Pure Conducting Polymer Hydrogels Increase Signal‐to‐Noise of Cutaneous Electrodes by Lowering Skin Interface Impedance

Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin–electrode interface where they are then sensed as electronic c...

Full description

Saved in:
Bibliographic Details
Published inAdvanced healthcare materials Vol. 12; no. 17; pp. e2202661 - n/a
Main Authors Roubert Martinez, Sebastian, Le Floch, Paul, Liu, Jia, Howe, Robert D.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin–electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal‐to‐noise ratio arising from the high impedance at the tissue‐to‐electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4‐ethylenedioxy‐thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin–electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin–electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal‐to‐noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram‐based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine. Pure conducting polymer hydrogels are found to exhibit increased signal‐to‐noise ratio on humans compared to clinical cutaneous electrodes. Isolating the bioelectrochemical relationship between skin and the conducting polymer hydrogels using a novel ex vivo model, this paper concludes that this signal‐to‐noise relationship arises from dramatically reduced skin–interface impedance. The increased signal‐to‐noise ratio is leveraged in a sensitive real‐time robotic neural interface.
AbstractList Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin–electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal‐to‐noise ratio arising from the high impedance at the tissue‐to‐electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4‐ethylenedioxy‐thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin–electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin–electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal‐to‐noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram‐based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine.
Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin-electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal-to-noise ratio arising from the high impedance at the tissue-to-electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4-ethylenedioxy-thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin-electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin-electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal-to-noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram-based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine.
Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin-electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal-to-noise ratio arising from the high impedance at the tissue-to-electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4-ethylenedioxy-thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin-electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin-electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal-to-noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram-based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine.Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin-electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal-to-noise ratio arising from the high impedance at the tissue-to-electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4-ethylenedioxy-thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin-electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin-electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal-to-noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram-based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine.
Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin–electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal‐to‐noise ratio arising from the high impedance at the tissue‐to‐electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4‐ethylenedioxy‐thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin–electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin–electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal‐to‐noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram‐based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine. Pure conducting polymer hydrogels are found to exhibit increased signal‐to‐noise ratio on humans compared to clinical cutaneous electrodes. Isolating the bioelectrochemical relationship between skin and the conducting polymer hydrogels using a novel ex vivo model, this paper concludes that this signal‐to‐noise relationship arises from dramatically reduced skin–interface impedance. The increased signal‐to‐noise ratio is leveraged in a sensitive real‐time robotic neural interface.
Author Roubert Martinez, Sebastian
Le Floch, Paul
Liu, Jia
Howe, Robert D.
Author_xml – sequence: 1
  givenname: Sebastian
  orcidid: 0000-0002-0433-5057
  surname: Roubert Martinez
  fullname: Roubert Martinez, Sebastian
  organization: Harvard University
– sequence: 2
  givenname: Paul
  orcidid: 0000-0001-7211-1699
  surname: Le Floch
  fullname: Le Floch, Paul
  organization: Harvard University
– sequence: 3
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
  organization: Harvard University
– sequence: 4
  givenname: Robert D.
  orcidid: 0000-0002-1392-227X
  surname: Howe
  fullname: Howe, Robert D.
  email: howe@seas.harvard.edu
  organization: Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36867669$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9qFDEUxoNUbK299VIC3niza_7MZCaXZVvdhVUL1euQSU7W1JlkTWYoizc-gs_ok5hl2woFMYSccPh9H8n5nqOjEAMg9JKSOSWEvdX26zBnhJUtBH2CThiVbMZELY8e7hU5Rmc535CyRE1FS5-hYy5a0QghT9CPqykBXsRgJzP6sMFXsd8NkPByZ1PcQJ_xKpgEOgO-9pug-98_f42xHB-jL73o8GIadYA4ZXzZgxlTtJBxt8PreAtpb3n9zYfiMkJy2gBeDVuwOhh4gZ463Wc4u6un6Mu7y8-L5Wz96f1qcb6eGd5wOqs5BSll5Zh2wjpworMAknErBeFN07VGNM5a2kkCsuNccEkd7-pGWCorwU_Rm4PvNsXvE-RRDT4b6PvDsxVrWl7JRrCmoK8foTdxSuXXhWo5r4mUlBfq1R01dQNYtU1-0Gmn7sdagOoAmBRzTuCU8aMefQxj0r5XlKh9gGofoHoIsMjmj2T3zv8UyIPg1vew-w-tzi-WH_5q_wAwba-w
CitedBy_id crossref_primary_10_1002_advs_202306424
crossref_primary_10_1016_j_carbpol_2024_123058
crossref_primary_10_1021_acsmaterialslett_3c00938
crossref_primary_10_3390_nano14171398
crossref_primary_10_1021_acsaelm_4c00715
crossref_primary_10_1038_s43246_024_00490_8
crossref_primary_10_1016_j_biomaterials_2024_122624
crossref_primary_10_1021_acsami_3c10663
crossref_primary_10_1002_advs_202308014
crossref_primary_10_1016_j_jclepro_2025_145265
crossref_primary_10_1016_j_matt_2024_05_023
Cites_doi 10.1111/psyp.12536
10.1038/s41467-020-18503-8
10.1039/C8CS00595H
10.1016/j.electacta.2009.10.065
10.1002/aenm.201902007
10.1109/ICORR.2015.7281235
10.1016/j.measen.2021.100044
10.1039/D1TC01578H
10.1073/pnas.1806087115
10.1002/aelm.201500017
10.1021/acs.jchemed.7b00361
10.1016/j.bios.2022.114756
10.1088/1742-6596/90/1/012081
10.1021/acsmaterialslett.0c00309
10.1038/s41578-022-00483-4
10.1126/scirobotics.abn0495
10.1038/s41467-019-09003-5
10.1016/j.measurement.2013.06.033
10.1016/j.molimm.2014.10.023
10.1046/j.1524-475x.2001.00066.x
10.1109/CBS.2018.8612246
10.1038/s41467-020-15316-7
10.1039/C7LC00914C
10.1016/S1050-6411(02)00097-4
10.1007/978-3-031-13822-5_26
10.1109/TBME.2015.2465936
10.1155/2013/896056
10.1016/j.snb.2016.06.076
10.1088/2058-8585/aadb56
10.1016/j.snb.2016.10.005
10.1016/j.cej.2019.03.287
10.1016/j.synthmet.2021.116709
10.1016/j.jsv.2022.117010
10.1021/acsmaterialslett.0c00085
10.5114/pdia.2013.38359
10.1038/s41467-022-28027-y
10.1186/s12938-018-0469-5
10.1002/adhm.201700994
10.1186/s40463-017-0210-6
10.1002/admt.202101637
10.3390/bioengineering3030020
10.1007/978-88-470-2463-2
10.1109/TMRB.2021.3098952
10.1126/sciadv.aat0491
10.1002/adhm.201300614
10.1093/cercor/bhab040
10.1109/TIM.2018.2806950
10.1002/admt.202000325
10.1016/j.nanoen.2021.106735
10.1126/sciadv.abb8308
10.3390/nano6090156
10.1002/art.1780300605
10.1149/1.1605419
10.1016/j.tim.2011.11.002
10.1038/s41467-018-05222-4
10.1177/0954411918759801
10.1002/adhm.201600108
10.1016/S0013-4686(02)00065-8
10.1016/j.jbiomech.2010.01.027
10.1016/j.snb.2015.07.111
10.1126/sciadv.1601027
10.1126/sciadv.abd3716
10.1063/5.0079616
10.1039/C8TA01995A
10.1038/s41467-020-17619-1
10.1016/j.colsurfb.2021.112088
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
DOI 10.1002/adhm.202202661
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Immunology Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
EndPage n/a
ExternalDocumentID 36867669
10_1002_adhm_202202661
ADHM202202661
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation Graduate Research Fellowship Program
– fundername: Harvard School of Engineering and Applied Sciences
GroupedDBID 05W
0R~
1OC
33P
53G
8-0
8-1
AAESR
AAHHS
AAHQN
AAIHA
AAIPD
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EMOBN
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
O9-
OVD
P2W
PQQKQ
ROL
SUPJJ
SV3
TEORI
WBKPD
WOHZO
WXSBR
ZZTAW
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
C45
CITATION
EJD
GODZA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c3731-531e9994f2af6dfef6bdee923d960377b8c67fdd1b90e9b336391f3b576d19463
ISSN 2192-2640
2192-2659
IngestDate Thu Jul 10 17:37:00 EDT 2025
Sun Jul 13 02:48:05 EDT 2025
Mon Jul 21 06:00:39 EDT 2025
Tue Jul 01 03:06:51 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Wed Jun 11 08:24:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords neural interfaces
skin
hydrogels
bioelectronics
conductive polymers
Language English
License 2023 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3731-531e9994f2af6dfef6bdee923d960377b8c67fdd1b90e9b336391f3b576d19463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0433-5057
0000-0001-7211-1699
0000-0002-1392-227X
PMID 36867669
PQID 2833509913
PQPubID 2032434
PageCount 10
ParticipantIDs proquest_miscellaneous_2783497627
proquest_journals_2833509913
pubmed_primary_36867669
crossref_citationtrail_10_1002_adhm_202202661
crossref_primary_10_1002_adhm_202202661
wiley_primary_10_1002_adhm_202202661_ADHM202202661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv Healthc Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 208
2010; 55
2013; 2
1987; 30
2019; 10
2015; 221
2017; 46
2003; 13
2003; 150
2020; 11
2022; 218
2013; 5
2022; 533
2018; 7
2018; 6
2018; 9
2002; 47
2020; 6
2020; 5
2018; 3
2021; 31
2014; 3
2020; 2
2018; 4
2001
2000
2016; 237
2021; 273
2017; 241
2012; 20
1989
2021; 9
2015; 1
2021; 7
2019; 9
2021; 3
2022; 92
2012
2011
2013; 46
1966; 5
2007; 90
2007
2005
2018; 67
2016; 5
2018; 18
2010; 43
2016; 6
2018; 232
2018; 17
2021; 15
2016; 2
2016; 3
2022
2020
2022; 7
2017; 54
2015; 63
2022; 9
2015; 66
2001; 9
2019; 48
2018; 115
2022; 13
2018
2005; 1
2018; 95
2015
2019; 370
e_1_2_8_28_1
Ison M. (e_1_2_8_77_1) 2015
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Barsoukov E. (e_1_2_8_64_1) 2005
Grimnes S. (e_1_2_8_60_1) 2011
e_1_2_8_3_1
e_1_2_8_5_1
Horowitz P. (e_1_2_8_57_1) 1989
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
Medrano G. (e_1_2_8_61_1) 2007
Kitchin C. (e_1_2_8_58_1) 2000
Xu S. (e_1_2_8_25_1) 2020
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
Asogbon M. G. (e_1_2_8_72_1) 2018
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Prutchi D. (e_1_2_8_42_1) 2005
e_1_2_8_2_1
e_1_2_8_80_1
Luo Y. (e_1_2_8_4_1) 2013; 2
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
Ma H. (e_1_2_8_34_1) 2022
e_1_2_8_37_1
e_1_2_8_79_1
Konrad P. (e_1_2_8_71_1) 2005; 1
Zhou T. (e_1_2_8_23_1) 2022
Allen J. B. (e_1_2_8_63_1) 2001
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
Tregear R. T. (e_1_2_8_65_1) 1966
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 10
  start-page: 1043
  year: 2019
  publication-title: Nat. Commun.
– volume: 6
  start-page: 156
  year: 2016
  publication-title: Nanomaterials
– volume: 47
  start-page: 2027
  year: 2002
  publication-title: Electrochim. Acta
– year: 2011
– volume: 3
  start-page: 563
  year: 2021
  publication-title: IEEE Trans. Med. Rob. Bionics
– volume: 11
  start-page: 3823
  year: 2020
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1377
  year: 2014
  publication-title: Adv. Healthcare Mater.
– volume: 31
  start-page: 3678
  year: 2021
  publication-title: Cerebral Cortex
– year: 2005
– volume: 5
  year: 1966
– year: 2001
– year: 1989
– volume: 2
  start-page: 478
  year: 2020
  publication-title: ACS Mater. Lett.
– volume: 11
  start-page: 1604
  year: 2020
  publication-title: Nat. Commun.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 533
  year: 2022
  publication-title: J. Sound Vib.
– volume: 1
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– year: 2022
  publication-title: bioRxiv
– start-page: 260
  year: 2007
  end-page: 263
– volume: 55
  start-page: 6218
  year: 2010
  publication-title: Electrochim. Acta
– volume: 7
  year: 2022
  publication-title: Sci. Rob.
– volume: 63
  start-page: 540
  year: 2015
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 13
  start-page: 273
  year: 2003
  publication-title: J. Electromyogr. Kinesiol.
– volume: 46
  start-page: 1
  year: 2017
  publication-title: J. Otolaryngol.: ‐Head Neck Surg.
– start-page: 1
  year: 2020
  end-page: 4
– volume: 46
  start-page: 3494
  year: 2013
  publication-title: Measurement
– start-page: 935
  year: 2022
  publication-title: Nat. Rev. Mater.
– volume: 273
  year: 2021
  publication-title: Synth. Met.
– volume: 1
  start-page: 30
  year: 2005
  publication-title: A Practical Introduction to Kinesiological Electromyography
– volume: 7
  year: 2022
  publication-title: Adv. Mater. Technol.
– volume: 232
  start-page: 323
  year: 2018
  publication-title: Proc. Inst. Mech. Eng., Part H
– volume: 48
  start-page: 1642
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 3
  year: 2018
  publication-title: Flexible Printed Electron.
– volume: 15
  year: 2021
  publication-title: Meas.: Sens.
– volume: 9
  year: 2022
  publication-title: Appl. Phys. Rev.
– volume: 208
  year: 2021
  publication-title: Colloids Surf., B
– volume: 9
  start-page: 66
  year: 2001
  publication-title: Wound Repair Regener.
– volume: 150
  start-page: E477
  year: 2003
  publication-title: J. Electrochem. Soc.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– year: 2000
– volume: 6
  start-page: 7162
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 90
  year: 2007
  publication-title: J. Phys.: Conf. Ser.
– volume: 20
  start-page: 50
  year: 2012
  publication-title: Trends Microbiol.
– volume: 43
  start-page: 1573
  year: 2010
  publication-title: J. Biomech.
– volume: 67
  start-page: 1900
  year: 2018
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 5
  start-page: 1462
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 370
  start-page: 1039
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 221
  start-page: 1469
  year: 2015
  publication-title: Sens. Actuators, B
– volume: 11
  start-page: 4683
  year: 2020
  publication-title: Nat. Commun.
– volume: 5
  start-page: 302
  year: 2013
  publication-title: Adv. Dermatol. Allergol.
– start-page: 416
  year: 2015
  end-page: 421
– volume: 9
  start-page: 2740
  year: 2018
  publication-title: Nat. Commun.
– volume: 95
  start-page: 197
  year: 2018
  publication-title: J. Chem. Educ.
– year: 2012
– volume: 115
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1287
  year: 2020
  publication-title: ACS Mater. Lett.
– volume: 2
  year: 2013
  publication-title: Sci. World J.
– volume: 66
  start-page: 14
  year: 2015
  publication-title: Mol. Immunol.
– start-page: 576
  year: 2018
  end-page: 580
– volume: 54
  start-page: 74
  year: 2017
  publication-title: Psychophysiology
– volume: 92
  year: 2022
  publication-title: Nano Energy
– volume: 241
  start-page: 1244
  year: 2017
  publication-title: Sens. Actuators, B
– volume: 17
  start-page: 38
  year: 2018
  publication-title: Biomed. Eng. Online
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 18
  start-page: 217
  year: 2018
  publication-title: Lab Chip
– volume: 13
  start-page: 358
  year: 2022
  publication-title: Nat. Commun.
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Techol.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 30
  start-page: 630
  year: 1987
  publication-title: Arthritis Rheum.
– start-page: 295
  year: 2022
  end-page: 304
– volume: 237
  start-page: 49
  year: 2016
  publication-title: Sens. Actuators, B
– volume: 3
  start-page: 20
  year: 2016
  publication-title: Bioengineering
– volume: 218
  year: 2022
  publication-title: Biosens. Bioelectron.
– ident: e_1_2_8_7_1
  doi: 10.1111/psyp.12536
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-020-18503-8
– ident: e_1_2_8_49_1
  doi: 10.1039/C8CS00595H
– ident: e_1_2_8_62_1
  doi: 10.1016/j.electacta.2009.10.065
– ident: e_1_2_8_67_1
  doi: 10.1002/aenm.201902007
– start-page: 416
  volume-title: 2015 IEEE Int. Conf. Rehabilitation Robotics (ICORR)
  year: 2015
  ident: e_1_2_8_77_1
  doi: 10.1109/ICORR.2015.7281235
– ident: e_1_2_8_36_1
  doi: 10.1016/j.measen.2021.100044
– ident: e_1_2_8_76_1
– ident: e_1_2_8_27_1
  doi: 10.1039/D1TC01578H
– ident: e_1_2_8_51_1
  doi: 10.1073/pnas.1806087115
– ident: e_1_2_8_50_1
  doi: 10.1002/aelm.201500017
– ident: e_1_2_8_66_1
  doi: 10.1021/acs.jchemed.7b00361
– start-page: 260
  volume-title: 13th Int. Conf. Electrical Bioimpedance and the 8th Conf. Electrical Impedance Tomography
  year: 2007
  ident: e_1_2_8_61_1
– ident: e_1_2_8_28_1
  doi: 10.1016/j.bios.2022.114756
– volume-title: The Art of Electronics
  year: 1989
  ident: e_1_2_8_57_1
– ident: e_1_2_8_2_1
  doi: 10.1088/1742-6596/90/1/012081
– ident: e_1_2_8_33_1
  doi: 10.1021/acsmaterialslett.0c00309
– ident: e_1_2_8_69_1
  doi: 10.1038/s41578-022-00483-4
– ident: e_1_2_8_79_1
  doi: 10.1126/scirobotics.abn0495
– ident: e_1_2_8_35_1
  doi: 10.1038/s41467-019-09003-5
– ident: e_1_2_8_59_1
  doi: 10.1016/j.measurement.2013.06.033
– ident: e_1_2_8_46_1
  doi: 10.1016/j.molimm.2014.10.023
– ident: e_1_2_8_47_1
  doi: 10.1046/j.1524-475x.2001.00066.x
– volume-title: Electrochemical Methods Fundamentals and Applications
  year: 2001
  ident: e_1_2_8_63_1
– start-page: 576
  volume-title: 2018 IEEE Int. Conf. Cyborg and Bionic Systems (CBS)
  year: 2018
  ident: e_1_2_8_72_1
  doi: 10.1109/CBS.2018.8612246
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-020-15316-7
– volume-title: A Designer's Guide to Instrumentation Amplifiers
  year: 2000
  ident: e_1_2_8_58_1
– ident: e_1_2_8_1_1
  doi: 10.1039/C7LC00914C
– ident: e_1_2_8_56_1
  doi: 10.1016/S1050-6411(02)00097-4
– start-page: 295
  volume-title: Int. Conf. Intelligent Robotics and Applications
  year: 2022
  ident: e_1_2_8_34_1
  doi: 10.1007/978-3-031-13822-5_26
– ident: e_1_2_8_12_1
  doi: 10.1109/TBME.2015.2465936
– volume: 2
  year: 2013
  ident: e_1_2_8_4_1
  publication-title: Sci. World J.
  doi: 10.1155/2013/896056
– ident: e_1_2_8_15_1
  doi: 10.1016/j.snb.2016.06.076
– ident: e_1_2_8_38_1
  doi: 10.1088/2058-8585/aadb56
– volume-title: Bioimpedance and Bioelectricity Basics
  year: 2011
  ident: e_1_2_8_60_1
– ident: e_1_2_8_54_1
  doi: 10.1016/j.snb.2016.10.005
– volume-title: Applications
  year: 2005
  ident: e_1_2_8_64_1
– ident: e_1_2_8_24_1
  doi: 10.1016/j.cej.2019.03.287
– ident: e_1_2_8_30_1
  doi: 10.1016/j.synthmet.2021.116709
– ident: e_1_2_8_73_1
  doi: 10.1016/j.jsv.2022.117010
– ident: e_1_2_8_31_1
  doi: 10.1021/acsmaterialslett.0c00085
– ident: e_1_2_8_52_1
  doi: 10.5114/pdia.2013.38359
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-022-28027-y
– ident: e_1_2_8_5_1
  doi: 10.1186/s12938-018-0469-5
– ident: e_1_2_8_9_1
  doi: 10.1002/adhm.201700994
– ident: e_1_2_8_53_1
  doi: 10.1186/s40463-017-0210-6
– ident: e_1_2_8_75_1
– start-page: 1
  volume-title: 2020 IEEE SENSORS
  year: 2020
  ident: e_1_2_8_25_1
– ident: e_1_2_8_10_1
  doi: 10.1002/admt.202101637
– ident: e_1_2_8_37_1
  doi: 10.3390/bioengineering3030020
– ident: e_1_2_8_70_1
  doi: 10.1007/978-88-470-2463-2
– ident: e_1_2_8_78_1
  doi: 10.1109/TMRB.2021.3098952
– ident: e_1_2_8_48_1
– ident: e_1_2_8_11_1
  doi: 10.1126/sciadv.aat0491
– ident: e_1_2_8_13_1
  doi: 10.1002/adhm.201300614
– volume-title: Physical Functions of Skin
  year: 1966
  ident: e_1_2_8_65_1
– ident: e_1_2_8_21_1
  doi: 10.1093/cercor/bhab040
– ident: e_1_2_8_55_1
  doi: 10.1109/TIM.2018.2806950
– ident: e_1_2_8_8_1
  doi: 10.1002/admt.202000325
– ident: e_1_2_8_32_1
  doi: 10.1016/j.nanoen.2021.106735
– ident: e_1_2_8_43_1
  doi: 10.1126/sciadv.abb8308
– ident: e_1_2_8_39_1
  doi: 10.3390/nano6090156
– ident: e_1_2_8_74_1
  doi: 10.1002/art.1780300605
– ident: e_1_2_8_80_1
  doi: 10.1149/1.1605419
– ident: e_1_2_8_45_1
  doi: 10.1016/j.tim.2011.11.002
– ident: e_1_2_8_22_1
  doi: 10.1038/s41467-018-05222-4
– ident: e_1_2_8_44_1
  doi: 10.1177/0954411918759801
– ident: e_1_2_8_14_1
  doi: 10.1002/adhm.201600108
– ident: e_1_2_8_41_1
  doi: 10.1016/S0013-4686(02)00065-8
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jbiomech.2010.01.027
– ident: e_1_2_8_40_1
  doi: 10.1016/j.snb.2015.07.111
– ident: e_1_2_8_20_1
  doi: 10.1126/sciadv.1601027
– ident: e_1_2_8_29_1
  doi: 10.1126/sciadv.abd3716
– volume: 1
  start-page: 30
  year: 2005
  ident: e_1_2_8_71_1
  publication-title: A Practical Introduction to Kinesiological Electromyography
– volume-title: Design and Development of Medical Electronic Instrumentation: A Practical Perspective of the Design, Construction, and Test of Medical Devices
  year: 2005
  ident: e_1_2_8_42_1
– ident: e_1_2_8_16_1
  doi: 10.1063/5.0079616
– ident: e_1_2_8_68_1
  doi: 10.1039/C8TA01995A
– year: 2022
  ident: e_1_2_8_23_1
  publication-title: bioRxiv
– ident: e_1_2_8_6_1
  doi: 10.1038/s41467-020-17619-1
– ident: e_1_2_8_26_1
  doi: 10.1016/j.colsurfb.2021.112088
SSID ssj0000651681
Score 2.4326293
Snippet Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2202661
SubjectTerms Bioelectricity
bioelectronics
Computer applications
Conducting polymers
conductive polymers
Electric Impedance
Electrodes
Electromyography
High impedance
Humans
Hydrogels
Hydrogels - chemistry
Implants
neural interfaces
Neuromuscular system
Pick and place tasks
Polymers
Polymers - chemistry
Polystyrene resins
Robot arms
Robot control
Skin
Styrene
Title Pure Conducting Polymer Hydrogels Increase Signal‐to‐Noise of Cutaneous Electrodes by Lowering Skin Interface Impedance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202202661
https://www.ncbi.nlm.nih.gov/pubmed/36867669
https://www.proquest.com/docview/2833509913
https://www.proquest.com/docview/2783497627
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZC6N7GLvPXTc0GOwheIvlRIofQ9rijaQU0kLfjGVJrVkblzSmZD9iv3lHliU7TcsuLyaxhWzrfDo3H31C6FOUcibkIPUFZzpb1dNFAH3pK5plgoOL3-M63zE9ovFp__vZ4KzT-dWqWiqX_Ev28951Jf8jVTgHctWrZP9Bsq5TOAG_Qb5wBAnD8a9kfKyz_-Nirjlbdch_XFyuruSiG6_EojgHq6env646l91Zfg7d-cvCPypyk78fl-AYSl0Ce2D2whHyRnujE71xWkXU_SOvU4Yqhen_DTxs4UBimWttDcFFU0gGTrB5--ZrTqnrt7uGs8DkrGcSDOgyb5cEdQ_Bsm7UK07ysoJa7gxIDA_YVIXXNct15oKErsoVDE-l4UBbEp_QmhLcqmPShh1rKVdJoBdquNs3NL9hkk3FhaYXuKchSO76qsJBSIeUUbNBzB2ubXvpEdomEHaA3twe7U8nM5e1A4ctoMPAsn_2yNf1O-6gx7aPdUdnI3pZD4Yqb-bkGXpahyF4ZDD1HHXk_AV60iKnfIluNbpwgy5cows7dGGLLnwHXbhQ2KELN-jCfIUturBGF3bowg5dr9Dp4cHJOPbrbTr8LGRh4IMWlxBm9BVJFRVKKsqFlBA4CIiOQ8b4MKNMCRHwqCcjHobgFAcq5BDpiiDq0_A12poXc_kW4Z7ihGSKShZxsODZkGUpi9IBDK0KiOAe8u2YJlnNYa-3UrlMDPs2SbQ4EicOD3127a8Ne8uDLfesiJJ6ht8kRK9IhBAqCD300V0G_as_qpkxTKqdasCnJ8xDb4xo3a0sFDxEKln_4RmS0X48df92H-zuHdppptMe2louSvkeXOMl_1Dj9TfTUblD
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pure+Conducting+Polymer+Hydrogels+Increase+Signal-to-Noise+of+Cutaneous+Electrodes+by+Lowering+Skin+Interface+Impedance&rft.jtitle=Advanced+healthcare+materials&rft.au=Roubert+Martinez%2C+Sebastian&rft.au=Le+Floch%2C+Paul&rft.au=Liu%2C+Jia&rft.au=Howe%2C+Robert+D&rft.date=2023-07-01&rft.eissn=2192-2659&rft.volume=12&rft.issue=17&rft.spage=e2202661&rft_id=info:doi/10.1002%2Fadhm.202202661&rft_id=info%3Apmid%2F36867669&rft.externalDocID=36867669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon