Cyclic Trinickel(II) Clusters in a Metal‐Azolate Framework for Efficient Overall Water Splitting

Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni3(μ3‐O)(BTPP)(OH)(H2O)2] (Ni‐BTPP, H3BTPP=1,3,5‐tris((1H‐pyrazol‐4‐yl)phenylene)benzene), achieved a current density of 50 mA cm−2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%...

Full description

Saved in:
Bibliographic Details
Published inChemistry, an Asian journal Vol. 18; no. 15; pp. e202300281 - n/a
Main Authors Liu, Yan‐Chen, Huang, Jia‐Run, Zhao, Zhen‐Hua, Liao, Pei‐Qin, Chen, Xiao‐Ming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2023
Subjects
Online AccessGet full text
ISSN1861-4728
1861-471X
1861-471X
DOI10.1002/asia.202300281

Cover

Loading…
Abstract Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni3(μ3‐O)(BTPP)(OH)(H2O)2] (Ni‐BTPP, H3BTPP=1,3,5‐tris((1H‐pyrazol‐4‐yl)phenylene)benzene), achieved a current density of 50 mA cm−2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO2@NF is just 35.8 mA cm−2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm−2. Theoretical calculations revealed that the μ3‐O atom in the cyclic trinickel(II) cluster serves as hydrogen‐bonding acceptor to facilitate the dissociation of a H2O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H2O dissociation compared with Pt/C; meanwhile, the μ3‐O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low‐energy coupling pathway, thus Ni‐BTPP achieves a high performance for overall water splitting. A cyclic trinickel(II) cluster‐based metal‐azolate framework is reported as a high‐performance bifunctional catalyst for overall water splitting.
AbstractList Herein, a stable metal-azolate framework with cyclic trinickel(II) clusters, namely [Ni (μ -O)(BTPP)(OH)(H O) ] (Ni-BTPP, H BTPP=1,3,5-tris((1H-pyrazol-4-yl)phenylene)benzene), achieved a current density of 50 mA cm at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO @NF is just 35.8 mA cm at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm . Theoretical calculations revealed that the μ -O atom in the cyclic trinickel(II) cluster serves as hydrogen-bonding acceptor to facilitate the dissociation of a H O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H O dissociation compared with Pt/C; meanwhile, the μ -O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low-energy coupling pathway, thus Ni-BTPP achieves a high performance for overall water splitting.
Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni3(μ3‐O)(BTPP)(OH)(H2O)2] (Ni‐BTPP, H3BTPP=1,3,5‐tris((1H‐pyrazol‐4‐yl)phenylene)benzene), achieved a current density of 50 mA cm−2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO2@NF is just 35.8 mA cm−2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm−2. Theoretical calculations revealed that the μ3‐O atom in the cyclic trinickel(II) cluster serves as hydrogen‐bonding acceptor to facilitate the dissociation of a H2O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H2O dissociation compared with Pt/C; meanwhile, the μ3‐O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low‐energy coupling pathway, thus Ni‐BTPP achieves a high performance for overall water splitting. A cyclic trinickel(II) cluster‐based metal‐azolate framework is reported as a high‐performance bifunctional catalyst for overall water splitting.
Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni3(μ3‐O)(BTPP)(OH)(H2O)2] (Ni‐BTPP, H3BTPP=1,3,5‐tris((1H‐pyrazol‐4‐yl)phenylene)benzene), achieved a current density of 50 mA cm−2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO2@NF is just 35.8 mA cm−2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm−2. Theoretical calculations revealed that the μ3‐O atom in the cyclic trinickel(II) cluster serves as hydrogen‐bonding acceptor to facilitate the dissociation of a H2O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H2O dissociation compared with Pt/C; meanwhile, the μ3‐O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low‐energy coupling pathway, thus Ni‐BTPP achieves a high performance for overall water splitting.
Herein, a stable metal-azolate framework with cyclic trinickel(II) clusters, namely [Ni3 (μ3 -O)(BTPP)(OH)(H2 O)2 ] (Ni-BTPP, H3 BTPP=1,3,5-tris((1H-pyrazol-4-yl)phenylene)benzene), achieved a current density of 50 mA cm-2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO2 @NF is just 35.8 mA cm-2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm-2 . Theoretical calculations revealed that the μ3 -O atom in the cyclic trinickel(II) cluster serves as hydrogen-bonding acceptor to facilitate the dissociation of a H2 O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H2 O dissociation compared with Pt/C; meanwhile, the μ3 -O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low-energy coupling pathway, thus Ni-BTPP achieves a high performance for overall water splitting.Herein, a stable metal-azolate framework with cyclic trinickel(II) clusters, namely [Ni3 (μ3 -O)(BTPP)(OH)(H2 O)2 ] (Ni-BTPP, H3 BTPP=1,3,5-tris((1H-pyrazol-4-yl)phenylene)benzene), achieved a current density of 50 mA cm-2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO2 @NF is just 35.8 mA cm-2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm-2 . Theoretical calculations revealed that the μ3 -O atom in the cyclic trinickel(II) cluster serves as hydrogen-bonding acceptor to facilitate the dissociation of a H2 O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H2 O dissociation compared with Pt/C; meanwhile, the μ3 -O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low-energy coupling pathway, thus Ni-BTPP achieves a high performance for overall water splitting.
Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni 3 ( μ 3 ‐O)(BTPP)(OH)(H 2 O) 2 ] ( Ni‐BTPP , H 3 BTPP=1,3,5‐tris((1 H ‐pyrazol‐4‐yl)phenylene)benzene), achieved a current density of 50 mA cm −2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO 2 @NF is just 35.8 mA cm −2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm −2 . Theoretical calculations revealed that the μ 3 ‐O atom in the cyclic trinickel(II) cluster serves as hydrogen‐bonding acceptor to facilitate the dissociation of a H 2 O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H 2 O dissociation compared with Pt/C; meanwhile, the μ 3 ‐O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low‐energy coupling pathway, thus Ni‐BTPP achieves a high performance for overall water splitting.
Author Liao, Pei‐Qin
Zhao, Zhen‐Hua
Chen, Xiao‐Ming
Liu, Yan‐Chen
Huang, Jia‐Run
Author_xml – sequence: 1
  givenname: Yan‐Chen
  surname: Liu
  fullname: Liu, Yan‐Chen
  organization: Sun Yat-Sen University
– sequence: 2
  givenname: Jia‐Run
  surname: Huang
  fullname: Huang, Jia‐Run
  organization: Sun Yat-Sen University
– sequence: 3
  givenname: Zhen‐Hua
  surname: Zhao
  fullname: Zhao, Zhen‐Hua
  organization: Sun Yat-Sen University
– sequence: 4
  givenname: Pei‐Qin
  orcidid: 0000-0001-5888-1283
  surname: Liao
  fullname: Liao, Pei‐Qin
  email: liaopq3@mail.sysu.edu.cn
  organization: Sun Yat-Sen University
– sequence: 5
  givenname: Xiao‐Ming
  surname: Chen
  fullname: Chen, Xiao‐Ming
  email: cxm@mail.sysu.edu.cn
  organization: Sun Yat-Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37147935$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LXDEUhoNY6ke7dVkCbuxixpOb-5G7HAZtBywutLS7kJt7bolmkjHJVcaVP6G_sb-kkVELQnERTgLPcwjvu0e2nXdIyAGDKQMojlU0alpAwfNDsC2yy0TNJmXDfm6_3AuxQ_ZivAKoCmjFe7LDG1Y2La92STdfa2s0vQzGGX2N9mix-EzndowJQ6TGUUW_YVL2z8Pv2b23KiE9DWqJdz5c08EHejIMRht0iZ7fYlDW0h8ZCvRiZU1Kxv36QN4Nykb8-DT3yffTk8v518nZ-ZfFfHY20bzhbFJXokZse64HUGVXA2MDQyaAqYpjLfKBvudNV-eJqmRdLwRAq7oKWwDg--Ros3cV_M2IMcmliRqtVQ79GGXOB1rW8Ipl9PAVeuXH4PLvMlWWOc5StJn69ESN3RJ7uQpmqcJaPqeXgXID6OBjDDhIbZJKxrsUlLGSgXwsST6WJF9Kytr0lfa8-b9CuxHujMX1G7ScXSxm_9y_r6qjmw
CitedBy_id crossref_primary_10_1360_SSC_2024_0159
Cites_doi 10.1002/celc.202000136
10.1002/adfm.202200733
10.1039/D2TA04042E
10.1016/j.ijhydene.2020.12.146
10.1016/j.cej.2021.128941
10.1107/S0909049505012719
10.1002/smll.202203140
10.1002/aenm.202101789
10.1002/adma.202110631
10.1002/aenm.201902714
10.1038/s41467-022-29929-7
10.1039/D2CC01439D
10.1002/adfm.202112362
10.1038/nature11475
10.1039/D0TA08094B
10.1021/acsanm.3c00356
10.1021/acsami.2c05181
10.1021/jacs.0c05074
10.1016/j.ijhydene.2022.05.097
10.1039/C4CS00448E
10.1002/aenm.202203002
10.1002/admi.202002151
10.1039/D1EE02249K
10.1002/anie.202204967
10.1002/aenm.201903120
10.1002/adma.202107488
10.1021/acs.nanolett.1c04840
10.1016/j.cej.2022.137045
10.1007/s12274-022-4501-5
10.1002/adma.202104341
10.1039/C5CE00561B
10.1039/C9CC08094E
10.1016/j.pecs.2016.09.001
10.1016/j.gee.2021.04.003
10.1021/acscatal.2c01681
10.1002/adma.202107072
10.1016/j.nanoen.2019.06.002
10.1002/anie.201903613
10.1021/jacs.1c02379
10.1021/cr200139g
10.1002/smll.202107739
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/asia.202300281
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1861-471X
EndPage n/a
ExternalDocumentID 37147935
10_1002_asia_202300281
ASIA202300281
Genre article
Journal Article
GrantInformation_xml – fundername: NSFC
  funderid: 21890380; 22090061
– fundername: Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program
  funderid: 2017BT01C161
– fundername: NSFC
  grantid: 21890380
– fundername: Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program
  grantid: 2017BT01C161
– fundername: NSFC
  grantid: 22090061
GroupedDBID ---
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
5GY
6J9
8-1
87K
8UM
A00
AAESR
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBD
EBS
F5P
G-S
HBH
HGLYW
HHY
HHZ
HZ~
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
P4E
PQQKQ
QRW
ROL
RWI
SUPJJ
WBKPD
WHG
WOHZO
WXSBR
WYJ
XSW
XV2
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HF~
HVGLF
LH4
NPM
K9.
7X8
ID FETCH-LOGICAL-c3731-6586ee9d3cf0a4b6011f1e1801a53e683e60dd37b660dea41bd88009ab5e90003
ISSN 1861-4728
1861-471X
IngestDate Fri Jul 11 04:22:20 EDT 2025
Mon Jun 30 09:02:34 EDT 2025
Wed Feb 19 02:22:25 EST 2025
Thu Apr 24 22:51:07 EDT 2025
Tue Jul 01 00:53:37 EDT 2025
Wed Jan 22 16:18:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Metal-azolate framework
Nickel(II) cluster
Non-precious metal cluster
Overall water splitting
Language English
License 2023 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3731-6586ee9d3cf0a4b6011f1e1801a53e683e60dd37b660dea41bd88009ab5e90003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5888-1283
PMID 37147935
PQID 2844023489
PQPubID 986338
PageCount 5
ParticipantIDs proquest_miscellaneous_2810917351
proquest_journals_2844023489
pubmed_primary_37147935
crossref_citationtrail_10_1002_asia_202300281
crossref_primary_10_1002_asia_202300281
wiley_primary_10_1002_asia_202300281_ASIA202300281
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 1, 2023
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 1, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemistry, an Asian journal
PublicationTitleAlternate Chem Asian J
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2021; 46
2015; 17
2020; 142
2023; 6
2019; 55
2023; 8
2019; 58
2022; 47
2017; 29
2020; 10
2022; 22
2021; 143
2012; 488
2020; 8
2020; 7
2012; 112
2019; 62
2021; 11
2021; 33
2017; 58
2022; 61
2015; 44
2021; 415
2022; 34
2022; 12
2022; 13
2022; 58
2022; 14
2022; 15
2022; 32
2022; 10
2022; 446
2005; 12
2022; 18
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_45_2
e_1_2_8_49_1
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_1_1
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_32_2
Feng J. (e_1_2_8_12_2) 2017; 29
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_2
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_50_1
References_xml – volume: 6
  start-page: 6002
  year: 2023
  end-page: 6010
  publication-title: ACS Appl. Nano Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 537
  year: 2005
  end-page: 541
  publication-title: J. Synchrotron Radiat.
– volume: 10
  start-page: 16007
  year: 2022
  end-page: 16015
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 10014
  year: 2022
  end-page: 10020
  publication-title: Nano Res.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 446
  start-page: 137045
  year: 2022
  end-page: 137056
  publication-title: Chem. Eng. J.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 112
  start-page: 1001
  year: 2012
  end-page: 1033
  publication-title: Chem. Rev.
– volume: 142
  start-page: 13491
  year: 2020
  end-page: 13499
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 1
  year: 2017
  end-page: 35
  publication-title: Prog. Energy Combust. Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 15
  start-page: 727
  year: 2022
  end-page: 739
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 2193
  year: 2022
  publication-title: Nat. Commun.
– volume: 143
  start-page: 6681
  year: 2021
  end-page: 6690
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1902714
  year: 2020
  end-page: 1902722
  publication-title: Adv. Energy Mater.
– volume: 58
  start-page: 6024
  year: 2022
  end-page: 6027
  publication-title: Chem. Commun.
– volume: 8
  start-page: 258
  year: 2023
  end-page: 266
  publication-title: Green Energy & Environ.
– volume: 8
  start-page: 26
  year: 2021
  publication-title: Adv. Mater. Interfaces
– volume: 46
  start-page: 10216
  year: 2021
  end-page: 10238
  publication-title: Int. J. Hydrogen Energy
– volume: 7
  start-page: 1805
  year: 2020
  end-page: 1824
  publication-title: ChemElectroChem
– volume: 47
  start-page: 22787
  year: 2022
  end-page: 22795
  publication-title: Int. J. Hydrogen Energy
– volume: 44
  start-page: 5148
  year: 2015
  end-page: 5180
  publication-title: Chem. Soc. Rev.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 22
  start-page: 1391
  year: 2022
  end-page: 1397
  publication-title: Nano Lett.
– volume: 12
  start-page: 8444
  year: 2022
  end-page: 8450
  publication-title: ACS Catal.
– volume: 8
  start-page: 22974
  year: 2020
  end-page: 22982
  publication-title: J. Mater. Chem. A
– volume: 415
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 62
  start-page: 745
  year: 2019
  end-page: 753
  publication-title: Nano Energy
– volume: 14
  start-page: 46374
  year: 2022
  end-page: 46385
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 14781
  year: 2019
  end-page: 14784
  publication-title: Chem. Commun.
– volume: 17
  start-page: 4992
  year: 2015
  end-page: 5001
  publication-title: CrystEngComm
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  publication-title: Nature
– volume: 13
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 58
  start-page: 8499
  year: 2019
  end-page: 8503
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  year: 2017
  ident: e_1_2_8_12_2
  publication-title: Adv. Mater.
– ident: e_1_2_8_24_1
  doi: 10.1002/celc.202000136
– ident: e_1_2_8_31_1
– ident: e_1_2_8_21_2
  doi: 10.1002/adfm.202200733
– ident: e_1_2_8_45_2
  doi: 10.1039/D2TA04042E
– ident: e_1_2_8_14_1
– ident: e_1_2_8_39_2
  doi: 10.1016/j.ijhydene.2020.12.146
– ident: e_1_2_8_20_2
  doi: 10.1016/j.cej.2021.128941
– ident: e_1_2_8_50_1
  doi: 10.1107/S0909049505012719
– ident: e_1_2_8_30_1
  doi: 10.1002/smll.202203140
– ident: e_1_2_8_10_2
  doi: 10.1002/aenm.202101789
– ident: e_1_2_8_7_2
  doi: 10.1002/adma.202110631
– ident: e_1_2_8_18_1
– ident: e_1_2_8_38_2
  doi: 10.1002/aenm.201902714
– ident: e_1_2_8_15_2
  doi: 10.1038/s41467-022-29929-7
– ident: e_1_2_8_19_2
  doi: 10.1039/D2CC01439D
– ident: e_1_2_8_16_2
  doi: 10.1002/adfm.202112362
– ident: e_1_2_8_1_1
  doi: 10.1038/nature11475
– ident: e_1_2_8_28_2
  doi: 10.1039/D0TA08094B
– ident: e_1_2_8_41_2
  doi: 10.1021/acsanm.3c00356
– ident: e_1_2_8_42_1
– ident: e_1_2_8_47_1
  doi: 10.1021/acsami.2c05181
– ident: e_1_2_8_33_2
  doi: 10.1021/jacs.0c05074
– ident: e_1_2_8_48_1
  doi: 10.1016/j.ijhydene.2022.05.097
– ident: e_1_2_8_4_2
  doi: 10.1039/C4CS00448E
– ident: e_1_2_8_22_2
  doi: 10.1002/aenm.202203002
– ident: e_1_2_8_26_2
  doi: 10.1002/admi.202002151
– ident: e_1_2_8_6_2
  doi: 10.1039/D1EE02249K
– ident: e_1_2_8_25_1
– ident: e_1_2_8_37_2
  doi: 10.1002/anie.202204967
– ident: e_1_2_8_9_2
  doi: 10.1002/aenm.201903120
– ident: e_1_2_8_11_2
  doi: 10.1002/adma.202107488
– ident: e_1_2_8_17_2
  doi: 10.1021/acs.nanolett.1c04840
– ident: e_1_2_8_49_1
  doi: 10.1016/j.cej.2022.137045
– ident: e_1_2_8_2_1
– ident: e_1_2_8_5_1
– ident: e_1_2_8_13_2
  doi: 10.1007/s12274-022-4501-5
– ident: e_1_2_8_27_2
  doi: 10.1002/adma.202104341
– ident: e_1_2_8_43_2
  doi: 10.1039/C5CE00561B
– ident: e_1_2_8_35_1
– ident: e_1_2_8_51_1
  doi: 10.1039/C9CC08094E
– ident: e_1_2_8_3_2
  doi: 10.1016/j.pecs.2016.09.001
– ident: e_1_2_8_44_2
  doi: 10.1016/j.gee.2021.04.003
– ident: e_1_2_8_8_1
– ident: e_1_2_8_36_2
  doi: 10.1021/acscatal.2c01681
– ident: e_1_2_8_40_2
  doi: 10.1002/adma.202107072
– ident: e_1_2_8_46_2
  doi: 10.1016/j.nanoen.2019.06.002
– ident: e_1_2_8_34_1
  doi: 10.1002/anie.201903613
– ident: e_1_2_8_29_2
  doi: 10.1021/jacs.1c02379
– ident: e_1_2_8_32_2
  doi: 10.1021/cr200139g
– ident: e_1_2_8_23_2
  doi: 10.1002/smll.202107739
SSID ssj0052098
Score 2.3764732
Snippet Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni3(μ3‐O)(BTPP)(OH)(H2O)2] (Ni‐BTPP,...
Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni 3 ( μ 3 ‐O)(BTPP)(OH)(H 2 O) 2 ] ( Ni‐BTPP , H 3 BTPP=1,3,5‐tris((1 H...
Herein, a stable metal-azolate framework with cyclic trinickel(II) clusters, namely [Ni (μ -O)(BTPP)(OH)(H O) ] (Ni-BTPP, H...
Herein, a stable metal-azolate framework with cyclic trinickel(II) clusters, namely [Ni3 (μ3 -O)(BTPP)(OH)(H2 O)2 ] (Ni-BTPP, H3...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300281
SubjectTerms Benzene
Chemistry
Clusters
Current density
Energy of dissociation
Metal-azolate framework
Nickel(II) cluster
Non-precious metal cluster
Overall water splitting
Oxidation
Water chemistry
Water splitting
Title Cyclic Trinickel(II) Clusters in a Metal‐Azolate Framework for Efficient Overall Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202300281
https://www.ncbi.nlm.nih.gov/pubmed/37147935
https://www.proquest.com/docview/2844023489
https://www.proquest.com/docview/2810917351
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4AXxDcdAxkJCdDkke-Px6y0WqexAUtFtZfgJI5WqcoQNEjsr-fOXyVaEYOHpql7cizfz-c75_wzIS-j1EsaV7gsLCFcDdImYSXYQCacMhTgojapSpA9jg5mweE8nK_TiuTuklW5V11u3FfyP1qFMtAr7pL9B83aSqEA7kG_cAUNw_VaOh79rJCjOse3MDAal-gtTjHOHy07JECQua58970AD5tllxDFrgS6qiodS2YYjiWFBCYEnPzA5anl7meOvImn4JzKlOjfvdeROR1O5XyCbhd6Hd80FVN7Fp2067xlIN-ucaNXpg8XnH3qbPnZOZertWcgy0BoXY0q_yAW7KOmB9erE55vc-OMQU0iiFFjeSwOzDcbyq5Y4c7s8NQ2VWC9GBu6G02-opDFLad7PcE-t_bxSTGZHR0V-Xie3yRbHgQV3oBsZfvv9idm5saMILl10rTPkHw63tt-_X0n5kpk0g90pKeS3yV3dIhBM4WXe-SGaO-TW1Z3D8gXhRtqcfN6On1DDWbooqWc9jBDLWYoYIZazFCNGSoxQy1mHpLZZJyPDpg-aYNVfuy7DNzQSIi09qvG4UEJQbqLAxi8Fx76Ikrg49S1H5cRfAseuGUNdt9JOQxoPHXWf0QG7UUrnhAaJyGP6kRAXMGDxg0TjwdBnZRxiDxGIh4SZrquqDQNPZ6GsiwUgbZXYFcXtquH5JWV_6oIWP4ouWM0UWjkfy_A-wpAIEjSIXlh_4b-xvdivBUXHcogO27sh1DFY6VB-ygktIQpLBwST6r0L20ostNpZn9tX-ORT8nt9bjZIYPVt048Az93VT7X8PwFHXShYg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+Trinickel%28II%29+Clusters+in+a+Metal-Azolate+Framework+for+Efficient+Overall+Water+Splitting&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Liu%2C+Yan-Chen&rft.au=Huang%2C+Jia-Run&rft.au=Zhao%2C+Zhen-Hua&rft.au=Liao%2C+Pei-Qin&rft.date=2023-08-01&rft.issn=1861-471X&rft.eissn=1861-471X&rft.volume=18&rft.issue=15&rft.spage=e202300281&rft_id=info:doi/10.1002%2Fasia.202300281&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon