Pure Conducting Polymer Hydrogels Increase Signal‐to‐Noise of Cutaneous Electrodes by Lowering Skin Interface Impedance
Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin–electrode interface where they are then sensed as electronic c...
Saved in:
Published in | Advanced healthcare materials Vol. 12; no. 17; pp. e2202661 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin–electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal‐to‐noise ratio arising from the high impedance at the tissue‐to‐electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4‐ethylenedioxy‐thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin–electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin–electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal‐to‐noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram‐based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine.
Pure conducting polymer hydrogels are found to exhibit increased signal‐to‐noise ratio on humans compared to clinical cutaneous electrodes. Isolating the bioelectrochemical relationship between skin and the conducting polymer hydrogels using a novel ex vivo model, this paper concludes that this signal‐to‐noise relationship arises from dramatically reduced skin–interface impedance. The increased signal‐to‐noise ratio is leveraged in a sensitive real‐time robotic neural interface. |
---|---|
AbstractList | Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin–electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal‐to‐noise ratio arising from the high impedance at the tissue‐to‐electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4‐ethylenedioxy‐thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin–electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin–electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal‐to‐noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram‐based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine. Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin-electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal-to-noise ratio arising from the high impedance at the tissue-to-electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4-ethylenedioxy-thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin-electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin-electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal-to-noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram-based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine. Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin-electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal-to-noise ratio arising from the high impedance at the tissue-to-electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4-ethylenedioxy-thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin-electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin-electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal-to-noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram-based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine.Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin-electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal-to-noise ratio arising from the high impedance at the tissue-to-electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4-ethylenedioxy-thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin-electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin-electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal-to-noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram-based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine. Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin–electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal‐to‐noise ratio arising from the high impedance at the tissue‐to‐electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4‐ethylenedioxy‐thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin–electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin–electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal‐to‐noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram‐based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine. Pure conducting polymer hydrogels are found to exhibit increased signal‐to‐noise ratio on humans compared to clinical cutaneous electrodes. Isolating the bioelectrochemical relationship between skin and the conducting polymer hydrogels using a novel ex vivo model, this paper concludes that this signal‐to‐noise relationship arises from dramatically reduced skin–interface impedance. The increased signal‐to‐noise ratio is leveraged in a sensitive real‐time robotic neural interface. |
Author | Roubert Martinez, Sebastian Le Floch, Paul Liu, Jia Howe, Robert D. |
Author_xml | – sequence: 1 givenname: Sebastian orcidid: 0000-0002-0433-5057 surname: Roubert Martinez fullname: Roubert Martinez, Sebastian organization: Harvard University – sequence: 2 givenname: Paul orcidid: 0000-0001-7211-1699 surname: Le Floch fullname: Le Floch, Paul organization: Harvard University – sequence: 3 givenname: Jia surname: Liu fullname: Liu, Jia organization: Harvard University – sequence: 4 givenname: Robert D. orcidid: 0000-0002-1392-227X surname: Howe fullname: Howe, Robert D. email: howe@seas.harvard.edu organization: Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36867669$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd9qFDEUxoNUbK299VIC3niza_7MZCaXZVvdhVUL1euQSU7W1JlkTWYoizc-gs_ok5hl2woFMYSccPh9H8n5nqOjEAMg9JKSOSWEvdX26zBnhJUtBH2CThiVbMZELY8e7hU5Rmc535CyRE1FS5-hYy5a0QghT9CPqykBXsRgJzP6sMFXsd8NkPByZ1PcQJ_xKpgEOgO-9pug-98_f42xHB-jL73o8GIadYA4ZXzZgxlTtJBxt8PreAtpb3n9zYfiMkJy2gBeDVuwOhh4gZ463Wc4u6un6Mu7y8-L5Wz96f1qcb6eGd5wOqs5BSll5Zh2wjpworMAknErBeFN07VGNM5a2kkCsuNccEkd7-pGWCorwU_Rm4PvNsXvE-RRDT4b6PvDsxVrWl7JRrCmoK8foTdxSuXXhWo5r4mUlBfq1R01dQNYtU1-0Gmn7sdagOoAmBRzTuCU8aMefQxj0r5XlKh9gGofoHoIsMjmj2T3zv8UyIPg1vew-w-tzi-WH_5q_wAwba-w |
CitedBy_id | crossref_primary_10_1002_advs_202306424 crossref_primary_10_1016_j_carbpol_2024_123058 crossref_primary_10_1021_acsmaterialslett_3c00938 crossref_primary_10_3390_nano14171398 crossref_primary_10_1021_acsaelm_4c00715 crossref_primary_10_1038_s43246_024_00490_8 crossref_primary_10_1016_j_biomaterials_2024_122624 crossref_primary_10_1021_acsami_3c10663 crossref_primary_10_1002_advs_202308014 crossref_primary_10_1016_j_jclepro_2025_145265 crossref_primary_10_1016_j_matt_2024_05_023 |
Cites_doi | 10.1111/psyp.12536 10.1038/s41467-020-18503-8 10.1039/C8CS00595H 10.1016/j.electacta.2009.10.065 10.1002/aenm.201902007 10.1109/ICORR.2015.7281235 10.1016/j.measen.2021.100044 10.1039/D1TC01578H 10.1073/pnas.1806087115 10.1002/aelm.201500017 10.1021/acs.jchemed.7b00361 10.1016/j.bios.2022.114756 10.1088/1742-6596/90/1/012081 10.1021/acsmaterialslett.0c00309 10.1038/s41578-022-00483-4 10.1126/scirobotics.abn0495 10.1038/s41467-019-09003-5 10.1016/j.measurement.2013.06.033 10.1016/j.molimm.2014.10.023 10.1046/j.1524-475x.2001.00066.x 10.1109/CBS.2018.8612246 10.1038/s41467-020-15316-7 10.1039/C7LC00914C 10.1016/S1050-6411(02)00097-4 10.1007/978-3-031-13822-5_26 10.1109/TBME.2015.2465936 10.1155/2013/896056 10.1016/j.snb.2016.06.076 10.1088/2058-8585/aadb56 10.1016/j.snb.2016.10.005 10.1016/j.cej.2019.03.287 10.1016/j.synthmet.2021.116709 10.1016/j.jsv.2022.117010 10.1021/acsmaterialslett.0c00085 10.5114/pdia.2013.38359 10.1038/s41467-022-28027-y 10.1186/s12938-018-0469-5 10.1002/adhm.201700994 10.1186/s40463-017-0210-6 10.1002/admt.202101637 10.3390/bioengineering3030020 10.1007/978-88-470-2463-2 10.1109/TMRB.2021.3098952 10.1126/sciadv.aat0491 10.1002/adhm.201300614 10.1093/cercor/bhab040 10.1109/TIM.2018.2806950 10.1002/admt.202000325 10.1016/j.nanoen.2021.106735 10.1126/sciadv.abb8308 10.3390/nano6090156 10.1002/art.1780300605 10.1149/1.1605419 10.1016/j.tim.2011.11.002 10.1038/s41467-018-05222-4 10.1177/0954411918759801 10.1002/adhm.201600108 10.1016/S0013-4686(02)00065-8 10.1016/j.jbiomech.2010.01.027 10.1016/j.snb.2015.07.111 10.1126/sciadv.1601027 10.1126/sciadv.abd3716 10.1063/5.0079616 10.1039/C8TA01995A 10.1038/s41467-020-17619-1 10.1016/j.colsurfb.2021.112088 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
DOI | 10.1002/adhm.202202661 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Immunology Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-2659 |
EndPage | n/a |
ExternalDocumentID | 36867669 10_1002_adhm_202202661 ADHM202202661 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation Graduate Research Fellowship Program – fundername: Harvard School of Engineering and Applied Sciences |
GroupedDBID | 05W 0R~ 1OC 33P 53G 8-0 8-1 AAESR AAHHS AAHQN AAIHA AAIPD AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABLJU ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A D-B DCZOG DRFUL DRMAN DRSTM EBD EBS EMOBN G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXMAN MXSTM MY. MY~ O9- OVD P2W PQQKQ ROL SUPJJ SV3 TEORI WBKPD WOHZO WXSBR ZZTAW 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN C45 CITATION EJD GODZA AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c3731-531e9994f2af6dfef6bdee923d960377b8c67fdd1b90e9b336391f3b576d19463 |
ISSN | 2192-2640 2192-2659 |
IngestDate | Thu Jul 10 17:37:00 EDT 2025 Sun Jul 13 02:48:05 EDT 2025 Mon Jul 21 06:00:39 EDT 2025 Tue Jul 01 03:06:51 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Wed Jun 11 08:24:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | neural interfaces skin hydrogels bioelectronics conductive polymers |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3731-531e9994f2af6dfef6bdee923d960377b8c67fdd1b90e9b336391f3b576d19463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0433-5057 0000-0001-7211-1699 0000-0002-1392-227X |
PMID | 36867669 |
PQID | 2833509913 |
PQPubID | 2032434 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2783497627 proquest_journals_2833509913 pubmed_primary_36867669 crossref_citationtrail_10_1002_adhm_202202661 crossref_primary_10_1002_adhm_202202661 wiley_primary_10_1002_adhm_202202661_ADHM202202661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced healthcare materials |
PublicationTitleAlternate | Adv Healthc Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 208 2010; 55 2013; 2 1987; 30 2019; 10 2015; 221 2017; 46 2003; 13 2003; 150 2020; 11 2022; 218 2013; 5 2022; 533 2018; 7 2018; 6 2018; 9 2002; 47 2020; 6 2020; 5 2018; 3 2021; 31 2014; 3 2020; 2 2018; 4 2001 2000 2016; 237 2021; 273 2017; 241 2012; 20 1989 2021; 9 2015; 1 2021; 7 2019; 9 2021; 3 2022; 92 2012 2011 2013; 46 1966; 5 2007; 90 2007 2005 2018; 67 2016; 5 2018; 18 2010; 43 2016; 6 2018; 232 2018; 17 2021; 15 2016; 2 2016; 3 2022 2020 2022; 7 2017; 54 2015; 63 2022; 9 2015; 66 2001; 9 2019; 48 2018; 115 2022; 13 2018 2005; 1 2018; 95 2015 2019; 370 e_1_2_8_28_1 Ison M. (e_1_2_8_77_1) 2015 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Barsoukov E. (e_1_2_8_64_1) 2005 Grimnes S. (e_1_2_8_60_1) 2011 e_1_2_8_3_1 e_1_2_8_5_1 Horowitz P. (e_1_2_8_57_1) 1989 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 Medrano G. (e_1_2_8_61_1) 2007 Kitchin C. (e_1_2_8_58_1) 2000 Xu S. (e_1_2_8_25_1) 2020 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 Asogbon M. G. (e_1_2_8_72_1) 2018 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Prutchi D. (e_1_2_8_42_1) 2005 e_1_2_8_2_1 e_1_2_8_80_1 Luo Y. (e_1_2_8_4_1) 2013; 2 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 Ma H. (e_1_2_8_34_1) 2022 e_1_2_8_37_1 e_1_2_8_79_1 Konrad P. (e_1_2_8_71_1) 2005; 1 Zhou T. (e_1_2_8_23_1) 2022 Allen J. B. (e_1_2_8_63_1) 2001 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 Tregear R. T. (e_1_2_8_65_1) 1966 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – volume: 10 start-page: 1043 year: 2019 publication-title: Nat. Commun. – volume: 6 start-page: 156 year: 2016 publication-title: Nanomaterials – volume: 47 start-page: 2027 year: 2002 publication-title: Electrochim. Acta – year: 2011 – volume: 3 start-page: 563 year: 2021 publication-title: IEEE Trans. Med. Rob. Bionics – volume: 11 start-page: 3823 year: 2020 publication-title: Nat. Commun. – volume: 3 start-page: 1377 year: 2014 publication-title: Adv. Healthcare Mater. – volume: 31 start-page: 3678 year: 2021 publication-title: Cerebral Cortex – year: 2005 – volume: 5 year: 1966 – year: 2001 – year: 1989 – volume: 2 start-page: 478 year: 2020 publication-title: ACS Mater. Lett. – volume: 11 start-page: 1604 year: 2020 publication-title: Nat. Commun. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 533 year: 2022 publication-title: J. Sound Vib. – volume: 1 year: 2015 publication-title: Adv. Electron. Mater. – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – year: 2022 publication-title: bioRxiv – start-page: 260 year: 2007 end-page: 263 – volume: 55 start-page: 6218 year: 2010 publication-title: Electrochim. Acta – volume: 7 year: 2022 publication-title: Sci. Rob. – volume: 63 start-page: 540 year: 2015 publication-title: IEEE Trans. Biomed. Eng. – volume: 13 start-page: 273 year: 2003 publication-title: J. Electromyogr. Kinesiol. – volume: 46 start-page: 1 year: 2017 publication-title: J. Otolaryngol.: ‐Head Neck Surg. – start-page: 1 year: 2020 end-page: 4 – volume: 46 start-page: 3494 year: 2013 publication-title: Measurement – start-page: 935 year: 2022 publication-title: Nat. Rev. Mater. – volume: 273 year: 2021 publication-title: Synth. Met. – volume: 1 start-page: 30 year: 2005 publication-title: A Practical Introduction to Kinesiological Electromyography – volume: 7 year: 2022 publication-title: Adv. Mater. Technol. – volume: 232 start-page: 323 year: 2018 publication-title: Proc. Inst. Mech. Eng., Part H – volume: 48 start-page: 1642 year: 2019 publication-title: Chem. Soc. Rev. – volume: 3 year: 2018 publication-title: Flexible Printed Electron. – volume: 15 year: 2021 publication-title: Meas.: Sens. – volume: 9 year: 2022 publication-title: Appl. Phys. Rev. – volume: 208 year: 2021 publication-title: Colloids Surf., B – volume: 9 start-page: 66 year: 2001 publication-title: Wound Repair Regener. – volume: 150 start-page: E477 year: 2003 publication-title: J. Electrochem. Soc. – volume: 6 year: 2020 publication-title: Sci. Adv. – year: 2000 – volume: 6 start-page: 7162 year: 2018 publication-title: J. Mater. Chem. A – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 90 year: 2007 publication-title: J. Phys.: Conf. Ser. – volume: 20 start-page: 50 year: 2012 publication-title: Trends Microbiol. – volume: 43 start-page: 1573 year: 2010 publication-title: J. Biomech. – volume: 67 start-page: 1900 year: 2018 publication-title: IEEE Trans. Instrum. Meas. – volume: 5 start-page: 1462 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 370 start-page: 1039 year: 2019 publication-title: Chem. Eng. J. – volume: 221 start-page: 1469 year: 2015 publication-title: Sens. Actuators, B – volume: 11 start-page: 4683 year: 2020 publication-title: Nat. Commun. – volume: 5 start-page: 302 year: 2013 publication-title: Adv. Dermatol. Allergol. – start-page: 416 year: 2015 end-page: 421 – volume: 9 start-page: 2740 year: 2018 publication-title: Nat. Commun. – volume: 95 start-page: 197 year: 2018 publication-title: J. Chem. Educ. – year: 2012 – volume: 115 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 2 start-page: 1287 year: 2020 publication-title: ACS Mater. Lett. – volume: 2 year: 2013 publication-title: Sci. World J. – volume: 66 start-page: 14 year: 2015 publication-title: Mol. Immunol. – start-page: 576 year: 2018 end-page: 580 – volume: 54 start-page: 74 year: 2017 publication-title: Psychophysiology – volume: 92 year: 2022 publication-title: Nano Energy – volume: 241 start-page: 1244 year: 2017 publication-title: Sens. Actuators, B – volume: 17 start-page: 38 year: 2018 publication-title: Biomed. Eng. Online – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 18 start-page: 217 year: 2018 publication-title: Lab Chip – volume: 13 start-page: 358 year: 2022 publication-title: Nat. Commun. – volume: 5 year: 2020 publication-title: Adv. Mater. Techol. – volume: 9 year: 2021 publication-title: J. Mater. Chem. C – volume: 30 start-page: 630 year: 1987 publication-title: Arthritis Rheum. – start-page: 295 year: 2022 end-page: 304 – volume: 237 start-page: 49 year: 2016 publication-title: Sens. Actuators, B – volume: 3 start-page: 20 year: 2016 publication-title: Bioengineering – volume: 218 year: 2022 publication-title: Biosens. Bioelectron. – ident: e_1_2_8_7_1 doi: 10.1111/psyp.12536 – ident: e_1_2_8_17_1 doi: 10.1038/s41467-020-18503-8 – ident: e_1_2_8_49_1 doi: 10.1039/C8CS00595H – ident: e_1_2_8_62_1 doi: 10.1016/j.electacta.2009.10.065 – ident: e_1_2_8_67_1 doi: 10.1002/aenm.201902007 – start-page: 416 volume-title: 2015 IEEE Int. Conf. Rehabilitation Robotics (ICORR) year: 2015 ident: e_1_2_8_77_1 doi: 10.1109/ICORR.2015.7281235 – ident: e_1_2_8_36_1 doi: 10.1016/j.measen.2021.100044 – ident: e_1_2_8_76_1 – ident: e_1_2_8_27_1 doi: 10.1039/D1TC01578H – ident: e_1_2_8_51_1 doi: 10.1073/pnas.1806087115 – ident: e_1_2_8_50_1 doi: 10.1002/aelm.201500017 – ident: e_1_2_8_66_1 doi: 10.1021/acs.jchemed.7b00361 – start-page: 260 volume-title: 13th Int. Conf. Electrical Bioimpedance and the 8th Conf. Electrical Impedance Tomography year: 2007 ident: e_1_2_8_61_1 – ident: e_1_2_8_28_1 doi: 10.1016/j.bios.2022.114756 – volume-title: The Art of Electronics year: 1989 ident: e_1_2_8_57_1 – ident: e_1_2_8_2_1 doi: 10.1088/1742-6596/90/1/012081 – ident: e_1_2_8_33_1 doi: 10.1021/acsmaterialslett.0c00309 – ident: e_1_2_8_69_1 doi: 10.1038/s41578-022-00483-4 – ident: e_1_2_8_79_1 doi: 10.1126/scirobotics.abn0495 – ident: e_1_2_8_35_1 doi: 10.1038/s41467-019-09003-5 – ident: e_1_2_8_59_1 doi: 10.1016/j.measurement.2013.06.033 – ident: e_1_2_8_46_1 doi: 10.1016/j.molimm.2014.10.023 – ident: e_1_2_8_47_1 doi: 10.1046/j.1524-475x.2001.00066.x – volume-title: Electrochemical Methods Fundamentals and Applications year: 2001 ident: e_1_2_8_63_1 – start-page: 576 volume-title: 2018 IEEE Int. Conf. Cyborg and Bionic Systems (CBS) year: 2018 ident: e_1_2_8_72_1 doi: 10.1109/CBS.2018.8612246 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-020-15316-7 – volume-title: A Designer's Guide to Instrumentation Amplifiers year: 2000 ident: e_1_2_8_58_1 – ident: e_1_2_8_1_1 doi: 10.1039/C7LC00914C – ident: e_1_2_8_56_1 doi: 10.1016/S1050-6411(02)00097-4 – start-page: 295 volume-title: Int. Conf. Intelligent Robotics and Applications year: 2022 ident: e_1_2_8_34_1 doi: 10.1007/978-3-031-13822-5_26 – ident: e_1_2_8_12_1 doi: 10.1109/TBME.2015.2465936 – volume: 2 year: 2013 ident: e_1_2_8_4_1 publication-title: Sci. World J. doi: 10.1155/2013/896056 – ident: e_1_2_8_15_1 doi: 10.1016/j.snb.2016.06.076 – ident: e_1_2_8_38_1 doi: 10.1088/2058-8585/aadb56 – volume-title: Bioimpedance and Bioelectricity Basics year: 2011 ident: e_1_2_8_60_1 – ident: e_1_2_8_54_1 doi: 10.1016/j.snb.2016.10.005 – volume-title: Applications year: 2005 ident: e_1_2_8_64_1 – ident: e_1_2_8_24_1 doi: 10.1016/j.cej.2019.03.287 – ident: e_1_2_8_30_1 doi: 10.1016/j.synthmet.2021.116709 – ident: e_1_2_8_73_1 doi: 10.1016/j.jsv.2022.117010 – ident: e_1_2_8_31_1 doi: 10.1021/acsmaterialslett.0c00085 – ident: e_1_2_8_52_1 doi: 10.5114/pdia.2013.38359 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-022-28027-y – ident: e_1_2_8_5_1 doi: 10.1186/s12938-018-0469-5 – ident: e_1_2_8_9_1 doi: 10.1002/adhm.201700994 – ident: e_1_2_8_53_1 doi: 10.1186/s40463-017-0210-6 – ident: e_1_2_8_75_1 – start-page: 1 volume-title: 2020 IEEE SENSORS year: 2020 ident: e_1_2_8_25_1 – ident: e_1_2_8_10_1 doi: 10.1002/admt.202101637 – ident: e_1_2_8_37_1 doi: 10.3390/bioengineering3030020 – ident: e_1_2_8_70_1 doi: 10.1007/978-88-470-2463-2 – ident: e_1_2_8_78_1 doi: 10.1109/TMRB.2021.3098952 – ident: e_1_2_8_48_1 – ident: e_1_2_8_11_1 doi: 10.1126/sciadv.aat0491 – ident: e_1_2_8_13_1 doi: 10.1002/adhm.201300614 – volume-title: Physical Functions of Skin year: 1966 ident: e_1_2_8_65_1 – ident: e_1_2_8_21_1 doi: 10.1093/cercor/bhab040 – ident: e_1_2_8_55_1 doi: 10.1109/TIM.2018.2806950 – ident: e_1_2_8_8_1 doi: 10.1002/admt.202000325 – ident: e_1_2_8_32_1 doi: 10.1016/j.nanoen.2021.106735 – ident: e_1_2_8_43_1 doi: 10.1126/sciadv.abb8308 – ident: e_1_2_8_39_1 doi: 10.3390/nano6090156 – ident: e_1_2_8_74_1 doi: 10.1002/art.1780300605 – ident: e_1_2_8_80_1 doi: 10.1149/1.1605419 – ident: e_1_2_8_45_1 doi: 10.1016/j.tim.2011.11.002 – ident: e_1_2_8_22_1 doi: 10.1038/s41467-018-05222-4 – ident: e_1_2_8_44_1 doi: 10.1177/0954411918759801 – ident: e_1_2_8_14_1 doi: 10.1002/adhm.201600108 – ident: e_1_2_8_41_1 doi: 10.1016/S0013-4686(02)00065-8 – ident: e_1_2_8_3_1 doi: 10.1016/j.jbiomech.2010.01.027 – ident: e_1_2_8_40_1 doi: 10.1016/j.snb.2015.07.111 – ident: e_1_2_8_20_1 doi: 10.1126/sciadv.1601027 – ident: e_1_2_8_29_1 doi: 10.1126/sciadv.abd3716 – volume: 1 start-page: 30 year: 2005 ident: e_1_2_8_71_1 publication-title: A Practical Introduction to Kinesiological Electromyography – volume-title: Design and Development of Medical Electronic Instrumentation: A Practical Perspective of the Design, Construction, and Test of Medical Devices year: 2005 ident: e_1_2_8_42_1 – ident: e_1_2_8_16_1 doi: 10.1063/5.0079616 – ident: e_1_2_8_68_1 doi: 10.1039/C8TA01995A – year: 2022 ident: e_1_2_8_23_1 publication-title: bioRxiv – ident: e_1_2_8_6_1 doi: 10.1038/s41467-020-17619-1 – ident: e_1_2_8_26_1 doi: 10.1016/j.colsurfb.2021.112088 |
SSID | ssj0000651681 |
Score | 2.4326293 |
Snippet | Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2202661 |
SubjectTerms | Bioelectricity bioelectronics Computer applications Conducting polymers conductive polymers Electric Impedance Electrodes Electromyography High impedance Humans Hydrogels Hydrogels - chemistry Implants neural interfaces Neuromuscular system Pick and place tasks Polymers Polymers - chemistry Polystyrene resins Robot arms Robot control Skin Styrene |
Title | Pure Conducting Polymer Hydrogels Increase Signal‐to‐Noise of Cutaneous Electrodes by Lowering Skin Interface Impedance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202202661 https://www.ncbi.nlm.nih.gov/pubmed/36867669 https://www.proquest.com/docview/2833509913 https://www.proquest.com/docview/2783497627 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZC6N7GLvPXTc0GOwheIvlRIofQ9rijaQU0kLfjGVJrVkblzSmZD9iv3lHliU7TcsuLyaxhWzrfDo3H31C6FOUcibkIPUFZzpb1dNFAH3pK5plgoOL3-M63zE9ovFp__vZ4KzT-dWqWiqX_Ev28951Jf8jVTgHctWrZP9Bsq5TOAG_Qb5wBAnD8a9kfKyz_-Nirjlbdch_XFyuruSiG6_EojgHq6env646l91Zfg7d-cvCPypyk78fl-AYSl0Ce2D2whHyRnujE71xWkXU_SOvU4Yqhen_DTxs4UBimWttDcFFU0gGTrB5--ZrTqnrt7uGs8DkrGcSDOgyb5cEdQ_Bsm7UK07ysoJa7gxIDA_YVIXXNct15oKErsoVDE-l4UBbEp_QmhLcqmPShh1rKVdJoBdquNs3NL9hkk3FhaYXuKchSO76qsJBSIeUUbNBzB2ubXvpEdomEHaA3twe7U8nM5e1A4ctoMPAsn_2yNf1O-6gx7aPdUdnI3pZD4Yqb-bkGXpahyF4ZDD1HHXk_AV60iKnfIluNbpwgy5cows7dGGLLnwHXbhQ2KELN-jCfIUturBGF3bowg5dr9Dp4cHJOPbrbTr8LGRh4IMWlxBm9BVJFRVKKsqFlBA4CIiOQ8b4MKNMCRHwqCcjHobgFAcq5BDpiiDq0_A12poXc_kW4Z7ihGSKShZxsODZkGUpi9IBDK0KiOAe8u2YJlnNYa-3UrlMDPs2SbQ4EicOD3127a8Ne8uDLfesiJJ6ht8kRK9IhBAqCD300V0G_as_qpkxTKqdasCnJ8xDb4xo3a0sFDxEKln_4RmS0X48df92H-zuHdppptMe2louSvkeXOMl_1Dj9TfTUblD |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pure+Conducting+Polymer+Hydrogels+Increase+Signal-to-Noise+of+Cutaneous+Electrodes+by+Lowering+Skin+Interface+Impedance&rft.jtitle=Advanced+healthcare+materials&rft.au=Roubert+Martinez%2C+Sebastian&rft.au=Le+Floch%2C+Paul&rft.au=Liu%2C+Jia&rft.au=Howe%2C+Robert+D&rft.date=2023-07-01&rft.eissn=2192-2659&rft.volume=12&rft.issue=17&rft.spage=e2202661&rft_id=info:doi/10.1002%2Fadhm.202202661&rft_id=info%3Apmid%2F36867669&rft.externalDocID=36867669 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon |