smll_202500758
crossref_primary_10_1021_acs_chemrev_3c00229
crossref_primary_10_1016_j_jcat_2024_115354
crossref_primary_10_1039_D3CS00860F
crossref_primary_10_1039_D3QM01263H
crossref_primary_10_1002_cey2_595
crossref_primary_10_1016_j_est_2024_112195
crossref_primary_10_1021_acsami_3c14932
crossref_primary_10_15251_CL_2024_219_687
crossref_primary_10_1021_acssuschemeng_3c01158
crossref_primary_10_1016_j_jallcom_2025_178575
crossref_primary_10_1002_adma_202407134
crossref_primary_10_1016_j_ijhydene_2024_10_194
crossref_primary_10_1021_acs_inorgchem_4c01881
crossref_primary_10_1016_j_pmatsci_2024_101294
crossref_primary_10_1007_s12598_024_03144_3
crossref_primary_10_1016_j_seppur_2024_130531
crossref_primary_10_1002_advs_202309927
crossref_primary_10_1002_smll_202310927
crossref_primary_10_1016_j_est_2023_107473
crossref_primary_10_1002_smll_202400191
crossref_primary_10_3390_catal14080511
crossref_primary_10_1016_j_jcis_2023_11_124
crossref_primary_10_1016_j_jpowsour_2025_236802
crossref_primary_10_1002_cphc_202300761
crossref_primary_10_1016_j_apsusc_2023_159007
crossref_primary_10_1016_j_jece_2024_115224
crossref_primary_10_3390_ma17071566
crossref_primary_10_1016_j_ccr_2024_216418
crossref_primary_10_1002_adma_202401361
crossref_primary_10_3390_ma17164030
crossref_primary_10_1002_smll_202411941
crossref_primary_10_1016_j_apmt_2024_102466
crossref_primary_10_1016_j_jallcom_2024_174393
crossref_primary_10_1002_smll_202308528
crossref_primary_10_1002_smsc_202300036
crossref_primary_10_1002_adfm_202405867
crossref_primary_10_1016_j_ensm_2024_103265
crossref_primary_10_1016_j_apsusc_2023_158404
crossref_primary_10_1002_smll_202207852
crossref_primary_10_1063_5_0222583
crossref_primary_10_1002_smll_202305562
crossref_primary_10_1002_smll_202309122
crossref_primary_10_3390_s24165258
crossref_primary_10_1021_acs_chemrev_4c00368
crossref_primary_10_1002_idm2_12087
crossref_primary_10_1016_j_checat_2025_101324
crossref_primary_10_1016_j_seppur_2024_129094
crossref_primary_10_1021_acsami_4c06752
crossref_primary_10_1039_D3TA07189H
crossref_primary_10_1002_cssc_202401181
crossref_primary_10_1016_j_coelec_2025_101653
crossref_primary_10_1016_j_ijhydene_2025_01_054
crossref_primary_10_1002_smll_202406071
crossref_primary_10_1016_j_apsusc_2023_158911
crossref_primary_10_1002_adfm_202405270
Cites_doi 10.1016/j.nanoen.2017.09.029
10.1016/j.cej.2022.135231
10.1016/j.cej.2020.126775
10.1016/j.cej.2021.134247
10.1038/s41467-021-22865-y
10.1016/j.cej.2022.135532
10.1002/smtd.202100444
10.1016/j.apcatb.2021.120484
10.1002/aenm.202000091
10.1021/acs.nanolett.1c01258
10.1021/jacs.0c00257
10.1016/j.jpowsour.2022.231689
10.1016/j.electacta.2019.04.134
10.1002/cctc.202001343
10.1002/advs.201500090
10.1039/D2SC01043G
10.1002/adma.202106662
10.1039/C7CC06851D
10.1039/D0TA02537B
10.1039/D1DT03580K
10.1021/jacs.8b09805
10.1039/D2TA00689H
10.1002/adma.202005967
10.1021/acs.jpclett.8b01067
10.1002/aenm.202003314
10.1021/nl0727157
10.1111/jace.16962
10.1039/D1TA00284H
10.1039/D2TA00782G
10.1016/j.joule.2021.05.005
10.1002/batt.202100022
10.1016/j.apcatb.2020.119120
10.1021/acsnano.1c04715
10.1021/acs.nanolett.0c02595
10.1016/j.jpowsour.2021.230279
10.1021/acs.nanolett.0c00840
10.1002/asia.202101048
10.1016/j.nanoen.2019.104367
10.1002/aenm.202002215
10.1039/D0NR06225A
10.1039/C9NR08812A
10.1103/PhysRevLett.126.187601
10.1016/j.cej.2020.126928
10.1002/adfm.201806419
10.1016/j.nanoen.2017.05.011
10.1021/acs.accounts.8b00266
10.1016/j.nanoen.2018.08.013
10.1039/C4CS00071D
10.1038/s41586-021-03354-0
10.1126/science.abm8962
10.1126/sciadv.1400215
10.1002/chem.201903206
10.1002/adma.202000801
10.1002/smll.201804371
10.1002/smll.202102565
10.1038/s41929-022-00753-y
10.1002/adfm.201809004
10.1002/smll.202006374
10.1002/adma.201906972
10.1007/s41918-020-00082-3
10.1002/adfm.202004172
10.1002/aenm.202103511
10.1002/anie.202015738
10.1002/adma.201707430
10.1002/anie.202003651
10.1002/smll.202000040
10.1002/anie.202004914
10.1007/s40820-019-0312-y
10.1016/j.cej.2021.130514
10.1021/acsami.0c03796
10.1038/nchem.771
10.1016/j.nanoen.2017.01.044
10.1002/aenm.202000081
10.1016/j.cej.2021.129500
10.1002/adma.202006711
10.1021/acssuschemeng.8b05315
10.1021/acsaem.0c02181
10.1126/science.aav4302
10.1016/j.cej.2022.136031
10.1016/j.cej.2021.133029
10.1002/smll.202005713
10.1002/cssc.202001229
10.1038/s41560-020-00710-8
10.1038/nprot.2017.097
10.1021/acscatal.1c03333
10.1039/C8TA08135B
10.1002/adfm.202107056
10.1002/adma.202102562
10.1038/s41565-022-01121-4
10.1002/adfm.201602236
10.1038/s41586-019-1175-6
10.1039/D2QI00136E
10.1007/s40820-021-00704-5
10.1007/s12274-020-2881-y
10.1016/j.rser.2021.111640
10.1021/acs.jpcc.9b02625
10.1021/acsnano.8b06020
10.1039/D1QM00812A
10.1021/acs.chemrev.0c00718
10.1126/science.aaa8765
10.1002/aenm.202002816
10.1002/anie.202017181
10.1039/C6TA07519C
10.1039/D1TA02783B
10.1039/D0CC05888B
10.1039/D1TA05777D
10.1016/j.ensm.2022.02.028
10.1021/jacs.0c05050
10.1002/smll.201905779
10.1002/smtd.202100679
10.1039/C6TA09849E
10.1039/C7CS00863E
10.1016/j.cej.2021.131253
10.1016/j.est.2018.03.006
10.1038/s41563-021-01011-5
10.1002/smll.201904245
10.1103/PhysRevB.93.195443
10.1038/s41467-021-24568-w
10.1126/science.aaw7493
10.1039/D1CS00498K
10.1039/C9CS00906J
10.1021/acsnano.9b06267
10.1021/acscatal.8b01839
10.1016/j.cej.2022.137901
10.1021/acs.chemmater.7b04976
10.1038/s41467-021-24976-y
10.1002/smll.201904740
10.1038/s41467-019-13712-2
10.1021/acs.jpcc.8b11044
10.1016/j.snb.2021.130876
10.1002/aenm.202100110
10.1002/aenm.201902714
10.1039/C6TA10728A
10.1016/j.ensm.2022.04.004
10.1039/C9NR03266E
10.1002/anie.202106631
10.1016/j.apcatb.2022.121088
10.1016/j.jpowsour.2022.231069
10.1002/adma.202106618
10.1038/s41467-019-13519-1
10.1002/adsu.202100414
10.1002/adma.201905744
10.1016/j.nanoen.2018.01.015
10.1021/acsnano.0c02762
10.1038/ncomms1387
10.1021/acsami.0c13161
10.1039/C8CS00832A
10.1002/adma.201803234
10.1038/s41565-019-0602-z
10.1002/aenm.202101712
10.1016/j.cej.2020.127927
10.1038/s41467-022-32419-5
10.1021/acsaem.0c01868
10.1002/sstr.202000096
10.1016/j.nanoen.2021.106139
10.1002/adfm.202205635
10.1038/s41467-020-19214-w
10.1021/acs.chemrev.1c00234
10.1021/acscatal.6b02911
10.1021/acs.accounts.0c00487
10.1016/j.electacta.2021.138086
10.1002/smll.202106554
10.1021/acsnano.9b00816
10.1021/cr5003003
10.3847/1538-4357/ab322b
10.1038/s41467-019-12859-2
10.1016/j.nanoen.2017.11.063
10.1039/C6CS00328A
10.1002/advs.202201311
10.1002/aenm.201803612
10.1002/adfm.201700260
10.1038/s41560-020-0576-y
10.1002/smll.201403772
10.1021/acsnano.7b02796
10.1002/adfm.201100088
10.1021/acsenergylett.0c01564
10.1002/adma.202201114
10.1002/smll.201805435
10.1016/j.cej.2021.130048
10.1039/D0EE04066E
10.1134/1.1187350
10.1002/eem2.12184
10.1021/acsaem.8b00076
10.1002/adma.202000482
10.1021/acsnano.1c01024
10.1002/aenm.201802213
10.1038/s41565-019-0603-y
10.1039/C8EE00611C
10.1016/j.apcatb.2019.04.067
10.1007/s40820-017-0134-8
10.1007/s40820-020-00449-7
10.1039/C8EE03252A
10.1016/j.est.2021.103765
10.1002/adma.202004243
10.1002/aenm.201800709
10.1021/acsnano.0c00799
10.1002/adma.202000607
10.1039/D2QI00003B
10.1021/acsaem.0c02487
10.1002/adma.202100855
10.1002/aenm.201902703
10.1002/smll.202000924
10.1002/aenm.202003689
10.1038/s41586-021-04168-w
10.1038/s41467-018-07419-z
10.1021/jacs.7b02378
10.1016/j.powtec.2020.09.001
10.1021/acsami.0c08969
10.1002/advs.201903168
10.1016/j.ensm.2020.10.002
10.1016/j.xcrp.2021.100443
10.1039/C9EE00950G
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202206081
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36526597
10_1002_smll_202206081
SMLL202206081
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Startup Foundation for Introducing Talent of NUIST
  funderid: 2021r047
– fundername: National Natural Science Foundation of China
  funderid: 52201258
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20140986; BK20210650; BK20210651
– fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China
  funderid: 21KJB430003
– fundername: National Natural Science Foundation of China
  grantid: 52201258
– fundername: Startup Foundation for Introducing Talent of NUIST
  grantid: 2021r047
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20140986
– fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China
  grantid: 21KJB430003
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20210650
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20210651
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3731-82673b91a510f5c69484c3b7327862019cc0ef96a11a5f8b77a2b50f14bce71f3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 04:09:54 EDT 2025
Wed Aug 13 04:51:33 EDT 2025
Thu Apr 03 07:02:40 EDT 2025
Tue Jul 01 02:54:22 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Wed Jan 22 16:23:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords energy conversion and storage
heterointerfaces
amorphous-crystalline heterostructures
synergistic effect
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-82673b91a510f5c69484c3b7327862019cc0ef96a11a5f8b77a2b50f14bce71f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7517-4633
PMID 36526597
PQID 2785181457
PQPubID 1046358
PageCount 22
ParticipantIDs proquest_miscellaneous_2755575034
proquest_journals_2785181457
pubmed_primary_36526597
crossref_citationtrail_10_1002_smll_202206081
crossref_primary_10_1002_smll_202206081
wiley_primary_10_1002_smll_202206081_SMLL202206081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020; 20
2019; 11
2019; 10
2019; 13
2021; 600
2019; 12
2019; 15
2020; 16
2020; 15
2020; 14
2020; 13
2020; 12
2020; 11
2020; 10
2019; 569
2018; 45
2018; 44
2022; 441
2018; 6
2018; 9
2018; 8
2018; 1
2022; 34
2021; 151
2019; 29
2018; 30
2022; 32
2022; 449
2010; 2
2019; 310
2021; 2021
2019; 7
2019; 9
2022; 350
2011; 2
2019; 31
2020; 142
2021; 422
2021; 425
2021; 426
2016; 93
2020; 32
2017; 139
2014; 43
2016; 4
2021; 417
2017; 53
2018; 17
2021; 377
2020; 30
2022; 5
2020; 274
2022; 6
2019; 48
2022; 9
2021; 416
2022; 12
2022; 13
2020; 26
2022; 10
2018; 12
2018; 11
2021; 60
2016; 26
2022; 17
2022; 18
2017; 5
2022; 376
2021; 406
2017; 7
2017; 41
2021; 21
2021; 20
2021; 126
2017; 46
2021; 405
2020; 59
2019; 366
2008; 8
2020; 56
2021; 121
2015; 348
2017; 9
2019; 123
2019; 363
2020; 8
2020; 7
2020; 5
2020; 3
2021; 34
2021; 33
2020; 53
2017; 37
2017; 33
2020; 49
2011; 21
2021; 592
2022; 524
2022; 430
2021; 9
2015; 2
2015; 1
2022; 431
2021; 507
2021; 5
2021; 4
2021; 86
2018; 140
2021; 2
2022; 51
2017; 27
2015; 11
2022; 45
2022; 47
2020; 103
2022; 438
2022; 436
2014; 114
2022; 49
2021; 14
2021; 13
2022; 541
2021; 16
2021; 15
2021; 12
2021; 11
2022
2017; 11
2021; 17
2017; 12
2020; 69
2018; 52
2018; 51
2021; 297
1998; 32
2022; 305
2019; 253
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
Cao X. (e_1_2_8_41_1) 2022
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_27_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_207_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
Yu C. (e_1_2_8_97_1) 2021; 2021
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 32
  start-page: 1
  year: 1998
  publication-title: Semiconductors
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 274
  year: 2020
  publication-title: Appl Catal B
– volume: 18
  year: 2022
  publication-title: Small
– volume: 20
  start-page: 4278
  year: 2020
  publication-title: Nano Lett.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 43
  start-page: 4341
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 569
  start-page: 245
  year: 2019
  publication-title: Nature
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 1364
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 2469
  year: 2020
  publication-title: Nano Res.
– volume: 44
  start-page: 7
  year: 2018
  publication-title: Nano Energy
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 51
  start-page: 2857
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 51
  start-page: 524
  year: 2022
  publication-title: Dalton Trans..
– volume: 363
  start-page: 959
  year: 2019
  publication-title: Science
– volume: 139
  start-page: 7893
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 126
  year: 2021
  publication-title: Phy. Rev. Lett.
– year: 2022
  publication-title: Nano Res.
– volume: 103
  start-page: 2643
  year: 2020
  publication-title: J. Am. Ceram. Soc.
– volume: 49
  start-page: 1569
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 405
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 49
  start-page: 1414
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 153
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 45
  start-page: 390
  year: 2018
  publication-title: Nano Energy
– volume: 366
  start-page: 850
  year: 2019
  publication-title: Science
– volume: 26
  start-page: 7386
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 305
  year: 2022
  publication-title: Appl. Catal., B
– volume: 377
  year: 2021
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 131
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 33
  start-page: 138
  year: 2017
  publication-title: Nano Energy
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 436
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 948
  year: 2021
  publication-title: Batteries Supercaps
– volume: 34
  start-page: 311
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 441
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 6259
  year: 2020
  publication-title: ChemCatChem
– volume: 13
  start-page: 5635
  year: 2019
  publication-title: ACS Nano
– volume: 5
  start-page: 115
  year: 2022
  publication-title: Energy Environ. Mater.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 21
  start-page: 4469
  year: 2021
  publication-title: Nano Lett.
– volume: 438
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 381
  year: 2011
  publication-title: Nat. Commun.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 376
  start-page: 517
  year: 2022
  publication-title: Science
– volume: 30
  start-page: 1055
  year: 2018
  publication-title: Chem. Mater.
– volume: 69
  year: 2020
  publication-title: Nano Energy
– volume: 3
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 20
  start-page: 6199
  year: 2020
  publication-title: Nano Lett..
– volume: 45
  year: 2022
  publication-title: J. Energy Storage
– volume: 14
  start-page: 3075
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 406
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 5810
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 8495
  year: 2020
  publication-title: ACS Nano
– volume: 9
  start-page: 4933
  year: 2018
  publication-title: Nat. Commun.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 4
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 9
  start-page: 2068
  year: 2022
  publication-title: Inorg. Chem. Front.
– volume: 5
  start-page: 2759
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 5
  start-page: 2732
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 52
  start-page: 441
  year: 2018
  publication-title: Nano Energy
– volume: 17
  start-page: 181
  year: 2018
  publication-title: J. Energy Storage
– volume: 151
  year: 2021
  publication-title: Renewable Sustainable Energy Rev.
– volume: 93
  year: 2016
  publication-title: Phy. Rev. B
– volume: 348
  start-page: 1230
  year: 2015
  publication-title: Science
– volume: 5
  start-page: 891
  year: 2020
  publication-title: Nat. Energy
– volume: 11
  year: 2021
  publication-title: ACS Catal.
– volume: 8
  start-page: 9926
  year: 2018
  publication-title: ACS Catal..
– volume: 10
  start-page: 4855
  year: 2019
  publication-title: Nat. Commun.
– volume: 41
  start-page: 367
  year: 2017
  publication-title: Nano Energy
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 5
  year: 2021
  publication-title: Small Methods
– volume: 37
  start-page: 74
  year: 2017
  publication-title: Nano Energy
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phy. Sci.
– volume: 47
  start-page: 345
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 12
  start-page: 4297
  year: 2021
  publication-title: Nat. Commun.
– volume: 21
  start-page: 2439
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 3694
  year: 2015
  publication-title: Small
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2443
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 422
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 13
  start-page: 5639
  year: 2022
  publication-title: Chem. Sci.
– volume: 11
  start-page: 5462
  year: 2020
  publication-title: Nat. Commun.
– volume: 26
  start-page: 3943
  year: 2020
  publication-title: Chem. ‐ Eur. J.
– volume: 17
  start-page: 759
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 81
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 416
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 20
  start-page: 1347
  year: 2021
  publication-title: Nat. Mater.
– volume: 541
  year: 2022
  publication-title: J. Power Sources
– volume: 5
  start-page: 1704
  year: 2021
  publication-title: Joule
– volume: 507
  year: 2021
  publication-title: J. Power Sources
– volume: 5
  start-page: 6648
  year: 2021
  publication-title: Mater. Chem. Front.
– volume: 253
  start-page: 246
  year: 2019
  publication-title: Appl. Catal., B
– volume: 5
  start-page: 212
  year: 2022
  publication-title: Nat. Catal.
– volume: 2021
  year: 2021
  publication-title: Research
– volume: 11
  start-page: 1736
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 3041
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 15
  start-page: 118
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 6
  year: 2022
  publication-title: Adv. Sustainable Syst.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 4911
  year: 2020
  publication-title: ChemSusChem
– volume: 53
  year: 2017
  publication-title: Chem. Commun.
– volume: 9
  start-page: 31
  year: 2017
  publication-title: Nano‐Micro Lett.
– volume: 8
  start-page: 307
  year: 2008
  publication-title: Nano Lett..
– volume: 600
  start-page: 659
  year: 2021
  publication-title: Nature
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 5293
  year: 2017
  publication-title: ACS Nano
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 9
  start-page: 2985
  year: 2018
  publication-title: J. Phy. Chem. Lett.
– volume: 86
  year: 2021
  publication-title: Nano Energy
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 53
  start-page: 2106
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 425
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 337
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 524
  year: 2022
  publication-title: J. Power Sources
– volume: 7
  start-page: 986
  year: 2017
  publication-title: ACS Catal.
– volume: 417
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 2367
  year: 2017
  publication-title: Nat. Protoc.
– volume: 12
  start-page: 991
  year: 2020
  publication-title: Nanoscale
– volume: 16
  start-page: 4130
  year: 2021
  publication-title: Chem. Asian J.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 48
  start-page: 4950
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 5692
  year: 2019
  publication-title: Nat. Commun.
– volume: 449
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 2608
  year: 2021
  publication-title: Nat. Commun.
– volume: 12
  start-page: 344
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 9
  start-page: 2087
  year: 2022
  publication-title: Inorg. Chem. Front.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 426
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 350
  year: 2022
  publication-title: Sens. Actuators, B
– volume: 377
  start-page: 281
  year: 2021
  publication-title: Powder Technol.
– volume: 297
  year: 2021
  publication-title: Appl. Catal., B
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 8
  start-page: 8927
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 15
  year: 2019
  publication-title: Small
– volume: 12
  start-page: 4738
  year: 2021
  publication-title: Nat. Commun.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 643
  year: 2020
  publication-title: Electrochem. Energy Rev.
– volume: 51
  start-page: 812
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 112
  year: 2020
  publication-title: Nano‐Micro Lett.
– volume: 7
  start-page: 2437
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 13
  start-page: 175
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 13
  start-page: 4650
  year: 2022
  publication-title: Nat. Commun.
– volume: 2
  start-page: 880
  year: 2010
  publication-title: Nat. Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 310
  start-page: 203
  year: 2019
  publication-title: Electrochim. Acta
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 222
  year: 2020
  publication-title: Nat. Energy
– volume: 592
  start-page: 60
  year: 2021
  publication-title: Nature
– volume: 14
  start-page: 4849
  year: 2020
  publication-title: ACS Nano
– volume: 121
  start-page: 1463
  year: 2021
  publication-title: Chem. Rev.
– volume: 123
  start-page: 3353
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 431
  year: 2022
  publication-title: Chem. Eng. J.
– ident: e_1_2_8_122_1
  doi: 10.1016/j.nanoen.2017.09.029
– ident: e_1_2_8_174_1
  doi: 10.1016/j.cej.2022.135231
– ident: e_1_2_8_194_1
  doi: 10.1016/j.cej.2020.126775
– ident: e_1_2_8_114_1
  doi: 10.1016/j.cej.2021.134247
– ident: e_1_2_8_140_1
  doi: 10.1038/s41467-021-22865-y
– ident: e_1_2_8_42_1
  doi: 10.1016/j.cej.2022.135532
– ident: e_1_2_8_46_1
  doi: 10.1002/smtd.202100444
– ident: e_1_2_8_86_1
  doi: 10.1016/j.apcatb.2021.120484
– ident: e_1_2_8_209_1
  doi: 10.1002/aenm.202000091
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.nanolett.1c01258
– ident: e_1_2_8_141_1
  doi: 10.1021/jacs.0c00257
– ident: e_1_2_8_113_1
  doi: 10.1016/j.jpowsour.2022.231689
– year: 2022
  ident: e_1_2_8_41_1
  publication-title: Nano Res.
– ident: e_1_2_8_102_1
  doi: 10.1016/j.electacta.2019.04.134
– ident: e_1_2_8_130_1
  doi: 10.1002/cctc.202001343
– ident: e_1_2_8_188_1
  doi: 10.1002/advs.201500090
– ident: e_1_2_8_151_1
  doi: 10.1039/D2SC01043G
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.202106662
– ident: e_1_2_8_96_1
  doi: 10.1039/C7CC06851D
– ident: e_1_2_8_136_1
  doi: 10.1039/D0TA02537B
– ident: e_1_2_8_99_1
  doi: 10.1039/D1DT03580K
– ident: e_1_2_8_14_1
  doi: 10.1021/jacs.8b09805
– ident: e_1_2_8_173_1
  doi: 10.1039/D2TA00689H
– ident: e_1_2_8_210_1
  doi: 10.1002/adma.202005967
– ident: e_1_2_8_65_1
  doi: 10.1021/acs.jpclett.8b01067
– ident: e_1_2_8_32_1
  doi: 10.1002/aenm.202003314
– ident: e_1_2_8_179_1
  doi: 10.1021/nl0727157
– ident: e_1_2_8_84_1
  doi: 10.1111/jace.16962
– ident: e_1_2_8_195_1
  doi: 10.1039/D1TA00284H
– ident: e_1_2_8_169_1
  doi: 10.1039/D2TA00782G
– ident: e_1_2_8_139_1
  doi: 10.1016/j.joule.2021.05.005
– ident: e_1_2_8_168_1
  doi: 10.1002/batt.202100022
– ident: e_1_2_8_132_1
  doi: 10.1016/j.apcatb.2020.119120
– ident: e_1_2_8_73_1
  doi: 10.1021/acsnano.1c04715
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.nanolett.0c02595
– ident: e_1_2_8_129_1
  doi: 10.1016/j.jpowsour.2021.230279
– ident: e_1_2_8_63_1
  doi: 10.1021/acs.nanolett.0c00840
– ident: e_1_2_8_166_1
  doi: 10.1002/asia.202101048
– ident: e_1_2_8_13_1
  doi: 10.1016/j.nanoen.2019.104367
– ident: e_1_2_8_148_1
  doi: 10.1002/aenm.202002215
– ident: e_1_2_8_98_1
  doi: 10.1039/D0NR06225A
– ident: e_1_2_8_119_1
  doi: 10.1039/C9NR08812A
– ident: e_1_2_8_101_1
  doi: 10.1103/PhysRevLett.126.187601
– ident: e_1_2_8_163_1
  doi: 10.1016/j.cej.2020.126928
– ident: e_1_2_8_47_1
  doi: 10.1002/adfm.201806419
– ident: e_1_2_8_134_1
  doi: 10.1016/j.nanoen.2017.05.011
– ident: e_1_2_8_50_1
  doi: 10.1021/acs.accounts.8b00266
– ident: e_1_2_8_156_1
  doi: 10.1016/j.nanoen.2018.08.013
– ident: e_1_2_8_180_1
  doi: 10.1039/C4CS00071D
– ident: e_1_2_8_52_1
  doi: 10.1038/s41586-021-03354-0
– ident: e_1_2_8_3_1
  doi: 10.1126/science.abm8962
– ident: e_1_2_8_64_1
  doi: 10.1126/sciadv.1400215
– ident: e_1_2_8_66_1
  doi: 10.1002/chem.201903206
– ident: e_1_2_8_92_1
  doi: 10.1002/adma.202000801
– ident: e_1_2_8_62_1
  doi: 10.1002/smll.201804371
– ident: e_1_2_8_172_1
  doi: 10.1002/smll.202102565
– ident: e_1_2_8_71_1
  doi: 10.1038/s41929-022-00753-y
– ident: e_1_2_8_159_1
  doi: 10.1002/adfm.201809004
– ident: e_1_2_8_20_1
  doi: 10.1002/smll.202006374
– ident: e_1_2_8_124_1
  doi: 10.1002/adma.201906972
– ident: e_1_2_8_182_1
  doi: 10.1007/s41918-020-00082-3
– ident: e_1_2_8_155_1
  doi: 10.1002/adfm.202004172
– ident: e_1_2_8_22_1
  doi: 10.1002/aenm.202103511
– ident: e_1_2_8_125_1
  doi: 10.1002/anie.202015738
– ident: e_1_2_8_181_1
  doi: 10.1002/adma.201707430
– ident: e_1_2_8_31_1
  doi: 10.1002/anie.202003651
– ident: e_1_2_8_189_1
  doi: 10.1002/smll.202000040
– ident: e_1_2_8_213_1
  doi: 10.1002/anie.202004914
– ident: e_1_2_8_193_1
  doi: 10.1007/s40820-019-0312-y
– ident: e_1_2_8_77_1
  doi: 10.1016/j.cej.2021.130514
– ident: e_1_2_8_118_1
  doi: 10.1021/acsami.0c03796
– ident: e_1_2_8_25_1
  doi: 10.1038/nchem.771
– ident: e_1_2_8_187_1
  doi: 10.1016/j.nanoen.2017.01.044
– ident: e_1_2_8_44_1
  doi: 10.1002/aenm.202000081
– ident: e_1_2_8_109_1
  doi: 10.1016/j.cej.2021.129500
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.202006711
– ident: e_1_2_8_137_1
  doi: 10.1021/acssuschemeng.8b05315
– ident: e_1_2_8_157_1
  doi: 10.1021/acsaem.0c02181
– ident: e_1_2_8_5_1
  doi: 10.1126/science.aav4302
– ident: e_1_2_8_106_1
  doi: 10.1016/j.cej.2022.136031
– ident: e_1_2_8_35_1
  doi: 10.1016/j.cej.2021.133029
– ident: e_1_2_8_123_1
  doi: 10.1002/smll.202005713
– ident: e_1_2_8_87_1
  doi: 10.1002/cssc.202001229
– ident: e_1_2_8_120_1
  doi: 10.1038/s41560-020-00710-8
– ident: e_1_2_8_57_1
  doi: 10.1038/nprot.2017.097
– ident: e_1_2_8_150_1
  doi: 10.1021/acscatal.1c03333
– ident: e_1_2_8_82_1
  doi: 10.1039/C8TA08135B
– ident: e_1_2_8_88_1
  doi: 10.1002/adfm.202107056
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.202102562
– ident: e_1_2_8_2_1
  doi: 10.1038/s41565-022-01121-4
– ident: e_1_2_8_94_1
  doi: 10.1002/adfm.201602236
– ident: e_1_2_8_178_1
  doi: 10.1038/s41586-019-1175-6
– ident: e_1_2_8_135_1
  doi: 10.1039/D2QI00136E
– ident: e_1_2_8_33_1
  doi: 10.1007/s40820-021-00704-5
– ident: e_1_2_8_83_1
  doi: 10.1007/s12274-020-2881-y
– ident: e_1_2_8_48_1
  doi: 10.1016/j.rser.2021.111640
– ident: e_1_2_8_202_1
  doi: 10.1021/acs.jpcc.9b02625
– ident: e_1_2_8_28_1
  doi: 10.1021/acsnano.8b06020
– ident: e_1_2_8_78_1
  doi: 10.1039/D1QM00812A
– ident: e_1_2_8_100_1
  doi: 10.1021/acs.chemrev.0c00718
– ident: e_1_2_8_61_1
  doi: 10.1126/science.aaa8765
– ident: e_1_2_8_145_1
  doi: 10.1002/aenm.202002816
– ident: e_1_2_8_59_1
  doi: 10.1002/anie.202017181
– ident: e_1_2_8_54_1
  doi: 10.1039/C6TA07519C
– ident: e_1_2_8_116_1
  doi: 10.1039/D1TA02783B
– ident: e_1_2_8_131_1
  doi: 10.1039/D0CC05888B
– ident: e_1_2_8_76_1
  doi: 10.1039/D1TA05777D
– ident: e_1_2_8_196_1
  doi: 10.1016/j.ensm.2022.02.028
– ident: e_1_2_8_144_1
  doi: 10.1021/jacs.0c05050
– ident: e_1_2_8_38_1
  doi: 10.1002/smll.201905779
– ident: e_1_2_8_146_1
  doi: 10.1002/smtd.202100679
– ident: e_1_2_8_160_1
  doi: 10.1039/C6TA09849E
– ident: e_1_2_8_176_1
  doi: 10.1039/C7CS00863E
– ident: e_1_2_8_103_1
  doi: 10.1016/j.cej.2021.131253
– ident: e_1_2_8_164_1
  doi: 10.1016/j.est.2018.03.006
– ident: e_1_2_8_68_1
  doi: 10.1038/s41563-021-01011-5
– ident: e_1_2_8_80_1
  doi: 10.1002/smll.201904245
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevB.93.195443
– ident: e_1_2_8_153_1
  doi: 10.1038/s41467-021-24568-w
– ident: e_1_2_8_60_1
  doi: 10.1126/science.aaw7493
– ident: e_1_2_8_6_1
  doi: 10.1039/D1CS00498K
– ident: e_1_2_8_126_1
  doi: 10.1039/C9CS00906J
– ident: e_1_2_8_207_1
  doi: 10.1021/acsnano.9b06267
– ident: e_1_2_8_55_1
  doi: 10.1021/acscatal.8b01839
– ident: e_1_2_8_74_1
  doi: 10.1016/j.cej.2022.137901
– ident: e_1_2_8_162_1
  doi: 10.1021/acs.chemmater.7b04976
– ident: e_1_2_8_211_1
  doi: 10.1038/s41467-021-24976-y
– ident: e_1_2_8_29_1
  doi: 10.1002/smll.201904740
– ident: e_1_2_8_23_1
  doi: 10.1038/s41467-019-13712-2
– ident: e_1_2_8_183_1
  doi: 10.1021/acs.jpcc.8b11044
– ident: e_1_2_8_91_1
  doi: 10.1016/j.snb.2021.130876
– volume: 2021
  year: 2021
  ident: e_1_2_8_97_1
  publication-title: Research
– ident: e_1_2_8_72_1
  doi: 10.1002/aenm.202100110
– ident: e_1_2_8_117_1
  doi: 10.1002/aenm.201902714
– ident: e_1_2_8_90_1
  doi: 10.1039/C6TA10728A
– ident: e_1_2_8_208_1
  doi: 10.1016/j.ensm.2022.04.004
– ident: e_1_2_8_53_1
  doi: 10.1039/C9NR03266E
– ident: e_1_2_8_152_1
  doi: 10.1002/anie.202106631
– ident: e_1_2_8_112_1
  doi: 10.1016/j.apcatb.2022.121088
– ident: e_1_2_8_104_1
  doi: 10.1016/j.jpowsour.2022.231069
– ident: e_1_2_8_197_1
  doi: 10.1002/adma.202106618
– ident: e_1_2_8_70_1
  doi: 10.1038/s41467-019-13519-1
– ident: e_1_2_8_167_1
  doi: 10.1002/adsu.202100414
– ident: e_1_2_8_115_1
  doi: 10.1002/adma.201905744
– ident: e_1_2_8_175_1
  doi: 10.1016/j.nanoen.2018.01.015
– ident: e_1_2_8_204_1
  doi: 10.1021/acsnano.0c02762
– ident: e_1_2_8_165_1
  doi: 10.1038/ncomms1387
– ident: e_1_2_8_192_1
  doi: 10.1021/acsami.0c13161
– ident: e_1_2_8_34_1
  doi: 10.1039/C8CS00832A
– ident: e_1_2_8_81_1
  doi: 10.1002/adma.201803234
– ident: e_1_2_8_9_1
  doi: 10.1038/s41565-019-0602-z
– ident: e_1_2_8_36_1
  doi: 10.1002/aenm.202101712
– ident: e_1_2_8_107_1
  doi: 10.1016/j.cej.2020.127927
– ident: e_1_2_8_51_1
  doi: 10.1038/s41467-022-32419-5
– ident: e_1_2_8_93_1
  doi: 10.1021/acsaem.0c01868
– ident: e_1_2_8_67_1
  doi: 10.1002/sstr.202000096
– ident: e_1_2_8_190_1
  doi: 10.1016/j.nanoen.2021.106139
– ident: e_1_2_8_184_1
  doi: 10.1002/adfm.202205635
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-020-19214-w
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.chemrev.1c00234
– ident: e_1_2_8_26_1
  doi: 10.1021/acscatal.6b02911
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.accounts.0c00487
– ident: e_1_2_8_170_1
  doi: 10.1016/j.electacta.2021.138086
– ident: e_1_2_8_79_1
  doi: 10.1002/smll.202106554
– ident: e_1_2_8_24_1
  doi: 10.1021/acsnano.9b00816
– ident: e_1_2_8_177_1
  doi: 10.1021/cr5003003
– ident: e_1_2_8_206_1
  doi: 10.3847/1538-4357/ab322b
– ident: e_1_2_8_69_1
  doi: 10.1038/s41467-019-12859-2
– ident: e_1_2_8_133_1
  doi: 10.1016/j.nanoen.2017.11.063
– ident: e_1_2_8_138_1
  doi: 10.1039/C6CS00328A
– ident: e_1_2_8_111_1
  doi: 10.1002/advs.202201311
– ident: e_1_2_8_191_1
  doi: 10.1002/aenm.201803612
– ident: e_1_2_8_58_1
  doi: 10.1002/adfm.201700260
– ident: e_1_2_8_142_1
  doi: 10.1038/s41560-020-0576-y
– ident: e_1_2_8_95_1
  doi: 10.1002/smll.201403772
– ident: e_1_2_8_161_1
  doi: 10.1021/acsnano.7b02796
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.201100088
– ident: e_1_2_8_198_1
  doi: 10.1021/acsenergylett.0c01564
– ident: e_1_2_8_89_1
  doi: 10.1002/adma.202201114
– ident: e_1_2_8_75_1
  doi: 10.1002/smll.201805435
– ident: e_1_2_8_85_1
  doi: 10.1016/j.cej.2021.130048
– ident: e_1_2_8_154_1
  doi: 10.1039/D0EE04066E
– ident: e_1_2_8_8_1
  doi: 10.1134/1.1187350
– ident: e_1_2_8_18_1
  doi: 10.1002/eem2.12184
– ident: e_1_2_8_110_1
  doi: 10.1021/acsaem.8b00076
– ident: e_1_2_8_45_1
  doi: 10.1002/adma.202000482
– ident: e_1_2_8_121_1
  doi: 10.1021/acsnano.1c01024
– ident: e_1_2_8_200_1
  doi: 10.1002/aenm.201802213
– ident: e_1_2_8_11_1
  doi: 10.1038/s41565-019-0603-y
– ident: e_1_2_8_39_1
  doi: 10.1039/C8EE00611C
– ident: e_1_2_8_12_1
  doi: 10.1016/j.apcatb.2019.04.067
– ident: e_1_2_8_158_1
  doi: 10.1007/s40820-017-0134-8
– ident: e_1_2_8_199_1
  doi: 10.1007/s40820-020-00449-7
– ident: e_1_2_8_205_1
  doi: 10.1039/C8EE03252A
– ident: e_1_2_8_108_1
  doi: 10.1016/j.est.2021.103765
– ident: e_1_2_8_143_1
  doi: 10.1002/adma.202004243
– ident: e_1_2_8_212_1
  doi: 10.1002/aenm.201800709
– ident: e_1_2_8_214_1
  doi: 10.1021/acsnano.0c00799
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.202000607
– ident: e_1_2_8_105_1
  doi: 10.1039/D2QI00003B
– ident: e_1_2_8_171_1
  doi: 10.1021/acsaem.0c02487
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.202100855
– ident: e_1_2_8_127_1
  doi: 10.1002/aenm.201902703
– ident: e_1_2_8_128_1
  doi: 10.1002/smll.202000924
– ident: e_1_2_8_203_1
  doi: 10.1002/aenm.202003689
– ident: e_1_2_8_1_1
  doi: 10.1038/s41586-021-04168-w
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-018-07419-z
– ident: e_1_2_8_27_1
  doi: 10.1021/jacs.7b02378
– ident: e_1_2_8_186_1
  doi: 10.1016/j.powtec.2020.09.001
– ident: e_1_2_8_147_1
  doi: 10.1021/acsami.0c08969
– ident: e_1_2_8_201_1
  doi: 10.1002/advs.201903168
– ident: e_1_2_8_185_1
  doi: 10.1016/j.ensm.2020.10.002
– ident: e_1_2_8_49_1
  doi: 10.1016/j.xcrp.2021.100443
– ident: e_1_2_8_149_1
  doi: 10.1039/C9EE00950G
SSID ssj0031247
Score 2.6317933
SecondaryResourceType review_article
Snippet Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2206081
SubjectTerms amorphous‐crystalline heterostructures
Clean energy
Electrocatalysts
Electrochemical analysis
Energy conversion
energy conversion and storage
Energy storage
heterointerfaces
Heterostructures
Hydrogen evolution reactions
Lithium sulfur batteries
Lithium-ion batteries
Nanotechnology
Oxygen evolution reactions
synergistic effect
Title Research Advances in Amorphous‐Crystalline Heterostructures Toward Efficient Electrochemical Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202206081
https://www.ncbi.nlm.nih.gov/pubmed/36526597
https://www.proquest.com/docview/2785181457
https://www.proquest.com/docview/2755575034
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT7xADG-MJz349_3HV8bExBMK84DluDFrNkY9-Ei8kZlZSIzKGnEPevIj-Bn9JLYM4K7GmOgNQoGZaUtb2vkVYEejXdBSEQJAonzJTeJjGDTwjeJSDGQS6ZD2Dp-cRv1LeXSlrsZ28Tt8iPaHG2lG9b0mBdem3P8ADS3vbil1wHkQBdXeayrYIq_orMWPEmi8qu4qaLN8At5qUBsDvj95-6RV-uJqTnqulek5_Ae6GbSrOLnZGz2aPfv8Cc_xL7Oah7naL2VdJ0gLMJUVizA7hla4BDdNlR7rusKBkl0XrHs3RFYNR-Xby-vBwxM6m4TynbE-1dkMHTztCGN6dlEV6LJehVmBpo71XAceW0MWsO5YLn0ZLg97Fwd9v-7V4FsRi9DHKCUWJgk16niubJTIjrTCxILHGDOhH2ltkOXEeiTJOyaONTcqyENpbBaHuViB6WJYZP-BUeVcPuAU-VmpOzpBO67C3BB2vsAHeOA3vEptDWRO_TRuUwfBzFNaxLRdRA92W_p7B-HxLeVGw_q0VuUyxQkodINQnj3Ybi-jElJmRRcZLjDSKKUoIyw9WHUi074KpZJHGLZ5wCvG_zCG9Pzk-Lg9W_vNTeswg8fCVcptwDRyOttE1-nRbFXq8Q4cVxDw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYQHIAD78d4BgmJU6HNo12PExoasHGAIXGrmqyVENAhxg5w4ifwG_kl2E1bGAghwbGt0yZxXNux8xlgN0a9EEtFCAChciTXoYNuUM_RikvRk6Efe3R2uHPmty7lyZUqswnpLIzFh6g23Egy8v81CThtSB98oIYO7m4pdsC567t0-HqCynrnXtV5hSAlUH3l9VVQazkEvVXiNrr8YLT9qF76ZmyO2q658jmaBV122-ac3OwPH_W-ef6C6Pivcc3BTGGasoZdS_MwlmQLMP0JsHARbspEPdawuQMDdp2xxl0fudUfDt5eXg8fntDeJKDvhLUo1aZvEWqH6Nazbp6jy5o5bAVqO9a0RXhMgVrAGp_C6UtwedTsHracolyDY0QgPAcdlUDo0ItRzFNl_FDWpRE6EDxAtwlNSWPcJCXuI0la10EQc63c1JPaJIGXimUYz_pZsgqMkufSHifnz8i4HoeoypWXaoLPF_iCGjglsyJTYJlTSY3byKIw84gmMaomsQZ7Ff29RfH4kXKj5H1USPMgwgEotIRwSddgp3qMckjBlThLcIKRRilFQWFZgxW7ZqpPCZ-KEITYmuec_6UP0UWn3a6u1v7SaBsmW91OO2ofn52uwxTeFzZxbgPGkevJJlpSj3orl5V3ITsVCw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB4hkFB7gEL5CaVlkZB6Mtj7Y8fHKCQKEBCiIHGzdje2hAAHkeQApz5Cn5EnYcZru0mrComeLNuz9u7OjmfGM_sNwJ5GvaClIgSAWHmSm9hDN2jgGcWlGMg41AHtHT49C3tX8vhaXU_t4nf4EPUPN5KM4ntNAv4wyA5-g4aO7u8odMC5H_q093pB4pHW9eFFDSAlUHsV5VVQaXmEvFXBNvr8YLb9rFr6y9acNV0L3dNdBl312qWc3O5PxmbfPv8B6Pg_w_oES6VhylpuJa3AXJqvwscpuMLPcFul6bGWyxwYsZucte6HyKvhZPTy81f78QmtTYL5TlmPEm2GDp92gk49uywydFmnAK1AXcc6rgSPLTELWGsqmL4GV93OZbvnlcUaPCsiEXjopkTCxIFGIc-UDWPZlFaYSPAInSY0JK3104x4jyRZ00SR5kb5WSCNTaMgE-swnw_zdBMYpc5lA06un5W6qWNU5CrIDIHnC3xAA7yKV4ktkcypoMZd4jCYeUKTmNST2IDvNf2Dw_D4J-V2xfqklOVRggNQaAfhgm7Abn0bpZBCKzpPcYKRRilFIWHZgA23ZOpXiZBKEMTYmheMf6MPyY_Tfr8-23pPox1YPD_sJv2js5Mv8AEvC5c1tw3zyPT0K5pRY_OtkJRX69QTww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Advances+in+Amorphous-Crystalline+Heterostructures+Toward+Efficient+Electrochemical+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Jin%2C+Yachao&rft.au=Zhang%2C+Mengxian&rft.au=Song%2C+Li&rft.au=Zhang%2C+Mingdao&rft.date=2023-03-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=19&rft.issue=10&rft.spage=e2206081&rft_id=info:doi/10.1002%2Fsmll.202206081&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon