Research Advances in Amorphous‐Crystalline Heterostructures Toward Efficient Electrochemical Applications
Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous‐crystalline heterostructur...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 10; pp. e2206081 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous‐crystalline heterostructures have lately surged since they combine the superior advantages of amorphous‐ and crystalline‐phase structures, showing unusual atomic arrangements in heterointerfaces. Nonetheless, there has been much less efforts in systematic analysis and summary of the amorphous‐crystalline heterostructures to examine their complicated interfacial interactions and elusory active sites. The critical structure‐activity correlation and electrocatalytic mechanism remain rather elusive. In this review, the recent advances of amorphous‐crystalline heterostructures in electrochemical energy conversion and storage fields are amply discussed and presented, along with remarks on the challenges and perspectives. Initially, the fundamental characteristics of amorphous‐crystalline heterostructures are introduced to provide scientific viewpoints for structural understanding. Subsequently, the superiorities and current achievements of amorphous‐crystalline heterostructures as highly efficient electrocatalysts/electrodes for hydrogen evolution reaction, oxygen evolution reaction, supercapacitor, lithium‐ion battery, and lithium‐sulfur battery applications are elaborated. At the end of this review, future outlooks and opportunities on amorphous‐crystalline heterostructures are also put forward to promote their further development and application in the field of clean energy.
The emerging amorphous‐crystalline heterostructures with distinctive atomic arrangement at the heterointerfaces are promising candidates for next‐generation high‐performance electrocatalysts/electrodes. This review discusses for the first time these ever‐increasing novel multifunctional nanomaterials toward various electrochemical applications, aiming to offer cross‐sectional insights into the structure‐property relationships and provide guidance for the rational design of amorphous‐crystalline heterostructures with desired performance. |
---|---|
AbstractList | Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous‐crystalline heterostructures have lately surged since they combine the superior advantages of amorphous‐ and crystalline‐phase structures, showing unusual atomic arrangements in heterointerfaces. Nonetheless, there has been much less efforts in systematic analysis and summary of the amorphous‐crystalline heterostructures to examine their complicated interfacial interactions and elusory active sites. The critical structure‐activity correlation and electrocatalytic mechanism remain rather elusive. In this review, the recent advances of amorphous‐crystalline heterostructures in electrochemical energy conversion and storage fields are amply discussed and presented, along with remarks on the challenges and perspectives. Initially, the fundamental characteristics of amorphous‐crystalline heterostructures are introduced to provide scientific viewpoints for structural understanding. Subsequently, the superiorities and current achievements of amorphous‐crystalline heterostructures as highly efficient electrocatalysts/electrodes for hydrogen evolution reaction, oxygen evolution reaction, supercapacitor, lithium‐ion battery, and lithium‐sulfur battery applications are elaborated. At the end of this review, future outlooks and opportunities on amorphous‐crystalline heterostructures are also put forward to promote their further development and application in the field of clean energy. Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous‐crystalline heterostructures have lately surged since they combine the superior advantages of amorphous‐ and crystalline‐phase structures, showing unusual atomic arrangements in heterointerfaces. Nonetheless, there has been much less efforts in systematic analysis and summary of the amorphous‐crystalline heterostructures to examine their complicated interfacial interactions and elusory active sites. The critical structure‐activity correlation and electrocatalytic mechanism remain rather elusive. In this review, the recent advances of amorphous‐crystalline heterostructures in electrochemical energy conversion and storage fields are amply discussed and presented, along with remarks on the challenges and perspectives. Initially, the fundamental characteristics of amorphous‐crystalline heterostructures are introduced to provide scientific viewpoints for structural understanding. Subsequently, the superiorities and current achievements of amorphous‐crystalline heterostructures as highly efficient electrocatalysts/electrodes for hydrogen evolution reaction, oxygen evolution reaction, supercapacitor, lithium‐ion battery, and lithium‐sulfur battery applications are elaborated. At the end of this review, future outlooks and opportunities on amorphous‐crystalline heterostructures are also put forward to promote their further development and application in the field of clean energy. The emerging amorphous‐crystalline heterostructures with distinctive atomic arrangement at the heterointerfaces are promising candidates for next‐generation high‐performance electrocatalysts/electrodes. This review discusses for the first time these ever‐increasing novel multifunctional nanomaterials toward various electrochemical applications, aiming to offer cross‐sectional insights into the structure‐property relationships and provide guidance for the rational design of amorphous‐crystalline heterostructures with desired performance. Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous-crystalline heterostructures have lately surged since they combine the superior advantages of amorphous- and crystalline-phase structures, showing unusual atomic arrangements in heterointerfaces. Nonetheless, there has been much less efforts in systematic analysis and summary of the amorphous-crystalline heterostructures to examine their complicated interfacial interactions and elusory active sites. The critical structure-activity correlation and electrocatalytic mechanism remain rather elusive. In this review, the recent advances of amorphous-crystalline heterostructures in electrochemical energy conversion and storage fields are amply discussed and presented, along with remarks on the challenges and perspectives. Initially, the fundamental characteristics of amorphous-crystalline heterostructures are introduced to provide scientific viewpoints for structural understanding. Subsequently, the superiorities and current achievements of amorphous-crystalline heterostructures as highly efficient electrocatalysts/electrodes for hydrogen evolution reaction, oxygen evolution reaction, supercapacitor, lithium-ion battery, and lithium-sulfur battery applications are elaborated. At the end of this review, future outlooks and opportunities on amorphous-crystalline heterostructures are also put forward to promote their further development and application in the field of clean energy.Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous-crystalline heterostructures have lately surged since they combine the superior advantages of amorphous- and crystalline-phase structures, showing unusual atomic arrangements in heterointerfaces. Nonetheless, there has been much less efforts in systematic analysis and summary of the amorphous-crystalline heterostructures to examine their complicated interfacial interactions and elusory active sites. The critical structure-activity correlation and electrocatalytic mechanism remain rather elusive. In this review, the recent advances of amorphous-crystalline heterostructures in electrochemical energy conversion and storage fields are amply discussed and presented, along with remarks on the challenges and perspectives. Initially, the fundamental characteristics of amorphous-crystalline heterostructures are introduced to provide scientific viewpoints for structural understanding. Subsequently, the superiorities and current achievements of amorphous-crystalline heterostructures as highly efficient electrocatalysts/electrodes for hydrogen evolution reaction, oxygen evolution reaction, supercapacitor, lithium-ion battery, and lithium-sulfur battery applications are elaborated. At the end of this review, future outlooks and opportunities on amorphous-crystalline heterostructures are also put forward to promote their further development and application in the field of clean energy. |
Author | Jin, Yachao Song, Li Zhang, Mingdao Zhang, Mengxian |
Author_xml | – sequence: 1 givenname: Yachao orcidid: 0000-0002-7517-4633 surname: Jin fullname: Jin, Yachao email: jinyachao@nuist.edu.cn organization: Nanjing University of Information Science & Technology – sequence: 2 givenname: Mengxian surname: Zhang fullname: Zhang, Mengxian organization: Nanjing University of Information Science & Technology – sequence: 3 givenname: Li surname: Song fullname: Song, Li organization: Nanjing University of Information Science & Technology – sequence: 4 givenname: Mingdao surname: Zhang fullname: Zhang, Mingdao email: zhangmd@nuist.edu.cn organization: Nanjing University of Information Science & Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36526597$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rGzEQhkVJaT7aa49loZde7Opjtdo9GuMmBZdAmp6FVh5hpVppK2kTfOtP6G_ML6lS5wMCJaeZw_MMM_MeowMfPCD0nuA5wZh-ToNzc4opxQ1uySt0RBrCZk1Lu4PHnuBDdJzSFcaM0Fq8QYes4bThnThCPy8ggYp6Wy0218prSJX11WIIcdyGKd3-_rOMu5SVc9ZDdQYZYkg5TjpPsbCX4UbFTbUyxmoLPlcrBzrHoLcwWK1ctRhHV5psg09v0WujXIJ39_UE_fiyulyezdbnp1-Xi_VMM8HIrKWNYH1HFCfYcN10dVtr1gtGRdtQTDqtMZiuUaQgpu2FULTn2JC61yCIYSfo037uGMOvCVKWg00anFMeyk2SCs654JjVBf34DL0KU_Rlu0K1nLSk5qJQH-6pqR9gI8doBxV38uGNBaj3gC7fSRGM1Db_OzpHZZ0kWN6lJe_Sko9pFW3-THuY_F-h2ws31sHuBVp-_7ZeP7l_AfSIqUc |
CitedBy_id | crossref_primary_10_1002_smll_202304181 crossref_primary_10_1002_smll_202310387 crossref_primary_10_1016_j_jssc_2024_124702 crossref_primary_10_1016_j_cej_2024_150897 crossref_primary_10_1002_smll_202500758 crossref_primary_10_1021_acs_chemrev_3c00229 crossref_primary_10_1016_j_jcat_2024_115354 crossref_primary_10_1039_D3CS00860F crossref_primary_10_1039_D3QM01263H crossref_primary_10_1002_cey2_595 crossref_primary_10_1016_j_est_2024_112195 crossref_primary_10_1021_acsami_3c14932 crossref_primary_10_15251_CL_2024_219_687 crossref_primary_10_1021_acssuschemeng_3c01158 crossref_primary_10_1016_j_jallcom_2025_178575 crossref_primary_10_1002_adma_202407134 crossref_primary_10_1016_j_ijhydene_2024_10_194 crossref_primary_10_1021_acs_inorgchem_4c01881 crossref_primary_10_1016_j_pmatsci_2024_101294 crossref_primary_10_1007_s12598_024_03144_3 crossref_primary_10_1016_j_seppur_2024_130531 crossref_primary_10_1002_advs_202309927 crossref_primary_10_1002_smll_202310927 crossref_primary_10_1016_j_est_2023_107473 crossref_primary_10_1002_smll_202400191 crossref_primary_10_3390_catal14080511 crossref_primary_10_1016_j_jcis_2023_11_124 crossref_primary_10_1016_j_jpowsour_2025_236802 crossref_primary_10_1002_cphc_202300761 crossref_primary_10_1016_j_apsusc_2023_159007 crossref_primary_10_1016_j_jece_2024_115224 crossref_primary_10_3390_ma17071566 crossref_primary_10_1016_j_ccr_2024_216418 crossref_primary_10_1002_adma_202401361 crossref_primary_10_3390_ma17164030 crossref_primary_10_1002_smll_202411941 crossref_primary_10_1016_j_apmt_2024_102466 crossref_primary_10_1016_j_jallcom_2024_174393 crossref_primary_10_1002_smll_202308528 crossref_primary_10_1002_smsc_202300036 crossref_primary_10_1002_adfm_202405867 crossref_primary_10_1016_j_ensm_2024_103265 crossref_primary_10_1016_j_apsusc_2023_158404 crossref_primary_10_1002_smll_202207852 crossref_primary_10_1063_5_0222583 crossref_primary_10_1002_smll_202305562 crossref_primary_10_1002_smll_202309122 crossref_primary_10_3390_s24165258 crossref_primary_10_1021_acs_chemrev_4c00368 crossref_primary_10_1002_idm2_12087 crossref_primary_10_1016_j_checat_2025_101324 crossref_primary_10_1016_j_seppur_2024_129094 crossref_primary_10_1021_acsami_4c06752 crossref_primary_10_1039_D3TA07189H crossref_primary_10_1002_cssc_202401181 crossref_primary_10_1016_j_coelec_2025_101653 crossref_primary_10_1016_j_ijhydene_2025_01_054 crossref_primary_10_1002_smll_202406071 crossref_primary_10_1016_j_apsusc_2023_158911 crossref_primary_10_1002_adfm_202405270 |
Cites_doi | 10.1016/j.nanoen.2017.09.029 10.1016/j.cej.2022.135231 10.1016/j.cej.2020.126775 10.1016/j.cej.2021.134247 10.1038/s41467-021-22865-y 10.1016/j.cej.2022.135532 10.1002/smtd.202100444 10.1016/j.apcatb.2021.120484 10.1002/aenm.202000091 10.1021/acs.nanolett.1c01258 10.1021/jacs.0c00257 10.1016/j.jpowsour.2022.231689 10.1016/j.electacta.2019.04.134 10.1002/cctc.202001343 10.1002/advs.201500090 10.1039/D2SC01043G 10.1002/adma.202106662 10.1039/C7CC06851D 10.1039/D0TA02537B 10.1039/D1DT03580K 10.1021/jacs.8b09805 10.1039/D2TA00689H 10.1002/adma.202005967 10.1021/acs.jpclett.8b01067 10.1002/aenm.202003314 10.1021/nl0727157 10.1111/jace.16962 10.1039/D1TA00284H 10.1039/D2TA00782G 10.1016/j.joule.2021.05.005 10.1002/batt.202100022 10.1016/j.apcatb.2020.119120 10.1021/acsnano.1c04715 10.1021/acs.nanolett.0c02595 10.1016/j.jpowsour.2021.230279 10.1021/acs.nanolett.0c00840 10.1002/asia.202101048 10.1016/j.nanoen.2019.104367 10.1002/aenm.202002215 10.1039/D0NR06225A 10.1039/C9NR08812A 10.1103/PhysRevLett.126.187601 10.1016/j.cej.2020.126928 10.1002/adfm.201806419 10.1016/j.nanoen.2017.05.011 10.1021/acs.accounts.8b00266 10.1016/j.nanoen.2018.08.013 10.1039/C4CS00071D 10.1038/s41586-021-03354-0 10.1126/science.abm8962 10.1126/sciadv.1400215 10.1002/chem.201903206 10.1002/adma.202000801 10.1002/smll.201804371 10.1002/smll.202102565 10.1038/s41929-022-00753-y 10.1002/adfm.201809004 10.1002/smll.202006374 10.1002/adma.201906972 10.1007/s41918-020-00082-3 10.1002/adfm.202004172 10.1002/aenm.202103511 10.1002/anie.202015738 10.1002/adma.201707430 10.1002/anie.202003651 10.1002/smll.202000040 10.1002/anie.202004914 10.1007/s40820-019-0312-y 10.1016/j.cej.2021.130514 10.1021/acsami.0c03796 10.1038/nchem.771 10.1016/j.nanoen.2017.01.044 10.1002/aenm.202000081 10.1016/j.cej.2021.129500 10.1002/adma.202006711 10.1021/acssuschemeng.8b05315 10.1021/acsaem.0c02181 10.1126/science.aav4302 10.1016/j.cej.2022.136031 10.1016/j.cej.2021.133029 10.1002/smll.202005713 10.1002/cssc.202001229 10.1038/s41560-020-00710-8 10.1038/nprot.2017.097 10.1021/acscatal.1c03333 10.1039/C8TA08135B 10.1002/adfm.202107056 10.1002/adma.202102562 10.1038/s41565-022-01121-4 10.1002/adfm.201602236 10.1038/s41586-019-1175-6 10.1039/D2QI00136E 10.1007/s40820-021-00704-5 10.1007/s12274-020-2881-y 10.1016/j.rser.2021.111640 10.1021/acs.jpcc.9b02625 10.1021/acsnano.8b06020 10.1039/D1QM00812A 10.1021/acs.chemrev.0c00718 10.1126/science.aaa8765 10.1002/aenm.202002816 10.1002/anie.202017181 10.1039/C6TA07519C 10.1039/D1TA02783B 10.1039/D0CC05888B 10.1039/D1TA05777D 10.1016/j.ensm.2022.02.028 10.1021/jacs.0c05050 10.1002/smll.201905779 10.1002/smtd.202100679 10.1039/C6TA09849E 10.1039/C7CS00863E 10.1016/j.cej.2021.131253 10.1016/j.est.2018.03.006 10.1038/s41563-021-01011-5 10.1002/smll.201904245 10.1103/PhysRevB.93.195443 10.1038/s41467-021-24568-w 10.1126/science.aaw7493 10.1039/D1CS00498K 10.1039/C9CS00906J 10.1021/acsnano.9b06267 10.1021/acscatal.8b01839 10.1016/j.cej.2022.137901 10.1021/acs.chemmater.7b04976 10.1038/s41467-021-24976-y 10.1002/smll.201904740 10.1038/s41467-019-13712-2 10.1021/acs.jpcc.8b11044 10.1016/j.snb.2021.130876 10.1002/aenm.202100110 10.1002/aenm.201902714 10.1039/C6TA10728A 10.1016/j.ensm.2022.04.004 10.1039/C9NR03266E 10.1002/anie.202106631 10.1016/j.apcatb.2022.121088 10.1016/j.jpowsour.2022.231069 10.1002/adma.202106618 10.1038/s41467-019-13519-1 10.1002/adsu.202100414 10.1002/adma.201905744 10.1016/j.nanoen.2018.01.015 10.1021/acsnano.0c02762 10.1038/ncomms1387 10.1021/acsami.0c13161 10.1039/C8CS00832A 10.1002/adma.201803234 10.1038/s41565-019-0602-z 10.1002/aenm.202101712 10.1016/j.cej.2020.127927 10.1038/s41467-022-32419-5 10.1021/acsaem.0c01868 10.1002/sstr.202000096 10.1016/j.nanoen.2021.106139 10.1002/adfm.202205635 10.1038/s41467-020-19214-w 10.1021/acs.chemrev.1c00234 10.1021/acscatal.6b02911 10.1021/acs.accounts.0c00487 10.1016/j.electacta.2021.138086 10.1002/smll.202106554 10.1021/acsnano.9b00816 10.1021/cr5003003 10.3847/1538-4357/ab322b 10.1038/s41467-019-12859-2 10.1016/j.nanoen.2017.11.063 10.1039/C6CS00328A 10.1002/advs.202201311 10.1002/aenm.201803612 10.1002/adfm.201700260 10.1038/s41560-020-0576-y 10.1002/smll.201403772 10.1021/acsnano.7b02796 10.1002/adfm.201100088 10.1021/acsenergylett.0c01564 10.1002/adma.202201114 10.1002/smll.201805435 10.1016/j.cej.2021.130048 10.1039/D0EE04066E 10.1134/1.1187350 10.1002/eem2.12184 10.1021/acsaem.8b00076 10.1002/adma.202000482 10.1021/acsnano.1c01024 10.1002/aenm.201802213 10.1038/s41565-019-0603-y 10.1039/C8EE00611C 10.1016/j.apcatb.2019.04.067 10.1007/s40820-017-0134-8 10.1007/s40820-020-00449-7 10.1039/C8EE03252A 10.1016/j.est.2021.103765 10.1002/adma.202004243 10.1002/aenm.201800709 10.1021/acsnano.0c00799 10.1002/adma.202000607 10.1039/D2QI00003B 10.1021/acsaem.0c02487 10.1002/adma.202100855 10.1002/aenm.201902703 10.1002/smll.202000924 10.1002/aenm.202003689 10.1038/s41586-021-04168-w 10.1038/s41467-018-07419-z 10.1021/jacs.7b02378 10.1016/j.powtec.2020.09.001 10.1021/acsami.0c08969 10.1002/advs.201903168 10.1016/j.ensm.2020.10.002 10.1016/j.xcrp.2021.100443 10.1039/C9EE00950G |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202206081 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36526597 10_1002_smll_202206081 SMLL202206081 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Startup Foundation for Introducing Talent of NUIST funderid: 2021r047 – fundername: National Natural Science Foundation of China funderid: 52201258 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20140986; BK20210650; BK20210651 – fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China funderid: 21KJB430003 – fundername: National Natural Science Foundation of China grantid: 52201258 – fundername: Startup Foundation for Introducing Talent of NUIST grantid: 2021r047 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20140986 – fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China grantid: 21KJB430003 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20210650 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20210651 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3731-82673b91a510f5c69484c3b7327862019cc0ef96a11a5f8b77a2b50f14bce71f3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 04:09:54 EDT 2025 Wed Aug 13 04:51:33 EDT 2025 Thu Apr 03 07:02:40 EDT 2025 Tue Jul 01 02:54:22 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 Wed Jan 22 16:23:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | energy conversion and storage heterointerfaces amorphous-crystalline heterostructures synergistic effect |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-82673b91a510f5c69484c3b7327862019cc0ef96a11a5f8b77a2b50f14bce71f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7517-4633 |
PMID | 36526597 |
PQID | 2785181457 |
PQPubID | 1046358 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2755575034 proquest_journals_2785181457 pubmed_primary_36526597 crossref_citationtrail_10_1002_smll_202206081 crossref_primary_10_1002_smll_202206081 wiley_primary_10_1002_smll_202206081_SMLL202206081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020; 20 2019; 11 2019; 10 2019; 13 2021; 600 2019; 12 2019; 15 2020; 16 2020; 15 2020; 14 2020; 13 2020; 12 2020; 11 2020; 10 2019; 569 2018; 45 2018; 44 2022; 441 2018; 6 2018; 9 2018; 8 2018; 1 2022; 34 2021; 151 2019; 29 2018; 30 2022; 32 2022; 449 2010; 2 2019; 310 2021; 2021 2019; 7 2019; 9 2022; 350 2011; 2 2019; 31 2020; 142 2021; 422 2021; 425 2021; 426 2016; 93 2020; 32 2017; 139 2014; 43 2016; 4 2021; 417 2017; 53 2018; 17 2021; 377 2020; 30 2022; 5 2020; 274 2022; 6 2019; 48 2022; 9 2021; 416 2022; 12 2022; 13 2020; 26 2022; 10 2018; 12 2018; 11 2021; 60 2016; 26 2022; 17 2022; 18 2017; 5 2022; 376 2021; 406 2017; 7 2017; 41 2021; 21 2021; 20 2021; 126 2017; 46 2021; 405 2020; 59 2019; 366 2008; 8 2020; 56 2021; 121 2015; 348 2017; 9 2019; 123 2019; 363 2020; 8 2020; 7 2020; 5 2020; 3 2021; 34 2021; 33 2020; 53 2017; 37 2017; 33 2020; 49 2011; 21 2021; 592 2022; 524 2022; 430 2021; 9 2015; 2 2015; 1 2022; 431 2021; 507 2021; 5 2021; 4 2021; 86 2018; 140 2021; 2 2022; 51 2017; 27 2015; 11 2022; 45 2022; 47 2020; 103 2022; 438 2022; 436 2014; 114 2022; 49 2021; 14 2021; 13 2022; 541 2021; 16 2021; 15 2021; 12 2021; 11 2022 2017; 11 2021; 17 2017; 12 2020; 69 2018; 52 2018; 51 2021; 297 1998; 32 2022; 305 2019; 253 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 Cao X. (e_1_2_8_41_1) 2022 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_27_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_207_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 Yu C. (e_1_2_8_97_1) 2021; 2021 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 32 start-page: 1 year: 1998 publication-title: Semiconductors – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 274 year: 2020 publication-title: Appl Catal B – volume: 18 year: 2022 publication-title: Small – volume: 20 start-page: 4278 year: 2020 publication-title: Nano Lett. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 43 start-page: 4341 year: 2014 publication-title: Chem. Soc. Rev. – volume: 569 start-page: 245 year: 2019 publication-title: Nature – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 1364 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 2469 year: 2020 publication-title: Nano Res. – volume: 44 start-page: 7 year: 2018 publication-title: Nano Energy – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 51 start-page: 2857 year: 2018 publication-title: Acc. Chem. Res. – volume: 51 start-page: 524 year: 2022 publication-title: Dalton Trans.. – volume: 363 start-page: 959 year: 2019 publication-title: Science – volume: 139 start-page: 7893 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 126 year: 2021 publication-title: Phy. Rev. Lett. – year: 2022 publication-title: Nano Res. – volume: 103 start-page: 2643 year: 2020 publication-title: J. Am. Ceram. Soc. – volume: 49 start-page: 1569 year: 2020 publication-title: Chem. Soc. Rev. – volume: 405 year: 2021 publication-title: Chem. Eng. J. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 49 start-page: 1414 year: 2020 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 153 year: 2022 publication-title: Energy Storage Mater. – volume: 45 start-page: 390 year: 2018 publication-title: Nano Energy – volume: 366 start-page: 850 year: 2019 publication-title: Science – volume: 26 start-page: 7386 year: 2016 publication-title: Adv. Funct. Mater. – volume: 305 year: 2022 publication-title: Appl. Catal., B – volume: 377 year: 2021 publication-title: Electrochim. Acta – volume: 15 start-page: 131 year: 2020 publication-title: Nat. Nanotechnol. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 33 start-page: 138 year: 2017 publication-title: Nano Energy – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 436 year: 2022 publication-title: Chem. Eng. J. – volume: 4 start-page: 948 year: 2021 publication-title: Batteries Supercaps – volume: 34 start-page: 311 year: 2021 publication-title: Energy Storage Mater. – volume: 441 year: 2022 publication-title: Chem. Eng. J. – volume: 12 start-page: 6259 year: 2020 publication-title: ChemCatChem – volume: 13 start-page: 5635 year: 2019 publication-title: ACS Nano – volume: 5 start-page: 115 year: 2022 publication-title: Energy Environ. Mater. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 21 start-page: 4469 year: 2021 publication-title: Nano Lett. – volume: 438 year: 2022 publication-title: Chem. Eng. J. – volume: 2 start-page: 381 year: 2011 publication-title: Nat. Commun. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 376 start-page: 517 year: 2022 publication-title: Science – volume: 30 start-page: 1055 year: 2018 publication-title: Chem. Mater. – volume: 69 year: 2020 publication-title: Nano Energy – volume: 3 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 20 start-page: 6199 year: 2020 publication-title: Nano Lett.. – volume: 45 year: 2022 publication-title: J. Energy Storage – volume: 14 start-page: 3075 year: 2021 publication-title: Energy Environ. Sci. – volume: 17 year: 2021 publication-title: Small – volume: 12 year: 2020 publication-title: Nanoscale – volume: 406 year: 2021 publication-title: Chem. Eng. J. – volume: 10 start-page: 5810 year: 2019 publication-title: Nat. Commun. – volume: 14 start-page: 8495 year: 2020 publication-title: ACS Nano – volume: 9 start-page: 4933 year: 2018 publication-title: Nat. Commun. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 4 year: 2019 publication-title: Nano‐Micro Lett. – volume: 9 start-page: 2068 year: 2022 publication-title: Inorg. Chem. Front. – volume: 5 start-page: 2759 year: 2017 publication-title: J. Mater. Chem. A – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 5 start-page: 2732 year: 2017 publication-title: J. Mater. Chem. A – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 52 start-page: 441 year: 2018 publication-title: Nano Energy – volume: 17 start-page: 181 year: 2018 publication-title: J. Energy Storage – volume: 151 year: 2021 publication-title: Renewable Sustainable Energy Rev. – volume: 93 year: 2016 publication-title: Phy. Rev. B – volume: 348 start-page: 1230 year: 2015 publication-title: Science – volume: 5 start-page: 891 year: 2020 publication-title: Nat. Energy – volume: 11 year: 2021 publication-title: ACS Catal. – volume: 8 start-page: 9926 year: 2018 publication-title: ACS Catal.. – volume: 10 start-page: 4855 year: 2019 publication-title: Nat. Commun. – volume: 41 start-page: 367 year: 2017 publication-title: Nano Energy – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 5 year: 2021 publication-title: Small Methods – volume: 37 start-page: 74 year: 2017 publication-title: Nano Energy – volume: 2 year: 2021 publication-title: Cell Rep. Phy. Sci. – volume: 47 start-page: 345 year: 2022 publication-title: Energy Storage Mater. – volume: 12 start-page: 4297 year: 2021 publication-title: Nat. Commun. – volume: 21 start-page: 2439 year: 2011 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 3694 year: 2015 publication-title: Small – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 2443 year: 2019 publication-title: Energy Environ. Sci. – volume: 422 year: 2021 publication-title: Chem. Eng. J. – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 13 start-page: 5639 year: 2022 publication-title: Chem. Sci. – volume: 11 start-page: 5462 year: 2020 publication-title: Nat. Commun. – volume: 26 start-page: 3943 year: 2020 publication-title: Chem. ‐ Eur. J. – volume: 17 start-page: 759 year: 2022 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 81 year: 2019 publication-title: Nano‐Micro Lett. – volume: 416 year: 2021 publication-title: Chem. Eng. J. – volume: 20 start-page: 1347 year: 2021 publication-title: Nat. Mater. – volume: 541 year: 2022 publication-title: J. Power Sources – volume: 5 start-page: 1704 year: 2021 publication-title: Joule – volume: 507 year: 2021 publication-title: J. Power Sources – volume: 5 start-page: 6648 year: 2021 publication-title: Mater. Chem. Front. – volume: 253 start-page: 246 year: 2019 publication-title: Appl. Catal., B – volume: 5 start-page: 212 year: 2022 publication-title: Nat. Catal. – volume: 2021 year: 2021 publication-title: Research – volume: 11 start-page: 1736 year: 2018 publication-title: Energy Environ. Sci. – volume: 5 start-page: 3041 year: 2020 publication-title: ACS Energy Lett. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 15 start-page: 118 year: 2020 publication-title: Nat. Nanotechnol. – volume: 16 year: 2020 publication-title: Small – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 6 year: 2022 publication-title: Adv. Sustainable Syst. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 13 start-page: 4911 year: 2020 publication-title: ChemSusChem – volume: 53 year: 2017 publication-title: Chem. Commun. – volume: 9 start-page: 31 year: 2017 publication-title: Nano‐Micro Lett. – volume: 8 start-page: 307 year: 2008 publication-title: Nano Lett.. – volume: 600 start-page: 659 year: 2021 publication-title: Nature – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 11 start-page: 5293 year: 2017 publication-title: ACS Nano – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 9 start-page: 2985 year: 2018 publication-title: J. Phy. Chem. Lett. – volume: 86 year: 2021 publication-title: Nano Energy – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 53 start-page: 2106 year: 2020 publication-title: Acc. Chem. Res. – volume: 425 year: 2021 publication-title: Chem. Eng. J. – volume: 46 start-page: 337 year: 2017 publication-title: Chem. Soc. Rev. – volume: 524 year: 2022 publication-title: J. Power Sources – volume: 7 start-page: 986 year: 2017 publication-title: ACS Catal. – volume: 417 year: 2021 publication-title: Chem. Eng. J. – volume: 12 start-page: 2367 year: 2017 publication-title: Nat. Protoc. – volume: 12 start-page: 991 year: 2020 publication-title: Nanoscale – volume: 16 start-page: 4130 year: 2021 publication-title: Chem. Asian J. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 48 start-page: 4950 year: 2019 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 5692 year: 2019 publication-title: Nat. Commun. – volume: 449 year: 2022 publication-title: Chem. Eng. J. – volume: 12 start-page: 2608 year: 2021 publication-title: Nat. Commun. – volume: 12 start-page: 344 year: 2019 publication-title: Energy Environ. Sci. – volume: 2 year: 2021 publication-title: Small Struct. – volume: 9 start-page: 2087 year: 2022 publication-title: Inorg. Chem. Front. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 426 year: 2021 publication-title: Chem. Eng. J. – volume: 350 year: 2022 publication-title: Sens. Actuators, B – volume: 377 start-page: 281 year: 2021 publication-title: Powder Technol. – volume: 297 year: 2021 publication-title: Appl. Catal., B – volume: 13 year: 2019 publication-title: ACS Nano – volume: 8 start-page: 8927 year: 2020 publication-title: J. Mater. Chem. A – volume: 12 year: 2018 publication-title: ACS Nano – volume: 15 year: 2019 publication-title: Small – volume: 12 start-page: 4738 year: 2021 publication-title: Nat. Commun. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 3 start-page: 643 year: 2020 publication-title: Electrochem. Energy Rev. – volume: 51 start-page: 812 year: 2022 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 112 year: 2020 publication-title: Nano‐Micro Lett. – volume: 7 start-page: 2437 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 13 start-page: 175 year: 2021 publication-title: Nano‐Micro Lett. – volume: 13 start-page: 4650 year: 2022 publication-title: Nat. Commun. – volume: 2 start-page: 880 year: 2010 publication-title: Nat. Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 310 start-page: 203 year: 2019 publication-title: Electrochim. Acta – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 5 start-page: 222 year: 2020 publication-title: Nat. Energy – volume: 592 start-page: 60 year: 2021 publication-title: Nature – volume: 14 start-page: 4849 year: 2020 publication-title: ACS Nano – volume: 121 start-page: 1463 year: 2021 publication-title: Chem. Rev. – volume: 123 start-page: 3353 year: 2019 publication-title: J. Phys. Chem. C – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 431 year: 2022 publication-title: Chem. Eng. J. – ident: e_1_2_8_122_1 doi: 10.1016/j.nanoen.2017.09.029 – ident: e_1_2_8_174_1 doi: 10.1016/j.cej.2022.135231 – ident: e_1_2_8_194_1 doi: 10.1016/j.cej.2020.126775 – ident: e_1_2_8_114_1 doi: 10.1016/j.cej.2021.134247 – ident: e_1_2_8_140_1 doi: 10.1038/s41467-021-22865-y – ident: e_1_2_8_42_1 doi: 10.1016/j.cej.2022.135532 – ident: e_1_2_8_46_1 doi: 10.1002/smtd.202100444 – ident: e_1_2_8_86_1 doi: 10.1016/j.apcatb.2021.120484 – ident: e_1_2_8_209_1 doi: 10.1002/aenm.202000091 – ident: e_1_2_8_30_1 doi: 10.1021/acs.nanolett.1c01258 – ident: e_1_2_8_141_1 doi: 10.1021/jacs.0c00257 – ident: e_1_2_8_113_1 doi: 10.1016/j.jpowsour.2022.231689 – year: 2022 ident: e_1_2_8_41_1 publication-title: Nano Res. – ident: e_1_2_8_102_1 doi: 10.1016/j.electacta.2019.04.134 – ident: e_1_2_8_130_1 doi: 10.1002/cctc.202001343 – ident: e_1_2_8_188_1 doi: 10.1002/advs.201500090 – ident: e_1_2_8_151_1 doi: 10.1039/D2SC01043G – ident: e_1_2_8_17_1 doi: 10.1002/adma.202106662 – ident: e_1_2_8_96_1 doi: 10.1039/C7CC06851D – ident: e_1_2_8_136_1 doi: 10.1039/D0TA02537B – ident: e_1_2_8_99_1 doi: 10.1039/D1DT03580K – ident: e_1_2_8_14_1 doi: 10.1021/jacs.8b09805 – ident: e_1_2_8_173_1 doi: 10.1039/D2TA00689H – ident: e_1_2_8_210_1 doi: 10.1002/adma.202005967 – ident: e_1_2_8_65_1 doi: 10.1021/acs.jpclett.8b01067 – ident: e_1_2_8_32_1 doi: 10.1002/aenm.202003314 – ident: e_1_2_8_179_1 doi: 10.1021/nl0727157 – ident: e_1_2_8_84_1 doi: 10.1111/jace.16962 – ident: e_1_2_8_195_1 doi: 10.1039/D1TA00284H – ident: e_1_2_8_169_1 doi: 10.1039/D2TA00782G – ident: e_1_2_8_139_1 doi: 10.1016/j.joule.2021.05.005 – ident: e_1_2_8_168_1 doi: 10.1002/batt.202100022 – ident: e_1_2_8_132_1 doi: 10.1016/j.apcatb.2020.119120 – ident: e_1_2_8_73_1 doi: 10.1021/acsnano.1c04715 – ident: e_1_2_8_21_1 doi: 10.1021/acs.nanolett.0c02595 – ident: e_1_2_8_129_1 doi: 10.1016/j.jpowsour.2021.230279 – ident: e_1_2_8_63_1 doi: 10.1021/acs.nanolett.0c00840 – ident: e_1_2_8_166_1 doi: 10.1002/asia.202101048 – ident: e_1_2_8_13_1 doi: 10.1016/j.nanoen.2019.104367 – ident: e_1_2_8_148_1 doi: 10.1002/aenm.202002215 – ident: e_1_2_8_98_1 doi: 10.1039/D0NR06225A – ident: e_1_2_8_119_1 doi: 10.1039/C9NR08812A – ident: e_1_2_8_101_1 doi: 10.1103/PhysRevLett.126.187601 – ident: e_1_2_8_163_1 doi: 10.1016/j.cej.2020.126928 – ident: e_1_2_8_47_1 doi: 10.1002/adfm.201806419 – ident: e_1_2_8_134_1 doi: 10.1016/j.nanoen.2017.05.011 – ident: e_1_2_8_50_1 doi: 10.1021/acs.accounts.8b00266 – ident: e_1_2_8_156_1 doi: 10.1016/j.nanoen.2018.08.013 – ident: e_1_2_8_180_1 doi: 10.1039/C4CS00071D – ident: e_1_2_8_52_1 doi: 10.1038/s41586-021-03354-0 – ident: e_1_2_8_3_1 doi: 10.1126/science.abm8962 – ident: e_1_2_8_64_1 doi: 10.1126/sciadv.1400215 – ident: e_1_2_8_66_1 doi: 10.1002/chem.201903206 – ident: e_1_2_8_92_1 doi: 10.1002/adma.202000801 – ident: e_1_2_8_62_1 doi: 10.1002/smll.201804371 – ident: e_1_2_8_172_1 doi: 10.1002/smll.202102565 – ident: e_1_2_8_71_1 doi: 10.1038/s41929-022-00753-y – ident: e_1_2_8_159_1 doi: 10.1002/adfm.201809004 – ident: e_1_2_8_20_1 doi: 10.1002/smll.202006374 – ident: e_1_2_8_124_1 doi: 10.1002/adma.201906972 – ident: e_1_2_8_182_1 doi: 10.1007/s41918-020-00082-3 – ident: e_1_2_8_155_1 doi: 10.1002/adfm.202004172 – ident: e_1_2_8_22_1 doi: 10.1002/aenm.202103511 – ident: e_1_2_8_125_1 doi: 10.1002/anie.202015738 – ident: e_1_2_8_181_1 doi: 10.1002/adma.201707430 – ident: e_1_2_8_31_1 doi: 10.1002/anie.202003651 – ident: e_1_2_8_189_1 doi: 10.1002/smll.202000040 – ident: e_1_2_8_213_1 doi: 10.1002/anie.202004914 – ident: e_1_2_8_193_1 doi: 10.1007/s40820-019-0312-y – ident: e_1_2_8_77_1 doi: 10.1016/j.cej.2021.130514 – ident: e_1_2_8_118_1 doi: 10.1021/acsami.0c03796 – ident: e_1_2_8_25_1 doi: 10.1038/nchem.771 – ident: e_1_2_8_187_1 doi: 10.1016/j.nanoen.2017.01.044 – ident: e_1_2_8_44_1 doi: 10.1002/aenm.202000081 – ident: e_1_2_8_109_1 doi: 10.1016/j.cej.2021.129500 – ident: e_1_2_8_40_1 doi: 10.1002/adma.202006711 – ident: e_1_2_8_137_1 doi: 10.1021/acssuschemeng.8b05315 – ident: e_1_2_8_157_1 doi: 10.1021/acsaem.0c02181 – ident: e_1_2_8_5_1 doi: 10.1126/science.aav4302 – ident: e_1_2_8_106_1 doi: 10.1016/j.cej.2022.136031 – ident: e_1_2_8_35_1 doi: 10.1016/j.cej.2021.133029 – ident: e_1_2_8_123_1 doi: 10.1002/smll.202005713 – ident: e_1_2_8_87_1 doi: 10.1002/cssc.202001229 – ident: e_1_2_8_120_1 doi: 10.1038/s41560-020-00710-8 – ident: e_1_2_8_57_1 doi: 10.1038/nprot.2017.097 – ident: e_1_2_8_150_1 doi: 10.1021/acscatal.1c03333 – ident: e_1_2_8_82_1 doi: 10.1039/C8TA08135B – ident: e_1_2_8_88_1 doi: 10.1002/adfm.202107056 – ident: e_1_2_8_37_1 doi: 10.1002/adma.202102562 – ident: e_1_2_8_2_1 doi: 10.1038/s41565-022-01121-4 – ident: e_1_2_8_94_1 doi: 10.1002/adfm.201602236 – ident: e_1_2_8_178_1 doi: 10.1038/s41586-019-1175-6 – ident: e_1_2_8_135_1 doi: 10.1039/D2QI00136E – ident: e_1_2_8_33_1 doi: 10.1007/s40820-021-00704-5 – ident: e_1_2_8_83_1 doi: 10.1007/s12274-020-2881-y – ident: e_1_2_8_48_1 doi: 10.1016/j.rser.2021.111640 – ident: e_1_2_8_202_1 doi: 10.1021/acs.jpcc.9b02625 – ident: e_1_2_8_28_1 doi: 10.1021/acsnano.8b06020 – ident: e_1_2_8_78_1 doi: 10.1039/D1QM00812A – ident: e_1_2_8_100_1 doi: 10.1021/acs.chemrev.0c00718 – ident: e_1_2_8_61_1 doi: 10.1126/science.aaa8765 – ident: e_1_2_8_145_1 doi: 10.1002/aenm.202002816 – ident: e_1_2_8_59_1 doi: 10.1002/anie.202017181 – ident: e_1_2_8_54_1 doi: 10.1039/C6TA07519C – ident: e_1_2_8_116_1 doi: 10.1039/D1TA02783B – ident: e_1_2_8_131_1 doi: 10.1039/D0CC05888B – ident: e_1_2_8_76_1 doi: 10.1039/D1TA05777D – ident: e_1_2_8_196_1 doi: 10.1016/j.ensm.2022.02.028 – ident: e_1_2_8_144_1 doi: 10.1021/jacs.0c05050 – ident: e_1_2_8_38_1 doi: 10.1002/smll.201905779 – ident: e_1_2_8_146_1 doi: 10.1002/smtd.202100679 – ident: e_1_2_8_160_1 doi: 10.1039/C6TA09849E – ident: e_1_2_8_176_1 doi: 10.1039/C7CS00863E – ident: e_1_2_8_103_1 doi: 10.1016/j.cej.2021.131253 – ident: e_1_2_8_164_1 doi: 10.1016/j.est.2018.03.006 – ident: e_1_2_8_68_1 doi: 10.1038/s41563-021-01011-5 – ident: e_1_2_8_80_1 doi: 10.1002/smll.201904245 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevB.93.195443 – ident: e_1_2_8_153_1 doi: 10.1038/s41467-021-24568-w – ident: e_1_2_8_60_1 doi: 10.1126/science.aaw7493 – ident: e_1_2_8_6_1 doi: 10.1039/D1CS00498K – ident: e_1_2_8_126_1 doi: 10.1039/C9CS00906J – ident: e_1_2_8_207_1 doi: 10.1021/acsnano.9b06267 – ident: e_1_2_8_55_1 doi: 10.1021/acscatal.8b01839 – ident: e_1_2_8_74_1 doi: 10.1016/j.cej.2022.137901 – ident: e_1_2_8_162_1 doi: 10.1021/acs.chemmater.7b04976 – ident: e_1_2_8_211_1 doi: 10.1038/s41467-021-24976-y – ident: e_1_2_8_29_1 doi: 10.1002/smll.201904740 – ident: e_1_2_8_23_1 doi: 10.1038/s41467-019-13712-2 – ident: e_1_2_8_183_1 doi: 10.1021/acs.jpcc.8b11044 – ident: e_1_2_8_91_1 doi: 10.1016/j.snb.2021.130876 – volume: 2021 year: 2021 ident: e_1_2_8_97_1 publication-title: Research – ident: e_1_2_8_72_1 doi: 10.1002/aenm.202100110 – ident: e_1_2_8_117_1 doi: 10.1002/aenm.201902714 – ident: e_1_2_8_90_1 doi: 10.1039/C6TA10728A – ident: e_1_2_8_208_1 doi: 10.1016/j.ensm.2022.04.004 – ident: e_1_2_8_53_1 doi: 10.1039/C9NR03266E – ident: e_1_2_8_152_1 doi: 10.1002/anie.202106631 – ident: e_1_2_8_112_1 doi: 10.1016/j.apcatb.2022.121088 – ident: e_1_2_8_104_1 doi: 10.1016/j.jpowsour.2022.231069 – ident: e_1_2_8_197_1 doi: 10.1002/adma.202106618 – ident: e_1_2_8_70_1 doi: 10.1038/s41467-019-13519-1 – ident: e_1_2_8_167_1 doi: 10.1002/adsu.202100414 – ident: e_1_2_8_115_1 doi: 10.1002/adma.201905744 – ident: e_1_2_8_175_1 doi: 10.1016/j.nanoen.2018.01.015 – ident: e_1_2_8_204_1 doi: 10.1021/acsnano.0c02762 – ident: e_1_2_8_165_1 doi: 10.1038/ncomms1387 – ident: e_1_2_8_192_1 doi: 10.1021/acsami.0c13161 – ident: e_1_2_8_34_1 doi: 10.1039/C8CS00832A – ident: e_1_2_8_81_1 doi: 10.1002/adma.201803234 – ident: e_1_2_8_9_1 doi: 10.1038/s41565-019-0602-z – ident: e_1_2_8_36_1 doi: 10.1002/aenm.202101712 – ident: e_1_2_8_107_1 doi: 10.1016/j.cej.2020.127927 – ident: e_1_2_8_51_1 doi: 10.1038/s41467-022-32419-5 – ident: e_1_2_8_93_1 doi: 10.1021/acsaem.0c01868 – ident: e_1_2_8_67_1 doi: 10.1002/sstr.202000096 – ident: e_1_2_8_190_1 doi: 10.1016/j.nanoen.2021.106139 – ident: e_1_2_8_184_1 doi: 10.1002/adfm.202205635 – ident: e_1_2_8_4_1 doi: 10.1038/s41467-020-19214-w – ident: e_1_2_8_7_1 doi: 10.1021/acs.chemrev.1c00234 – ident: e_1_2_8_26_1 doi: 10.1021/acscatal.6b02911 – ident: e_1_2_8_56_1 doi: 10.1021/acs.accounts.0c00487 – ident: e_1_2_8_170_1 doi: 10.1016/j.electacta.2021.138086 – ident: e_1_2_8_79_1 doi: 10.1002/smll.202106554 – ident: e_1_2_8_24_1 doi: 10.1021/acsnano.9b00816 – ident: e_1_2_8_177_1 doi: 10.1021/cr5003003 – ident: e_1_2_8_206_1 doi: 10.3847/1538-4357/ab322b – ident: e_1_2_8_69_1 doi: 10.1038/s41467-019-12859-2 – ident: e_1_2_8_133_1 doi: 10.1016/j.nanoen.2017.11.063 – ident: e_1_2_8_138_1 doi: 10.1039/C6CS00328A – ident: e_1_2_8_111_1 doi: 10.1002/advs.202201311 – ident: e_1_2_8_191_1 doi: 10.1002/aenm.201803612 – ident: e_1_2_8_58_1 doi: 10.1002/adfm.201700260 – ident: e_1_2_8_142_1 doi: 10.1038/s41560-020-0576-y – ident: e_1_2_8_95_1 doi: 10.1002/smll.201403772 – ident: e_1_2_8_161_1 doi: 10.1021/acsnano.7b02796 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.201100088 – ident: e_1_2_8_198_1 doi: 10.1021/acsenergylett.0c01564 – ident: e_1_2_8_89_1 doi: 10.1002/adma.202201114 – ident: e_1_2_8_75_1 doi: 10.1002/smll.201805435 – ident: e_1_2_8_85_1 doi: 10.1016/j.cej.2021.130048 – ident: e_1_2_8_154_1 doi: 10.1039/D0EE04066E – ident: e_1_2_8_8_1 doi: 10.1134/1.1187350 – ident: e_1_2_8_18_1 doi: 10.1002/eem2.12184 – ident: e_1_2_8_110_1 doi: 10.1021/acsaem.8b00076 – ident: e_1_2_8_45_1 doi: 10.1002/adma.202000482 – ident: e_1_2_8_121_1 doi: 10.1021/acsnano.1c01024 – ident: e_1_2_8_200_1 doi: 10.1002/aenm.201802213 – ident: e_1_2_8_11_1 doi: 10.1038/s41565-019-0603-y – ident: e_1_2_8_39_1 doi: 10.1039/C8EE00611C – ident: e_1_2_8_12_1 doi: 10.1016/j.apcatb.2019.04.067 – ident: e_1_2_8_158_1 doi: 10.1007/s40820-017-0134-8 – ident: e_1_2_8_199_1 doi: 10.1007/s40820-020-00449-7 – ident: e_1_2_8_205_1 doi: 10.1039/C8EE03252A – ident: e_1_2_8_108_1 doi: 10.1016/j.est.2021.103765 – ident: e_1_2_8_143_1 doi: 10.1002/adma.202004243 – ident: e_1_2_8_212_1 doi: 10.1002/aenm.201800709 – ident: e_1_2_8_214_1 doi: 10.1021/acsnano.0c00799 – ident: e_1_2_8_15_1 doi: 10.1002/adma.202000607 – ident: e_1_2_8_105_1 doi: 10.1039/D2QI00003B – ident: e_1_2_8_171_1 doi: 10.1021/acsaem.0c02487 – ident: e_1_2_8_10_1 doi: 10.1002/adma.202100855 – ident: e_1_2_8_127_1 doi: 10.1002/aenm.201902703 – ident: e_1_2_8_128_1 doi: 10.1002/smll.202000924 – ident: e_1_2_8_203_1 doi: 10.1002/aenm.202003689 – ident: e_1_2_8_1_1 doi: 10.1038/s41586-021-04168-w – ident: e_1_2_8_16_1 doi: 10.1038/s41467-018-07419-z – ident: e_1_2_8_27_1 doi: 10.1021/jacs.7b02378 – ident: e_1_2_8_186_1 doi: 10.1016/j.powtec.2020.09.001 – ident: e_1_2_8_147_1 doi: 10.1021/acsami.0c08969 – ident: e_1_2_8_201_1 doi: 10.1002/advs.201903168 – ident: e_1_2_8_185_1 doi: 10.1016/j.ensm.2020.10.002 – ident: e_1_2_8_49_1 doi: 10.1016/j.xcrp.2021.100443 – ident: e_1_2_8_149_1 doi: 10.1039/C9EE00950G |
SSID | ssj0031247 |
Score | 2.6317933 |
SecondaryResourceType | review_article |
Snippet | Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2206081 |
SubjectTerms | amorphous‐crystalline heterostructures Clean energy Electrocatalysts Electrochemical analysis Energy conversion energy conversion and storage Energy storage heterointerfaces Heterostructures Hydrogen evolution reactions Lithium sulfur batteries Lithium-ion batteries Nanotechnology Oxygen evolution reactions synergistic effect |
Title | Research Advances in Amorphous‐Crystalline Heterostructures Toward Efficient Electrochemical Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202206081 https://www.ncbi.nlm.nih.gov/pubmed/36526597 https://www.proquest.com/docview/2785181457 https://www.proquest.com/docview/2755575034 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT7xADG-MJz349_3HV8bExBMK84DluDFrNkY9-Ei8kZlZSIzKGnEPevIj-Bn9JLYM4K7GmOgNQoGZaUtb2vkVYEejXdBSEQJAonzJTeJjGDTwjeJSDGQS6ZD2Dp-cRv1LeXSlrsZ28Tt8iPaHG2lG9b0mBdem3P8ADS3vbil1wHkQBdXeayrYIq_orMWPEmi8qu4qaLN8At5qUBsDvj95-6RV-uJqTnqulek5_Ae6GbSrOLnZGz2aPfv8Cc_xL7Oah7naL2VdJ0gLMJUVizA7hla4BDdNlR7rusKBkl0XrHs3RFYNR-Xby-vBwxM6m4TynbE-1dkMHTztCGN6dlEV6LJehVmBpo71XAceW0MWsO5YLn0ZLg97Fwd9v-7V4FsRi9DHKCUWJgk16niubJTIjrTCxILHGDOhH2ltkOXEeiTJOyaONTcqyENpbBaHuViB6WJYZP-BUeVcPuAU-VmpOzpBO67C3BB2vsAHeOA3vEptDWRO_TRuUwfBzFNaxLRdRA92W_p7B-HxLeVGw_q0VuUyxQkodINQnj3Ybi-jElJmRRcZLjDSKKUoIyw9WHUi074KpZJHGLZ5wCvG_zCG9Pzk-Lg9W_vNTeswg8fCVcptwDRyOttE1-nRbFXq8Q4cVxDw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYQHIAD78d4BgmJU6HNo12PExoasHGAIXGrmqyVENAhxg5w4ifwG_kl2E1bGAghwbGt0yZxXNux8xlgN0a9EEtFCAChciTXoYNuUM_RikvRk6Efe3R2uHPmty7lyZUqswnpLIzFh6g23Egy8v81CThtSB98oIYO7m4pdsC567t0-HqCynrnXtV5hSAlUH3l9VVQazkEvVXiNrr8YLT9qF76ZmyO2q658jmaBV122-ac3OwPH_W-ef6C6Pivcc3BTGGasoZdS_MwlmQLMP0JsHARbspEPdawuQMDdp2xxl0fudUfDt5eXg8fntDeJKDvhLUo1aZvEWqH6Nazbp6jy5o5bAVqO9a0RXhMgVrAGp_C6UtwedTsHracolyDY0QgPAcdlUDo0ItRzFNl_FDWpRE6EDxAtwlNSWPcJCXuI0la10EQc63c1JPaJIGXimUYz_pZsgqMkufSHifnz8i4HoeoypWXaoLPF_iCGjglsyJTYJlTSY3byKIw84gmMaomsQZ7Ff29RfH4kXKj5H1USPMgwgEotIRwSddgp3qMckjBlThLcIKRRilFQWFZgxW7ZqpPCZ-KEITYmuec_6UP0UWn3a6u1v7SaBsmW91OO2ofn52uwxTeFzZxbgPGkevJJlpSj3orl5V3ITsVCw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB4hkFB7gEL5CaVlkZB6Mtj7Y8fHKCQKEBCiIHGzdje2hAAHkeQApz5Cn5EnYcZru0mrComeLNuz9u7OjmfGM_sNwJ5GvaClIgSAWHmSm9hDN2jgGcWlGMg41AHtHT49C3tX8vhaXU_t4nf4EPUPN5KM4ntNAv4wyA5-g4aO7u8odMC5H_q093pB4pHW9eFFDSAlUHsV5VVQaXmEvFXBNvr8YLb9rFr6y9acNV0L3dNdBl312qWc3O5PxmbfPv8B6Pg_w_oES6VhylpuJa3AXJqvwscpuMLPcFul6bGWyxwYsZucte6HyKvhZPTy81f78QmtTYL5TlmPEm2GDp92gk49uywydFmnAK1AXcc6rgSPLTELWGsqmL4GV93OZbvnlcUaPCsiEXjopkTCxIFGIc-UDWPZlFaYSPAInSY0JK3104x4jyRZ00SR5kb5WSCNTaMgE-swnw_zdBMYpc5lA06un5W6qWNU5CrIDIHnC3xAA7yKV4ktkcypoMZd4jCYeUKTmNST2IDvNf2Dw_D4J-V2xfqklOVRggNQaAfhgm7Abn0bpZBCKzpPcYKRRilFIWHZgA23ZOpXiZBKEMTYmheMf6MPyY_Tfr8-23pPox1YPD_sJv2js5Mv8AEvC5c1tw3zyPT0K5pRY_OtkJRX69QTww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Advances+in+Amorphous-Crystalline+Heterostructures+Toward+Efficient+Electrochemical+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Jin%2C+Yachao&rft.au=Zhang%2C+Mengxian&rft.au=Song%2C+Li&rft.au=Zhang%2C+Mingdao&rft.date=2023-03-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=19&rft.issue=10&rft.spage=e2206081&rft_id=info:doi/10.1002%2Fsmll.202206081&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |