Dual‐Intermetallic Heterostructure on Hierarchical Nanoporous Metal for Highly Efficient Alkaline Hydrogen Electrocatalysis

Constructing well‐defined active multisites is an effective strategy to break linear scaling relationships to develop high‐efficiency catalysts toward multiple‐intermediate reactions. Here, dual‐intermetallic heterostructure composed of tungsten‐bridged Co3W and WNi4 intermetallic compounds seamless...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 38; pp. e2406711 - n/a
Main Authors Shi, Hang, Dai, Tian‐Yi, Sun, Xin‐Ying, Zhou, Zhi‐Lan, Zeng, Shu‐Pei, Wang, Tong‐Hui, Han, Gao‐Feng, Wen, Zi, Fang, Qian‐Rong, Lang, Xing‐You, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Constructing well‐defined active multisites is an effective strategy to break linear scaling relationships to develop high‐efficiency catalysts toward multiple‐intermediate reactions. Here, dual‐intermetallic heterostructure composed of tungsten‐bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high‐performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column‐nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel‐supported Co3W–WNi4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm−2) and hydrogen evolution reaction (current density of ≈1.45 A cm−2 at overpotential of 200 mV). Such atom‐ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide‐exchange‐membrane water electrolyzers and fuel cells. Dual‐intermetallic heterostructure composed of tungsten‐bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on nanoporous Ni skeleton exhibits exceptional activities and durability for hydrogen evolution and oxidation reactions. Such dual‐intermetallic heterostructure enables interfacial atoms to configure multisites to accelerate water dissociation/combination, demonstrating the feasibility to construct well‐defined active multisites for multiple‐intermediate reactions based on intermetallic compounds.
AbstractList Constructing well‐defined active multisites is an effective strategy to break linear scaling relationships to develop high‐efficiency catalysts toward multiple‐intermediate reactions. Here, dual‐intermetallic heterostructure composed of tungsten‐bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high‐performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column‐nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel‐supported Co3W–WNi4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm−2) and hydrogen evolution reaction (current density of ≈1.45 A cm−2 at overpotential of 200 mV). Such atom‐ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide‐exchange‐membrane water electrolyzers and fuel cells.
Constructing well-defined active multisites is an effective strategy to break linear scaling relationships to develop high-efficiency catalysts toward multiple-intermediate reactions. Here, dual-intermetallic heterostructure composed of tungsten-bridged Co W and WNi intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high-performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column-nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel-supported Co W-WNi heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm ) and hydrogen evolution reaction (current density of ≈1.45 A cm at overpotential of 200 mV). Such atom-ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide-exchange-membrane water electrolyzers and fuel cells.
Constructing well-defined active multisites is an effective strategy to break linear scaling relationships to develop high-efficiency catalysts toward multiple-intermediate reactions. Here, dual-intermetallic heterostructure composed of tungsten-bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high-performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column-nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel-supported Co3W-WNi4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm-2) and hydrogen evolution reaction (current density of ≈1.45 A cm-2 at overpotential of 200 mV). Such atom-ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide-exchange-membrane water electrolyzers and fuel cells.Constructing well-defined active multisites is an effective strategy to break linear scaling relationships to develop high-efficiency catalysts toward multiple-intermediate reactions. Here, dual-intermetallic heterostructure composed of tungsten-bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high-performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column-nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel-supported Co3W-WNi4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm-2) and hydrogen evolution reaction (current density of ≈1.45 A cm-2 at overpotential of 200 mV). Such atom-ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide-exchange-membrane water electrolyzers and fuel cells.
Constructing well‐defined active multisites is an effective strategy to break linear scaling relationships to develop high‐efficiency catalysts toward multiple‐intermediate reactions. Here, dual‐intermetallic heterostructure composed of tungsten‐bridged Co 3 W and WNi 4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high‐performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column‐nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel‐supported Co 3 W–WNi 4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm −2 ) and hydrogen evolution reaction (current density of ≈1.45 A cm −2 at overpotential of 200 mV). Such atom‐ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide‐exchange‐membrane water electrolyzers and fuel cells.
Constructing well‐defined active multisites is an effective strategy to break linear scaling relationships to develop high‐efficiency catalysts toward multiple‐intermediate reactions. Here, dual‐intermetallic heterostructure composed of tungsten‐bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on hierarchical nanoporous nickel skeleton is reported as a high‐performance nonprecious electrocatalyst for alkaline hydrogen evolution and oxidation reactions. By virtue of interfacial tungsten atoms configuring contiguous multisites with proper adsorptions of hydrogen and hydroxyl intermediates to accelerate water dissociation/combination and column‐nanostructured nickel skeleton facilitating electron and ion/molecule transportations, nanoporous nickel‐supported Co3W–WNi4 heterostructure exhibits exceptional hydrogen electrocatalysis in alkaline media, with outstanding durability and impressive catalytic activities for hydrogen oxidation reaction (geometric exchange current density of ≈6.62 mA cm−2) and hydrogen evolution reaction (current density of ≈1.45 A cm−2 at overpotential of 200 mV). Such atom‐ordered intermetallic heterostructure alternative to platinum group metals shows genuine potential for hydrogen production and utilization in hydroxide‐exchange‐membrane water electrolyzers and fuel cells. Dual‐intermetallic heterostructure composed of tungsten‐bridged Co3W and WNi4 intermetallic compounds seamlessly integrated on nanoporous Ni skeleton exhibits exceptional activities and durability for hydrogen evolution and oxidation reactions. Such dual‐intermetallic heterostructure enables interfacial atoms to configure multisites to accelerate water dissociation/combination, demonstrating the feasibility to construct well‐defined active multisites for multiple‐intermediate reactions based on intermetallic compounds.
Author Wang, Tong‐Hui
Fang, Qian‐Rong
Han, Gao‐Feng
Lang, Xing‐You
Dai, Tian‐Yi
Shi, Hang
Sun, Xin‐Ying
Wen, Zi
Jiang, Qing
Zeng, Shu‐Pei
Zhou, Zhi‐Lan
Author_xml – sequence: 1
  givenname: Hang
  surname: Shi
  fullname: Shi, Hang
  organization: Jilin University
– sequence: 2
  givenname: Tian‐Yi
  surname: Dai
  fullname: Dai, Tian‐Yi
  organization: Jilin University
– sequence: 3
  givenname: Xin‐Ying
  surname: Sun
  fullname: Sun, Xin‐Ying
  organization: Jilin University
– sequence: 4
  givenname: Zhi‐Lan
  surname: Zhou
  fullname: Zhou, Zhi‐Lan
  organization: Jilin University
– sequence: 5
  givenname: Shu‐Pei
  surname: Zeng
  fullname: Zeng, Shu‐Pei
  organization: Jilin University
– sequence: 6
  givenname: Tong‐Hui
  surname: Wang
  fullname: Wang, Tong‐Hui
  organization: Jilin University
– sequence: 7
  givenname: Gao‐Feng
  surname: Han
  fullname: Han, Gao‐Feng
  organization: Jilin University
– sequence: 8
  givenname: Zi
  surname: Wen
  fullname: Wen, Zi
  organization: Jilin University
– sequence: 9
  givenname: Qian‐Rong
  surname: Fang
  fullname: Fang, Qian‐Rong
  organization: Jilin University
– sequence: 10
  givenname: Xing‐You
  orcidid: 0000-0002-8227-9695
  surname: Lang
  fullname: Lang, Xing‐You
  email: xylang@jlu.edu.cn
  organization: Jilin University
– sequence: 11
  givenname: Qing
  surname: Jiang
  fullname: Jiang, Qing
  email: jiangq@jlu.edu.cn
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39046064$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFCEYhompsdvq1aMh8eJlVhhgZue4abduk1YveiYM89FSGViBiZmDiT-hv9FfIpttNWliPH2QPM8XeN8TdOSDB4ReU7KkhNTv1TCqZU1qTpqW0mdoQUVNK046cYQWpGOi6hq-OkYnKd0RQrqGNC_QMesILye-QD_OJ-V-_by_9BniCFk5ZzXeQrmFlOOk8xQBB4-3FqKK-tZq5fBH5cMuxDAlfL13sAmxEDe3bsYbY6y24DNeu6_KWQ94Ow8x3IDHGwc6x6BVceZk00v03CiX4NXDPEVfLjafz7bV1acPl2frq0qzltGq7VkvhroxfS8MhaHRbScoGKEEJYr2AsAopQVrh7Zd9TU0Ddd9azhblUEoO0XvDnt3MXybIGU52qTBOeWhfEIysuKkXjW8LujbJ-hdmKIvr5OM0pqLEup-4ZsHaupHGOQu2lHFWT4GWwB-AHTJMUUwUtussg0-R2WdpETu-5P7_uSf_oq2fKI9bv6n0B2E79bB_B9ars-v13_d32CUsGU
CitedBy_id crossref_primary_10_1016_j_ccr_2024_216427
crossref_primary_10_1002_aenm_202404077
crossref_primary_10_3390_catal15030278
crossref_primary_10_1021_acs_iecr_4c04079
crossref_primary_10_1016_j_ijhydene_2024_09_436
crossref_primary_10_1039_D4CS00484A
crossref_primary_10_1002_advs_202413569
crossref_primary_10_1007_s12209_025_00426_4
crossref_primary_10_1016_j_ijhydene_2025_01_054
crossref_primary_10_1016_j_esci_2025_100400
crossref_primary_10_1002_smll_202412473
crossref_primary_10_3390_inorganics12090241
crossref_primary_10_1002_adfm_202413826
Cites_doi 10.1073/pnas.0810041106
10.1038/s41467-021-26256-1
10.1002/adma.201906915
10.1002/adma.202310769
10.1039/C9EE01743G
10.1002/adma.201907879
10.1038/s41467-018-06728-7
10.1002/adma.201805876
10.1126/science.1211934
10.1038/s41570-016-0003
10.1038/nnano.2016.265
10.1038/nmat4834
10.1002/adma.202208821
10.1038/ncomms15437
10.1039/D3EE02695G
10.1002/adma.202000231
10.1016/j.intermet.2009.05.009
10.1002/adfm.202106156
10.1021/acs.chemrev.1c00331
10.1126/science.aad4998
10.1038/s41467-020-16769-6
10.1039/D2EE00790H
10.1016/j.chempr.2020.07.022
10.1002/anie.201902751
10.1038/s41560-019-0326-1
10.1039/C3EE43899F
10.1021/acscatal.2c03264
10.1039/D0CS01079K
10.1002/adma.202007100
10.1021/acscatal.8b04566
10.1039/D3EE00142C
10.1021/acs.chemrev.9b00157
10.1038/s41563-022-01221-5
10.1038/s41467-021-22996-2
10.1038/s41560-019-0407-1
10.1038/s41929-019-0376-6
10.1038/s41467-020-18585-4
10.1002/adfm.202214412
10.1002/adma.202307867
10.1039/D0EE03635H
10.1021/jacs.2c01094
10.1002/adma.202300502
10.1038/nmat4738
10.1038/s41929-023-01007-1
10.1038/s41563-020-0788-3
10.1039/D0CS00575D
10.1039/D2CS00038E
10.1002/anie.202319618
10.1002/adma.202308899
10.1002/adma.201605997
10.1021/acsenergylett.1c02769
10.1038/s41586-021-03482-7
10.1002/adma.202106781
10.1126/science.aaz1487
10.1002/anie.202100011
10.1021/acs.chemrev.1c00854
10.1038/s41929-024-01126-3
10.1002/adma.202303030
10.1039/D1SC01901E
10.1021/acs.accounts.3c00071
10.1038/s41467-024-45654-9
10.1039/C4EE01303D
10.1002/adma.202108505
10.1021/acs.chemrev.3c00382
10.1021/jacs.3c02487
10.1038/s41929-023-01017-z
10.1002/adma.201808066
10.1038/s41467-024-45369-x
10.1002/adma.202105400
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202406711
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 39046064
10_1002_adma_202406711
ADMA202406711
Genre article
Journal Article
GrantInformation_xml – fundername: Program for JLU Science and Technology Innovative Research Team
  funderid: 2017TD‐09
– fundername: China Postdoctoral Science Foundation
  funderid: 2022M711290
– fundername: Chang Jiang Scholar Program of China
  funderid: Q2016064
– fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 52271217; 52201217; 52130101
– fundername: China Postdoctoral Support Program for Innovation Talents
  funderid: BX20220129
– fundername: Program for JLU Science and Technology Innovative Research Team
  grantid: 2017TD-09
– fundername: Chang Jiang Scholar Program of China
  grantid: Q2016064
– fundername: China Postdoctoral Support Program for Innovation Talents
  grantid: BX20220129
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M711290
– fundername: National Natural Science Foundation of China
  grantid: 52201217
– fundername: National Natural Science Foundation of China
  grantid: 52130101
– fundername: National Natural Science Foundation of China
  grantid: 52271217
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3731-7b3b5d26fbb5f1ed6c7951ef5a510a1b5eefaac537d778b2e664cb7f438cb7013
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 19:11:47 EDT 2025
Sat Jul 26 01:06:47 EDT 2025
Wed Feb 19 02:14:28 EST 2025
Tue Jul 01 00:54:53 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Wed Jan 22 17:16:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords intermetallic heterostructure
nanoporous metal
hydrogen oxidation reaction
multisite electrocatalysts
hydrogen evolution reaction
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-7b3b5d26fbb5f1ed6c7951ef5a510a1b5eefaac537d778b2e664cb7f438cb7013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8227-9695
PMID 39046064
PQID 3112450931
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_3084028642
proquest_journals_3112450931
pubmed_primary_39046064
crossref_citationtrail_10_1002_adma_202406711
crossref_primary_10_1002_adma_202406711
wiley_primary_10_1002_adma_202406711_ADMA202406711
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2017; 1
2023; 35
2023; 33
2023; 6
2019; 12
2023; 145
2019; 58
2020; 369
2008; 105
2022; 21
2020; 11
2024; 36
2017; 355
2020; 19
2022; 122
2018; 9
2020; 6
2021; 31
2021; 33
2024; 7
2022; 34
2020; 49
2024; 63
2019; 119
2021; 595
2014; 7
2009; 17
2023; 51
2011; 334
2019; 9
2019; 4
2023; 56
2019; 31
2019; 2
2022; 51
2023; 16
2023; 123
2017; 29
2020; 32
2024; 15
2016; 11
2021; 14
2022; 144
2021; 12
2017; 16
2022; 7
2022; 12
2022; 15
2021; 60
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 11
  start-page: 1020
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 369
  start-page: 1099
  year: 2020
  publication-title: Science
– volume: 4
  start-page: 216
  year: 2019
  publication-title: Nat. Energy
– volume: 15
  start-page: 2288
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 0003
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 51
  start-page: 9620
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 595
  start-page: 361
  year: 2021
  publication-title: Nature
– volume: 14
  start-page: 1722
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 971
  year: 2019
  publication-title: Nat. Catal.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 2974
  year: 2020
  publication-title: Chem
– volume: 7
  start-page: 1719
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 430
  year: 2019
  publication-title: Nat. Energy
– volume: 122
  start-page: 6117
  year: 2022
  publication-title: Chem. Rev.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 123
  year: 2023
  publication-title: Chem. Rev.
– volume: 9
  start-page: 4531
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  start-page: 8603
  year: 2021
  publication-title: Chem. Sci.
– volume: 105
  year: 2008
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 916
  year: 2023
  publication-title: Nat. Catal.
– volume: 16
  start-page: 16
  year: 2017
  publication-title: Nat. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1330
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 119
  year: 2019
  publication-title: Chem. Rev.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  start-page: 4789
  year: 2020
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 51
  start-page: 4583
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 57
  year: 2017
  publication-title: Nat. Mater.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2022
  publication-title: ACS Catal.
– volume: 16
  start-page: 1384
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 58
  start-page: 7445
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 9154
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 5960
  year: 2021
  publication-title: Nat. Commun.
– volume: 355
  start-page: 6321
  year: 2017
  publication-title: Science
– volume: 19
  start-page: 1140
  year: 2020
  publication-title: Nat. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 17
  start-page: 1085
  year: 2009
  publication-title: Intermetallics
– volume: 334
  start-page: 1256
  year: 2011
  publication-title: Science
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 15
  start-page: 1447
  year: 2024
  publication-title: Nat. Commun.
– volume: 15
  start-page: 1097
  year: 2024
  publication-title: Nat. Commun.
– volume: 144
  start-page: 6028
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2940
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  start-page: 773
  year: 2023
  publication-title: Nat. Catal.
– volume: 9
  year: 2019
  publication-title: ACS Catal.
– volume: 56
  start-page: 1445
  year: 2023
  publication-title: Acc. Chem. Res.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 4926
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 122
  year: 2022
  publication-title: Chem. Rev.
– volume: 12
  start-page: 2686
  year: 2021
  publication-title: Nat. Commun.
– volume: 21
  start-page: 804
  year: 2022
  publication-title: Nat. Mater.
– volume: 7
  start-page: 3135
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 3522
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 441
  year: 2024
  publication-title: Nat. Catal.
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.0810041106
– ident: e_1_2_8_37_1
  doi: 10.1038/s41467-021-26256-1
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201906915
– ident: e_1_2_8_42_1
  doi: 10.1002/adma.202310769
– ident: e_1_2_8_35_1
  doi: 10.1039/C9EE01743G
– ident: e_1_2_8_41_1
  doi: 10.1002/adma.201907879
– ident: e_1_2_8_55_1
  doi: 10.1038/s41467-018-06728-7
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201805876
– ident: e_1_2_8_30_1
  doi: 10.1126/science.1211934
– ident: e_1_2_8_21_1
  doi: 10.1038/s41570-016-0003
– ident: e_1_2_8_6_1
  doi: 10.1038/nnano.2016.265
– ident: e_1_2_8_2_1
  doi: 10.1038/nmat4834
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.202208821
– ident: e_1_2_8_38_1
  doi: 10.1038/ncomms15437
– ident: e_1_2_8_4_1
  doi: 10.1039/D3EE02695G
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.202000231
– ident: e_1_2_8_50_1
  doi: 10.1016/j.intermet.2009.05.009
– ident: e_1_2_8_59_1
  doi: 10.1002/adfm.202106156
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.chemrev.1c00331
– ident: e_1_2_8_24_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_8_52_1
  doi: 10.1038/s41467-020-16769-6
– ident: e_1_2_8_14_1
  doi: 10.1039/D2EE00790H
– ident: e_1_2_8_63_1
  doi: 10.1016/j.chempr.2020.07.022
– ident: e_1_2_8_61_1
  doi: 10.1002/anie.201902751
– ident: e_1_2_8_1_1
  doi: 10.1038/s41560-019-0326-1
– ident: e_1_2_8_34_1
  doi: 10.1039/C3EE43899F
– ident: e_1_2_8_60_1
  doi: 10.1021/acscatal.2c03264
– ident: e_1_2_8_7_1
  doi: 10.1039/D0CS01079K
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.202007100
– ident: e_1_2_8_48_1
  doi: 10.1021/acscatal.8b04566
– ident: e_1_2_8_44_1
  doi: 10.1039/D3EE00142C
– ident: e_1_2_8_10_1
  doi: 10.1021/acs.chemrev.9b00157
– ident: e_1_2_8_25_1
  doi: 10.1038/s41563-022-01221-5
– ident: e_1_2_8_33_1
  doi: 10.1038/s41467-021-22996-2
– ident: e_1_2_8_31_1
  doi: 10.1038/s41560-019-0407-1
– ident: e_1_2_8_23_1
  doi: 10.1038/s41929-019-0376-6
– ident: e_1_2_8_51_1
  doi: 10.1038/s41467-020-18585-4
– ident: e_1_2_8_49_1
  doi: 10.1002/adfm.202214412
– ident: e_1_2_8_53_1
  doi: 10.1002/adma.202307867
– ident: e_1_2_8_22_1
  doi: 10.1039/D0EE03635H
– ident: e_1_2_8_67_1
  doi: 10.1021/jacs.2c01094
– ident: e_1_2_8_54_1
  doi: 10.1002/adma.202300502
– ident: e_1_2_8_3_1
  doi: 10.1038/nmat4738
– ident: e_1_2_8_26_1
  doi: 10.1038/s41929-023-01007-1
– ident: e_1_2_8_5_1
  doi: 10.1038/s41563-020-0788-3
– ident: e_1_2_8_20_1
  doi: 10.1039/D0CS00575D
– ident: e_1_2_8_16_1
  doi: 10.1039/D2CS00038E
– ident: e_1_2_8_57_1
  doi: 10.1002/anie.202319618
– ident: e_1_2_8_69_1
  doi: 10.1002/adma.202308899
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201605997
– ident: e_1_2_8_64_1
  doi: 10.1021/acsenergylett.1c02769
– ident: e_1_2_8_13_1
  doi: 10.1038/s41586-021-03482-7
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.202106781
– ident: e_1_2_8_18_1
  doi: 10.1126/science.aaz1487
– ident: e_1_2_8_65_1
  doi: 10.1002/anie.202100011
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.chemrev.1c00854
– ident: e_1_2_8_29_1
  doi: 10.1038/s41929-024-01126-3
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.202303030
– ident: e_1_2_8_46_1
  doi: 10.1039/D1SC01901E
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.accounts.3c00071
– ident: e_1_2_8_68_1
  doi: 10.1038/s41467-024-45654-9
– ident: e_1_2_8_15_1
  doi: 10.1039/C4EE01303D
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.202108505
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.chemrev.3c00382
– ident: e_1_2_8_56_1
  doi: 10.1021/jacs.3c02487
– ident: e_1_2_8_58_1
  doi: 10.1038/s41929-023-01017-z
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201808066
– ident: e_1_2_8_66_1
  doi: 10.1038/s41467-024-45369-x
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.202105400
SSID ssj0009606
Score 2.5684354
Snippet Constructing well‐defined active multisites is an effective strategy to break linear scaling relationships to develop high‐efficiency catalysts toward...
Constructing well-defined active multisites is an effective strategy to break linear scaling relationships to develop high-efficiency catalysts toward...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2406711
SubjectTerms Current density
Electrocatalysis
Electrocatalysts
Electrolytic cells
Fuel cells
Heterostructures
Hydrogen
hydrogen evolution reaction
Hydrogen evolution reactions
hydrogen oxidation reaction
Hydrogen production
Intermetallic compounds
intermetallic heterostructure
multisite electrocatalysts
nanoporous metal
Nickel
Oxidation
Platinum metals
Tungsten
Title Dual‐Intermetallic Heterostructure on Hierarchical Nanoporous Metal for Highly Efficient Alkaline Hydrogen Electrocatalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202406711
https://www.ncbi.nlm.nih.gov/pubmed/39046064
https://www.proquest.com/docview/3112450931
https://www.proquest.com/docview/3084028642
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYhp_SQNunftmlQodCTkpUlW_ZxSTaYQHoIDeRm9Ashrh2y2UMKhT5Cn7FPkhlp18m2lEBzso0kPJZnNJ-k0TeEfPKY-USUkik9dkw6WTHtA2eWu4IHETJjY7TFl6I-k8fn-fmDU_yJH2JYcEPLiOM1Grg2s_170lDtIm8QeiQVD_diwBaiotN7_iiE55FsT-SsKmS5ZG0cZ_urzVe90l9QcxW5Rtdz9JzopdAp4uRyb35j9uz3P_gcn_JVL8jmApfSSVKkLbLmu23y7AFb4Uvy43Cu298_f8VFxG8eUHt7YWmN8TR9oqGdX3vad7S-wFPNMclKS2H47gHj9_MZPcE2FFAyxeiS9pZOI38FuD06aS81Ck_rW3fdg1LTacrPE5eXkDXlFTk7mn49qNkiewOzQgnOlBEmd1kRjMkD966wCtCcD7mGYUBzk3sftLa5UE6p0mS-KKQ1KkhRwgWQ6Wuy3vWdf0toxSU3mbA8OCGFDmXlHDLtBT32SHYzImz59xq7oDbHDBttk0iZswa7tRm6dUQ-D_WvEqnHP2vuLJWhWRj3rBGAUSUALQHFH4diMEvca9Gdhx5txBhmzlkJs7sReZOUaHiVqHA3GsXOoio8IkMzOTyZDE_v_qfRe7KB9yk2boesg074DwCmbsxuNJg7MVQYjw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctVA7AgfdjoYCRkDilXcdOnBxX7FYBuj2gVuJm-SlVDQlqu4ciIfER-Ix8EmbsTcqCEBKcojysOM6M_Y8z_g0hLz1mPuGVyKSeukw4UWfaB5ZZ5koWeMiNjdEWB2VzJN5-KIZoQlwLk_gQ44Qbekbsr9HBcUJ695Iaql0EB-GQJHF171VM6434_Pn7S4IUCvSI2-NFVpeiGriN03x3s_zmuPSb2NzUrnHw2btFzFDtFHNysrM6Nzv28y9Ex_96rtvk5lqa0lmypTvkiu_ukhs_AQvvkS_zlW6_f_0W5xE_ehDu7bGlDYbU9IlEuzr1tO9oc4wLm2OelZZCD96DzO9XZ3SJZSgIZYoBJu0FXUSEBYx8dNaeaKw9bS7caQ92TRcpRU-cYUJwyn1ytLc4fN1k6wQOmeWSs0wabgqXl8GYIjDvSitB0PlQaOgJNDOF90FrW3DppKxM7stSWCOD4BVsQJw-IFtd3_lHhNZMMJNzy4LjgutQ1c4hbC_oqUfezYRkw-tTdk03xyQbrUpc5lxhs6qxWSfk1Xj9p8T1-OOV24M1qLV_nykOMlWA1uJw-sV4GjwTf7fozkOLKj6Fj-e8gg-8CXmYrGi8Fa_xhzRWO4-28Jc6qNl8ORv3Hv9LoefkWnO43Ff7bw7ePSHX8XgKldsmW2Af_iloq3PzLHrPD6xxHKs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlgdIe-n5sm7YqFHpSYlvy67h0d3EfCaU0kJvQE0JcOyTZQwKB_IT8xvySzki7TralFNqTsSXhsTyj-SSNviHkncPMJ7wSrFSJZcKKminnU2ZSW6Se-0ybEG2xUzS74tNevnfjFH_khxgW3NAywniNBn5o_dY1aaiygTcIPVKJh3vXRZHUmLxh8u2aQArxeWDb4zmrC1EtaRuTbGu1_apb-g1rrkLX4Htm94laSh1DTg425yd605z9Quj4P5_1gNxbAFM6jpr0kNxy3SNy9wZd4WNyPpmr9uriMqwi_nAA29t9QxsMqOkjD-38yNG-o80-HmsOWVZaCuN3DyC_nx_TbWxDASZTDC9pT-k0EFiA36Pj9kCh8LQ5tUc9aDWdxgQ9YX0JaVOekN3Z9PuHhi3SNzDDS56yUnOd26zwWuc-dbYwJcA553MF44BKde6cV8rkvLRlWenMFYUwuvSCV3ABaPqUrHV9554TWqci1Rk3qbdccOWr2lqk2vMqcch2MyJs-fekWXCbY4qNVkZW5kxit8qhW0fk_VD_MLJ6_LHmxlIZ5MK6jyUHkCoAaXEofjsUg13iZovqHPSo5AlMnbMKpncj8iwq0fAqXuN2NIqdBVX4iwxyPNkeD3cv_qXRG3L762Qmv3zc-fyS3MHHMU5ug6yBerhXAKxO9OtgOz8BP-8bWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Intermetallic+Heterostructure+on+Hierarchical+Nanoporous+Metal+for+Highly+Efficient+Alkaline+Hydrogen+Electrocatalysis&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Hang&rft.au=Dai%2C+Tian-Yi&rft.au=Sun%2C+Xin-Ying&rft.au=Zhou%2C+Zhi-Lan&rft.date=2024-09-01&rft.eissn=1521-4095&rft.volume=36&rft.issue=38&rft.spage=e2406711&rft_id=info:doi/10.1002%2Fadma.202406711&rft_id=info%3Apmid%2F39046064&rft.externalDocID=39046064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon