Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques
Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not ex...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 43; pp. e2303031 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202303031 |
Cover
Abstract | Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well‐alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd‐based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser‐based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Bimetallic Nanoalloys catalysts are strikingly popular for green energy production and storage. Synthetic methods such as chemical reduction, vapor deposition, pyrolysis, laser ablation, etc., can improve the alloy catalytic activity for hydrogen evolution reactions, oxygen reduction reactions, oxygen evolution reactions, and alcohol oxidation reactions. In combination with transition and other metals, Nobel metals can create highly efficient electrocatalysts. |
---|---|
AbstractList | Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well‐alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd‐based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser‐based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Bimetallic Nanoalloys catalysts are strikingly popular for green energy production and storage. Synthetic methods such as chemical reduction, vapor deposition, pyrolysis, laser ablation, etc., can improve the alloy catalytic activity for hydrogen evolution reactions, oxygen reduction reactions, oxygen evolution reactions, and alcohol oxidation reactions. In combination with transition and other metals, Nobel metals can create highly efficient electrocatalysts. Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well‐alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd‐based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser‐based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed. Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed. |
Author | Li, Baojun Mehdi, Sehrish Wei, Huijuan Shen, Ruofan Wu, Xianli Ashraf, Saima Liu, Yanyan Liu, Tao Zhang, Huanhuan |
Author_xml | – sequence: 1 givenname: Saima surname: Ashraf fullname: Ashraf, Saima organization: Zhengzhou University – sequence: 2 givenname: Yanyan surname: Liu fullname: Liu, Yanyan email: lyycarbon@henau.edu.cn organization: Henan Agricultural University – sequence: 3 givenname: Huijuan surname: Wei fullname: Wei, Huijuan organization: Zhengzhou University – sequence: 4 givenname: Ruofan surname: Shen fullname: Shen, Ruofan organization: Zhengzhou University – sequence: 5 givenname: Huanhuan surname: Zhang fullname: Zhang, Huanhuan organization: Zhengzhou University – sequence: 6 givenname: Xianli surname: Wu fullname: Wu, Xianli organization: Zhengzhou University – sequence: 7 givenname: Sehrish surname: Mehdi fullname: Mehdi, Sehrish organization: Zhengzhou University – sequence: 8 givenname: Tao surname: Liu fullname: Liu, Tao organization: National Center for Nanoscience and Technology – sequence: 9 givenname: Baojun orcidid: 0000-0001-8325-3772 surname: Li fullname: Li, Baojun email: lbjfcl@zzu.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37356067$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUlPHDEQhS1ExBauHCNLuXCZiZfG7eZGRkAiDRAFcrY87uqMkdsmtpuk-fXxZFgkJBT54NLT98rlV7to0wcPCB1QMqWEsE-pd27KCOOkHLqBdqigfCIkazafa0q20W5Kt6QQrKq30Dav-ZEgot5Bfz7bHrJ2zhp8qX0oVRjxTBdpTDnhLkR8HgE8PvUQf474WwztYLIN_hiftPfaG0jYenw9-ryEZBP-HoZcNO1bPFvqqE2GaB_0yoJvwCy9_TVAeo_eddol2H-899CPs9Ob2ZfJ_Or86-xkPjFlSDqpFkwbWXWUESK4qBohBTmqGs5M13SMdwsASesWWigqoYwa3QpDDBgJsmn4Hjpc972LYfVuVr1NBpzTHsKQFCtR1aSSsi7ox1fobRiiL9MVqqQoBa9IoT48UsOih1bdRdvrOKqnTAtQrQETQ0oROmVs_vf9HLV1ihK1Wp1arU49r67Ypq9sT53fNDRrw2_rYPwPra4v5vMX7191x6ye |
CitedBy_id | crossref_primary_10_1016_j_jssc_2024_124702 crossref_primary_10_1002_adma_202412337 crossref_primary_10_1016_j_apsusc_2025_162936 crossref_primary_10_1021_acs_nanolett_4c05961 crossref_primary_10_1002_sstr_202400501 crossref_primary_10_1016_j_ijhydene_2024_08_248 crossref_primary_10_1002_ange_202409001 crossref_primary_10_1016_j_apsusc_2025_162713 crossref_primary_10_1016_j_clce_2024_100137 crossref_primary_10_1016_j_ijhydene_2025_01_187 crossref_primary_10_1016_j_jechem_2025_03_009 crossref_primary_10_1002_batt_202400418 crossref_primary_10_1021_acs_nanolett_4c03629 crossref_primary_10_1016_j_cej_2024_154725 crossref_primary_10_1016_j_jwpe_2024_106706 crossref_primary_10_3390_molecules29020398 crossref_primary_10_1016_j_ijhydene_2025_01_303 crossref_primary_10_3390_molecules29061342 crossref_primary_10_1021_acsami_4c19069 crossref_primary_10_1039_D4AN01017E crossref_primary_10_26599_EMD_2023_9370008 crossref_primary_10_1007_s11426_024_2136_1 crossref_primary_10_1016_j_jcis_2024_08_167 crossref_primary_10_1021_acs_langmuir_4c02023 crossref_primary_10_1016_j_jelechem_2025_119083 crossref_primary_10_1002_anie_202409001 crossref_primary_10_3390_ijms241914431 crossref_primary_10_1002_aoc_7740 crossref_primary_10_1016_j_apsusc_2025_163025 crossref_primary_10_1039_D4VA00241E crossref_primary_10_1039_D4TA03527E crossref_primary_10_1039_D3NA00152K |
Cites_doi | 10.1021/cs400621p 10.1016/j.susc.2006.02.016 10.1016/j.electacta.2013.02.130 10.1016/j.jcat.2012.12.030 10.1021/ie020351h 10.1021/acs.langmuir.9b03392 10.1016/j.molcata.2014.05.034 10.1016/j.ijhydene.2016.05.239 10.1016/j.jcis.2009.06.006 10.1021/acs.accounts.9b00172 10.1142/S1793292012300058 10.1016/j.jpowsour.2019.05.010 10.1016/j.jphotobiol.2020.112025 10.1021/nl102025s 10.1016/j.cattod.2015.09.034 10.1007/s11051-013-1994-6 10.1063/1.3224886 10.1016/j.electacta.2018.07.109 10.1016/j.molliq.2022.120120 10.1039/c2cs35188a 10.1021/acs.chemmater.0c01923 10.1021/ie001047w 10.1016/S0360-0564(02)45013-4 10.1039/D0NR07632E 10.1016/j.carbpol.2016.09.008 10.1016/j.apcatb.2021.120094 10.1126/sciadv.aba9731 10.1038/nmat2574 10.1021/jp0043975 10.1002/9781119188230 10.1021/nn506721f 10.1021/acssuschemeng.8b04698 10.1021/acscatal.6b02772 10.1016/j.ultsonch.2019.104804 10.1039/C8CP06701E 10.1021/jp055467g 10.1002/anie.201402986 10.1039/C7TA06737B 10.1021/acsami.9b14598 10.1038/s41467-019-12859-2 10.1016/j.elspec.2018.03.002 10.1016/j.cattod.2010.10.018 10.1021/acssuschemeng.8b05245 10.1016/j.apcata.2009.07.031 10.1021/acs.chemmater.7b04307 10.1007/s00339-018-2348-0 10.1016/j.ijhydene.2020.02.019 10.1021/acscatal.7b04150 10.1002/adma.201805833 10.1021/acssuschemeng.7b03572 10.1021/acsami.7b01241 10.1016/j.apcatb.2016.04.046 10.1016/j.carbpol.2019.01.096 10.1016/j.partic.2018.01.005 10.1111/j.1478-4408.1986.tb01058.x 10.1021/nl300033e 10.1021/ar960143j 10.1016/j.ultsonch.2019.05.023 10.1016/j.apsusc.2020.146719 10.1016/j.scitotenv.2016.03.042 10.1016/j.apsusc.2019.144461 10.1007/s12274-019-2539-9 10.1021/acscatal.5b01011 10.1016/j.apcata.2013.07.006 10.1016/j.apcatb.2018.05.019 10.1038/s41467-020-17975-y 10.1021/acscatal.8b03485 10.3390/cryst6080087 10.1021/jp805949r 10.1002/anie.201913910 10.1021/acsami.5b01541 10.1007/s40097-020-00366-6 10.1016/S1381-1169(97)00259-8 10.1039/C8TA01698D 10.1021/acs.energyfuels.2c00565 10.1016/j.apcatb.2011.07.039 10.1039/C9DT02943E 10.1039/C6NR00231E 10.1021/ja4124658 10.1039/c3cp50816a 10.1021/nn100949z 10.1039/C4CY00976B 10.1016/j.nantod.2008.10.010 10.1016/j.ijcard.2004.04.006 10.1021/j100203a030 10.1016/j.apcata.2019.117371 10.1021/la500811n 10.1016/j.jcat.2008.06.010 10.1021/acscatal.8b02794 10.1021/acs.accounts.7b00078 10.1186/s11671-016-1773-2 10.1063/1.1141908 10.1002/adfm.202000255 10.1021/jacs.1c00539 10.1016/j.apsusc.2020.145486 10.1038/s41467-020-18076-6 10.1039/D2NJ01761J 10.1039/C6NR08895C 10.1021/la300813z 10.1016/j.ijhydene.2019.12.155 10.1039/D0NJ04512H 10.1016/j.jpowsour.2008.09.039 10.1021/cr040090g 10.1073/pnas.1001367107 10.1016/j.jclepro.2017.05.176 10.1016/j.jssc.2018.03.030 10.1021/acsnano.7b06353 10.1016/j.apsusc.2005.09.065 10.1016/j.snb.2016.03.009 10.1016/j.cej.2022.137335 10.1039/C5CP00274E 10.1016/j.apmt.2019.100526 10.1002/anie.201902859 10.1021/acssuschemeng.8b00815 10.1016/j.jcis.2018.03.039 10.1021/acs.chemmater.9b01093 10.1021/nl101567m 10.1021/acssuschemeng.8b04929 10.1016/j.jallcom.2017.11.322 10.1002/cphc.202100021 10.1021/nl070694a 10.1021/am507764u 10.1038/s41598-020-68472-7 10.1021/ja406091p 10.1021/acs.chemmater.6b02346 10.1016/j.jcis.2018.01.060 10.1016/j.elecom.2010.03.046 10.1002/9783527623013 10.1038/s41467-021-22948-w 10.1039/C6EE02002J 10.1021/acscatal.9b04302 10.1017/S1431927612000104 10.1016/j.pmatsci.2018.01.004 10.1021/nl2045588 10.1021/acs.chemrev.0c00436 10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z 10.1021/jacs.9b10813 10.1126/science.1120560 10.1006/jcat.1999.2635 10.1021/acscatal.7b01735 10.1002/anie.200454216 10.1038/s41467-022-34444-w 10.1021/acscatal.6b01275 10.1021/acscatal.5b00830 10.1371/journal.pmed.0020097 10.1016/j.mcat.2017.09.004 10.1016/j.powtec.2014.08.017 10.1021/ja202655j 10.1016/j.jpowsour.2020.227972 10.1021/ja408645b 10.1002/smll.202203126 10.1016/j.jallcom.2017.03.241 10.1007/s00339-009-5451-4 10.1088/0957-4484/18/38/385604 10.1021/jacs.5b04641 10.1016/j.apcata.2018.03.014 10.1016/S1381-1169(00)00258-2 10.1006/jcat.1998.2343 10.1002/adma.201703798 10.1002/anie.202008962 10.1116/1.5000587 10.1021/acsnano.7b07504 10.1016/j.jcis.2022.08.050 10.1016/j.molcata.2011.05.023 10.1021/ja077303e 10.1021/acscentsci.9b01110 10.1016/j.ijhydene.2018.12.004 10.1166/jnn.2011.4989 10.1038/s41467-019-11848-9 10.1016/j.electacta.2017.01.145 10.1016/j.apsusc.2006.05.089 10.1021/acsenergylett.9b02374 10.1039/c2jm32397d 10.1016/j.arabjc.2010.09.027 10.1016/j.jiec.2019.12.008 10.3390/ma12203326 10.1002/chem.201904229 10.1039/c2cs35201j 10.1007/s10853-020-05277-z 10.1126/science.aao6538 10.1126/science.aaw7493 10.1038/s41467-018-06043-1 10.1002/adfm.202100883 10.1016/j.apcatb.2018.07.031 10.1002/crat.201100125 10.1021/bk-1992-0481 10.1039/B714761A 10.1002/sca.1998.4950200104 10.1016/j.cattod.2017.01.011 10.1021/acscentsci.8b00426 10.1021/acsnano.8b02444 10.1021/acs.nanolett.8b02024 10.1007/s42649-019-0003-7 10.1126/science.aan5412 10.1007/s12678-017-0359-9 10.1146/annurev-chembioeng-080615-034503 10.1002/cvde.200806725 10.3390/coatings6040054 10.1021/acscatal.6b02767 10.1109/NAP.2016.7757309 10.1016/j.catcom.2014.08.009 10.1021/acscatal.7b03795 10.1021/acscatal.7b01896 10.1039/C8NR02278J 10.1016/j.apcata.2016.06.022 10.1016/j.jcat.2011.04.003 10.1016/j.ijhydene.2014.11.128 10.1021/jacs.5b08596 10.1016/B978-0-12-800251-3.00002-X 10.1016/j.pmatsci.2019.100591 10.1002/9781118482568 10.1016/j.jcat.2012.05.003 10.1016/j.apcata.2018.02.005 10.1021/jp710010f 10.1007/978-3-030-12057-3 10.1038/s41467-020-18430-8 10.1016/j.ijhydene.2016.07.160 10.1002/adma.201705698 10.1021/ja8061425 10.1107/S1600576717001753 10.1002/cctc.202000443 10.3390/ma13163485 10.1080/14686996.2018.1542926 10.1107/S0021889808001684 10.1039/c2cs35296f 10.3390/en12214027 10.1039/C9RA03254A 10.1016/j.colsurfa.2017.11.009 10.1021/acs.langmuir.8b01838 10.1002/celc.201700901 10.1088/1361-6528/aaf9e8 10.1021/nn700021x 10.1016/S0926-860X(99)00330-0 10.1002/adma.201600469 10.1021/cs300187z 10.1021/acscatal.8b00140 10.1007/s10562-007-9344-x 10.1016/j.jhazmat.2008.04.027 10.1016/j.matlet.2011.06.036 10.1016/j.jcis.2018.11.038 10.1002/adma.201605997 10.1038/s41586-019-1603-7 10.1021/acs.chemrev.8b00114 10.1016/j.ijhydene.2019.09.213 10.1016/j.colsurfa.2016.05.059 10.1002/adma.202006034 10.1631/jzus.A1700257 10.1039/C6TA02748B 10.1021/la401839m 10.1021/acscatal.6b00520 10.1007/s10562-005-7429-y 10.1016/j.elecom.2006.02.020 10.1002/advs.201600476 10.1063/1.5128740 10.1016/j.jcis.2017.05.088 10.1021/acsaem.8b00790 10.1039/C9NR05835D 10.1021/acssuschemeng.7b02754 10.1016/j.micron.2018.04.011 10.1002/9781119417651 10.1039/D0EE03915B 10.1246/bcsj.20160333 10.1021/jacs.1c08644 10.1002/adma.201104951 10.1002/anie.200803477 10.1039/D0CC06745H 10.1021/acs.chemrev.6b00211 10.1021/cr100449n 10.1021/nn2007496 10.1016/j.ijhydene.2013.12.096 10.1016/j.powtec.2018.07.083 10.1002/bit.23293 10.1021/jacs.0c05140 10.1007/s12274-016-1345-x 10.1039/c2pp25188d 10.1016/j.colsurfa.2005.07.029 10.1016/j.apcatb.2017.06.088 10.1016/j.electacta.2016.12.123 10.1016/j.nantod.2012.08.003 10.1016/j.ceramint.2020.07.196 10.1021/jp907059q 10.1016/j.electacta.2018.03.169 10.1021/cm103661q 10.1039/c3ta01664a 10.1007/s12274-020-2666-3 10.1021/nn900242v 10.1021/jacs.1c00656 10.1002/adma.201003695 10.1016/j.jechem.2022.07.017 10.1088/2631-7990/ab83e0 10.1021/acsbiomaterials.7b00040 10.1126/science.aau4414 10.1021/ja209044g 10.1016/j.cej.2018.10.213 10.1002/aenm.201903271 10.1021/jacs.2c07844 10.1016/j.apcata.2010.10.015 10.1016/j.jechem.2018.02.012 10.1039/D0TA02496A 10.1039/c0cs90031a 10.1039/C5CC05331E 10.1016/j.jiec.2008.04.008 10.1080/09506608.2016.1180020 10.1039/D0CC03381B 10.1021/acscatal.1c01761 10.1021/cs500415e 10.1016/j.jcis.2020.04.041 10.1016/j.jcat.2008.10.003 10.1016/j.matt.2019.11.006 10.1016/j.jcat.2006.07.024 10.1016/j.apcata.2015.03.004 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202303031 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 37356067 10_1002_smll_202303031 SMLL202303031 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22279118; 31901272; 22075254 – fundername: National Natural Science Foundation of China grantid: 31901272 – fundername: National Natural Science Foundation of China grantid: 22279118 – fundername: National Natural Science Foundation of China grantid: 22075254 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 LH4 |
ID | FETCH-LOGICAL-c3731-4b2ac84f120063649686054932cf9f23fbee817dede5490121cad6c0cec8e8993 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Sep 05 04:02:13 EDT 2025 Fri Jul 25 12:11:47 EDT 2025 Thu May 22 04:23:42 EDT 2025 Tue Jul 01 02:54:36 EDT 2025 Thu Apr 24 22:53:19 EDT 2025 Wed Jan 22 16:14:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | hydrogen evolution reaction (HER) nanoparticles catalyst oxygen evolution reaction (OER) oxygen reduction reaction (ORR) bimetallic nanoalloy |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-4b2ac84f120063649686054932cf9f23fbee817dede5490121cad6c0cec8e8993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8325-3772 |
PMID | 37356067 |
PQID | 2881086340 |
PQPubID | 1046358 |
PageCount | 48 |
ParticipantIDs | proquest_miscellaneous_2829704887 proquest_journals_2881086340 pubmed_primary_37356067 crossref_citationtrail_10_1002_smll_202303031 crossref_primary_10_1002_smll_202303031 wiley_primary_10_1002_smll_202303031_SMLL202303031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 69 2011; 115 2010; 98 2015; 269 2019; 11 2019; 10 2019; 12 2008; 108 2020; 13 2012; 18 2020; 12 2020; 11 2020; 10 2012; 12 2017; 157 2012; 11 2017; 710 2020; 18 2009; 95 2015; 137 2018; 338 2019; 21 2015; 497 2013; 117 2019; 28 2016; 41 2017; 162 2012; 28 2008; 112 2012; 24 2012; 22 2010; 4 2004; 43 2007; 18 2016; 19 2019; 31 2019; 30 2020; 142 2013; 467 2013; 100 2006; 110 2020; 36 2020; 32 2016; 565 2008; 121 2011; 5 1998; 131 2000; 192 2016; 4 2017; 50 2016; 6 2016; 7 2021; 56 2018; 238 2018; 359 2020; 152 2020; 30 2019; 44 2018; 112 2018; 236 2019; 48 2008; 47 2019; 49 2020; 26 2008; 258 2008; 41 2018; 94 2005; 2 2022; 628 2016; 28 2016; 8 2008; 130 2016; 9 2012; 41 2013; 29 2019; 52 2020; 121 2019; 57 2020; 60 2018; 522 2019; 58 2006; 253 2020; 59 2006; 252 2020; 56 2008; 1 2017; 358 1992; 96 2001; 105 2020; 8 2020; 6 2013; 15 2014; 4 2020; 2 2002; 41 2002; 42 2013; 13 2014; 57 2016; 231 2020; 46 2000; 164 2016; 116 2018; 538 2020; 45 2020; 44 2021 2009; 11 95 2006; 243 2017; 218 2015; 5 2021; 3 2015; 4 2019; 429 2018; 306 2020; 83 2006; 273 2008 2013; 300 2020; 107 2017; 29 2015; 9 2015; 7 2017; 229 2011; 108 2011; 107 2018; 557 2020; 591 2021 2020 2017; 11 2017; 10 2018; 555 2017; 12 2019 2018 2009; 8 2017 2016 2019; 537 2016; 138 2014 2009; 4 2013 2009; 3 2017; 225 2001; 2001 2018; 285 2010; 12 2010; 10 2013; 1 2010; 107 2016; 265 2009; 113 2018; 41 2008; 185 2014; 136 1990; 61 2018; 7 2018; 6 2018; 9 2018; 8 1986; 102 2012; 134 2018; 4 2018; 735 2018; 1 2005; 102 1999; 182 2010; 114 2005; 104 2005; 105 1986 2022; 36 2007; 7 2011; 65 2018; 30 2020; 574 2020; 455 2020; 212 2018; 34 2006; 600 2017; 442 2007; 1 2009; 367 2022; 446 2009; 15 2018; 36 2019; 7 2018; 29 2019; 9 2019; 5 2015; 51 2019; 1 2010; 39 2015; 54 2019; 102 2014; 392 1992 1999; 188 2021; 143 2009; 338 2012; 109 2018; 19 2018; 18 2012; 112 1997; 30 2022; 13 2019; 212 2018; 516 2014; 39 2018; 12 2014; 30 2018; 10 2019; 574 2022; 18 2018; 362 2017; 5 2017; 7 2018; 122 2017; 8 2017; 3 2017; 4 2021; 22 2000; 45 2016; 504 2019; 366 2011; 11 2019; 125 2011; 13 2011; 392 2017; 9 2020; 527 2008; 260 2022; 365 2009; 52 2021; 31 2015; 40 2012; 292 2016; 198 2022; 74 2019; 119 2009; 161 2011; 23 2011; 281 2011; 164 2019; 231 2018; 262 2015; 17 2008; 14 2022; 46 2006; 8 2016; 523 1998; 20 2020; 504 2019; 142 2006; 311 2022; 144 2021; 14 2017; 505 2012; 2 2017; 90 2021; 12 2021; 11 2018; 271 2020; 511 2021; 291 2019; 377 2013; 135 2016; 61 2011; 46 2012; 7 2012; 4 2012; 5 Boddolla S. (e_1_2_10_120_1) 2018; 7 e_1_2_10_271_1 e_1_2_10_339_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_210_1 e_1_2_10_233_1 e_1_2_10_279_1 e_1_2_10_294_1 e_1_2_10_158_1 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 Radillo‐Díaz A. (e_1_2_10_278_1) 2009; 52 e_1_2_10_304_1 e_1_2_10_327_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_260_1 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_245_1 e_1_2_10_268_1 e_1_2_10_283_1 Behera A. (e_1_2_10_136_1) 2020 e_1_2_10_330_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_338_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_315_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_272_1 e_1_2_10_41_1 e_1_2_10_211_1 e_1_2_10_257_1 e_1_2_10_295_1 e_1_2_10_234_1 e_1_2_10_341_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_326_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_303_1 e_1_2_10_261_1 e_1_2_10_269_1 e_1_2_10_200_1 e_1_2_10_246_1 e_1_2_10_284_1 e_1_2_10_223_1 e_1_2_10_148_1 e_1_2_10_337_1 e_1_2_10_64_1 Burda C. (e_1_2_10_69_1) 2005; 105 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_87_1 e_1_2_10_314_1 e_1_2_10_26_1 e_1_2_10_250_1 e_1_2_10_273_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_258_1 e_1_2_10_212_1 e_1_2_10_235_1 e_1_2_10_296_1 e_1_2_10_340_1 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 Kang B. (e_1_2_10_194_1) 2021; 69 e_1_2_10_198_1 e_1_2_10_325_1 e_1_2_10_175_1 e_1_2_10_262_1 e_1_2_10_30_1 e_1_2_10_247_1 e_1_2_10_201_1 e_1_2_10_224_1 e_1_2_10_285_1 Ferrando R. (e_1_2_10_121_1) 2016 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_336_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_141_1 Liu D. (e_1_2_10_184_1) 2019; 102 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_313_1 e_1_2_10_274_1 e_1_2_10_43_1 e_1_2_10_251_1 e_1_2_10_20_1 e_1_2_10_236_1 e_1_2_10_259_1 e_1_2_10_213_1 e_1_2_10_297_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_301_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_176_1 e_1_2_10_324_1 e_1_2_10_263_1 e_1_2_10_240_1 e_1_2_10_31_1 e_1_2_10_248_2 e_1_2_10_225_1 e_1_2_10_202_1 e_1_2_10_286_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_312_1 e_1_2_10_335_1 e_1_2_10_104_1 e_1_2_10_127_1 Hugon A. (e_1_2_10_302_1) 2010; 114 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 Choi B.‐S. (e_1_2_10_248_1) 2021; 11 e_1_2_10_89_1 e_1_2_10_252_1 e_1_2_10_275_1 e_1_2_10_298_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_237_1 e_1_2_10_290_1 Wu K.‐L. (e_1_2_10_113_1) 2011; 115 Gunashekar G. (e_1_2_10_219_1) 2015; 4 Wang M. (e_1_2_10_256_1) 2019; 11 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 Ramachandran K. (e_1_2_10_153_1) 2020 e_1_2_10_2_1 e_1_2_10_300_1 e_1_2_10_323_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_241_1 e_1_2_10_264_1 e_1_2_10_287_1 e_1_2_10_308_1 e_1_2_10_32_1 Yey F. (e_1_2_10_186_1) 2016; 19 e_1_2_10_203_1 e_1_2_10_249_1 Whittig L. (e_1_2_10_214_1) 1986 e_1_2_10_166_1 Grand J. (e_1_2_10_160_1) 2018; 122 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_334_1 e_1_2_10_128_1 e_1_2_10_311_1 e_1_2_10_29_1 Astruc D. (e_1_2_10_61_1) 2008; 1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_253_1 e_1_2_10_299_1 e_1_2_10_319_1 e_1_2_10_22_1 e_1_2_10_230_1 e_1_2_10_215_1 Thomas S. (e_1_2_10_226_1) 2017 e_1_2_10_291_1 e_1_2_10_238_1 e_1_2_10_276_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_322_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_242_1 e_1_2_10_288_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_307_1 e_1_2_10_204_1 e_1_2_10_280_1 e_1_2_10_227_1 e_1_2_10_265_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_333_1 e_1_2_10_310_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_231_1 e_1_2_10_318_1 Sorbiun M. (e_1_2_10_180_1) 2018; 29 e_1_2_10_239_1 e_1_2_10_292_1 e_1_2_10_216_1 e_1_2_10_254_1 e_1_2_10_277_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_321_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 Pozun Z. D. (e_1_2_10_49_1) 2013; 117 e_1_2_10_58_1 Minnermann M. (e_1_2_10_103_1) 2011; 115 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_289_1 e_1_2_10_306_1 e_1_2_10_329_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_281_1 e_1_2_10_266_1 e_1_2_10_145_1 Venkateswara Rao C. (e_1_2_10_147_1) 2009; 113 e_1_2_10_168_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_332_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_317_1 Liu R.‐S. (e_1_2_10_309_1) 2013 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_293_1 e_1_2_10_232_1 e_1_2_10_255_1 e_1_2_10_157_1 e_1_2_10_229_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_320_1 e_1_2_10_305_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_328_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_282_1 e_1_2_10_221_1 e_1_2_10_267_1 e_1_2_10_244_1 Pennycook S. J. (e_1_2_10_243_1) 2009; 367 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_331_1 Wang Z. (e_1_2_10_270_1) 2017 e_1_2_10_316_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_47_1 |
References_xml | – volume: 40 start-page: 1726 year: 2015 publication-title: Int. J. Hydrog. Energy. – volume: 10 start-page: 4011 year: 2019 publication-title: Nat. Commun. – volume: 18 year: 2022 publication-title: Small – volume: 164 start-page: 297 year: 2000 publication-title: J. Mol. Catal. A: Chem. – volume: 161 start-page: 815 year: 2009 publication-title: J. Hazard. Mater. – volume: 9 start-page: 3314 year: 2016 publication-title: Energy Environ. Sci. – volume: 14 start-page: 2639 year: 2021 publication-title: Energy Environ. Sci. – volume: 41 start-page: 899 year: 2002 publication-title: Ind. Eng. Chem. Res. – year: 2014 – volume: 46 year: 2020 publication-title: Ceram. Int. – volume: 45 start-page: 6110 year: 2020 publication-title: Int. J. Hydrog. Energy – volume: 557 start-page: 72 year: 2018 publication-title: Appl Catal A Gen – volume: 9 start-page: 8151 year: 2017 publication-title: ACS Appl Mater Interfaces – volume: 131 start-page: 107 year: 1998 publication-title: J Mol Catal A Chem – volume: 44 start-page: 2731 year: 2019 publication-title: Int. J. Hydrog. Energy. – start-page: 639 year: 2020 publication-title: Micro Nano Technol. – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 122 year: 2018 publication-title: J Phys Chem – year: 2008 – volume: 14 start-page: 687 year: 2008 publication-title: J Ind Eng Chem – volume: 9 year: 2019 publication-title: RSC Adv. – volume: 359 start-page: 1489 year: 2018 publication-title: Science – volume: 9 start-page: 3702 year: 2018 publication-title: Nat. Commun. – volume: 74 start-page: 203 year: 2022 publication-title: J Energy Chem – volume: 44 year: 2019 publication-title: Int. J. Hydrog. Energy. – volume: 7 start-page: 6541 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 5 start-page: 3457 year: 2015 publication-title: ACS Catal. – volume: 108 start-page: 81 year: 2011 publication-title: Appl Catal B – volume: 392 start-page: 11 year: 2011 publication-title: Appl Catal A Gen – year: 2019 – volume: 31 start-page: 4205 year: 2019 publication-title: Chem. Mater. – volume: 45 start-page: 71 year: 2000 publication-title: Advances in Catalysis – volume: 15 start-page: 15 year: 2009 publication-title: Chem. Vap. Depos. – volume: 41 start-page: 58 year: 2018 publication-title: Particuology – volume: 102 start-page: 71 year: 2005 publication-title: Int J Cardiol – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 107 start-page: 372 year: 2011 publication-title: Appl Catal B – volume: 523 start-page: 263 year: 2016 publication-title: Appl Catal A Gen – volume: 253 start-page: 204 year: 2006 publication-title: Appl. Surf. Sci. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 59 start-page: 1718 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 46 year: 2022 publication-title: New J. Chem. – volume: 12 start-page: 3326 year: 2019 publication-title: Materials – volume: 32 start-page: 8243 year: 2020 publication-title: Chem. Mater. – volume: 185 start-page: 857 year: 2008 publication-title: J. Power Sources – volume: 30 start-page: 5026 year: 2014 publication-title: Langmuir – volume: 15 start-page: 7286 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 45 year: 2020 publication-title: Int. J. Hydrog. Energy. – volume: 19 start-page: 883 year: 2018 publication-title: Sci. Technol. Adv. Mater. – volume: 5 start-page: 5123 year: 2015 publication-title: ACS Catal. – volume: 20 start-page: 24 year: 1998 publication-title: Scanning Microsc – volume: 7 start-page: 1701 year: 2007 publication-title: Nano Lett. – volume: 6 start-page: 4512 year: 2016 publication-title: ACS Catal. – year: 2020 publication-title: Adv. Heterogen. Cataly., Appl. Nanosci. – volume: 7 start-page: 448 year: 2012 publication-title: Nano Today – volume: 7 start-page: 6522 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 41 start-page: 302 year: 2008 publication-title: J. Appl. Crystallogr. – volume: 11 year: 2021 publication-title: ACS Catal. – volume: 446 year: 2022 publication-title: Chem Eng J – volume: 11 start-page: 287 year: 2021 publication-title: J Nanostructure Chem – volume: 48 year: 2019 publication-title: Dalton Trans. – volume: 7 start-page: 413 year: 2017 publication-title: ACS Catal. – volume: 96 start-page: 9730 year: 1992 publication-title: J. Phys. Chem. – volume: 116 start-page: 3722 year: 2016 – volume: 497 start-page: 85 year: 2015 publication-title: Appl Catal A Gen – volume: 137 start-page: 7947 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1831 year: 2012 publication-title: Photochem. Photobiol. Sci. – volume: 29 start-page: 2806 year: 2018 publication-title: J Mater Sci – volume: 467 start-page: 132 year: 2013 publication-title: Appl Catal A Gen – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 83 start-page: 351 year: 2020 publication-title: J Ind Eng Chem – volume: 107 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – year: 2013 – volume: 12 start-page: 2013 year: 2012 publication-title: Nano Lett. – volume: 28 start-page: 5872 year: 2016 publication-title: Chem. Mater. – volume: 28 start-page: 7115 year: 2016 publication-title: Adv. Mater. – volume: 291 year: 2021 publication-title: Appl Catal B – volume: 358 start-page: 1427 year: 2017 publication-title: Science – volume: 260 start-page: 384 year: 2008 publication-title: J. Catal. – volume: 10 start-page: 1627 year: 2017 publication-title: Nano Res. – volume: 57 start-page: 78 year: 2014 publication-title: Catal. Commun. – volume: 6 start-page: 6981 year: 2018 publication-title: ACS Sustainable Chem. Eng. – year: 2021 – volume: 269 start-page: 532 year: 2015 publication-title: Powder Technol. – volume: 95 year: 2009 publication-title: Appl. Phys. Lett. – volume: 30 start-page: 414 year: 1997 publication-title: Acc. Chem. Res. – volume: 5 start-page: 192 year: 2019 publication-title: ACS Energy Lett. – volume: 142 start-page: 953 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 2326 year: 2012 publication-title: Adv. Mater. – volume: 57 start-page: 166 year: 2019 publication-title: Ultrasonics Sonochem. – volume: 144 year: 2022 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 1991 year: 2019 publication-title: ACS Cent. Sci. – volume: 19 start-page: 5 year: 2018 publication-title: J Zhejiang Univ Sci – volume: 7 start-page: 5194 year: 2017 publication-title: ACS Catal. – volume: 8 year: 2018 publication-title: ACS Catal. – volume: 94 start-page: 384 year: 2018 publication-title: Prog. Mater. Sci. – volume: 108 start-page: 845 year: 2008 publication-title: Chem. Rev. – volume: 136 start-page: 4813 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 13 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3047 year: 2010 publication-title: Nano Lett. – volume: 600 start-page: 1849 year: 2006 publication-title: Surf. Sc. – volume: 109 start-page: 45 year: 2012 publication-title: Biotechnol. Bioeng. – volume: 54 start-page: 2022 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 29 start-page: 9249 year: 2013 publication-title: Langmuir – volume: 225 start-page: 525 year: 2017 publication-title: Electrochim. Acta – volume: 17 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 6117 year: 2018 publication-title: ACS Nano – volume: 504 year: 2020 publication-title: Appl. Surf. Sci. – volume: 2001 start-page: 2455 year: 2001 publication-title: Eur. J. Inorg. Chem. – volume: 4 start-page: 5111 year: 2010 publication-title: ACS Nano – volume: 105 start-page: 5450 year: 2001 publication-title: J Phys Chem B – volume: 4 start-page: 7994 year: 2012 publication-title: Chem. Soci. Rev. – volume: 49 start-page: 1 year: 2019 publication-title: Appl. Micros. – volume: 13 start-page: 9674 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 2966 year: 2019 publication-title: Nano Rese. – volume: 7 start-page: 2400 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 143 start-page: 6933 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 455 year: 2020 publication-title: J. Power Sources – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 1 year: 2019 publication-title: Nanomicro Lett – volume: 538 start-page: 429 year: 2018 publication-title: Colloids Surf A Physicochem Eng Asp – volume: 281 start-page: 40 year: 2011 publication-title: J. Catal. – volume: 34 start-page: 9754 year: 2018 publication-title: Langmuir – volume: 41 year: 2016 publication-title: Int. J. Hydrog. Energy – volume: 574 start-page: 421 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 338 start-page: 105 year: 2009 publication-title: J. Colloid Interf. Sci. – volume: 367 start-page: 3709 year: 2009 publication-title: Proc Math Phys Eng Sci – volume: 18 start-page: 4053 year: 2018 publication-title: Nano Lett. – volume: 5 start-page: 5478 year: 2011 publication-title: ACS Nano – start-page: 2 year: 2013 publication-title: SPIE Newsroom – volume: 9 start-page: 1033 year: 2017 publication-title: Nanoscale – volume: 113 year: 2009 publication-title: J Phys Chem – volume: 130 start-page: 1093 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 306 start-page: 58 year: 2018 publication-title: Catal. Today – volume: 9 start-page: 781 year: 2018 publication-title: ACS Catal. – volume: 46 start-page: 607 year: 2011 publication-title: Cryst. Res. Technol. – volume: 98 start-page: 617 year: 2010 publication-title: Appl. Phys. A. – volume: 1 start-page: 1451 year: 2019 publication-title: Matter – volume: 555 start-page: 12 year: 2018 publication-title: Appl Catal A Gen – volume: 8 start-page: 2121 year: 2018 publication-title: ACS Catal. – volume: 8 start-page: 940 year: 2009 publication-title: Nat. Mater. – volume: 21 start-page: 114 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 218 start-page: 721 year: 2017 publication-title: Appl Catal B – volume: 7 start-page: 169 year: 2018 publication-title: Int. J. Eng., Math. – volume: 4 start-page: 1244 year: 2018 publication-title: ACS Cent. Sci. – volume: 19 start-page: 349 year: 2016 publication-title: Today – volume: 30 start-page: 428 year: 2018 publication-title: Chem. Mater. – volume: 12 start-page: 843 year: 2010 publication-title: Electrochem. Commun. – volume: 115 start-page: 1302 year: 2011 publication-title: J Phys Chem – volume: 12 start-page: 2243 year: 2019 publication-title: ACS Appl Mater Interfaces – volume: 367 start-page: 70 year: 2009 publication-title: Appl Catal A Gen – volume: 1 start-page: 48 year: 2008 publication-title: Nano. Catal. – volume: 41 year: 2016 publication-title: Int. J. Hydrog. Energy. – start-page: 691 year: 2008 publication-title: Chem. Commun. – volume: 23 start-page: 1044 year: 2011 publication-title: Adv. Mater. – volume: 9 start-page: 387 year: 2015 publication-title: ACS Nano – volume: 102 start-page: 66 year: 1986 publication-title: J. Soc. Dye. Colour. – volume: 11 start-page: 4240 year: 2020 publication-title: Nat. Commun. – volume: 8 start-page: 9638 year: 2020 publication-title: J. Mater. Chem. A – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 5 start-page: 397 year: 2012 publication-title: Arab J Chem – volume: 365 year: 2022 publication-title: J. Mol. Liq. – volume: 43 start-page: 3673 year: 2004 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 4140 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 143 start-page: 5445 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 8099 year: 2012 publication-title: Chem. Soc. Rev. – volume: 710 start-page: 57 year: 2017 publication-title: J. Alloys Compd. – volume: 522 start-page: 264 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 119 start-page: 6822 year: 2019 publication-title: Chem. Rev. – volume: 12 start-page: 4027 year: 2019 publication-title: Energies – volume: 7 start-page: 1543 year: 2017 publication-title: ACS Catal. – volume: 236 start-page: 88 year: 2018 publication-title: Appl Catal B – volume: 516 start-page: 476 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 6623 year: 2016 publication-title: ACS Catal. – volume: 60 year: 2020 publication-title: Ultrasonics Sonochem. – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 273 start-page: 35 year: 2006 publication-title: Colloids Surf A Physicochem Eng Asp – volume: 229 start-page: 361 year: 2017 publication-title: Electrochim. Acta – volume: 527 year: 2020 publication-title: Appl. Surf. Sci. – volume: 511 year: 2020 publication-title: Appl. Surf. Sci. – volume: 39 start-page: 4557 year: 2010 publication-title: Chem. Soci. Rev. – volume: 12 start-page: 4138 year: 2020 publication-title: ChemCatChem – volume: 392 start-page: 308 year: 2014 publication-title: J. Mol. Catal. A: Chem. – year: 1986 – volume: 39 start-page: 3226 year: 2014 publication-title: Int. J. Hydrog. Energy – volume: 36 start-page: 5910 year: 2022 publication-title: Energy amp; Fuels – volume: 565 start-page: 827 year: 2016 publication-title: Sci. Total Environ. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 4773 year: 2013 publication-title: J. Mater. Chem. A – volume: 442 start-page: 154 year: 2017 publication-title: Mol. Catal. – volume: 504 start-page: 105 year: 2016 publication-title: Colloids Surf A Physicochem Eng Asp – volume: 4 start-page: 6 year: 2015 publication-title: Res. Rev.: J. Phys. – volume: 182 start-page: 449 year: 1999 publication-title: J. Catal. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 4405 year: 2010 publication-title: Nano Lett. – volume: 12 start-page: 2664 year: 2021 publication-title: Nat. Commun. – volume: 243 start-page: 420 year: 2006 publication-title: J. Catal. – volume: 8 start-page: 4873 year: 2018 publication-title: ACS Catal. – volume: 366 start-page: 850 year: 2019 publication-title: Science – volume: 152 year: 2020 publication-title: J. Chem. Phys. – volume: 44 year: 2020 publication-title: New J. Chem. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 252 start-page: 7862 year: 2006 publication-title: Appl. Surf. Sci. – volume: 4 start-page: 3037 year: 2017 publication-title: ChemElectroChem – volume: 117 start-page: 7598 year: 2013 publication-title: J Phys Chem – volume: 8 start-page: 707 year: 2006 publication-title: Electrochem. Commun. – volume: 112 start-page: 2373 year: 2012 publication-title: Chem. Rev. – volume: 36 start-page: 1985 year: 2020 publication-title: Langmuir – volume: 188 start-page: 165 year: 1999 publication-title: J. Catal. – volume: 50 start-page: 451 year: 2017 publication-title: J. Appl. Crystallogr. – volume: 574 start-page: 81 year: 2019 publication-title: Nature – volume: 65 start-page: 3016 year: 2011 publication-title: Mater. Lett. – volume: 22 start-page: 657 year: 2021 publication-title: Chemphyschem – volume: 6 start-page: 8662 year: 2018 publication-title: J. Mater. Chem. A – volume: 12 start-page: 1102 year: 2012 publication-title: Nano Lett. – volume: 134 start-page: 5100 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 4844 year: 2008 publication-title: J Phys Chem – volume: 13 start-page: 3485 year: 2020 publication-title: Materials – volume: 6 start-page: 2152 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 10 start-page: 3658 year: 2020 publication-title: ACS Catal. – volume: 121 start-page: 736 year: 2020 publication-title: Chem. Rev. – volume: 12 year: 2020 publication-title: Nanoscale – year: 2016 – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 87 year: 2016 publication-title: Crystals – volume: 7 start-page: 5347 year: 2015 publication-title: ACS Appl Mater Interfaces – volume: 115 year: 2011 publication-title: J Phys Chem – year: 1992 – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 69 start-page: 32 year: 2021 publication-title: J Mater Sci – volume: 311 start-page: 362 year: 2006 publication-title: Science – volume: 735 start-page: 2123 year: 2018 publication-title: J. Alloys Compd. – volume: 18 year: 2007 publication-title: Nanotechnology – volume: 23 start-page: 2159 year: 2011 publication-title: Chem. Mater. – volume: 192 start-page: 29 year: 2000 publication-title: Appl Catal A Gen – volume: 52 start-page: 127 year: 2009 publication-title: Eur Phys J D At Mol Opt Phys – volume: 377 year: 2019 publication-title: Chem. Eng. J. – volume: 7 year: 2012 publication-title: Nano – volume: 429 start-page: 89 year: 2019 publication-title: J. Power Sources – volume: 114 year: 2010 publication-title: J Phys Chem – volume: 47 start-page: 8646 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 271 start-page: 397 year: 2018 publication-title: Electrochim. Acta – volume: 10 start-page: 4855 year: 2019 publication-title: Nat. Commun. – volume: 102 start-page: 7071 year: 2019 publication-title: Ann Cardiothorac Surg – volume: 231 start-page: 68 year: 2019 publication-title: J Electron Spectros Relat Phenomena – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 212 year: 2020 publication-title: J Photochem Photobiol B – volume: 2 start-page: 97 year: 2005 publication-title: PLoS Med. – volume: 36 year: 2018 publication-title: J. Vac. Sci. Technol. A: Vac. Surf. Films – volume: 231 start-page: 70 year: 2016 publication-title: Sens. Actuators, B – volume: 11 start-page: 4233 year: 2020 publication-title: Nat. Commun. – volume: 300 start-page: 47 year: 2013 publication-title: J. Catal. – volume: 121 start-page: 337 year: 2008 publication-title: Catal Letters – volume: 628 start-page: 53 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 138 start-page: 2563 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 61 start-page: 183 year: 2016 publication-title: Int. Mater. Rev. – volume: 11 start-page: 4558 year: 2020 publication-title: Nat. Commun. – volume: 11 95 start-page: 153 year: 2021 2009 publication-title: ACS Catal. Appl. Phys. Lett. – volume: 537 start-page: 366 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 18 start-page: 621 year: 2012 publication-title: Microsc. Microanal. – volume: 505 start-page: 307 year: 2017 publication-title: J. Colloid Interface Sci. – volume: 5 start-page: 55 year: 2015 publication-title: Catal. Sci. Technol. – volume: 104 start-page: 9 year: 2005 publication-title: Catal. Lett. – year: 2018 – volume: 4 start-page: 143 year: 2009 publication-title: Nano Today – volume: 157 start-page: 447 year: 2017 publication-title: Carbohydr. Polym. – volume: 6 start-page: 54 year: 2016 publication-title: Coatings – volume: 42 start-page: 1571 year: 2002 publication-title: Ind. Eng. Chem. Res. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 125 start-page: 42 year: 2019 publication-title: Appl. Phys. A. – volume: 50 start-page: 1797 year: 2017 publication-title: Acc. Chem. Res. – volume: 105 start-page: 1025 year: 2005 publication-title: Rev. – volume: 15 start-page: 1994 year: 2013 publication-title: J Nanopart Res – volume: 198 start-page: 38 year: 2016 publication-title: Appl Catal B – volume: 11 year: 2017 publication-title: ACS Nano – volume: 30 year: 2018 publication-title: Adv Mater – volume: 28 start-page: 7168 year: 2012 publication-title: Langmuir – volume: 362 start-page: 560 year: 2018 publication-title: Science – volume: 7 start-page: 6802 year: 2017 publication-title: ACS Catal. – volume: 26 start-page: 4025 year: 2020 publication-title: Chem. ‐ Eur. J. – volume: 7 start-page: 327 year: 2016 publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 262 start-page: 229 year: 2018 publication-title: J. Solid State Chem. – volume: 12 start-page: 1 year: 2017 publication-title: Nanoscale Res. Lett. – volume: 61 start-page: 2501 year: 1990 publication-title: Rev. Sci. Instrum. – volume: 56 start-page: 392 year: 2021 publication-title: J. Mater. Sci. – volume: 3 start-page: 391 year: 2021 publication-title: Chem. Commun. – volume: 338 start-page: 905 year: 2018 publication-title: Powder Technol. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1812 year: 2014 publication-title: ACS Catal. – volume: 591 year: 2020 publication-title: Appl Catal A Gen – volume: 13 start-page: 638 year: 2020 publication-title: Nano Res. – volume: 265 start-page: 231 year: 2016 publication-title: Catal. Today – volume: 3 start-page: 882 year: 2017 publication-title: ACS Biomater. Sci. Eng. – volume: 8 start-page: 8276 year: 2016 publication-title: Nanoscale – volume: 7 start-page: 3199 year: 2015 publication-title: ACS Appl Mater Interfaces – volume: 292 start-page: 111 year: 2012 publication-title: J. Catal. – volume: 28 start-page: 111 year: 2019 publication-title: J Energy Chem – volume: 4 start-page: 289 year: 2014 publication-title: ACS Catal. – volume: 6 start-page: 491 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 164 start-page: 320 year: 2011 publication-title: Catal. Today – volume: 107 year: 2020 publication-title: Prog. Mater. Sci. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 112 start-page: 69 year: 2018 publication-title: Micron – volume: 52 start-page: 2015 year: 2019 publication-title: Acc. Chem. Res. – volume: 18 year: 2020 publication-title: Appl. Mater. Today – volume: 8 start-page: 224 year: 2017 publication-title: Electrocatalysis – volume: 56 start-page: 8675 year: 2020 publication-title: Chem. Commun. – volume: 11 year: 2011 publication-title: J. Nanosci. Nanotechnol. – volume: 100 start-page: 147 year: 2013 publication-title: Electrochim. Acta – volume: 1 start-page: 114 year: 2007 publication-title: ACS Nano – volume: 285 start-page: 149 year: 2018 publication-title: Electrochim. Acta – volume: 112 start-page: 8617 year: 2008 publication-title: J Phys Chem – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 3 start-page: 3127 year: 2009 publication-title: ACS Nano – volume: 258 start-page: 187 year: 2008 publication-title: J. Catal. – volume: 212 start-page: 260 year: 2019 publication-title: Carbohydr. Polym. – volume: 2 start-page: 1647 year: 2012 publication-title: ACS Catal. – volume: 110 start-page: 428 year: 2006 publication-title: J Phys Chem B – volume: 90 start-page: 279 year: 2017 publication-title: Bull. Chem. Soc. Jpn. – volume: 8 start-page: 3641 year: 2018 publication-title: ACS Catal. – volume: 162 start-page: 170 year: 2017 publication-title: J Clean Prod – volume: 2 year: 2020 publication-title: Int. J. Extreme Manuf. – volume: 130 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 298 year: 2018 publication-title: ACS Nano – volume: 238 start-page: 365 year: 2018 publication-title: Appl Catal B – year: 2017 – volume: 41 start-page: 8075 year: 2012 publication-title: Chem. Soc. Rev. – volume: 10 year: 2020 publication-title: Sci. Rep. – volume: 13 start-page: 6703 year: 2022 publication-title: Nat. Commun. – volume: 105 start-page: 1025 year: 2005 ident: e_1_2_10_69_1 publication-title: Rev. – ident: e_1_2_10_80_1 doi: 10.1021/cs400621p – ident: e_1_2_10_255_1 doi: 10.1016/j.susc.2006.02.016 – ident: e_1_2_10_106_1 doi: 10.1016/j.electacta.2013.02.130 – ident: e_1_2_10_146_1 doi: 10.1016/j.jcat.2012.12.030 – ident: e_1_2_10_64_1 doi: 10.1021/ie020351h – ident: e_1_2_10_196_1 doi: 10.1021/acs.langmuir.9b03392 – ident: e_1_2_10_91_1 doi: 10.1016/j.molcata.2014.05.034 – ident: e_1_2_10_131_1 doi: 10.1016/j.ijhydene.2016.05.239 – ident: e_1_2_10_230_1 doi: 10.1016/j.jcis.2009.06.006 – ident: e_1_2_10_42_1 doi: 10.1021/acs.accounts.9b00172 – ident: e_1_2_10_124_1 doi: 10.1142/S1793292012300058 – ident: e_1_2_10_168_1 doi: 10.1016/j.jpowsour.2019.05.010 – volume-title: Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods year: 1986 ident: e_1_2_10_214_1 – ident: e_1_2_10_178_1 doi: 10.1016/j.jphotobiol.2020.112025 – ident: e_1_2_10_242_1 doi: 10.1021/nl102025s – ident: e_1_2_10_182_1 doi: 10.1016/j.cattod.2015.09.034 – ident: e_1_2_10_98_1 doi: 10.1007/s11051-013-1994-6 – ident: e_1_2_10_249_1 doi: 10.1063/1.3224886 – ident: e_1_2_10_134_1 doi: 10.1016/j.electacta.2018.07.109 – ident: e_1_2_10_206_1 doi: 10.1016/j.molliq.2022.120120 – ident: e_1_2_10_17_1 doi: 10.1039/c2cs35188a – ident: e_1_2_10_70_1 doi: 10.1021/acs.chemmater.0c01923 – ident: e_1_2_10_30_1 doi: 10.1021/ie001047w – ident: e_1_2_10_47_1 doi: 10.1016/S0360-0564(02)45013-4 – volume: 122 year: 2018 ident: e_1_2_10_160_1 publication-title: J Phys Chem – ident: e_1_2_10_169_1 doi: 10.1039/D0NR07632E – ident: e_1_2_10_96_1 doi: 10.1016/j.carbpol.2016.09.008 – ident: e_1_2_10_273_1 doi: 10.1016/j.apcatb.2021.120094 – ident: e_1_2_10_287_1 doi: 10.1126/sciadv.aba9731 – ident: e_1_2_10_48_1 doi: 10.1038/nmat2574 – ident: e_1_2_10_277_1 doi: 10.1021/jp0043975 – ident: e_1_2_10_263_1 doi: 10.1002/9781119188230 – ident: e_1_2_10_286_1 doi: 10.1021/nn506721f – ident: e_1_2_10_294_1 doi: 10.1021/acssuschemeng.8b04698 – ident: e_1_2_10_176_1 doi: 10.1021/acscatal.6b02772 – ident: e_1_2_10_159_1 doi: 10.1016/j.ultsonch.2019.104804 – ident: e_1_2_10_267_1 doi: 10.1039/C8CP06701E – ident: e_1_2_10_231_1 doi: 10.1021/jp055467g – ident: e_1_2_10_51_1 doi: 10.1002/anie.201402986 – ident: e_1_2_10_75_1 doi: 10.1039/C7TA06737B – ident: e_1_2_10_114_1 doi: 10.1021/acsami.9b14598 – ident: e_1_2_10_274_1 doi: 10.1038/s41467-019-12859-2 – ident: e_1_2_10_272_1 doi: 10.1016/j.elspec.2018.03.002 – ident: e_1_2_10_90_1 doi: 10.1016/j.cattod.2010.10.018 – volume: 7 start-page: 169 year: 2018 ident: e_1_2_10_120_1 publication-title: Int. J. Eng., Math. – ident: e_1_2_10_115_1 doi: 10.1021/acssuschemeng.8b05245 – ident: e_1_2_10_92_1 doi: 10.1016/j.apcata.2009.07.031 – ident: e_1_2_10_172_1 doi: 10.1021/acs.chemmater.7b04307 – ident: e_1_2_10_181_1 doi: 10.1007/s00339-018-2348-0 – ident: e_1_2_10_126_1 doi: 10.1016/j.ijhydene.2020.02.019 – ident: e_1_2_10_82_1 doi: 10.1021/acscatal.7b04150 – ident: e_1_2_10_338_1 doi: 10.1002/adma.201805833 – ident: e_1_2_10_18_1 doi: 10.1021/acssuschemeng.7b03572 – ident: e_1_2_10_117_1 doi: 10.1021/acsami.7b01241 – ident: e_1_2_10_337_1 doi: 10.1016/j.apcatb.2016.04.046 – ident: e_1_2_10_112_1 doi: 10.1016/j.carbpol.2019.01.096 – year: 2020 ident: e_1_2_10_153_1 publication-title: Adv. Heterogen. Cataly., Appl. Nanosci. – ident: e_1_2_10_104_1 doi: 10.1016/j.partic.2018.01.005 – ident: e_1_2_10_223_1 doi: 10.1111/j.1478-4408.1986.tb01058.x – ident: e_1_2_10_86_1 doi: 10.1021/nl300033e – ident: e_1_2_10_220_1 doi: 10.1021/ar960143j – ident: e_1_2_10_158_1 doi: 10.1016/j.ultsonch.2019.05.023 – ident: e_1_2_10_139_1 doi: 10.1016/j.apsusc.2020.146719 – ident: e_1_2_10_268_1 doi: 10.1016/j.scitotenv.2016.03.042 – ident: e_1_2_10_203_1 doi: 10.1016/j.apsusc.2019.144461 – ident: e_1_2_10_292_1 doi: 10.1007/s12274-019-2539-9 – ident: e_1_2_10_43_1 doi: 10.1021/acscatal.5b01011 – volume-title: Structure and properties of nanoalloys year: 2016 ident: e_1_2_10_121_1 – ident: e_1_2_10_105_1 doi: 10.1016/j.apcata.2013.07.006 – ident: e_1_2_10_116_1 doi: 10.1016/j.apcatb.2018.05.019 – ident: e_1_2_10_257_1 doi: 10.1038/s41467-020-17975-y – ident: e_1_2_10_16_1 doi: 10.1021/acscatal.8b03485 – ident: e_1_2_10_215_1 doi: 10.3390/cryst6080087 – ident: e_1_2_10_319_1 doi: 10.1021/jp805949r – ident: e_1_2_10_326_1 doi: 10.1002/anie.201913910 – ident: e_1_2_10_97_1 doi: 10.1021/acsami.5b01541 – ident: e_1_2_10_161_1 doi: 10.1007/s40097-020-00366-6 – ident: e_1_2_10_19_1 doi: 10.1016/S1381-1169(97)00259-8 – ident: e_1_2_10_339_1 doi: 10.1039/C8TA01698D – ident: e_1_2_10_73_1 doi: 10.1021/acs.energyfuels.2c00565 – ident: e_1_2_10_165_1 doi: 10.1016/j.apcatb.2011.07.039 – volume: 367 start-page: 3709 year: 2009 ident: e_1_2_10_243_1 publication-title: Proc Math Phys Eng Sci – ident: e_1_2_10_155_1 doi: 10.1039/C9DT02943E – ident: e_1_2_10_189_1 – ident: e_1_2_10_244_1 – ident: e_1_2_10_22_1 doi: 10.1039/C6NR00231E – ident: e_1_2_10_58_1 doi: 10.1021/ja4124658 – ident: e_1_2_10_166_1 doi: 10.1039/c3cp50816a – ident: e_1_2_10_171_1 doi: 10.1021/nn100949z – ident: e_1_2_10_35_1 doi: 10.1039/C4CY00976B – volume-title: Thermal and Rheological Measurement Techniques for Nanomaterials Characterization year: 2017 ident: e_1_2_10_226_1 – ident: e_1_2_10_50_1 doi: 10.1016/j.nantod.2008.10.010 – ident: e_1_2_10_127_1 doi: 10.1016/j.ijcard.2004.04.006 – ident: e_1_2_10_260_1 doi: 10.1021/j100203a030 – ident: e_1_2_10_122_1 doi: 10.1016/j.apcata.2019.117371 – ident: e_1_2_10_183_1 doi: 10.1021/la500811n – ident: e_1_2_10_313_1 doi: 10.1016/j.jcat.2008.06.010 – ident: e_1_2_10_201_1 doi: 10.1021/acscatal.8b02794 – ident: e_1_2_10_234_1 doi: 10.1021/acs.accounts.7b00078 – ident: e_1_2_10_24_1 doi: 10.1186/s11671-016-1773-2 – ident: e_1_2_10_247_1 doi: 10.1063/1.1141908 – ident: e_1_2_10_336_1 doi: 10.1002/adfm.202000255 – ident: e_1_2_10_57_1 doi: 10.1021/jacs.1c00539 – volume: 11 start-page: 153 year: 2021 ident: e_1_2_10_248_1 publication-title: ACS Catal. – ident: e_1_2_10_164_1 doi: 10.1016/j.apsusc.2020.145486 – ident: e_1_2_10_281_1 doi: 10.1038/s41467-020-18076-6 – ident: e_1_2_10_2_1 doi: 10.1039/D2NJ01761J – ident: e_1_2_10_340_1 doi: 10.1039/C6NR08895C – ident: e_1_2_10_130_1 doi: 10.1021/la300813z – ident: e_1_2_10_331_1 doi: 10.1016/j.ijhydene.2019.12.155 – ident: e_1_2_10_333_1 doi: 10.1039/D0NJ04512H – ident: e_1_2_10_21_1 doi: 10.1016/j.jpowsour.2008.09.039 – ident: e_1_2_10_34_1 doi: 10.1021/cr040090g – ident: e_1_2_10_229_1 doi: 10.1073/pnas.1001367107 – ident: e_1_2_10_59_1 doi: 10.1016/j.jclepro.2017.05.176 – ident: e_1_2_10_285_1 doi: 10.1016/j.jssc.2018.03.030 – ident: e_1_2_10_174_1 doi: 10.1021/acsnano.7b06353 – ident: e_1_2_10_108_1 doi: 10.1016/j.apsusc.2005.09.065 – ident: e_1_2_10_259_1 doi: 10.1016/j.snb.2016.03.009 – ident: e_1_2_10_1_1 doi: 10.1016/j.cej.2022.137335 – ident: e_1_2_10_40_1 doi: 10.1039/C5CP00274E – ident: e_1_2_10_170_1 doi: 10.1016/j.apmt.2019.100526 – ident: e_1_2_10_258_1 doi: 10.1002/anie.201902859 – ident: e_1_2_10_283_1 doi: 10.1021/acssuschemeng.8b00815 – ident: e_1_2_10_173_1 doi: 10.1016/j.jcis.2018.03.039 – ident: e_1_2_10_154_1 doi: 10.1021/acs.chemmater.9b01093 – volume-title: Encyclopedia of Physical Organic Chemistry, 6 Volume Set year: 2017 ident: e_1_2_10_270_1 – ident: e_1_2_10_202_1 doi: 10.1021/nl101567m – ident: e_1_2_10_77_1 doi: 10.1021/acssuschemeng.8b04929 – volume: 19 start-page: 349 year: 2016 ident: e_1_2_10_186_1 publication-title: Today – ident: e_1_2_10_23_1 doi: 10.1016/j.jallcom.2017.11.322 – ident: e_1_2_10_204_1 doi: 10.1002/cphc.202100021 – ident: e_1_2_10_38_1 doi: 10.1021/nl070694a – ident: e_1_2_10_119_1 doi: 10.1021/am507764u – ident: e_1_2_10_193_1 doi: 10.1038/s41598-020-68472-7 – ident: e_1_2_10_322_1 doi: 10.1021/ja406091p – ident: e_1_2_10_63_1 doi: 10.1021/acs.chemmater.6b02346 – ident: e_1_2_10_305_1 doi: 10.1016/j.jcis.2018.01.060 – ident: e_1_2_10_300_1 doi: 10.1016/j.elecom.2010.03.046 – volume: 29 start-page: 2806 year: 2018 ident: e_1_2_10_180_1 publication-title: J Mater Sci – ident: e_1_2_10_62_1 doi: 10.1002/9783527623013 – ident: e_1_2_10_262_1 doi: 10.1038/s41467-021-22948-w – ident: e_1_2_10_123_1 doi: 10.1039/C6EE02002J – volume: 117 start-page: 7598 year: 2013 ident: e_1_2_10_49_1 publication-title: J Phys Chem – ident: e_1_2_10_195_1 doi: 10.1021/acscatal.9b04302 – ident: e_1_2_10_240_1 doi: 10.1017/S1431927612000104 – ident: e_1_2_10_216_1 doi: 10.1016/j.pmatsci.2018.01.004 – ident: e_1_2_10_118_1 doi: 10.1021/nl2045588 – ident: e_1_2_10_25_1 doi: 10.1021/acs.chemrev.0c00436 – ident: e_1_2_10_66_1 doi: 10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z – ident: e_1_2_10_321_1 doi: 10.1021/jacs.9b10813 – ident: e_1_2_10_315_1 doi: 10.1126/science.1120560 – ident: e_1_2_10_318_1 doi: 10.1006/jcat.1999.2635 – ident: e_1_2_10_79_1 doi: 10.1021/acscatal.7b01735 – ident: e_1_2_10_211_1 doi: 10.1002/anie.200454216 – ident: e_1_2_10_303_1 doi: 10.1038/s41467-022-34444-w – ident: e_1_2_10_88_1 doi: 10.1021/acscatal.6b01275 – ident: e_1_2_10_8_1 doi: 10.1021/acscatal.5b00830 – ident: e_1_2_10_6_1 doi: 10.1371/journal.pmed.0020097 – ident: e_1_2_10_137_1 doi: 10.1016/j.mcat.2017.09.004 – ident: e_1_2_10_210_1 doi: 10.1016/j.powtec.2014.08.017 – ident: e_1_2_10_299_1 doi: 10.1021/ja202655j – ident: e_1_2_10_3_1 doi: 10.1016/j.jpowsour.2020.227972 – ident: e_1_2_10_55_1 doi: 10.1021/ja408645b – ident: e_1_2_10_207_1 doi: 10.1002/smll.202203126 – ident: e_1_2_10_99_1 doi: 10.1016/j.jallcom.2017.03.241 – ident: e_1_2_10_252_1 doi: 10.1007/s00339-009-5451-4 – ident: e_1_2_10_9_1 doi: 10.1088/0957-4484/18/38/385604 – ident: e_1_2_10_54_1 doi: 10.1021/jacs.5b04641 – ident: e_1_2_10_284_1 doi: 10.1016/j.apcata.2018.03.014 – ident: e_1_2_10_296_1 doi: 10.1016/S1381-1169(00)00258-2 – ident: e_1_2_10_264_1 doi: 10.1006/jcat.1998.2343 – ident: e_1_2_10_327_1 doi: 10.1002/adma.201703798 – ident: e_1_2_10_306_1 doi: 10.1002/anie.202008962 – ident: e_1_2_10_199_1 doi: 10.1116/1.5000587 – ident: e_1_2_10_241_1 doi: 10.1021/acsnano.7b07504 – ident: e_1_2_10_324_1 doi: 10.1016/j.jcis.2022.08.050 – ident: e_1_2_10_65_1 doi: 10.1016/j.molcata.2011.05.023 – ident: e_1_2_10_261_1 doi: 10.1021/ja077303e – ident: e_1_2_10_328_1 doi: 10.1021/acscentsci.9b01110 – ident: e_1_2_10_293_1 doi: 10.1016/j.ijhydene.2018.12.004 – ident: e_1_2_10_320_1 doi: 10.1166/jnn.2011.4989 – ident: e_1_2_10_192_1 doi: 10.1038/s41467-019-11848-9 – volume: 102 start-page: 7071 year: 2019 ident: e_1_2_10_184_1 publication-title: Ann Cardiothorac Surg – ident: e_1_2_10_100_1 doi: 10.1016/j.electacta.2017.01.145 – ident: e_1_2_10_224_1 doi: 10.1016/j.apsusc.2006.05.089 – ident: e_1_2_10_279_1 doi: 10.1021/acsenergylett.9b02374 – ident: e_1_2_10_133_1 doi: 10.1039/c2jm32397d – ident: e_1_2_10_151_1 doi: 10.1016/j.arabjc.2010.09.027 – volume: 4 start-page: 6 year: 2015 ident: e_1_2_10_219_1 publication-title: Res. Rev.: J. Phys. – ident: e_1_2_10_109_1 doi: 10.1016/j.jiec.2019.12.008 – ident: e_1_2_10_102_1 doi: 10.3390/ma12203326 – ident: e_1_2_10_341_1 doi: 10.1002/chem.201904229 – ident: e_1_2_10_76_1 doi: 10.1039/c2cs35201j – ident: e_1_2_10_149_1 doi: 10.1007/s10853-020-05277-z – ident: e_1_2_10_245_1 doi: 10.1126/science.aao6538 – ident: e_1_2_10_304_1 doi: 10.1126/science.aaw7493 – ident: e_1_2_10_289_1 doi: 10.1038/s41467-018-06043-1 – ident: e_1_2_10_308_1 doi: 10.1002/adfm.202100883 – ident: e_1_2_10_7_1 doi: 10.1016/j.apcatb.2018.07.031 – ident: e_1_2_10_233_1 doi: 10.1002/crat.201100125 – ident: e_1_2_10_222_1 doi: 10.1021/bk-1992-0481 – volume: 115 start-page: 1302 year: 2011 ident: e_1_2_10_103_1 publication-title: J Phys Chem – ident: e_1_2_10_167_1 doi: 10.1039/B714761A – ident: e_1_2_10_246_1 doi: 10.1002/sca.1998.4950200104 – ident: e_1_2_10_276_1 doi: 10.1016/j.cattod.2017.01.011 – volume: 11 start-page: 1 year: 2019 ident: e_1_2_10_256_1 publication-title: Nanomicro Lett – ident: e_1_2_10_334_1 doi: 10.1021/acscentsci.8b00426 – ident: e_1_2_10_254_1 doi: 10.1021/acsnano.8b02444 – ident: e_1_2_10_46_1 doi: 10.1021/acs.nanolett.8b02024 – ident: e_1_2_10_251_1 doi: 10.1007/s42649-019-0003-7 – ident: e_1_2_10_190_1 doi: 10.1126/science.aan5412 – ident: e_1_2_10_89_1 doi: 10.1007/s12678-017-0359-9 – ident: e_1_2_10_53_1 doi: 10.1146/annurev-chembioeng-080615-034503 – ident: e_1_2_10_143_1 doi: 10.1002/cvde.200806725 – ident: e_1_2_10_221_1 doi: 10.3390/coatings6040054 – ident: e_1_2_10_14_1 doi: 10.1021/acscatal.6b02767 – ident: e_1_2_10_132_1 doi: 10.1109/NAP.2016.7757309 – ident: e_1_2_10_93_1 doi: 10.1016/j.catcom.2014.08.009 – ident: e_1_2_10_156_1 doi: 10.1021/acscatal.7b03795 – ident: e_1_2_10_87_1 doi: 10.1021/acscatal.7b01896 – ident: e_1_2_10_56_1 – volume: 114 year: 2010 ident: e_1_2_10_302_1 publication-title: J Phys Chem – ident: e_1_2_10_225_1 doi: 10.1039/C8NR02278J – ident: e_1_2_10_84_1 doi: 10.1016/j.apcata.2016.06.022 – ident: e_1_2_10_94_1 doi: 10.1016/j.jcat.2011.04.003 – ident: e_1_2_10_145_1 doi: 10.1016/j.ijhydene.2014.11.128 – ident: e_1_2_10_29_1 doi: 10.1021/jacs.5b08596 – ident: e_1_2_10_187_1 doi: 10.1016/B978-0-12-800251-3.00002-X – ident: e_1_2_10_265_1 doi: 10.1016/j.pmatsci.2019.100591 – ident: e_1_2_10_208_1 doi: 10.1002/9781118482568 – ident: e_1_2_10_11_1 doi: 10.1016/j.jcat.2012.05.003 – ident: e_1_2_10_68_1 doi: 10.1016/j.apcata.2018.02.005 – ident: e_1_2_10_175_1 doi: 10.1021/jp710010f – ident: e_1_2_10_188_1 doi: 10.1007/978-3-030-12057-3 – ident: e_1_2_10_330_1 doi: 10.1038/s41467-020-18430-8 – ident: e_1_2_10_332_1 doi: 10.1016/j.ijhydene.2016.07.160 – ident: e_1_2_10_10_1 doi: 10.1002/adma.201705698 – ident: e_1_2_10_41_1 doi: 10.1021/ja8061425 – ident: e_1_2_10_218_1 doi: 10.1107/S1600576717001753 – ident: e_1_2_10_325_1 doi: 10.1002/cctc.202000443 – ident: e_1_2_10_101_1 doi: 10.3390/ma13163485 – ident: e_1_2_10_163_1 doi: 10.1080/14686996.2018.1542926 – ident: e_1_2_10_213_1 doi: 10.1107/S0021889808001684 – ident: e_1_2_10_26_1 doi: 10.1039/c2cs35296f – ident: e_1_2_10_295_1 doi: 10.3390/en12214027 – ident: e_1_2_10_205_1 doi: 10.1039/C9RA03254A – ident: e_1_2_10_78_1 doi: 10.1016/j.colsurfa.2017.11.009 – ident: e_1_2_10_148_1 doi: 10.1021/acs.langmuir.8b01838 – ident: e_1_2_10_157_1 doi: 10.1002/celc.201700901 – ident: e_1_2_10_72_1 doi: 10.1088/1361-6528/aaf9e8 – ident: e_1_2_10_227_1 doi: 10.1021/nn700021x – start-page: 2 year: 2013 ident: e_1_2_10_309_1 publication-title: SPIE Newsroom – ident: e_1_2_10_83_1 doi: 10.1016/S0926-860X(99)00330-0 – ident: e_1_2_10_74_1 doi: 10.1002/adma.201600469 – ident: e_1_2_10_177_1 doi: 10.1021/cs300187z – ident: e_1_2_10_13_1 doi: 10.1021/acscatal.8b00140 – ident: e_1_2_10_312_1 doi: 10.1007/s10562-007-9344-x – ident: e_1_2_10_301_1 doi: 10.1016/j.jhazmat.2008.04.027 – ident: e_1_2_10_179_1 doi: 10.1016/j.matlet.2011.06.036 – ident: e_1_2_10_290_1 doi: 10.1016/j.jcis.2018.11.038 – ident: e_1_2_10_45_1 doi: 10.1002/adma.201605997 – ident: e_1_2_10_253_1 doi: 10.1038/s41586-019-1603-7 – ident: e_1_2_10_266_1 doi: 10.1021/acs.chemrev.8b00114 – ident: e_1_2_10_111_1 doi: 10.1016/j.ijhydene.2019.09.213 – ident: e_1_2_10_152_1 doi: 10.1016/j.colsurfa.2016.05.059 – ident: e_1_2_10_335_1 doi: 10.1002/adma.202006034 – volume: 69 start-page: 32 year: 2021 ident: e_1_2_10_194_1 publication-title: J Mater Sci – ident: e_1_2_10_39_1 doi: 10.1631/jzus.A1700257 – ident: e_1_2_10_140_1 doi: 10.1039/C6TA02748B – ident: e_1_2_10_298_1 doi: 10.1021/la401839m – ident: e_1_2_10_212_1 – ident: e_1_2_10_81_1 doi: 10.1021/acscatal.6b00520 – ident: e_1_2_10_107_1 doi: 10.1007/s10562-005-7429-y – ident: e_1_2_10_310_1 doi: 10.1016/j.elecom.2006.02.020 – ident: e_1_2_10_235_1 doi: 10.1002/advs.201600476 – ident: e_1_2_10_200_1 doi: 10.1063/1.5128740 – ident: e_1_2_10_282_1 doi: 10.1016/j.jcis.2017.05.088 – ident: e_1_2_10_144_1 doi: 10.1021/acsaem.8b00790 – volume: 52 start-page: 127 year: 2009 ident: e_1_2_10_278_1 publication-title: Eur Phys J D At Mol Opt Phys – ident: e_1_2_10_20_1 – ident: e_1_2_10_138_1 doi: 10.1039/C9NR05835D – ident: e_1_2_10_297_1 doi: 10.1021/acssuschemeng.7b02754 – ident: e_1_2_10_236_1 doi: 10.1016/j.micron.2018.04.011 – ident: e_1_2_10_271_1 doi: 10.1002/9781119417651 – ident: e_1_2_10_110_1 doi: 10.1039/D0EE03915B – ident: e_1_2_10_142_1 doi: 10.1246/bcsj.20160333 – ident: e_1_2_10_228_1 doi: 10.1021/jacs.1c08644 – ident: e_1_2_10_316_1 doi: 10.1002/adma.201104951 – ident: e_1_2_10_52_1 doi: 10.1002/anie.200803477 – volume: 1 start-page: 48 year: 2008 ident: e_1_2_10_61_1 publication-title: Nano. Catal. – ident: e_1_2_10_31_1 doi: 10.1039/D0CC06745H – ident: e_1_2_10_32_1 doi: 10.1021/acs.chemrev.6b00211 – ident: e_1_2_10_36_1 doi: 10.1021/cr100449n – ident: e_1_2_10_248_2 doi: 10.1063/1.3224886 – ident: e_1_2_10_237_1 doi: 10.1021/nn2007496 – ident: e_1_2_10_291_1 doi: 10.1016/j.ijhydene.2013.12.096 – ident: e_1_2_10_217_1 doi: 10.1016/j.powtec.2018.07.083 – ident: e_1_2_10_317_1 doi: 10.1002/bit.23293 – ident: e_1_2_10_15_1 doi: 10.1021/jacs.0c05140 – ident: e_1_2_10_239_1 doi: 10.1007/s12274-016-1345-x – ident: e_1_2_10_67_1 doi: 10.1039/c2pp25188d – ident: e_1_2_10_150_1 doi: 10.1016/j.colsurfa.2005.07.029 – ident: e_1_2_10_5_1 doi: 10.1016/j.apcatb.2017.06.088 – ident: e_1_2_10_125_1 doi: 10.1016/j.electacta.2016.12.123 – start-page: 639 year: 2020 ident: e_1_2_10_136_1 publication-title: Micro Nano Technol. – ident: e_1_2_10_28_1 doi: 10.1016/j.nantod.2012.08.003 – ident: e_1_2_10_71_1 doi: 10.1016/j.ceramint.2020.07.196 – ident: e_1_2_10_288_1 doi: 10.1021/jp907059q – ident: e_1_2_10_250_1 doi: 10.1016/j.electacta.2018.03.169 – ident: e_1_2_10_44_1 doi: 10.1021/cm103661q – ident: e_1_2_10_129_1 doi: 10.1039/c3ta01664a – ident: e_1_2_10_323_1 doi: 10.1007/s12274-020-2666-3 – ident: e_1_2_10_37_1 doi: 10.1021/nn900242v – ident: e_1_2_10_280_1 doi: 10.1021/jacs.1c00656 – ident: e_1_2_10_27_1 doi: 10.1002/adma.201003695 – ident: e_1_2_10_4_1 doi: 10.1016/j.jechem.2022.07.017 – ident: e_1_2_10_198_1 doi: 10.1088/2631-7990/ab83e0 – ident: e_1_2_10_269_1 doi: 10.1021/acsbiomaterials.7b00040 – volume: 113 year: 2009 ident: e_1_2_10_147_1 publication-title: J Phys Chem – ident: e_1_2_10_60_1 doi: 10.1126/science.aau4414 – ident: e_1_2_10_135_1 doi: 10.1021/ja209044g – ident: e_1_2_10_12_1 doi: 10.1016/j.cej.2018.10.213 – ident: e_1_2_10_275_1 doi: 10.1002/aenm.201903271 – ident: e_1_2_10_33_1 doi: 10.1021/jacs.2c07844 – ident: e_1_2_10_95_1 doi: 10.1016/j.apcata.2010.10.015 – ident: e_1_2_10_128_1 doi: 10.1016/j.jechem.2018.02.012 – ident: e_1_2_10_329_1 doi: 10.1039/D0TA02496A – ident: e_1_2_10_209_1 doi: 10.1039/c0cs90031a – ident: e_1_2_10_238_1 doi: 10.1039/C5CC05331E – ident: e_1_2_10_162_1 doi: 10.1016/j.jiec.2008.04.008 – ident: e_1_2_10_185_1 doi: 10.1080/09506608.2016.1180020 – ident: e_1_2_10_197_1 doi: 10.1039/D0CC03381B – ident: e_1_2_10_307_1 doi: 10.1021/acscatal.1c01761 – ident: e_1_2_10_85_1 doi: 10.1021/cs500415e – volume: 115 year: 2011 ident: e_1_2_10_113_1 publication-title: J Phys Chem – ident: e_1_2_10_141_1 doi: 10.1016/j.jcis.2020.04.041 – ident: e_1_2_10_314_1 doi: 10.1016/j.jcat.2008.10.003 – ident: e_1_2_10_191_1 doi: 10.1016/j.matt.2019.11.006 – ident: e_1_2_10_232_1 doi: 10.1016/j.jcat.2006.07.024 – ident: e_1_2_10_311_1 doi: 10.1016/j.apcata.2015.03.004 |
SSID | ssj0031247 |
Score | 2.567076 |
SecondaryResourceType | review_article |
Snippet | Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2303031 |
SubjectTerms | Alloys bimetallic nanoalloy Bimetals Catalysis catalyst Catalysts Chemical reduction Clean energy Energy storage High entropy alloys hydrogen evolution reaction (HER) Hydrogen evolution reactions Nanoalloys Nanoparticles Nanotechnology Oxidation oxygen evolution reaction (OER) Oxygen evolution reactions oxygen reduction reaction (ORR) Palladium Production methods Redox reactions Renewable energy Synthesis |
Title | Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202303031 https://www.ncbi.nlm.nih.gov/pubmed/37356067 https://www.proquest.com/docview/2881086340 https://www.proquest.com/docview/2829704887 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfpk3Igg-1bVp7MW3OSdDVEQn7K2kWQLDrROzgfPXe06z1k0RQelLm6Q0TXJyvpOcfIeQY6k8DlMAdxTgB4en_MyJmQpA3LUUYK-oMA_ad3sXtJ74deesM3OK3_JDlAtuKBn5fI0CLlJT-yQNNYM-bh0AhIYL7R_PD5A8__Kh5I_yQXnl0VVAZzlIvFWwNrqsNv_6vFb6BjXnkWuueq5WiCgqbT1Onk_Ho_RUvn_hc_zPX62S5SkupXU7kNbIgsrWydIMW-EGebvoDRRg9X5PUpiUh7hlP6ENXP-ZmJGhAH9p7sZDm_mBQnpv2WSh589p3foaGNrL6OMkA9hpeoaiPxKkiaxLGyVztD0YStsFu6zZJE9XzXaj5UwDNzjSD32wSVMmZMS1h-sV0CtxEIHVxAEqSh1r5utUqcgLu6qrIBVZ5aToBtKVSkYKDEB_i1SyYaZ2CBVShNpLhXC54Ez4Ik5DDLblCg3AUOsqcYqOS-SU1RyDa_QTy8fMEmzRpGzRKjkpy79YPo8fS-4X4yCZyrVJWBRhaCqfu1VyVGaDROI2i8jUcIxlWBzixBhWybYdP-WnoHkAYgaQw_JR8Esdksfbm5vyafcvL-2RRby3_of7pDJ6HasDwFGj9DCXlQ-riRVu |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h7oHtgY2PQcfGjITEU9rEcfPB21ZaddBWE22lvUWOa0sVbTotrbTy13MXNxkFIaShPMUfimP77N-dz78D-KC0J3AJEI5G_OCIVLScmOsAxd0oifqKDougfYNh0JuILzet0puQ7sJYfojK4EaSUazXJOBkkG4-sIbmizmdHSCGxgcVoD2BaIP0r8_fKgYpH7evIr4K7loOUW-VvI0ub-7W392X_gCbu9i12Hy6h5CWzbY-J98b61XaUD9-Y3T8r_86gmdbaMou7Fx6Dk909gIOfiEsfAn3l7OFRrg-nymG6_KSTu03rE0moE2-yhkiYFZ48rBOcaeQXVtCWRz8T-zCuhvkbJax0SZD5JnPckYuSZgmsylrV-TR9m4oG5cEs_krmHQ743bP2cZucJQf-qiWplyqSBiPTBZ-IOIgQsVJIFpUJjbcN6nWkRdO9VRjKhHLKTkNlKu0ijTqgP4x1LJlpt8Ak0qGxkuldIUUXPoyTkOKt-VKg9jQmDo45cglaktsTvE15omlZOYJ9WhS9WgdPlblby2lx19LnpYTIdmKdp7wKKLoVL5w6_C-ykahpJMWmenlmsrwOKS1MazDazuBqk9h9yDKDDCHF9PgH21IRoN-v3o7eUylc3jaGw_6Sf9q-PUt7FO6dUc8hdrqbq3PEFat0neF4PwEBHcZjQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9GBqN92GfbuetWDQZ9cuPIqj_21mUJ2ZaE0LTQNyPLEoSmTqkTWPbX786yvWajDFr8ZH1gWbqTfiedfgfwSemOwClAuBrxgytSceLGXAeo7kZJtFd0WAbtG42DwYX4fnlyeecWv-WHaDbcSDPK-ZoU_CYz7T-kocX1nI4OEELjg_bPUxEgnCBYdNYQSPm4epXhVXDRcol5q6Zt9Hh7s_7msvQP1tyEruXa038Bsm61dTm5Ol4t02P16y9Cx8f81kt4XgFTdmol6RU80flr2L5DV_gGfn6ZXWsE6_OZYjgrL-jMfs26tAG0LpYFQ_zLSj8e1itvFLKJpZPFof_MTq2zQcFmOZuuc8Sdxaxg5JCEaTLPWLehjrY3Q9l5TS9b7MBFv3feHbhV5AZX-aGPRmnKpYqE6dCGhR-IOIjQbBKIFZWJDfdNqnXUCTOdaUwlWjkls0B5SqtIowXo70IrX-T6LTCpZGg6qZSekIJLX8ZpSNG2PGkQGRrjgFsPXKIqWnOKrjFPLCEzT6hHk6ZHHThqyt9YQo97Sx7UcpBUil0kPIooNpUvPAc-NtmoknTOInO9WFEZHoc0M4YO7Fn5aT6F3YMYM8AcXkrBf9qQTEfDYfO2_5BKh_Bs8rWfDL-Nf7yDLUq2vogH0FrervR7xFTL9EOpNr8BoGAYPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetallic+Nanoalloy+Catalysts+for+Green+Energy+Production%3A+Advances+in+Synthesis+Routes+and+Characterization+Techniques&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ashraf%2C+Saima&rft.au=Liu%2C+Yanyan&rft.au=Wei%2C+Huijuan&rft.au=Shen%2C+Ruofan&rft.date=2023-10-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=43&rft_id=info:doi/10.1002%2Fsmll.202303031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202303031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |