Cyclic Trinickel(II) Clusters in a Metal‐Azolate Framework for Efficient Overall Water Splitting
Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni3(μ3‐O)(BTPP)(OH)(H2O)2] (Ni‐BTPP, H3BTPP=1,3,5‐tris((1H‐pyrazol‐4‐yl)phenylene)benzene), achieved a current density of 50 mA cm−2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%...
Saved in:
Published in | Chemistry, an Asian journal Vol. 18; no. 15; pp. e202300281 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1861-4728 1861-471X 1861-471X |
DOI | 10.1002/asia.202300281 |
Cover
Loading…
Abstract | Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni3(μ3‐O)(BTPP)(OH)(H2O)2] (Ni‐BTPP, H3BTPP=1,3,5‐tris((1H‐pyrazol‐4‐yl)phenylene)benzene), achieved a current density of 50 mA cm−2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO2@NF is just 35.8 mA cm−2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm−2. Theoretical calculations revealed that the μ3‐O atom in the cyclic trinickel(II) cluster serves as hydrogen‐bonding acceptor to facilitate the dissociation of a H2O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H2O dissociation compared with Pt/C; meanwhile, the μ3‐O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low‐energy coupling pathway, thus Ni‐BTPP achieves a high performance for overall water splitting.
A cyclic trinickel(II) cluster‐based metal‐azolate framework is reported as a high‐performance bifunctional catalyst for overall water splitting. |
---|---|
AbstractList | Herein, a stable metal-azolate framework with cyclic trinickel(II) clusters, namely [Ni
(μ
-O)(BTPP)(OH)(H
O)
] (Ni-BTPP, H
BTPP=1,3,5-tris((1H-pyrazol-4-yl)phenylene)benzene), achieved a current density of 50 mA cm
at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO
@NF is just 35.8 mA cm
at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm
. Theoretical calculations revealed that the μ
-O atom in the cyclic trinickel(II) cluster serves as hydrogen-bonding acceptor to facilitate the dissociation of a H
O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H
O dissociation compared with Pt/C; meanwhile, the μ
-O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low-energy coupling pathway, thus Ni-BTPP achieves a high performance for overall water splitting. Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni3(μ3‐O)(BTPP)(OH)(H2O)2] (Ni‐BTPP, H3BTPP=1,3,5‐tris((1H‐pyrazol‐4‐yl)phenylene)benzene), achieved a current density of 50 mA cm−2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO2@NF is just 35.8 mA cm−2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm−2. Theoretical calculations revealed that the μ3‐O atom in the cyclic trinickel(II) cluster serves as hydrogen‐bonding acceptor to facilitate the dissociation of a H2O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H2O dissociation compared with Pt/C; meanwhile, the μ3‐O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low‐energy coupling pathway, thus Ni‐BTPP achieves a high performance for overall water splitting. A cyclic trinickel(II) cluster‐based metal‐azolate framework is reported as a high‐performance bifunctional catalyst for overall water splitting. Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni3(μ3‐O)(BTPP)(OH)(H2O)2] (Ni‐BTPP, H3BTPP=1,3,5‐tris((1H‐pyrazol‐4‐yl)phenylene)benzene), achieved a current density of 50 mA cm−2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO2@NF is just 35.8 mA cm−2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm−2. Theoretical calculations revealed that the μ3‐O atom in the cyclic trinickel(II) cluster serves as hydrogen‐bonding acceptor to facilitate the dissociation of a H2O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H2O dissociation compared with Pt/C; meanwhile, the μ3‐O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low‐energy coupling pathway, thus Ni‐BTPP achieves a high performance for overall water splitting. Herein, a stable metal-azolate framework with cyclic trinickel(II) clusters, namely [Ni3 (μ3 -O)(BTPP)(OH)(H2 O)2 ] (Ni-BTPP, H3 BTPP=1,3,5-tris((1H-pyrazol-4-yl)phenylene)benzene), achieved a current density of 50 mA cm-2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO2 @NF is just 35.8 mA cm-2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm-2 . Theoretical calculations revealed that the μ3 -O atom in the cyclic trinickel(II) cluster serves as hydrogen-bonding acceptor to facilitate the dissociation of a H2 O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H2 O dissociation compared with Pt/C; meanwhile, the μ3 -O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low-energy coupling pathway, thus Ni-BTPP achieves a high performance for overall water splitting.Herein, a stable metal-azolate framework with cyclic trinickel(II) clusters, namely [Ni3 (μ3 -O)(BTPP)(OH)(H2 O)2 ] (Ni-BTPP, H3 BTPP=1,3,5-tris((1H-pyrazol-4-yl)phenylene)benzene), achieved a current density of 50 mA cm-2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO2 @NF is just 35.8 mA cm-2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm-2 . Theoretical calculations revealed that the μ3 -O atom in the cyclic trinickel(II) cluster serves as hydrogen-bonding acceptor to facilitate the dissociation of a H2 O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H2 O dissociation compared with Pt/C; meanwhile, the μ3 -O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low-energy coupling pathway, thus Ni-BTPP achieves a high performance for overall water splitting. Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni 3 ( μ 3 ‐O)(BTPP)(OH)(H 2 O) 2 ] ( Ni‐BTPP , H 3 BTPP=1,3,5‐tris((1 H ‐pyrazol‐4‐yl)phenylene)benzene), achieved a current density of 50 mA cm −2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO 2 @NF is just 35.8 mA cm −2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm −2 . Theoretical calculations revealed that the μ 3 ‐O atom in the cyclic trinickel(II) cluster serves as hydrogen‐bonding acceptor to facilitate the dissociation of a H 2 O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H 2 O dissociation compared with Pt/C; meanwhile, the μ 3 ‐O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low‐energy coupling pathway, thus Ni‐BTPP achieves a high performance for overall water splitting. |
Author | Liao, Pei‐Qin Zhao, Zhen‐Hua Chen, Xiao‐Ming Liu, Yan‐Chen Huang, Jia‐Run |
Author_xml | – sequence: 1 givenname: Yan‐Chen surname: Liu fullname: Liu, Yan‐Chen organization: Sun Yat-Sen University – sequence: 2 givenname: Jia‐Run surname: Huang fullname: Huang, Jia‐Run organization: Sun Yat-Sen University – sequence: 3 givenname: Zhen‐Hua surname: Zhao fullname: Zhao, Zhen‐Hua organization: Sun Yat-Sen University – sequence: 4 givenname: Pei‐Qin orcidid: 0000-0001-5888-1283 surname: Liao fullname: Liao, Pei‐Qin email: liaopq3@mail.sysu.edu.cn organization: Sun Yat-Sen University – sequence: 5 givenname: Xiao‐Ming surname: Chen fullname: Chen, Xiao‐Ming email: cxm@mail.sysu.edu.cn organization: Sun Yat-Sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37147935$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LXDEUhoNY6ke7dVkCbuxixpOb-5G7HAZtBywutLS7kJt7bolmkjHJVcaVP6G_sb-kkVELQnERTgLPcwjvu0e2nXdIyAGDKQMojlU0alpAwfNDsC2yy0TNJmXDfm6_3AuxQ_ZivAKoCmjFe7LDG1Y2La92STdfa2s0vQzGGX2N9mix-EzndowJQ6TGUUW_YVL2z8Pv2b23KiE9DWqJdz5c08EHejIMRht0iZ7fYlDW0h8ZCvRiZU1Kxv36QN4Nykb8-DT3yffTk8v518nZ-ZfFfHY20bzhbFJXokZse64HUGVXA2MDQyaAqYpjLfKBvudNV-eJqmRdLwRAq7oKWwDg--Ros3cV_M2IMcmliRqtVQ79GGXOB1rW8Ipl9PAVeuXH4PLvMlWWOc5StJn69ESN3RJ7uQpmqcJaPqeXgXID6OBjDDhIbZJKxrsUlLGSgXwsST6WJF9Kytr0lfa8-b9CuxHujMX1G7ScXSxm_9y_r6qjmw |
CitedBy_id | crossref_primary_10_1360_SSC_2024_0159 |
Cites_doi | 10.1002/celc.202000136 10.1002/adfm.202200733 10.1039/D2TA04042E 10.1016/j.ijhydene.2020.12.146 10.1016/j.cej.2021.128941 10.1107/S0909049505012719 10.1002/smll.202203140 10.1002/aenm.202101789 10.1002/adma.202110631 10.1002/aenm.201902714 10.1038/s41467-022-29929-7 10.1039/D2CC01439D 10.1002/adfm.202112362 10.1038/nature11475 10.1039/D0TA08094B 10.1021/acsanm.3c00356 10.1021/acsami.2c05181 10.1021/jacs.0c05074 10.1016/j.ijhydene.2022.05.097 10.1039/C4CS00448E 10.1002/aenm.202203002 10.1002/admi.202002151 10.1039/D1EE02249K 10.1002/anie.202204967 10.1002/aenm.201903120 10.1002/adma.202107488 10.1021/acs.nanolett.1c04840 10.1016/j.cej.2022.137045 10.1007/s12274-022-4501-5 10.1002/adma.202104341 10.1039/C5CE00561B 10.1039/C9CC08094E 10.1016/j.pecs.2016.09.001 10.1016/j.gee.2021.04.003 10.1021/acscatal.2c01681 10.1002/adma.202107072 10.1016/j.nanoen.2019.06.002 10.1002/anie.201903613 10.1021/jacs.1c02379 10.1021/cr200139g 10.1002/smll.202107739 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/asia.202300281 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1861-471X |
EndPage | n/a |
ExternalDocumentID | 37147935 10_1002_asia_202300281 ASIA202300281 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NSFC funderid: 21890380; 22090061 – fundername: Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program funderid: 2017BT01C161 – fundername: NSFC grantid: 21890380 – fundername: Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program grantid: 2017BT01C161 – fundername: NSFC grantid: 22090061 |
GroupedDBID | --- 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 5GY 6J9 8-1 87K 8UM A00 AAESR AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEUQT AEUYR AFBPY AFFPM AFGKR AFWVQ AHBTC AHMBA AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DRFUL DRSTM EBD EBS F5P G-S HBH HGLYW HHY HHZ HZ~ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O66 O9- OIG P2W P4E PQQKQ QRW ROL RWI SUPJJ WBKPD WHG WOHZO WXSBR WYJ XSW XV2 ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HF~ HVGLF LH4 NPM K9. 7X8 |
ID | FETCH-LOGICAL-c3731-6586ee9d3cf0a4b6011f1e1801a53e683e60dd37b660dea41bd88009ab5e90003 |
ISSN | 1861-4728 1861-471X |
IngestDate | Fri Jul 11 04:22:20 EDT 2025 Mon Jun 30 09:02:34 EDT 2025 Wed Feb 19 02:22:25 EST 2025 Thu Apr 24 22:51:07 EDT 2025 Tue Jul 01 00:53:37 EDT 2025 Wed Jan 22 16:18:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Metal-azolate framework Nickel(II) cluster Non-precious metal cluster Overall water splitting |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3731-6586ee9d3cf0a4b6011f1e1801a53e683e60dd37b660dea41bd88009ab5e90003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5888-1283 |
PMID | 37147935 |
PQID | 2844023489 |
PQPubID | 986338 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2810917351 proquest_journals_2844023489 pubmed_primary_37147935 crossref_citationtrail_10_1002_asia_202300281 crossref_primary_10_1002_asia_202300281 wiley_primary_10_1002_asia_202300281_ASIA202300281 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 1, 2023 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 1, 2023 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemistry, an Asian journal |
PublicationTitleAlternate | Chem Asian J |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2021; 46 2015; 17 2020; 142 2023; 6 2019; 55 2023; 8 2019; 58 2022; 47 2017; 29 2020; 10 2022; 22 2021; 143 2012; 488 2020; 8 2020; 7 2012; 112 2019; 62 2021; 11 2021; 33 2017; 58 2022; 61 2015; 44 2021; 415 2022; 34 2022; 12 2022; 13 2022; 58 2022; 14 2022; 15 2022; 32 2022; 10 2022; 446 2005; 12 2022; 18 e_1_2_8_28_2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_45_2 e_1_2_8_49_1 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_1_1 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_13_2 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_32_2 Feng J. (e_1_2_8_12_2) 2017; 29 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_2 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_50_1 |
References_xml | – volume: 6 start-page: 6002 year: 2023 end-page: 6010 publication-title: ACS Appl. Nano Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 12 start-page: 537 year: 2005 end-page: 541 publication-title: J. Synchrotron Radiat. – volume: 10 start-page: 16007 year: 2022 end-page: 16015 publication-title: J. Mater. Chem. A – volume: 15 start-page: 10014 year: 2022 end-page: 10020 publication-title: Nano Res. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 18 year: 2022 publication-title: Small – volume: 446 start-page: 137045 year: 2022 end-page: 137056 publication-title: Chem. Eng. J. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 112 start-page: 1001 year: 2012 end-page: 1033 publication-title: Chem. Rev. – volume: 142 start-page: 13491 year: 2020 end-page: 13499 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 1 year: 2017 end-page: 35 publication-title: Prog. Energy Combust. Sci. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 15 start-page: 727 year: 2022 end-page: 739 publication-title: Energy Environ. Sci. – volume: 13 start-page: 2193 year: 2022 publication-title: Nat. Commun. – volume: 143 start-page: 6681 year: 2021 end-page: 6690 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1902714 year: 2020 end-page: 1902722 publication-title: Adv. Energy Mater. – volume: 58 start-page: 6024 year: 2022 end-page: 6027 publication-title: Chem. Commun. – volume: 8 start-page: 258 year: 2023 end-page: 266 publication-title: Green Energy & Environ. – volume: 8 start-page: 26 year: 2021 publication-title: Adv. Mater. Interfaces – volume: 46 start-page: 10216 year: 2021 end-page: 10238 publication-title: Int. J. Hydrogen Energy – volume: 7 start-page: 1805 year: 2020 end-page: 1824 publication-title: ChemElectroChem – volume: 47 start-page: 22787 year: 2022 end-page: 22795 publication-title: Int. J. Hydrogen Energy – volume: 44 start-page: 5148 year: 2015 end-page: 5180 publication-title: Chem. Soc. Rev. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 22 start-page: 1391 year: 2022 end-page: 1397 publication-title: Nano Lett. – volume: 12 start-page: 8444 year: 2022 end-page: 8450 publication-title: ACS Catal. – volume: 8 start-page: 22974 year: 2020 end-page: 22982 publication-title: J. Mater. Chem. A – volume: 415 year: 2021 publication-title: Chem. Eng. J. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 62 start-page: 745 year: 2019 end-page: 753 publication-title: Nano Energy – volume: 14 start-page: 46374 year: 2022 end-page: 46385 publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 14781 year: 2019 end-page: 14784 publication-title: Chem. Commun. – volume: 17 start-page: 4992 year: 2015 end-page: 5001 publication-title: CrystEngComm – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 488 start-page: 294 year: 2012 end-page: 303 publication-title: Nature – volume: 13 year: 2022 publication-title: Adv. Energy Mater. – volume: 58 start-page: 8499 year: 2019 end-page: 8503 publication-title: Angew. Chem. Int. Ed. – volume: 29 year: 2017 ident: e_1_2_8_12_2 publication-title: Adv. Mater. – ident: e_1_2_8_24_1 doi: 10.1002/celc.202000136 – ident: e_1_2_8_31_1 – ident: e_1_2_8_21_2 doi: 10.1002/adfm.202200733 – ident: e_1_2_8_45_2 doi: 10.1039/D2TA04042E – ident: e_1_2_8_14_1 – ident: e_1_2_8_39_2 doi: 10.1016/j.ijhydene.2020.12.146 – ident: e_1_2_8_20_2 doi: 10.1016/j.cej.2021.128941 – ident: e_1_2_8_50_1 doi: 10.1107/S0909049505012719 – ident: e_1_2_8_30_1 doi: 10.1002/smll.202203140 – ident: e_1_2_8_10_2 doi: 10.1002/aenm.202101789 – ident: e_1_2_8_7_2 doi: 10.1002/adma.202110631 – ident: e_1_2_8_18_1 – ident: e_1_2_8_38_2 doi: 10.1002/aenm.201902714 – ident: e_1_2_8_15_2 doi: 10.1038/s41467-022-29929-7 – ident: e_1_2_8_19_2 doi: 10.1039/D2CC01439D – ident: e_1_2_8_16_2 doi: 10.1002/adfm.202112362 – ident: e_1_2_8_1_1 doi: 10.1038/nature11475 – ident: e_1_2_8_28_2 doi: 10.1039/D0TA08094B – ident: e_1_2_8_41_2 doi: 10.1021/acsanm.3c00356 – ident: e_1_2_8_42_1 – ident: e_1_2_8_47_1 doi: 10.1021/acsami.2c05181 – ident: e_1_2_8_33_2 doi: 10.1021/jacs.0c05074 – ident: e_1_2_8_48_1 doi: 10.1016/j.ijhydene.2022.05.097 – ident: e_1_2_8_4_2 doi: 10.1039/C4CS00448E – ident: e_1_2_8_22_2 doi: 10.1002/aenm.202203002 – ident: e_1_2_8_26_2 doi: 10.1002/admi.202002151 – ident: e_1_2_8_6_2 doi: 10.1039/D1EE02249K – ident: e_1_2_8_25_1 – ident: e_1_2_8_37_2 doi: 10.1002/anie.202204967 – ident: e_1_2_8_9_2 doi: 10.1002/aenm.201903120 – ident: e_1_2_8_11_2 doi: 10.1002/adma.202107488 – ident: e_1_2_8_17_2 doi: 10.1021/acs.nanolett.1c04840 – ident: e_1_2_8_49_1 doi: 10.1016/j.cej.2022.137045 – ident: e_1_2_8_2_1 – ident: e_1_2_8_5_1 – ident: e_1_2_8_13_2 doi: 10.1007/s12274-022-4501-5 – ident: e_1_2_8_27_2 doi: 10.1002/adma.202104341 – ident: e_1_2_8_43_2 doi: 10.1039/C5CE00561B – ident: e_1_2_8_35_1 – ident: e_1_2_8_51_1 doi: 10.1039/C9CC08094E – ident: e_1_2_8_3_2 doi: 10.1016/j.pecs.2016.09.001 – ident: e_1_2_8_44_2 doi: 10.1016/j.gee.2021.04.003 – ident: e_1_2_8_8_1 – ident: e_1_2_8_36_2 doi: 10.1021/acscatal.2c01681 – ident: e_1_2_8_40_2 doi: 10.1002/adma.202107072 – ident: e_1_2_8_46_2 doi: 10.1016/j.nanoen.2019.06.002 – ident: e_1_2_8_34_1 doi: 10.1002/anie.201903613 – ident: e_1_2_8_29_2 doi: 10.1021/jacs.1c02379 – ident: e_1_2_8_32_2 doi: 10.1021/cr200139g – ident: e_1_2_8_23_2 doi: 10.1002/smll.202107739 |
SSID | ssj0052098 |
Score | 2.3764732 |
Snippet | Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni3(μ3‐O)(BTPP)(OH)(H2O)2] (Ni‐BTPP,... Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni 3 ( μ 3 ‐O)(BTPP)(OH)(H 2 O) 2 ] ( Ni‐BTPP , H 3 BTPP=1,3,5‐tris((1 H... Herein, a stable metal-azolate framework with cyclic trinickel(II) clusters, namely [Ni (μ -O)(BTPP)(OH)(H O) ] (Ni-BTPP, H... Herein, a stable metal-azolate framework with cyclic trinickel(II) clusters, namely [Ni3 (μ3 -O)(BTPP)(OH)(H2 O)2 ] (Ni-BTPP, H3... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300281 |
SubjectTerms | Benzene Chemistry Clusters Current density Energy of dissociation Metal-azolate framework Nickel(II) cluster Non-precious metal cluster Overall water splitting Oxidation Water chemistry Water splitting |
Title | Cyclic Trinickel(II) Clusters in a Metal‐Azolate Framework for Efficient Overall Water Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202300281 https://www.ncbi.nlm.nih.gov/pubmed/37147935 https://www.proquest.com/docview/2844023489 https://www.proquest.com/docview/2810917351 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4AXxDcdAxkJCdDkke-Px6y0WqexAUtFtZfgJI5WqcoQNEjsr-fOXyVaEYOHpql7cizfz-c75_wzIS-j1EsaV7gsLCFcDdImYSXYQCacMhTgojapSpA9jg5mweE8nK_TiuTuklW5V11u3FfyP1qFMtAr7pL9B83aSqEA7kG_cAUNw_VaOh79rJCjOse3MDAal-gtTjHOHy07JECQua58970AD5tllxDFrgS6qiodS2YYjiWFBCYEnPzA5anl7meOvImn4JzKlOjfvdeROR1O5XyCbhd6Hd80FVN7Fp2067xlIN-ucaNXpg8XnH3qbPnZOZertWcgy0BoXY0q_yAW7KOmB9erE55vc-OMQU0iiFFjeSwOzDcbyq5Y4c7s8NQ2VWC9GBu6G02-opDFLad7PcE-t_bxSTGZHR0V-Xie3yRbHgQV3oBsZfvv9idm5saMILl10rTPkHw63tt-_X0n5kpk0g90pKeS3yV3dIhBM4WXe-SGaO-TW1Z3D8gXhRtqcfN6On1DDWbooqWc9jBDLWYoYIZazFCNGSoxQy1mHpLZZJyPDpg-aYNVfuy7DNzQSIi09qvG4UEJQbqLAxi8Fx76Ikrg49S1H5cRfAseuGUNdt9JOQxoPHXWf0QG7UUrnhAaJyGP6kRAXMGDxg0TjwdBnZRxiDxGIh4SZrquqDQNPZ6GsiwUgbZXYFcXtquH5JWV_6oIWP4ouWM0UWjkfy_A-wpAIEjSIXlh_4b-xvdivBUXHcogO27sh1DFY6VB-ygktIQpLBwST6r0L20ostNpZn9tX-ORT8nt9bjZIYPVt048Az93VT7X8PwFHXShYg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+Trinickel%28II%29+Clusters+in+a+Metal-Azolate+Framework+for+Efficient+Overall+Water+Splitting&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Liu%2C+Yan-Chen&rft.au=Huang%2C+Jia-Run&rft.au=Zhao%2C+Zhen-Hua&rft.au=Liao%2C+Pei-Qin&rft.date=2023-08-01&rft.issn=1861-471X&rft.eissn=1861-471X&rft.volume=18&rft.issue=15&rft.spage=e202300281&rft_id=info:doi/10.1002%2Fasia.202300281&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon |