Dual‐Intermetallic Heterostructure on Hierarchical Nanoporous Metal for Highly Efficient Alkaline Hydrogen Electrocatalysis
Constructing well‐defined active multisites is an effective strategy to break linear scaling relationships to develop high‐efficiency catalysts toward multiple‐intermediate reactions. Here, dual‐intermetallic heterostructure composed of tungsten‐bridged Co3W and WNi4 intermetallic compounds seamless...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 38; pp. e2406711 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Constructing well‐defined active multisites is an effective strategy to break linear scaling relationships to develop high‐efficiency catalysts toward multiple‐intermediate reactions. Here, dual‐intermetallic heterostructure composed of tungsten‐bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high‐performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column‐nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel‐supported Co3W–WNi4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm−2) and hydrogen evolution reaction (current density of ≈1.45 A cm−2 at overpotential of 200 mV). Such atom‐ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide‐exchange‐membrane water electrolyzers and fuel cells.
Dual‐intermetallic heterostructure composed of tungsten‐bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on nanoporous Ni skeleton exhibits exceptional activities and durability for hydrogen evolution and oxidation reactions. Such dual‐intermetallic heterostructure enables interfacial atoms to configure multisites to accelerate water dissociation/combination, demonstrating the feasibility to construct well‐defined active multisites for multiple‐intermediate reactions based on intermetallic compounds. |
---|---|
AbstractList | Constructing well‐defined active multisites is an effective strategy to break linear scaling relationships to develop high‐efficiency catalysts toward multiple‐intermediate reactions. Here, dual‐intermetallic heterostructure composed of tungsten‐bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high‐performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column‐nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel‐supported Co3W–WNi4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm−2) and hydrogen evolution reaction (current density of ≈1.45 A cm−2 at overpotential of 200 mV). Such atom‐ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide‐exchange‐membrane water electrolyzers and fuel cells. Constructing well-defined active multisites is an effective strategy to break linear scaling relationships to develop high-efficiency catalysts toward multiple-intermediate reactions. Here, dual-intermetallic heterostructure composed of tungsten-bridged Co W and WNi intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high-performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column-nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel-supported Co W-WNi heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm ) and hydrogen evolution reaction (current density of ≈1.45 A cm at overpotential of 200 mV). Such atom-ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide-exchange-membrane water electrolyzers and fuel cells. Constructing well-defined active multisites is an effective strategy to break linear scaling relationships to develop high-efficiency catalysts toward multiple-intermediate reactions. Here, dual-intermetallic heterostructure composed of tungsten-bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high-performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column-nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel-supported Co3W-WNi4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm-2) and hydrogen evolution reaction (current density of ≈1.45 A cm-2 at overpotential of 200 mV). Such atom-ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide-exchange-membrane water electrolyzers and fuel cells.Constructing well-defined active multisites is an effective strategy to break linear scaling relationships to develop high-efficiency catalysts toward multiple-intermediate reactions. Here, dual-intermetallic heterostructure composed of tungsten-bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high-performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column-nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel-supported Co3W-WNi4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm-2) and hydrogen evolution reaction (current density of ≈1.45 A cm-2 at overpotential of 200 mV). Such atom-ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide-exchange-membrane water electrolyzers and fuel cells. Constructing well‐defined active multisites is an effective strategy to break linear scaling relationships to develop high‐efficiency catalysts toward multiple‐intermediate reactions. Here, dual‐intermetallic heterostructure composed of tungsten‐bridged Co 3 W and WNi 4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high‐performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column‐nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel‐supported Co 3 W–WNi 4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm −2 ) and hydrogen evolution reaction (current density of ≈1.45 A cm −2 at overpotential of 200 mV). Such atom‐ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide‐exchange‐membrane water electrolyzers and fuel cells. Constructing well‐defined active multisites is an effective strategy to break linear scaling relationships to develop high‐efficiency catalysts toward multiple‐intermediate reactions. Here, dual‐intermetallic heterostructure composed of tungsten‐bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high‐performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column‐nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel‐supported Co3W–WNi4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm−2) and hydrogen evolution reaction (current density of ≈1.45 A cm−2 at overpotential of 200 mV). Such atom‐ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide‐exchange‐membrane water electrolyzers and fuel cells. Dual‐intermetallic heterostructure composed of tungsten‐bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on nanoporous Ni skeleton exhibits exceptional activities and durability for hydrogen evolution and oxidation reactions. Such dual‐intermetallic heterostructure enables interfacial atoms to configure multisites to accelerate water dissociation/combination, demonstrating the feasibility to construct well‐defined active multisites for multiple‐intermediate reactions based on intermetallic compounds. |
Author | Wang, Tong‐Hui Fang, Qian‐Rong Han, Gao‐Feng Lang, Xing‐You Dai, Tian‐Yi Shi, Hang Sun, Xin‐Ying Wen, Zi Jiang, Qing Zeng, Shu‐Pei Zhou, Zhi‐Lan |
Author_xml | – sequence: 1 givenname: Hang surname: Shi fullname: Shi, Hang organization: Jilin University – sequence: 2 givenname: Tian‐Yi surname: Dai fullname: Dai, Tian‐Yi organization: Jilin University – sequence: 3 givenname: Xin‐Ying surname: Sun fullname: Sun, Xin‐Ying organization: Jilin University – sequence: 4 givenname: Zhi‐Lan surname: Zhou fullname: Zhou, Zhi‐Lan organization: Jilin University – sequence: 5 givenname: Shu‐Pei surname: Zeng fullname: Zeng, Shu‐Pei organization: Jilin University – sequence: 6 givenname: Tong‐Hui surname: Wang fullname: Wang, Tong‐Hui organization: Jilin University – sequence: 7 givenname: Gao‐Feng surname: Han fullname: Han, Gao‐Feng organization: Jilin University – sequence: 8 givenname: Zi surname: Wen fullname: Wen, Zi organization: Jilin University – sequence: 9 givenname: Qian‐Rong surname: Fang fullname: Fang, Qian‐Rong organization: Jilin University – sequence: 10 givenname: Xing‐You orcidid: 0000-0002-8227-9695 surname: Lang fullname: Lang, Xing‐You email: xylang@jlu.edu.cn organization: Jilin University – sequence: 11 givenname: Qing surname: Jiang fullname: Jiang, Qing email: jiangq@jlu.edu.cn organization: Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39046064$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvFCEYhompsdvq1aMh8eJlVhhgZue4abduk1YveiYM89FSGViBiZmDiT-hv9FfIpttNWliPH2QPM8XeN8TdOSDB4ReU7KkhNTv1TCqZU1qTpqW0mdoQUVNK046cYQWpGOi6hq-OkYnKd0RQrqGNC_QMesILye-QD_OJ-V-_by_9BniCFk5ZzXeQrmFlOOk8xQBB4-3FqKK-tZq5fBH5cMuxDAlfL13sAmxEDe3bsYbY6y24DNeu6_KWQ94Ow8x3IDHGwc6x6BVceZk00v03CiX4NXDPEVfLjafz7bV1acPl2frq0qzltGq7VkvhroxfS8MhaHRbScoGKEEJYr2AsAopQVrh7Zd9TU0Ddd9azhblUEoO0XvDnt3MXybIGU52qTBOeWhfEIysuKkXjW8LujbJ-hdmKIvr5OM0pqLEup-4ZsHaupHGOQu2lHFWT4GWwB-AHTJMUUwUtussg0-R2WdpETu-5P7_uSf_oq2fKI9bv6n0B2E79bB_B9ars-v13_d32CUsGU |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_216427 crossref_primary_10_1002_aenm_202404077 crossref_primary_10_3390_catal15030278 crossref_primary_10_1021_acs_iecr_4c04079 crossref_primary_10_1016_j_ijhydene_2024_09_436 crossref_primary_10_1039_D4CS00484A crossref_primary_10_1002_advs_202413569 crossref_primary_10_1007_s12209_025_00426_4 crossref_primary_10_1016_j_ijhydene_2025_01_054 crossref_primary_10_1016_j_esci_2025_100400 crossref_primary_10_1002_smll_202412473 crossref_primary_10_3390_inorganics12090241 crossref_primary_10_1002_adfm_202413826 |
Cites_doi | 10.1073/pnas.0810041106 10.1038/s41467-021-26256-1 10.1002/adma.201906915 10.1002/adma.202310769 10.1039/C9EE01743G 10.1002/adma.201907879 10.1038/s41467-018-06728-7 10.1002/adma.201805876 10.1126/science.1211934 10.1038/s41570-016-0003 10.1038/nnano.2016.265 10.1038/nmat4834 10.1002/adma.202208821 10.1038/ncomms15437 10.1039/D3EE02695G 10.1002/adma.202000231 10.1016/j.intermet.2009.05.009 10.1002/adfm.202106156 10.1021/acs.chemrev.1c00331 10.1126/science.aad4998 10.1038/s41467-020-16769-6 10.1039/D2EE00790H 10.1016/j.chempr.2020.07.022 10.1002/anie.201902751 10.1038/s41560-019-0326-1 10.1039/C3EE43899F 10.1021/acscatal.2c03264 10.1039/D0CS01079K 10.1002/adma.202007100 10.1021/acscatal.8b04566 10.1039/D3EE00142C 10.1021/acs.chemrev.9b00157 10.1038/s41563-022-01221-5 10.1038/s41467-021-22996-2 10.1038/s41560-019-0407-1 10.1038/s41929-019-0376-6 10.1038/s41467-020-18585-4 10.1002/adfm.202214412 10.1002/adma.202307867 10.1039/D0EE03635H 10.1021/jacs.2c01094 10.1002/adma.202300502 10.1038/nmat4738 10.1038/s41929-023-01007-1 10.1038/s41563-020-0788-3 10.1039/D0CS00575D 10.1039/D2CS00038E 10.1002/anie.202319618 10.1002/adma.202308899 10.1002/adma.201605997 10.1021/acsenergylett.1c02769 10.1038/s41586-021-03482-7 10.1002/adma.202106781 10.1126/science.aaz1487 10.1002/anie.202100011 10.1021/acs.chemrev.1c00854 10.1038/s41929-024-01126-3 10.1002/adma.202303030 10.1039/D1SC01901E 10.1021/acs.accounts.3c00071 10.1038/s41467-024-45654-9 10.1039/C4EE01303D 10.1002/adma.202108505 10.1021/acs.chemrev.3c00382 10.1021/jacs.3c02487 10.1038/s41929-023-01017-z 10.1002/adma.201808066 10.1038/s41467-024-45369-x 10.1002/adma.202105400 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202406711 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 39046064 10_1002_adma_202406711 ADMA202406711 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Program for JLU Science and Technology Innovative Research Team funderid: 2017TD‐09 – fundername: China Postdoctoral Science Foundation funderid: 2022M711290 – fundername: Chang Jiang Scholar Program of China funderid: Q2016064 – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: 52271217; 52201217; 52130101 – fundername: China Postdoctoral Support Program for Innovation Talents funderid: BX20220129 – fundername: Program for JLU Science and Technology Innovative Research Team grantid: 2017TD-09 – fundername: Chang Jiang Scholar Program of China grantid: Q2016064 – fundername: China Postdoctoral Support Program for Innovation Talents grantid: BX20220129 – fundername: China Postdoctoral Science Foundation grantid: 2022M711290 – fundername: National Natural Science Foundation of China grantid: 52201217 – fundername: National Natural Science Foundation of China grantid: 52130101 – fundername: National Natural Science Foundation of China grantid: 52271217 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3731-7b3b5d26fbb5f1ed6c7951ef5a510a1b5eefaac537d778b2e664cb7f438cb7013 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 19:11:47 EDT 2025 Sat Jul 26 01:06:47 EDT 2025 Wed Feb 19 02:14:28 EST 2025 Tue Jul 01 00:54:53 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Wed Jan 22 17:16:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | intermetallic heterostructure nanoporous metal hydrogen oxidation reaction multisite electrocatalysts hydrogen evolution reaction |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-7b3b5d26fbb5f1ed6c7951ef5a510a1b5eefaac537d778b2e664cb7f438cb7013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8227-9695 |
PMID | 39046064 |
PQID | 3112450931 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3084028642 proquest_journals_3112450931 pubmed_primary_39046064 crossref_citationtrail_10_1002_adma_202406711 crossref_primary_10_1002_adma_202406711 wiley_primary_10_1002_adma_202406711_ADMA202406711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2017; 1 2023; 35 2023; 33 2023; 6 2019; 12 2023; 145 2019; 58 2020; 369 2008; 105 2022; 21 2020; 11 2024; 36 2017; 355 2020; 19 2022; 122 2018; 9 2020; 6 2021; 31 2021; 33 2024; 7 2022; 34 2020; 49 2024; 63 2019; 119 2021; 595 2014; 7 2009; 17 2023; 51 2011; 334 2019; 9 2019; 4 2023; 56 2019; 31 2019; 2 2022; 51 2023; 16 2023; 123 2017; 29 2020; 32 2024; 15 2016; 11 2021; 14 2022; 144 2021; 12 2017; 16 2022; 7 2022; 12 2022; 15 2021; 60 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 11 start-page: 1020 year: 2016 publication-title: Nat. Nanotechnol. – volume: 369 start-page: 1099 year: 2020 publication-title: Science – volume: 4 start-page: 216 year: 2019 publication-title: Nat. Energy – volume: 15 start-page: 2288 year: 2022 publication-title: Energy Environ. Sci. – volume: 1 start-page: 0003 year: 2017 publication-title: Nat. Rev. Chem. – volume: 51 start-page: 9620 year: 2022 publication-title: Chem. Soc. Rev. – volume: 595 start-page: 361 year: 2021 publication-title: Nature – volume: 14 start-page: 1722 year: 2021 publication-title: Energy Environ. Sci. – volume: 2 start-page: 971 year: 2019 publication-title: Nat. Catal. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 2974 year: 2020 publication-title: Chem – volume: 7 start-page: 1719 year: 2014 publication-title: Energy Environ. Sci. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 430 year: 2019 publication-title: Nat. Energy – volume: 122 start-page: 6117 year: 2022 publication-title: Chem. Rev. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 123 year: 2023 publication-title: Chem. Rev. – volume: 9 start-page: 4531 year: 2018 publication-title: Nat. Commun. – volume: 12 start-page: 8603 year: 2021 publication-title: Chem. Sci. – volume: 105 year: 2008 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 916 year: 2023 publication-title: Nat. Catal. – volume: 16 start-page: 16 year: 2017 publication-title: Nat. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1330 year: 2022 publication-title: ACS Energy Lett. – volume: 119 year: 2019 publication-title: Chem. Rev. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 11 start-page: 4789 year: 2020 publication-title: Nat. Commun. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 51 start-page: 4583 year: 2022 publication-title: Chem. Soc. Rev. – volume: 16 start-page: 57 year: 2017 publication-title: Nat. Mater. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2022 publication-title: ACS Catal. – volume: 16 start-page: 1384 year: 2023 publication-title: Energy Environ. Sci. – volume: 58 start-page: 7445 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 9154 year: 2020 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 5960 year: 2021 publication-title: Nat. Commun. – volume: 355 start-page: 6321 year: 2017 publication-title: Science – volume: 19 start-page: 1140 year: 2020 publication-title: Nat. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 17 start-page: 1085 year: 2009 publication-title: Intermetallics – volume: 334 start-page: 1256 year: 2011 publication-title: Science – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 15 start-page: 1447 year: 2024 publication-title: Nat. Commun. – volume: 15 start-page: 1097 year: 2024 publication-title: Nat. Commun. – volume: 144 start-page: 6028 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 11 start-page: 2940 year: 2020 publication-title: Nat. Commun. – volume: 6 start-page: 773 year: 2023 publication-title: Nat. Catal. – volume: 9 year: 2019 publication-title: ACS Catal. – volume: 56 start-page: 1445 year: 2023 publication-title: Acc. Chem. Res. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 51 start-page: 4926 year: 2023 publication-title: Energy Environ. Sci. – volume: 122 year: 2022 publication-title: Chem. Rev. – volume: 12 start-page: 2686 year: 2021 publication-title: Nat. Commun. – volume: 21 start-page: 804 year: 2022 publication-title: Nat. Mater. – volume: 7 start-page: 3135 year: 2014 publication-title: Energy Environ. Sci. – volume: 12 start-page: 3522 year: 2019 publication-title: Energy Environ. Sci. – volume: 7 start-page: 441 year: 2024 publication-title: Nat. Catal. – ident: e_1_2_8_9_1 doi: 10.1073/pnas.0810041106 – ident: e_1_2_8_37_1 doi: 10.1038/s41467-021-26256-1 – ident: e_1_2_8_40_1 doi: 10.1002/adma.201906915 – ident: e_1_2_8_42_1 doi: 10.1002/adma.202310769 – ident: e_1_2_8_35_1 doi: 10.1039/C9EE01743G – ident: e_1_2_8_41_1 doi: 10.1002/adma.201907879 – ident: e_1_2_8_55_1 doi: 10.1038/s41467-018-06728-7 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201805876 – ident: e_1_2_8_30_1 doi: 10.1126/science.1211934 – ident: e_1_2_8_21_1 doi: 10.1038/s41570-016-0003 – ident: e_1_2_8_6_1 doi: 10.1038/nnano.2016.265 – ident: e_1_2_8_2_1 doi: 10.1038/nmat4834 – ident: e_1_2_8_28_1 doi: 10.1002/adma.202208821 – ident: e_1_2_8_38_1 doi: 10.1038/ncomms15437 – ident: e_1_2_8_4_1 doi: 10.1039/D3EE02695G – ident: e_1_2_8_36_1 doi: 10.1002/adma.202000231 – ident: e_1_2_8_50_1 doi: 10.1016/j.intermet.2009.05.009 – ident: e_1_2_8_59_1 doi: 10.1002/adfm.202106156 – ident: e_1_2_8_8_1 doi: 10.1021/acs.chemrev.1c00331 – ident: e_1_2_8_24_1 doi: 10.1126/science.aad4998 – ident: e_1_2_8_52_1 doi: 10.1038/s41467-020-16769-6 – ident: e_1_2_8_14_1 doi: 10.1039/D2EE00790H – ident: e_1_2_8_63_1 doi: 10.1016/j.chempr.2020.07.022 – ident: e_1_2_8_61_1 doi: 10.1002/anie.201902751 – ident: e_1_2_8_1_1 doi: 10.1038/s41560-019-0326-1 – ident: e_1_2_8_34_1 doi: 10.1039/C3EE43899F – ident: e_1_2_8_60_1 doi: 10.1021/acscatal.2c03264 – ident: e_1_2_8_7_1 doi: 10.1039/D0CS01079K – ident: e_1_2_8_19_1 doi: 10.1002/adma.202007100 – ident: e_1_2_8_48_1 doi: 10.1021/acscatal.8b04566 – ident: e_1_2_8_44_1 doi: 10.1039/D3EE00142C – ident: e_1_2_8_10_1 doi: 10.1021/acs.chemrev.9b00157 – ident: e_1_2_8_25_1 doi: 10.1038/s41563-022-01221-5 – ident: e_1_2_8_33_1 doi: 10.1038/s41467-021-22996-2 – ident: e_1_2_8_31_1 doi: 10.1038/s41560-019-0407-1 – ident: e_1_2_8_23_1 doi: 10.1038/s41929-019-0376-6 – ident: e_1_2_8_51_1 doi: 10.1038/s41467-020-18585-4 – ident: e_1_2_8_49_1 doi: 10.1002/adfm.202214412 – ident: e_1_2_8_53_1 doi: 10.1002/adma.202307867 – ident: e_1_2_8_22_1 doi: 10.1039/D0EE03635H – ident: e_1_2_8_67_1 doi: 10.1021/jacs.2c01094 – ident: e_1_2_8_54_1 doi: 10.1002/adma.202300502 – ident: e_1_2_8_3_1 doi: 10.1038/nmat4738 – ident: e_1_2_8_26_1 doi: 10.1038/s41929-023-01007-1 – ident: e_1_2_8_5_1 doi: 10.1038/s41563-020-0788-3 – ident: e_1_2_8_20_1 doi: 10.1039/D0CS00575D – ident: e_1_2_8_16_1 doi: 10.1039/D2CS00038E – ident: e_1_2_8_57_1 doi: 10.1002/anie.202319618 – ident: e_1_2_8_69_1 doi: 10.1002/adma.202308899 – ident: e_1_2_8_47_1 doi: 10.1002/adma.201605997 – ident: e_1_2_8_64_1 doi: 10.1021/acsenergylett.1c02769 – ident: e_1_2_8_13_1 doi: 10.1038/s41586-021-03482-7 – ident: e_1_2_8_62_1 doi: 10.1002/adma.202106781 – ident: e_1_2_8_18_1 doi: 10.1126/science.aaz1487 – ident: e_1_2_8_65_1 doi: 10.1002/anie.202100011 – ident: e_1_2_8_12_1 doi: 10.1021/acs.chemrev.1c00854 – ident: e_1_2_8_29_1 doi: 10.1038/s41929-024-01126-3 – ident: e_1_2_8_43_1 doi: 10.1002/adma.202303030 – ident: e_1_2_8_46_1 doi: 10.1039/D1SC01901E – ident: e_1_2_8_32_1 doi: 10.1021/acs.accounts.3c00071 – ident: e_1_2_8_68_1 doi: 10.1038/s41467-024-45654-9 – ident: e_1_2_8_15_1 doi: 10.1039/C4EE01303D – ident: e_1_2_8_39_1 doi: 10.1002/adma.202108505 – ident: e_1_2_8_45_1 doi: 10.1021/acs.chemrev.3c00382 – ident: e_1_2_8_56_1 doi: 10.1021/jacs.3c02487 – ident: e_1_2_8_58_1 doi: 10.1038/s41929-023-01017-z – ident: e_1_2_8_11_1 doi: 10.1002/adma.201808066 – ident: e_1_2_8_66_1 doi: 10.1038/s41467-024-45369-x – ident: e_1_2_8_27_1 doi: 10.1002/adma.202105400 |
SSID | ssj0009606 |
Score | 2.5684354 |
Snippet | Constructing well‐defined active multisites is an effective strategy to break linear scaling relationships to develop high‐efficiency catalysts toward... Constructing well-defined active multisites is an effective strategy to break linear scaling relationships to develop high-efficiency catalysts toward... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2406711 |
SubjectTerms | Current density Electrocatalysis Electrocatalysts Electrolytic cells Fuel cells Heterostructures Hydrogen hydrogen evolution reaction Hydrogen evolution reactions hydrogen oxidation reaction Hydrogen production Intermetallic compounds intermetallic heterostructure multisite electrocatalysts nanoporous metal Nickel Oxidation Platinum metals Tungsten |
Title | Dual‐Intermetallic Heterostructure on Hierarchical Nanoporous Metal for Highly Efficient Alkaline Hydrogen Electrocatalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202406711 https://www.ncbi.nlm.nih.gov/pubmed/39046064 https://www.proquest.com/docview/3112450931 https://www.proquest.com/docview/3084028642 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYhp_SQNunftmlQodCTkpUlW_ZxSTaYQHoIDeRm9Ashrh2y2UMKhT5Cn7FPkhlp18m2lEBzso0kPJZnNJ-k0TeEfPKY-USUkik9dkw6WTHtA2eWu4IHETJjY7TFl6I-k8fn-fmDU_yJH2JYcEPLiOM1Grg2s_170lDtIm8QeiQVD_diwBaiotN7_iiE55FsT-SsKmS5ZG0cZ_urzVe90l9QcxW5Rtdz9JzopdAp4uRyb35j9uz3P_gcn_JVL8jmApfSSVKkLbLmu23y7AFb4Uvy43Cu298_f8VFxG8eUHt7YWmN8TR9oqGdX3vad7S-wFPNMclKS2H47gHj9_MZPcE2FFAyxeiS9pZOI38FuD06aS81Ck_rW3fdg1LTacrPE5eXkDXlFTk7mn49qNkiewOzQgnOlBEmd1kRjMkD966wCtCcD7mGYUBzk3sftLa5UE6p0mS-KKQ1KkhRwgWQ6Wuy3vWdf0toxSU3mbA8OCGFDmXlHDLtBT32SHYzImz59xq7oDbHDBttk0iZswa7tRm6dUQ-D_WvEqnHP2vuLJWhWRj3rBGAUSUALQHFH4diMEvca9Gdhx5txBhmzlkJs7sReZOUaHiVqHA3GsXOoio8IkMzOTyZDE_v_qfRe7KB9yk2boesg074DwCmbsxuNJg7MVQYjw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctVA7AgfdjoYCRkDilXcdOnBxX7FYBuj2gVuJm-SlVDQlqu4ciIfER-Ix8EmbsTcqCEBKcojysOM6M_Y8z_g0hLz1mPuGVyKSeukw4UWfaB5ZZ5koWeMiNjdEWB2VzJN5-KIZoQlwLk_gQ44Qbekbsr9HBcUJ695Iaql0EB-GQJHF171VM6434_Pn7S4IUCvSI2-NFVpeiGriN03x3s_zmuPSb2NzUrnHw2btFzFDtFHNysrM6Nzv28y9Ex_96rtvk5lqa0lmypTvkiu_ukhs_AQvvkS_zlW6_f_0W5xE_ehDu7bGlDYbU9IlEuzr1tO9oc4wLm2OelZZCD96DzO9XZ3SJZSgIZYoBJu0FXUSEBYx8dNaeaKw9bS7caQ92TRcpRU-cYUJwyn1ytLc4fN1k6wQOmeWSs0wabgqXl8GYIjDvSitB0PlQaOgJNDOF90FrW3DppKxM7stSWCOD4BVsQJw-IFtd3_lHhNZMMJNzy4LjgutQ1c4hbC_oqUfezYRkw-tTdk03xyQbrUpc5lxhs6qxWSfk1Xj9p8T1-OOV24M1qLV_nykOMlWA1uJw-sV4GjwTf7fozkOLKj6Fj-e8gg-8CXmYrGi8Fa_xhzRWO4-28Jc6qNl8ORv3Hv9LoefkWnO43Ff7bw7ePSHX8XgKldsmW2Af_iloq3PzLHrPD6xxHKs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlgdIe-n5sm7YqFHpSYlvy67h0d3EfCaU0kJvQE0JcOyTZQwKB_IT8xvySzki7TralFNqTsSXhsTyj-SSNviHkncPMJ7wSrFSJZcKKminnU2ZSW6Se-0ybEG2xUzS74tNevnfjFH_khxgW3NAywniNBn5o_dY1aaiygTcIPVKJh3vXRZHUmLxh8u2aQArxeWDb4zmrC1EtaRuTbGu1_apb-g1rrkLX4Htm94laSh1DTg425yd605z9Quj4P5_1gNxbAFM6jpr0kNxy3SNy9wZd4WNyPpmr9uriMqwi_nAA29t9QxsMqOkjD-38yNG-o80-HmsOWVZaCuN3DyC_nx_TbWxDASZTDC9pT-k0EFiA36Pj9kCh8LQ5tUc9aDWdxgQ9YX0JaVOekN3Z9PuHhi3SNzDDS56yUnOd26zwWuc-dbYwJcA553MF44BKde6cV8rkvLRlWenMFYUwuvSCV3ABaPqUrHV9554TWqci1Rk3qbdccOWr2lqk2vMqcch2MyJs-fekWXCbY4qNVkZW5kxit8qhW0fk_VD_MLJ6_LHmxlIZ5MK6jyUHkCoAaXEofjsUg13iZovqHPSo5AlMnbMKpncj8iwq0fAqXuN2NIqdBVX4iwxyPNkeD3cv_qXRG3L762Qmv3zc-fyS3MHHMU5ug6yBerhXAKxO9OtgOz8BP-8bWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Intermetallic+Heterostructure+on+Hierarchical+Nanoporous+Metal+for+Highly+Efficient+Alkaline+Hydrogen+Electrocatalysis&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Hang&rft.au=Dai%2C+Tian-Yi&rft.au=Sun%2C+Xin-Ying&rft.au=Zhou%2C+Zhi-Lan&rft.date=2024-09-01&rft.eissn=1521-4095&rft.volume=36&rft.issue=38&rft.spage=e2406711&rft_id=info:doi/10.1002%2Fadma.202406711&rft_id=info%3Apmid%2F39046064&rft.externalDocID=39046064 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |