Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques

Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not ex...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 43; pp. e2303031 - n/a
Main Authors Ashraf, Saima, Liu, Yanyan, Wei, Huijuan, Shen, Ruofan, Zhang, Huanhuan, Wu, Xianli, Mehdi, Sehrish, Liu, Tao, Li, Baojun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202303031

Cover

Abstract Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well‐alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd‐based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser‐based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed. Bimetallic Nanoalloys catalysts are strikingly popular for green energy production and storage. Synthetic methods such as chemical reduction, vapor deposition, pyrolysis, laser ablation, etc., can improve the alloy catalytic activity for hydrogen evolution reactions, oxygen reduction reactions, oxygen evolution reactions, and alcohol oxidation reactions. In combination with transition and other metals, Nobel metals can create highly efficient electrocatalysts.
AbstractList Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well‐alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd‐based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser‐based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed. Bimetallic Nanoalloys catalysts are strikingly popular for green energy production and storage. Synthetic methods such as chemical reduction, vapor deposition, pyrolysis, laser ablation, etc., can improve the alloy catalytic activity for hydrogen evolution reactions, oxygen reduction reactions, oxygen evolution reactions, and alcohol oxidation reactions. In combination with transition and other metals, Nobel metals can create highly efficient electrocatalysts.
Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well‐alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd‐based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser‐based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Author Li, Baojun
Mehdi, Sehrish
Wei, Huijuan
Shen, Ruofan
Wu, Xianli
Ashraf, Saima
Liu, Yanyan
Liu, Tao
Zhang, Huanhuan
Author_xml – sequence: 1
  givenname: Saima
  surname: Ashraf
  fullname: Ashraf, Saima
  organization: Zhengzhou University
– sequence: 2
  givenname: Yanyan
  surname: Liu
  fullname: Liu, Yanyan
  email: lyycarbon@henau.edu.cn
  organization: Henan Agricultural University
– sequence: 3
  givenname: Huijuan
  surname: Wei
  fullname: Wei, Huijuan
  organization: Zhengzhou University
– sequence: 4
  givenname: Ruofan
  surname: Shen
  fullname: Shen, Ruofan
  organization: Zhengzhou University
– sequence: 5
  givenname: Huanhuan
  surname: Zhang
  fullname: Zhang, Huanhuan
  organization: Zhengzhou University
– sequence: 6
  givenname: Xianli
  surname: Wu
  fullname: Wu, Xianli
  organization: Zhengzhou University
– sequence: 7
  givenname: Sehrish
  surname: Mehdi
  fullname: Mehdi, Sehrish
  organization: Zhengzhou University
– sequence: 8
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  organization: National Center for Nanoscience and Technology
– sequence: 9
  givenname: Baojun
  orcidid: 0000-0001-8325-3772
  surname: Li
  fullname: Li, Baojun
  email: lbjfcl@zzu.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37356067$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlPHDEQhS1ExBauHCNLuXCZiZfG7eZGRkAiDRAFcrY87uqMkdsmtpuk-fXxZFgkJBT54NLT98rlV7to0wcPCB1QMqWEsE-pd27KCOOkHLqBdqigfCIkazafa0q20W5Kt6QQrKq30Dav-ZEgot5Bfz7bHrJ2zhp8qX0oVRjxTBdpTDnhLkR8HgE8PvUQf474WwztYLIN_hiftPfaG0jYenw9-ryEZBP-HoZcNO1bPFvqqE2GaB_0yoJvwCy9_TVAeo_eddol2H-899CPs9Ob2ZfJ_Or86-xkPjFlSDqpFkwbWXWUESK4qBohBTmqGs5M13SMdwsASesWWigqoYwa3QpDDBgJsmn4Hjpc972LYfVuVr1NBpzTHsKQFCtR1aSSsi7ox1fobRiiL9MVqqQoBa9IoT48UsOih1bdRdvrOKqnTAtQrQETQ0oROmVs_vf9HLV1ihK1Wp1arU49r67Ypq9sT53fNDRrw2_rYPwPra4v5vMX7191x6ye
CitedBy_id crossref_primary_10_1016_j_jssc_2024_124702
crossref_primary_10_1002_adma_202412337
crossref_primary_10_1016_j_apsusc_2025_162936
crossref_primary_10_1021_acs_nanolett_4c05961
crossref_primary_10_1002_sstr_202400501
crossref_primary_10_1016_j_ijhydene_2024_08_248
crossref_primary_10_1002_ange_202409001
crossref_primary_10_1016_j_apsusc_2025_162713
crossref_primary_10_1016_j_clce_2024_100137
crossref_primary_10_1016_j_ijhydene_2025_01_187
crossref_primary_10_1016_j_jechem_2025_03_009
crossref_primary_10_1002_batt_202400418
crossref_primary_10_1021_acs_nanolett_4c03629
crossref_primary_10_1016_j_cej_2024_154725
crossref_primary_10_1016_j_jwpe_2024_106706
crossref_primary_10_3390_molecules29020398
crossref_primary_10_1016_j_ijhydene_2025_01_303
crossref_primary_10_3390_molecules29061342
crossref_primary_10_1021_acsami_4c19069
crossref_primary_10_1039_D4AN01017E
crossref_primary_10_26599_EMD_2023_9370008
crossref_primary_10_1007_s11426_024_2136_1
crossref_primary_10_1016_j_jcis_2024_08_167
crossref_primary_10_1021_acs_langmuir_4c02023
crossref_primary_10_1016_j_jelechem_2025_119083
crossref_primary_10_1002_anie_202409001
crossref_primary_10_3390_ijms241914431
crossref_primary_10_1002_aoc_7740
crossref_primary_10_1016_j_apsusc_2025_163025
crossref_primary_10_1039_D4VA00241E
crossref_primary_10_1039_D4TA03527E
crossref_primary_10_1039_D3NA00152K
Cites_doi 10.1021/cs400621p
10.1016/j.susc.2006.02.016
10.1016/j.electacta.2013.02.130
10.1016/j.jcat.2012.12.030
10.1021/ie020351h
10.1021/acs.langmuir.9b03392
10.1016/j.molcata.2014.05.034
10.1016/j.ijhydene.2016.05.239
10.1016/j.jcis.2009.06.006
10.1021/acs.accounts.9b00172
10.1142/S1793292012300058
10.1016/j.jpowsour.2019.05.010
10.1016/j.jphotobiol.2020.112025
10.1021/nl102025s
10.1016/j.cattod.2015.09.034
10.1007/s11051-013-1994-6
10.1063/1.3224886
10.1016/j.electacta.2018.07.109
10.1016/j.molliq.2022.120120
10.1039/c2cs35188a
10.1021/acs.chemmater.0c01923
10.1021/ie001047w
10.1016/S0360-0564(02)45013-4
10.1039/D0NR07632E
10.1016/j.carbpol.2016.09.008
10.1016/j.apcatb.2021.120094
10.1126/sciadv.aba9731
10.1038/nmat2574
10.1021/jp0043975
10.1002/9781119188230
10.1021/nn506721f
10.1021/acssuschemeng.8b04698
10.1021/acscatal.6b02772
10.1016/j.ultsonch.2019.104804
10.1039/C8CP06701E
10.1021/jp055467g
10.1002/anie.201402986
10.1039/C7TA06737B
10.1021/acsami.9b14598
10.1038/s41467-019-12859-2
10.1016/j.elspec.2018.03.002
10.1016/j.cattod.2010.10.018
10.1021/acssuschemeng.8b05245
10.1016/j.apcata.2009.07.031
10.1021/acs.chemmater.7b04307
10.1007/s00339-018-2348-0
10.1016/j.ijhydene.2020.02.019
10.1021/acscatal.7b04150
10.1002/adma.201805833
10.1021/acssuschemeng.7b03572
10.1021/acsami.7b01241
10.1016/j.apcatb.2016.04.046
10.1016/j.carbpol.2019.01.096
10.1016/j.partic.2018.01.005
10.1111/j.1478-4408.1986.tb01058.x
10.1021/nl300033e
10.1021/ar960143j
10.1016/j.ultsonch.2019.05.023
10.1016/j.apsusc.2020.146719
10.1016/j.scitotenv.2016.03.042
10.1016/j.apsusc.2019.144461
10.1007/s12274-019-2539-9
10.1021/acscatal.5b01011
10.1016/j.apcata.2013.07.006
10.1016/j.apcatb.2018.05.019
10.1038/s41467-020-17975-y
10.1021/acscatal.8b03485
10.3390/cryst6080087
10.1021/jp805949r
10.1002/anie.201913910
10.1021/acsami.5b01541
10.1007/s40097-020-00366-6
10.1016/S1381-1169(97)00259-8
10.1039/C8TA01698D
10.1021/acs.energyfuels.2c00565
10.1016/j.apcatb.2011.07.039
10.1039/C9DT02943E
10.1039/C6NR00231E
10.1021/ja4124658
10.1039/c3cp50816a
10.1021/nn100949z
10.1039/C4CY00976B
10.1016/j.nantod.2008.10.010
10.1016/j.ijcard.2004.04.006
10.1021/j100203a030
10.1016/j.apcata.2019.117371
10.1021/la500811n
10.1016/j.jcat.2008.06.010
10.1021/acscatal.8b02794
10.1021/acs.accounts.7b00078
10.1186/s11671-016-1773-2
10.1063/1.1141908
10.1002/adfm.202000255
10.1021/jacs.1c00539
10.1016/j.apsusc.2020.145486
10.1038/s41467-020-18076-6
10.1039/D2NJ01761J
10.1039/C6NR08895C
10.1021/la300813z
10.1016/j.ijhydene.2019.12.155
10.1039/D0NJ04512H
10.1016/j.jpowsour.2008.09.039
10.1021/cr040090g
10.1073/pnas.1001367107
10.1016/j.jclepro.2017.05.176
10.1016/j.jssc.2018.03.030
10.1021/acsnano.7b06353
10.1016/j.apsusc.2005.09.065
10.1016/j.snb.2016.03.009
10.1016/j.cej.2022.137335
10.1039/C5CP00274E
10.1016/j.apmt.2019.100526
10.1002/anie.201902859
10.1021/acssuschemeng.8b00815
10.1016/j.jcis.2018.03.039
10.1021/acs.chemmater.9b01093
10.1021/nl101567m
10.1021/acssuschemeng.8b04929
10.1016/j.jallcom.2017.11.322
10.1002/cphc.202100021
10.1021/nl070694a
10.1021/am507764u
10.1038/s41598-020-68472-7
10.1021/ja406091p
10.1021/acs.chemmater.6b02346
10.1016/j.jcis.2018.01.060
10.1016/j.elecom.2010.03.046
10.1002/9783527623013
10.1038/s41467-021-22948-w
10.1039/C6EE02002J
10.1021/acscatal.9b04302
10.1017/S1431927612000104
10.1016/j.pmatsci.2018.01.004
10.1021/nl2045588
10.1021/acs.chemrev.0c00436
10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z
10.1021/jacs.9b10813
10.1126/science.1120560
10.1006/jcat.1999.2635
10.1021/acscatal.7b01735
10.1002/anie.200454216
10.1038/s41467-022-34444-w
10.1021/acscatal.6b01275
10.1021/acscatal.5b00830
10.1371/journal.pmed.0020097
10.1016/j.mcat.2017.09.004
10.1016/j.powtec.2014.08.017
10.1021/ja202655j
10.1016/j.jpowsour.2020.227972
10.1021/ja408645b
10.1002/smll.202203126
10.1016/j.jallcom.2017.03.241
10.1007/s00339-009-5451-4
10.1088/0957-4484/18/38/385604
10.1021/jacs.5b04641
10.1016/j.apcata.2018.03.014
10.1016/S1381-1169(00)00258-2
10.1006/jcat.1998.2343
10.1002/adma.201703798
10.1002/anie.202008962
10.1116/1.5000587
10.1021/acsnano.7b07504
10.1016/j.jcis.2022.08.050
10.1016/j.molcata.2011.05.023
10.1021/ja077303e
10.1021/acscentsci.9b01110
10.1016/j.ijhydene.2018.12.004
10.1166/jnn.2011.4989
10.1038/s41467-019-11848-9
10.1016/j.electacta.2017.01.145
10.1016/j.apsusc.2006.05.089
10.1021/acsenergylett.9b02374
10.1039/c2jm32397d
10.1016/j.arabjc.2010.09.027
10.1016/j.jiec.2019.12.008
10.3390/ma12203326
10.1002/chem.201904229
10.1039/c2cs35201j
10.1007/s10853-020-05277-z
10.1126/science.aao6538
10.1126/science.aaw7493
10.1038/s41467-018-06043-1
10.1002/adfm.202100883
10.1016/j.apcatb.2018.07.031
10.1002/crat.201100125
10.1021/bk-1992-0481
10.1039/B714761A
10.1002/sca.1998.4950200104
10.1016/j.cattod.2017.01.011
10.1021/acscentsci.8b00426
10.1021/acsnano.8b02444
10.1021/acs.nanolett.8b02024
10.1007/s42649-019-0003-7
10.1126/science.aan5412
10.1007/s12678-017-0359-9
10.1146/annurev-chembioeng-080615-034503
10.1002/cvde.200806725
10.3390/coatings6040054
10.1021/acscatal.6b02767
10.1109/NAP.2016.7757309
10.1016/j.catcom.2014.08.009
10.1021/acscatal.7b03795
10.1021/acscatal.7b01896
10.1039/C8NR02278J
10.1016/j.apcata.2016.06.022
10.1016/j.jcat.2011.04.003
10.1016/j.ijhydene.2014.11.128
10.1021/jacs.5b08596
10.1016/B978-0-12-800251-3.00002-X
10.1016/j.pmatsci.2019.100591
10.1002/9781118482568
10.1016/j.jcat.2012.05.003
10.1016/j.apcata.2018.02.005
10.1021/jp710010f
10.1007/978-3-030-12057-3
10.1038/s41467-020-18430-8
10.1016/j.ijhydene.2016.07.160
10.1002/adma.201705698
10.1021/ja8061425
10.1107/S1600576717001753
10.1002/cctc.202000443
10.3390/ma13163485
10.1080/14686996.2018.1542926
10.1107/S0021889808001684
10.1039/c2cs35296f
10.3390/en12214027
10.1039/C9RA03254A
10.1016/j.colsurfa.2017.11.009
10.1021/acs.langmuir.8b01838
10.1002/celc.201700901
10.1088/1361-6528/aaf9e8
10.1021/nn700021x
10.1016/S0926-860X(99)00330-0
10.1002/adma.201600469
10.1021/cs300187z
10.1021/acscatal.8b00140
10.1007/s10562-007-9344-x
10.1016/j.jhazmat.2008.04.027
10.1016/j.matlet.2011.06.036
10.1016/j.jcis.2018.11.038
10.1002/adma.201605997
10.1038/s41586-019-1603-7
10.1021/acs.chemrev.8b00114
10.1016/j.ijhydene.2019.09.213
10.1016/j.colsurfa.2016.05.059
10.1002/adma.202006034
10.1631/jzus.A1700257
10.1039/C6TA02748B
10.1021/la401839m
10.1021/acscatal.6b00520
10.1007/s10562-005-7429-y
10.1016/j.elecom.2006.02.020
10.1002/advs.201600476
10.1063/1.5128740
10.1016/j.jcis.2017.05.088
10.1021/acsaem.8b00790
10.1039/C9NR05835D
10.1021/acssuschemeng.7b02754
10.1016/j.micron.2018.04.011
10.1002/9781119417651
10.1039/D0EE03915B
10.1246/bcsj.20160333
10.1021/jacs.1c08644
10.1002/adma.201104951
10.1002/anie.200803477
10.1039/D0CC06745H
10.1021/acs.chemrev.6b00211
10.1021/cr100449n
10.1021/nn2007496
10.1016/j.ijhydene.2013.12.096
10.1016/j.powtec.2018.07.083
10.1002/bit.23293
10.1021/jacs.0c05140
10.1007/s12274-016-1345-x
10.1039/c2pp25188d
10.1016/j.colsurfa.2005.07.029
10.1016/j.apcatb.2017.06.088
10.1016/j.electacta.2016.12.123
10.1016/j.nantod.2012.08.003
10.1016/j.ceramint.2020.07.196
10.1021/jp907059q
10.1016/j.electacta.2018.03.169
10.1021/cm103661q
10.1039/c3ta01664a
10.1007/s12274-020-2666-3
10.1021/nn900242v
10.1021/jacs.1c00656
10.1002/adma.201003695
10.1016/j.jechem.2022.07.017
10.1088/2631-7990/ab83e0
10.1021/acsbiomaterials.7b00040
10.1126/science.aau4414
10.1021/ja209044g
10.1016/j.cej.2018.10.213
10.1002/aenm.201903271
10.1021/jacs.2c07844
10.1016/j.apcata.2010.10.015
10.1016/j.jechem.2018.02.012
10.1039/D0TA02496A
10.1039/c0cs90031a
10.1039/C5CC05331E
10.1016/j.jiec.2008.04.008
10.1080/09506608.2016.1180020
10.1039/D0CC03381B
10.1021/acscatal.1c01761
10.1021/cs500415e
10.1016/j.jcis.2020.04.041
10.1016/j.jcat.2008.10.003
10.1016/j.matt.2019.11.006
10.1016/j.jcat.2006.07.024
10.1016/j.apcata.2015.03.004
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202303031
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 37356067
10_1002_smll_202303031
SMLL202303031
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22279118; 31901272; 22075254
– fundername: National Natural Science Foundation of China
  grantid: 31901272
– fundername: National Natural Science Foundation of China
  grantid: 22279118
– fundername: National Natural Science Foundation of China
  grantid: 22075254
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
LH4
ID FETCH-LOGICAL-c3731-4b2ac84f120063649686054932cf9f23fbee817dede5490121cad6c0cec8e8993
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 04:02:13 EDT 2025
Fri Jul 25 12:11:47 EDT 2025
Thu May 22 04:23:42 EDT 2025
Tue Jul 01 02:54:36 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Wed Jan 22 16:14:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords hydrogen evolution reaction (HER)
nanoparticles
catalyst
oxygen evolution reaction (OER)
oxygen reduction reaction (ORR)
bimetallic nanoalloy
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-4b2ac84f120063649686054932cf9f23fbee817dede5490121cad6c0cec8e8993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8325-3772
PMID 37356067
PQID 2881086340
PQPubID 1046358
PageCount 48
ParticipantIDs proquest_miscellaneous_2829704887
proquest_journals_2881086340
pubmed_primary_37356067
crossref_citationtrail_10_1002_smll_202303031
crossref_primary_10_1002_smll_202303031
wiley_primary_10_1002_smll_202303031_SMLL202303031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 69
2011; 115
2010; 98
2015; 269
2019; 11
2019; 10
2019; 12
2008; 108
2020; 13
2012; 18
2020; 12
2020; 11
2020; 10
2012; 12
2017; 157
2012; 11
2017; 710
2020; 18
2009; 95
2015; 137
2018; 338
2019; 21
2015; 497
2013; 117
2019; 28
2016; 41
2017; 162
2012; 28
2008; 112
2012; 24
2012; 22
2010; 4
2004; 43
2007; 18
2016; 19
2019; 31
2019; 30
2020; 142
2013; 467
2013; 100
2006; 110
2020; 36
2020; 32
2016; 565
2008; 121
2011; 5
1998; 131
2000; 192
2016; 4
2017; 50
2016; 6
2016; 7
2021; 56
2018; 238
2018; 359
2020; 152
2020; 30
2019; 44
2018; 112
2018; 236
2019; 48
2008; 47
2019; 49
2020; 26
2008; 258
2008; 41
2018; 94
2005; 2
2022; 628
2016; 28
2016; 8
2008; 130
2016; 9
2012; 41
2013; 29
2019; 52
2020; 121
2019; 57
2020; 60
2018; 522
2019; 58
2006; 253
2020; 59
2006; 252
2020; 56
2008; 1
2017; 358
1992; 96
2001; 105
2020; 8
2020; 6
2013; 15
2014; 4
2020; 2
2002; 41
2002; 42
2013; 13
2014; 57
2016; 231
2020; 46
2000; 164
2016; 116
2018; 538
2020; 45
2020; 44
2021 2009; 11 95
2006; 243
2017; 218
2015; 5
2021; 3
2015; 4
2019; 429
2018; 306
2020; 83
2006; 273
2008
2013; 300
2020; 107
2017; 29
2015; 9
2015; 7
2017; 229
2011; 108
2011; 107
2018; 557
2020; 591
2021
2020
2017; 11
2017; 10
2018; 555
2017; 12
2019
2018
2009; 8
2017
2016
2019; 537
2016; 138
2014
2009; 4
2013
2009; 3
2017; 225
2001; 2001
2018; 285
2010; 12
2010; 10
2013; 1
2010; 107
2016; 265
2009; 113
2018; 41
2008; 185
2014; 136
1990; 61
2018; 7
2018; 6
2018; 9
2018; 8
1986; 102
2012; 134
2018; 4
2018; 735
2018; 1
2005; 102
1999; 182
2010; 114
2005; 104
2005; 105
1986
2022; 36
2007; 7
2011; 65
2018; 30
2020; 574
2020; 455
2020; 212
2018; 34
2006; 600
2017; 442
2007; 1
2009; 367
2022; 446
2009; 15
2018; 36
2019; 7
2018; 29
2019; 9
2019; 5
2015; 51
2019; 1
2010; 39
2015; 54
2019; 102
2014; 392
1992
1999; 188
2021; 143
2009; 338
2012; 109
2018; 19
2018; 18
2012; 112
1997; 30
2022; 13
2019; 212
2018; 516
2014; 39
2018; 12
2014; 30
2018; 10
2019; 574
2022; 18
2018; 362
2017; 5
2017; 7
2018; 122
2017; 8
2017; 3
2017; 4
2021; 22
2000; 45
2016; 504
2019; 366
2011; 11
2019; 125
2011; 13
2011; 392
2017; 9
2020; 527
2008; 260
2022; 365
2009; 52
2021; 31
2015; 40
2012; 292
2016; 198
2022; 74
2019; 119
2009; 161
2011; 23
2011; 281
2011; 164
2019; 231
2018; 262
2015; 17
2008; 14
2022; 46
2006; 8
2016; 523
1998; 20
2020; 504
2019; 142
2006; 311
2022; 144
2021; 14
2017; 505
2012; 2
2017; 90
2021; 12
2021; 11
2018; 271
2020; 511
2021; 291
2019; 377
2013; 135
2016; 61
2011; 46
2012; 7
2012; 4
2012; 5
Boddolla S. (e_1_2_10_120_1) 2018; 7
e_1_2_10_271_1
e_1_2_10_339_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_210_1
e_1_2_10_233_1
e_1_2_10_279_1
e_1_2_10_294_1
e_1_2_10_158_1
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
Radillo‐Díaz A. (e_1_2_10_278_1) 2009; 52
e_1_2_10_304_1
e_1_2_10_327_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_260_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_245_1
e_1_2_10_268_1
e_1_2_10_283_1
Behera A. (e_1_2_10_136_1) 2020
e_1_2_10_330_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_338_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_315_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_272_1
e_1_2_10_41_1
e_1_2_10_211_1
e_1_2_10_257_1
e_1_2_10_295_1
e_1_2_10_234_1
e_1_2_10_341_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_326_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_303_1
e_1_2_10_261_1
e_1_2_10_269_1
e_1_2_10_200_1
e_1_2_10_246_1
e_1_2_10_284_1
e_1_2_10_223_1
e_1_2_10_148_1
e_1_2_10_337_1
e_1_2_10_64_1
Burda C. (e_1_2_10_69_1) 2005; 105
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_87_1
e_1_2_10_314_1
e_1_2_10_26_1
e_1_2_10_250_1
e_1_2_10_273_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_258_1
e_1_2_10_212_1
e_1_2_10_235_1
e_1_2_10_296_1
e_1_2_10_340_1
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
Kang B. (e_1_2_10_194_1) 2021; 69
e_1_2_10_198_1
e_1_2_10_325_1
e_1_2_10_175_1
e_1_2_10_262_1
e_1_2_10_30_1
e_1_2_10_247_1
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_285_1
Ferrando R. (e_1_2_10_121_1) 2016
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_336_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_141_1
Liu D. (e_1_2_10_184_1) 2019; 102
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_313_1
e_1_2_10_274_1
e_1_2_10_43_1
e_1_2_10_251_1
e_1_2_10_20_1
e_1_2_10_236_1
e_1_2_10_259_1
e_1_2_10_213_1
e_1_2_10_297_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_301_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_176_1
e_1_2_10_324_1
e_1_2_10_263_1
e_1_2_10_240_1
e_1_2_10_31_1
e_1_2_10_248_2
e_1_2_10_225_1
e_1_2_10_202_1
e_1_2_10_286_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_312_1
e_1_2_10_335_1
e_1_2_10_104_1
e_1_2_10_127_1
Hugon A. (e_1_2_10_302_1) 2010; 114
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
Choi B.‐S. (e_1_2_10_248_1) 2021; 11
e_1_2_10_89_1
e_1_2_10_252_1
e_1_2_10_275_1
e_1_2_10_298_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_237_1
e_1_2_10_290_1
Wu K.‐L. (e_1_2_10_113_1) 2011; 115
Gunashekar G. (e_1_2_10_219_1) 2015; 4
Wang M. (e_1_2_10_256_1) 2019; 11
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
Ramachandran K. (e_1_2_10_153_1) 2020
e_1_2_10_2_1
e_1_2_10_300_1
e_1_2_10_323_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_241_1
e_1_2_10_264_1
e_1_2_10_287_1
e_1_2_10_308_1
e_1_2_10_32_1
Yey F. (e_1_2_10_186_1) 2016; 19
e_1_2_10_203_1
e_1_2_10_249_1
Whittig L. (e_1_2_10_214_1) 1986
e_1_2_10_166_1
Grand J. (e_1_2_10_160_1) 2018; 122
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_334_1
e_1_2_10_128_1
e_1_2_10_311_1
e_1_2_10_29_1
Astruc D. (e_1_2_10_61_1) 2008; 1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_253_1
e_1_2_10_299_1
e_1_2_10_319_1
e_1_2_10_22_1
e_1_2_10_230_1
e_1_2_10_215_1
Thomas S. (e_1_2_10_226_1) 2017
e_1_2_10_291_1
e_1_2_10_238_1
e_1_2_10_276_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_322_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_242_1
e_1_2_10_288_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_307_1
e_1_2_10_204_1
e_1_2_10_280_1
e_1_2_10_227_1
e_1_2_10_265_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_333_1
e_1_2_10_310_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_231_1
e_1_2_10_318_1
Sorbiun M. (e_1_2_10_180_1) 2018; 29
e_1_2_10_239_1
e_1_2_10_292_1
e_1_2_10_216_1
e_1_2_10_254_1
e_1_2_10_277_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_321_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
Pozun Z. D. (e_1_2_10_49_1) 2013; 117
e_1_2_10_58_1
Minnermann M. (e_1_2_10_103_1) 2011; 115
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_289_1
e_1_2_10_306_1
e_1_2_10_329_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_281_1
e_1_2_10_266_1
e_1_2_10_145_1
Venkateswara Rao C. (e_1_2_10_147_1) 2009; 113
e_1_2_10_168_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_332_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_317_1
Liu R.‐S. (e_1_2_10_309_1) 2013
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_293_1
e_1_2_10_232_1
e_1_2_10_255_1
e_1_2_10_157_1
e_1_2_10_229_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_320_1
e_1_2_10_305_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_328_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_282_1
e_1_2_10_221_1
e_1_2_10_267_1
e_1_2_10_244_1
Pennycook S. J. (e_1_2_10_243_1) 2009; 367
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_331_1
Wang Z. (e_1_2_10_270_1) 2017
e_1_2_10_316_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_47_1
References_xml – volume: 40
  start-page: 1726
  year: 2015
  publication-title: Int. J. Hydrog. Energy.
– volume: 10
  start-page: 4011
  year: 2019
  publication-title: Nat. Commun.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 164
  start-page: 297
  year: 2000
  publication-title: J. Mol. Catal. A: Chem.
– volume: 161
  start-page: 815
  year: 2009
  publication-title: J. Hazard. Mater.
– volume: 9
  start-page: 3314
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 2639
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 41
  start-page: 899
  year: 2002
  publication-title: Ind. Eng. Chem. Res.
– year: 2014
– volume: 46
  year: 2020
  publication-title: Ceram. Int.
– volume: 45
  start-page: 6110
  year: 2020
  publication-title: Int. J. Hydrog. Energy
– volume: 557
  start-page: 72
  year: 2018
  publication-title: Appl Catal A Gen
– volume: 9
  start-page: 8151
  year: 2017
  publication-title: ACS Appl Mater Interfaces
– volume: 131
  start-page: 107
  year: 1998
  publication-title: J Mol Catal A Chem
– volume: 44
  start-page: 2731
  year: 2019
  publication-title: Int. J. Hydrog. Energy.
– start-page: 639
  year: 2020
  publication-title: Micro Nano Technol.
– volume: 30
  year: 2019
  publication-title: Nanotechnology
– volume: 122
  year: 2018
  publication-title: J Phys Chem
– year: 2008
– volume: 14
  start-page: 687
  year: 2008
  publication-title: J Ind Eng Chem
– volume: 9
  year: 2019
  publication-title: RSC Adv.
– volume: 359
  start-page: 1489
  year: 2018
  publication-title: Science
– volume: 9
  start-page: 3702
  year: 2018
  publication-title: Nat. Commun.
– volume: 74
  start-page: 203
  year: 2022
  publication-title: J Energy Chem
– volume: 44
  year: 2019
  publication-title: Int. J. Hydrog. Energy.
– volume: 7
  start-page: 6541
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 5
  start-page: 3457
  year: 2015
  publication-title: ACS Catal.
– volume: 108
  start-page: 81
  year: 2011
  publication-title: Appl Catal B
– volume: 392
  start-page: 11
  year: 2011
  publication-title: Appl Catal A Gen
– year: 2019
– volume: 31
  start-page: 4205
  year: 2019
  publication-title: Chem. Mater.
– volume: 45
  start-page: 71
  year: 2000
  publication-title: Advances in Catalysis
– volume: 15
  start-page: 15
  year: 2009
  publication-title: Chem. Vap. Depos.
– volume: 41
  start-page: 58
  year: 2018
  publication-title: Particuology
– volume: 102
  start-page: 71
  year: 2005
  publication-title: Int J Cardiol
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 107
  start-page: 372
  year: 2011
  publication-title: Appl Catal B
– volume: 523
  start-page: 263
  year: 2016
  publication-title: Appl Catal A Gen
– volume: 253
  start-page: 204
  year: 2006
  publication-title: Appl. Surf. Sci.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 59
  start-page: 1718
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 46
  year: 2022
  publication-title: New J. Chem.
– volume: 12
  start-page: 3326
  year: 2019
  publication-title: Materials
– volume: 32
  start-page: 8243
  year: 2020
  publication-title: Chem. Mater.
– volume: 185
  start-page: 857
  year: 2008
  publication-title: J. Power Sources
– volume: 30
  start-page: 5026
  year: 2014
  publication-title: Langmuir
– volume: 15
  start-page: 7286
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 45
  year: 2020
  publication-title: Int. J. Hydrog. Energy.
– volume: 19
  start-page: 883
  year: 2018
  publication-title: Sci. Technol. Adv. Mater.
– volume: 5
  start-page: 5123
  year: 2015
  publication-title: ACS Catal.
– volume: 20
  start-page: 24
  year: 1998
  publication-title: Scanning Microsc
– volume: 7
  start-page: 1701
  year: 2007
  publication-title: Nano Lett.
– volume: 6
  start-page: 4512
  year: 2016
  publication-title: ACS Catal.
– year: 2020
  publication-title: Adv. Heterogen. Cataly., Appl. Nanosci.
– volume: 7
  start-page: 448
  year: 2012
  publication-title: Nano Today
– volume: 7
  start-page: 6522
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 41
  start-page: 302
  year: 2008
  publication-title: J. Appl. Crystallogr.
– volume: 11
  year: 2021
  publication-title: ACS Catal.
– volume: 446
  year: 2022
  publication-title: Chem Eng J
– volume: 11
  start-page: 287
  year: 2021
  publication-title: J Nanostructure Chem
– volume: 48
  year: 2019
  publication-title: Dalton Trans.
– volume: 7
  start-page: 413
  year: 2017
  publication-title: ACS Catal.
– volume: 96
  start-page: 9730
  year: 1992
  publication-title: J. Phys. Chem.
– volume: 116
  start-page: 3722
  year: 2016
– volume: 497
  start-page: 85
  year: 2015
  publication-title: Appl Catal A Gen
– volume: 137
  start-page: 7947
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1831
  year: 2012
  publication-title: Photochem. Photobiol. Sci.
– volume: 29
  start-page: 2806
  year: 2018
  publication-title: J Mater Sci
– volume: 467
  start-page: 132
  year: 2013
  publication-title: Appl Catal A Gen
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 83
  start-page: 351
  year: 2020
  publication-title: J Ind Eng Chem
– volume: 107
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2013
– volume: 12
  start-page: 2013
  year: 2012
  publication-title: Nano Lett.
– volume: 28
  start-page: 5872
  year: 2016
  publication-title: Chem. Mater.
– volume: 28
  start-page: 7115
  year: 2016
  publication-title: Adv. Mater.
– volume: 291
  year: 2021
  publication-title: Appl Catal B
– volume: 358
  start-page: 1427
  year: 2017
  publication-title: Science
– volume: 260
  start-page: 384
  year: 2008
  publication-title: J. Catal.
– volume: 10
  start-page: 1627
  year: 2017
  publication-title: Nano Res.
– volume: 57
  start-page: 78
  year: 2014
  publication-title: Catal. Commun.
– volume: 6
  start-page: 6981
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– year: 2021
– volume: 269
  start-page: 532
  year: 2015
  publication-title: Powder Technol.
– volume: 95
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 30
  start-page: 414
  year: 1997
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 192
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 142
  start-page: 953
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 2326
  year: 2012
  publication-title: Adv. Mater.
– volume: 57
  start-page: 166
  year: 2019
  publication-title: Ultrasonics Sonochem.
– volume: 144
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 1991
  year: 2019
  publication-title: ACS Cent. Sci.
– volume: 19
  start-page: 5
  year: 2018
  publication-title: J Zhejiang Univ Sci
– volume: 7
  start-page: 5194
  year: 2017
  publication-title: ACS Catal.
– volume: 8
  year: 2018
  publication-title: ACS Catal.
– volume: 94
  start-page: 384
  year: 2018
  publication-title: Prog. Mater. Sci.
– volume: 108
  start-page: 845
  year: 2008
  publication-title: Chem. Rev.
– volume: 136
  start-page: 4813
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 13
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3047
  year: 2010
  publication-title: Nano Lett.
– volume: 600
  start-page: 1849
  year: 2006
  publication-title: Surf. Sc.
– volume: 109
  start-page: 45
  year: 2012
  publication-title: Biotechnol. Bioeng.
– volume: 54
  start-page: 2022
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 29
  start-page: 9249
  year: 2013
  publication-title: Langmuir
– volume: 225
  start-page: 525
  year: 2017
  publication-title: Electrochim. Acta
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 6117
  year: 2018
  publication-title: ACS Nano
– volume: 504
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 2001
  start-page: 2455
  year: 2001
  publication-title: Eur. J. Inorg. Chem.
– volume: 4
  start-page: 5111
  year: 2010
  publication-title: ACS Nano
– volume: 105
  start-page: 5450
  year: 2001
  publication-title: J Phys Chem B
– volume: 4
  start-page: 7994
  year: 2012
  publication-title: Chem. Soci. Rev.
– volume: 49
  start-page: 1
  year: 2019
  publication-title: Appl. Micros.
– volume: 13
  start-page: 9674
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2966
  year: 2019
  publication-title: Nano Rese.
– volume: 7
  start-page: 2400
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 143
  start-page: 6933
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 455
  year: 2020
  publication-title: J. Power Sources
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1
  year: 2019
  publication-title: Nanomicro Lett
– volume: 538
  start-page: 429
  year: 2018
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 281
  start-page: 40
  year: 2011
  publication-title: J. Catal.
– volume: 34
  start-page: 9754
  year: 2018
  publication-title: Langmuir
– volume: 41
  year: 2016
  publication-title: Int. J. Hydrog. Energy
– volume: 574
  start-page: 421
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 338
  start-page: 105
  year: 2009
  publication-title: J. Colloid Interf. Sci.
– volume: 367
  start-page: 3709
  year: 2009
  publication-title: Proc Math Phys Eng Sci
– volume: 18
  start-page: 4053
  year: 2018
  publication-title: Nano Lett.
– volume: 5
  start-page: 5478
  year: 2011
  publication-title: ACS Nano
– start-page: 2
  year: 2013
  publication-title: SPIE Newsroom
– volume: 9
  start-page: 1033
  year: 2017
  publication-title: Nanoscale
– volume: 113
  year: 2009
  publication-title: J Phys Chem
– volume: 130
  start-page: 1093
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 306
  start-page: 58
  year: 2018
  publication-title: Catal. Today
– volume: 9
  start-page: 781
  year: 2018
  publication-title: ACS Catal.
– volume: 46
  start-page: 607
  year: 2011
  publication-title: Cryst. Res. Technol.
– volume: 98
  start-page: 617
  year: 2010
  publication-title: Appl. Phys. A.
– volume: 1
  start-page: 1451
  year: 2019
  publication-title: Matter
– volume: 555
  start-page: 12
  year: 2018
  publication-title: Appl Catal A Gen
– volume: 8
  start-page: 2121
  year: 2018
  publication-title: ACS Catal.
– volume: 8
  start-page: 940
  year: 2009
  publication-title: Nat. Mater.
– volume: 21
  start-page: 114
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 218
  start-page: 721
  year: 2017
  publication-title: Appl Catal B
– volume: 7
  start-page: 169
  year: 2018
  publication-title: Int. J. Eng., Math.
– volume: 4
  start-page: 1244
  year: 2018
  publication-title: ACS Cent. Sci.
– volume: 19
  start-page: 349
  year: 2016
  publication-title: Today
– volume: 30
  start-page: 428
  year: 2018
  publication-title: Chem. Mater.
– volume: 12
  start-page: 843
  year: 2010
  publication-title: Electrochem. Commun.
– volume: 115
  start-page: 1302
  year: 2011
  publication-title: J Phys Chem
– volume: 12
  start-page: 2243
  year: 2019
  publication-title: ACS Appl Mater Interfaces
– volume: 367
  start-page: 70
  year: 2009
  publication-title: Appl Catal A Gen
– volume: 1
  start-page: 48
  year: 2008
  publication-title: Nano. Catal.
– volume: 41
  year: 2016
  publication-title: Int. J. Hydrog. Energy.
– start-page: 691
  year: 2008
  publication-title: Chem. Commun.
– volume: 23
  start-page: 1044
  year: 2011
  publication-title: Adv. Mater.
– volume: 9
  start-page: 387
  year: 2015
  publication-title: ACS Nano
– volume: 102
  start-page: 66
  year: 1986
  publication-title: J. Soc. Dye. Colour.
– volume: 11
  start-page: 4240
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  start-page: 9638
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 5
  start-page: 397
  year: 2012
  publication-title: Arab J Chem
– volume: 365
  year: 2022
  publication-title: J. Mol. Liq.
– volume: 43
  start-page: 3673
  year: 2004
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 4140
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 143
  start-page: 5445
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 8099
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 710
  start-page: 57
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 522
  start-page: 264
  year: 2018
  publication-title: J. Colloid Interface Sci.
– volume: 119
  start-page: 6822
  year: 2019
  publication-title: Chem. Rev.
– volume: 12
  start-page: 4027
  year: 2019
  publication-title: Energies
– volume: 7
  start-page: 1543
  year: 2017
  publication-title: ACS Catal.
– volume: 236
  start-page: 88
  year: 2018
  publication-title: Appl Catal B
– volume: 516
  start-page: 476
  year: 2018
  publication-title: J. Colloid Interface Sci.
– volume: 6
  start-page: 6623
  year: 2016
  publication-title: ACS Catal.
– volume: 60
  year: 2020
  publication-title: Ultrasonics Sonochem.
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 273
  start-page: 35
  year: 2006
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 229
  start-page: 361
  year: 2017
  publication-title: Electrochim. Acta
– volume: 527
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 511
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 39
  start-page: 4557
  year: 2010
  publication-title: Chem. Soci. Rev.
– volume: 12
  start-page: 4138
  year: 2020
  publication-title: ChemCatChem
– volume: 392
  start-page: 308
  year: 2014
  publication-title: J. Mol. Catal. A: Chem.
– year: 1986
– volume: 39
  start-page: 3226
  year: 2014
  publication-title: Int. J. Hydrog. Energy
– volume: 36
  start-page: 5910
  year: 2022
  publication-title: Energy amp; Fuels
– volume: 565
  start-page: 827
  year: 2016
  publication-title: Sci. Total Environ.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 4773
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 442
  start-page: 154
  year: 2017
  publication-title: Mol. Catal.
– volume: 504
  start-page: 105
  year: 2016
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 4
  start-page: 6
  year: 2015
  publication-title: Res. Rev.: J. Phys.
– volume: 182
  start-page: 449
  year: 1999
  publication-title: J. Catal.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 4405
  year: 2010
  publication-title: Nano Lett.
– volume: 12
  start-page: 2664
  year: 2021
  publication-title: Nat. Commun.
– volume: 243
  start-page: 420
  year: 2006
  publication-title: J. Catal.
– volume: 8
  start-page: 4873
  year: 2018
  publication-title: ACS Catal.
– volume: 366
  start-page: 850
  year: 2019
  publication-title: Science
– volume: 152
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 44
  year: 2020
  publication-title: New J. Chem.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 252
  start-page: 7862
  year: 2006
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 3037
  year: 2017
  publication-title: ChemElectroChem
– volume: 117
  start-page: 7598
  year: 2013
  publication-title: J Phys Chem
– volume: 8
  start-page: 707
  year: 2006
  publication-title: Electrochem. Commun.
– volume: 112
  start-page: 2373
  year: 2012
  publication-title: Chem. Rev.
– volume: 36
  start-page: 1985
  year: 2020
  publication-title: Langmuir
– volume: 188
  start-page: 165
  year: 1999
  publication-title: J. Catal.
– volume: 50
  start-page: 451
  year: 2017
  publication-title: J. Appl. Crystallogr.
– volume: 574
  start-page: 81
  year: 2019
  publication-title: Nature
– volume: 65
  start-page: 3016
  year: 2011
  publication-title: Mater. Lett.
– volume: 22
  start-page: 657
  year: 2021
  publication-title: Chemphyschem
– volume: 6
  start-page: 8662
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 1102
  year: 2012
  publication-title: Nano Lett.
– volume: 134
  start-page: 5100
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 4844
  year: 2008
  publication-title: J Phys Chem
– volume: 13
  start-page: 3485
  year: 2020
  publication-title: Materials
– volume: 6
  start-page: 2152
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  start-page: 3658
  year: 2020
  publication-title: ACS Catal.
– volume: 121
  start-page: 736
  year: 2020
  publication-title: Chem. Rev.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– year: 2016
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 87
  year: 2016
  publication-title: Crystals
– volume: 7
  start-page: 5347
  year: 2015
  publication-title: ACS Appl Mater Interfaces
– volume: 115
  year: 2011
  publication-title: J Phys Chem
– year: 1992
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 69
  start-page: 32
  year: 2021
  publication-title: J Mater Sci
– volume: 311
  start-page: 362
  year: 2006
  publication-title: Science
– volume: 735
  start-page: 2123
  year: 2018
  publication-title: J. Alloys Compd.
– volume: 18
  year: 2007
  publication-title: Nanotechnology
– volume: 23
  start-page: 2159
  year: 2011
  publication-title: Chem. Mater.
– volume: 192
  start-page: 29
  year: 2000
  publication-title: Appl Catal A Gen
– volume: 52
  start-page: 127
  year: 2009
  publication-title: Eur Phys J D At Mol Opt Phys
– volume: 377
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2012
  publication-title: Nano
– volume: 429
  start-page: 89
  year: 2019
  publication-title: J. Power Sources
– volume: 114
  year: 2010
  publication-title: J Phys Chem
– volume: 47
  start-page: 8646
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 271
  start-page: 397
  year: 2018
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 4855
  year: 2019
  publication-title: Nat. Commun.
– volume: 102
  start-page: 7071
  year: 2019
  publication-title: Ann Cardiothorac Surg
– volume: 231
  start-page: 68
  year: 2019
  publication-title: J Electron Spectros Relat Phenomena
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 212
  year: 2020
  publication-title: J Photochem Photobiol B
– volume: 2
  start-page: 97
  year: 2005
  publication-title: PLoS Med.
– volume: 36
  year: 2018
  publication-title: J. Vac. Sci. Technol. A: Vac. Surf. Films
– volume: 231
  start-page: 70
  year: 2016
  publication-title: Sens. Actuators, B
– volume: 11
  start-page: 4233
  year: 2020
  publication-title: Nat. Commun.
– volume: 300
  start-page: 47
  year: 2013
  publication-title: J. Catal.
– volume: 121
  start-page: 337
  year: 2008
  publication-title: Catal Letters
– volume: 628
  start-page: 53
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 138
  start-page: 2563
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 61
  start-page: 183
  year: 2016
  publication-title: Int. Mater. Rev.
– volume: 11
  start-page: 4558
  year: 2020
  publication-title: Nat. Commun.
– volume: 11 95
  start-page: 153
  year: 2021 2009
  publication-title: ACS Catal. Appl. Phys. Lett.
– volume: 537
  start-page: 366
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 18
  start-page: 621
  year: 2012
  publication-title: Microsc. Microanal.
– volume: 505
  start-page: 307
  year: 2017
  publication-title: J. Colloid Interface Sci.
– volume: 5
  start-page: 55
  year: 2015
  publication-title: Catal. Sci. Technol.
– volume: 104
  start-page: 9
  year: 2005
  publication-title: Catal. Lett.
– year: 2018
– volume: 4
  start-page: 143
  year: 2009
  publication-title: Nano Today
– volume: 157
  start-page: 447
  year: 2017
  publication-title: Carbohydr. Polym.
– volume: 6
  start-page: 54
  year: 2016
  publication-title: Coatings
– volume: 42
  start-page: 1571
  year: 2002
  publication-title: Ind. Eng. Chem. Res.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 125
  start-page: 42
  year: 2019
  publication-title: Appl. Phys. A.
– volume: 50
  start-page: 1797
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 105
  start-page: 1025
  year: 2005
  publication-title: Rev.
– volume: 15
  start-page: 1994
  year: 2013
  publication-title: J Nanopart Res
– volume: 198
  start-page: 38
  year: 2016
  publication-title: Appl Catal B
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 30
  year: 2018
  publication-title: Adv Mater
– volume: 28
  start-page: 7168
  year: 2012
  publication-title: Langmuir
– volume: 362
  start-page: 560
  year: 2018
  publication-title: Science
– volume: 7
  start-page: 6802
  year: 2017
  publication-title: ACS Catal.
– volume: 26
  start-page: 4025
  year: 2020
  publication-title: Chem. ‐ Eur. J.
– volume: 7
  start-page: 327
  year: 2016
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 262
  start-page: 229
  year: 2018
  publication-title: J. Solid State Chem.
– volume: 12
  start-page: 1
  year: 2017
  publication-title: Nanoscale Res. Lett.
– volume: 61
  start-page: 2501
  year: 1990
  publication-title: Rev. Sci. Instrum.
– volume: 56
  start-page: 392
  year: 2021
  publication-title: J. Mater. Sci.
– volume: 3
  start-page: 391
  year: 2021
  publication-title: Chem. Commun.
– volume: 338
  start-page: 905
  year: 2018
  publication-title: Powder Technol.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1812
  year: 2014
  publication-title: ACS Catal.
– volume: 591
  year: 2020
  publication-title: Appl Catal A Gen
– volume: 13
  start-page: 638
  year: 2020
  publication-title: Nano Res.
– volume: 265
  start-page: 231
  year: 2016
  publication-title: Catal. Today
– volume: 3
  start-page: 882
  year: 2017
  publication-title: ACS Biomater. Sci. Eng.
– volume: 8
  start-page: 8276
  year: 2016
  publication-title: Nanoscale
– volume: 7
  start-page: 3199
  year: 2015
  publication-title: ACS Appl Mater Interfaces
– volume: 292
  start-page: 111
  year: 2012
  publication-title: J. Catal.
– volume: 28
  start-page: 111
  year: 2019
  publication-title: J Energy Chem
– volume: 4
  start-page: 289
  year: 2014
  publication-title: ACS Catal.
– volume: 6
  start-page: 491
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 164
  start-page: 320
  year: 2011
  publication-title: Catal. Today
– volume: 107
  year: 2020
  publication-title: Prog. Mater. Sci.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 112
  start-page: 69
  year: 2018
  publication-title: Micron
– volume: 52
  start-page: 2015
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 18
  year: 2020
  publication-title: Appl. Mater. Today
– volume: 8
  start-page: 224
  year: 2017
  publication-title: Electrocatalysis
– volume: 56
  start-page: 8675
  year: 2020
  publication-title: Chem. Commun.
– volume: 11
  year: 2011
  publication-title: J. Nanosci. Nanotechnol.
– volume: 100
  start-page: 147
  year: 2013
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 114
  year: 2007
  publication-title: ACS Nano
– volume: 285
  start-page: 149
  year: 2018
  publication-title: Electrochim. Acta
– volume: 112
  start-page: 8617
  year: 2008
  publication-title: J Phys Chem
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 3
  start-page: 3127
  year: 2009
  publication-title: ACS Nano
– volume: 258
  start-page: 187
  year: 2008
  publication-title: J. Catal.
– volume: 212
  start-page: 260
  year: 2019
  publication-title: Carbohydr. Polym.
– volume: 2
  start-page: 1647
  year: 2012
  publication-title: ACS Catal.
– volume: 110
  start-page: 428
  year: 2006
  publication-title: J Phys Chem B
– volume: 90
  start-page: 279
  year: 2017
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 8
  start-page: 3641
  year: 2018
  publication-title: ACS Catal.
– volume: 162
  start-page: 170
  year: 2017
  publication-title: J Clean Prod
– volume: 2
  year: 2020
  publication-title: Int. J. Extreme Manuf.
– volume: 130
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 298
  year: 2018
  publication-title: ACS Nano
– volume: 238
  start-page: 365
  year: 2018
  publication-title: Appl Catal B
– year: 2017
– volume: 41
  start-page: 8075
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 10
  year: 2020
  publication-title: Sci. Rep.
– volume: 13
  start-page: 6703
  year: 2022
  publication-title: Nat. Commun.
– volume: 105
  start-page: 1025
  year: 2005
  ident: e_1_2_10_69_1
  publication-title: Rev.
– ident: e_1_2_10_80_1
  doi: 10.1021/cs400621p
– ident: e_1_2_10_255_1
  doi: 10.1016/j.susc.2006.02.016
– ident: e_1_2_10_106_1
  doi: 10.1016/j.electacta.2013.02.130
– ident: e_1_2_10_146_1
  doi: 10.1016/j.jcat.2012.12.030
– ident: e_1_2_10_64_1
  doi: 10.1021/ie020351h
– ident: e_1_2_10_196_1
  doi: 10.1021/acs.langmuir.9b03392
– ident: e_1_2_10_91_1
  doi: 10.1016/j.molcata.2014.05.034
– ident: e_1_2_10_131_1
  doi: 10.1016/j.ijhydene.2016.05.239
– ident: e_1_2_10_230_1
  doi: 10.1016/j.jcis.2009.06.006
– ident: e_1_2_10_42_1
  doi: 10.1021/acs.accounts.9b00172
– ident: e_1_2_10_124_1
  doi: 10.1142/S1793292012300058
– ident: e_1_2_10_168_1
  doi: 10.1016/j.jpowsour.2019.05.010
– volume-title: Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods
  year: 1986
  ident: e_1_2_10_214_1
– ident: e_1_2_10_178_1
  doi: 10.1016/j.jphotobiol.2020.112025
– ident: e_1_2_10_242_1
  doi: 10.1021/nl102025s
– ident: e_1_2_10_182_1
  doi: 10.1016/j.cattod.2015.09.034
– ident: e_1_2_10_98_1
  doi: 10.1007/s11051-013-1994-6
– ident: e_1_2_10_249_1
  doi: 10.1063/1.3224886
– ident: e_1_2_10_134_1
  doi: 10.1016/j.electacta.2018.07.109
– ident: e_1_2_10_206_1
  doi: 10.1016/j.molliq.2022.120120
– ident: e_1_2_10_17_1
  doi: 10.1039/c2cs35188a
– ident: e_1_2_10_70_1
  doi: 10.1021/acs.chemmater.0c01923
– ident: e_1_2_10_30_1
  doi: 10.1021/ie001047w
– ident: e_1_2_10_47_1
  doi: 10.1016/S0360-0564(02)45013-4
– volume: 122
  year: 2018
  ident: e_1_2_10_160_1
  publication-title: J Phys Chem
– ident: e_1_2_10_169_1
  doi: 10.1039/D0NR07632E
– ident: e_1_2_10_96_1
  doi: 10.1016/j.carbpol.2016.09.008
– ident: e_1_2_10_273_1
  doi: 10.1016/j.apcatb.2021.120094
– ident: e_1_2_10_287_1
  doi: 10.1126/sciadv.aba9731
– ident: e_1_2_10_48_1
  doi: 10.1038/nmat2574
– ident: e_1_2_10_277_1
  doi: 10.1021/jp0043975
– ident: e_1_2_10_263_1
  doi: 10.1002/9781119188230
– ident: e_1_2_10_286_1
  doi: 10.1021/nn506721f
– ident: e_1_2_10_294_1
  doi: 10.1021/acssuschemeng.8b04698
– ident: e_1_2_10_176_1
  doi: 10.1021/acscatal.6b02772
– ident: e_1_2_10_159_1
  doi: 10.1016/j.ultsonch.2019.104804
– ident: e_1_2_10_267_1
  doi: 10.1039/C8CP06701E
– ident: e_1_2_10_231_1
  doi: 10.1021/jp055467g
– ident: e_1_2_10_51_1
  doi: 10.1002/anie.201402986
– ident: e_1_2_10_75_1
  doi: 10.1039/C7TA06737B
– ident: e_1_2_10_114_1
  doi: 10.1021/acsami.9b14598
– ident: e_1_2_10_274_1
  doi: 10.1038/s41467-019-12859-2
– ident: e_1_2_10_272_1
  doi: 10.1016/j.elspec.2018.03.002
– ident: e_1_2_10_90_1
  doi: 10.1016/j.cattod.2010.10.018
– volume: 7
  start-page: 169
  year: 2018
  ident: e_1_2_10_120_1
  publication-title: Int. J. Eng., Math.
– ident: e_1_2_10_115_1
  doi: 10.1021/acssuschemeng.8b05245
– ident: e_1_2_10_92_1
  doi: 10.1016/j.apcata.2009.07.031
– ident: e_1_2_10_172_1
  doi: 10.1021/acs.chemmater.7b04307
– ident: e_1_2_10_181_1
  doi: 10.1007/s00339-018-2348-0
– ident: e_1_2_10_126_1
  doi: 10.1016/j.ijhydene.2020.02.019
– ident: e_1_2_10_82_1
  doi: 10.1021/acscatal.7b04150
– ident: e_1_2_10_338_1
  doi: 10.1002/adma.201805833
– ident: e_1_2_10_18_1
  doi: 10.1021/acssuschemeng.7b03572
– ident: e_1_2_10_117_1
  doi: 10.1021/acsami.7b01241
– ident: e_1_2_10_337_1
  doi: 10.1016/j.apcatb.2016.04.046
– ident: e_1_2_10_112_1
  doi: 10.1016/j.carbpol.2019.01.096
– year: 2020
  ident: e_1_2_10_153_1
  publication-title: Adv. Heterogen. Cataly., Appl. Nanosci.
– ident: e_1_2_10_104_1
  doi: 10.1016/j.partic.2018.01.005
– ident: e_1_2_10_223_1
  doi: 10.1111/j.1478-4408.1986.tb01058.x
– ident: e_1_2_10_86_1
  doi: 10.1021/nl300033e
– ident: e_1_2_10_220_1
  doi: 10.1021/ar960143j
– ident: e_1_2_10_158_1
  doi: 10.1016/j.ultsonch.2019.05.023
– ident: e_1_2_10_139_1
  doi: 10.1016/j.apsusc.2020.146719
– ident: e_1_2_10_268_1
  doi: 10.1016/j.scitotenv.2016.03.042
– ident: e_1_2_10_203_1
  doi: 10.1016/j.apsusc.2019.144461
– ident: e_1_2_10_292_1
  doi: 10.1007/s12274-019-2539-9
– ident: e_1_2_10_43_1
  doi: 10.1021/acscatal.5b01011
– volume-title: Structure and properties of nanoalloys
  year: 2016
  ident: e_1_2_10_121_1
– ident: e_1_2_10_105_1
  doi: 10.1016/j.apcata.2013.07.006
– ident: e_1_2_10_116_1
  doi: 10.1016/j.apcatb.2018.05.019
– ident: e_1_2_10_257_1
  doi: 10.1038/s41467-020-17975-y
– ident: e_1_2_10_16_1
  doi: 10.1021/acscatal.8b03485
– ident: e_1_2_10_215_1
  doi: 10.3390/cryst6080087
– ident: e_1_2_10_319_1
  doi: 10.1021/jp805949r
– ident: e_1_2_10_326_1
  doi: 10.1002/anie.201913910
– ident: e_1_2_10_97_1
  doi: 10.1021/acsami.5b01541
– ident: e_1_2_10_161_1
  doi: 10.1007/s40097-020-00366-6
– ident: e_1_2_10_19_1
  doi: 10.1016/S1381-1169(97)00259-8
– ident: e_1_2_10_339_1
  doi: 10.1039/C8TA01698D
– ident: e_1_2_10_73_1
  doi: 10.1021/acs.energyfuels.2c00565
– ident: e_1_2_10_165_1
  doi: 10.1016/j.apcatb.2011.07.039
– volume: 367
  start-page: 3709
  year: 2009
  ident: e_1_2_10_243_1
  publication-title: Proc Math Phys Eng Sci
– ident: e_1_2_10_155_1
  doi: 10.1039/C9DT02943E
– ident: e_1_2_10_189_1
– ident: e_1_2_10_244_1
– ident: e_1_2_10_22_1
  doi: 10.1039/C6NR00231E
– ident: e_1_2_10_58_1
  doi: 10.1021/ja4124658
– ident: e_1_2_10_166_1
  doi: 10.1039/c3cp50816a
– ident: e_1_2_10_171_1
  doi: 10.1021/nn100949z
– ident: e_1_2_10_35_1
  doi: 10.1039/C4CY00976B
– volume-title: Thermal and Rheological Measurement Techniques for Nanomaterials Characterization
  year: 2017
  ident: e_1_2_10_226_1
– ident: e_1_2_10_50_1
  doi: 10.1016/j.nantod.2008.10.010
– ident: e_1_2_10_127_1
  doi: 10.1016/j.ijcard.2004.04.006
– ident: e_1_2_10_260_1
  doi: 10.1021/j100203a030
– ident: e_1_2_10_122_1
  doi: 10.1016/j.apcata.2019.117371
– ident: e_1_2_10_183_1
  doi: 10.1021/la500811n
– ident: e_1_2_10_313_1
  doi: 10.1016/j.jcat.2008.06.010
– ident: e_1_2_10_201_1
  doi: 10.1021/acscatal.8b02794
– ident: e_1_2_10_234_1
  doi: 10.1021/acs.accounts.7b00078
– ident: e_1_2_10_24_1
  doi: 10.1186/s11671-016-1773-2
– ident: e_1_2_10_247_1
  doi: 10.1063/1.1141908
– ident: e_1_2_10_336_1
  doi: 10.1002/adfm.202000255
– ident: e_1_2_10_57_1
  doi: 10.1021/jacs.1c00539
– volume: 11
  start-page: 153
  year: 2021
  ident: e_1_2_10_248_1
  publication-title: ACS Catal.
– ident: e_1_2_10_164_1
  doi: 10.1016/j.apsusc.2020.145486
– ident: e_1_2_10_281_1
  doi: 10.1038/s41467-020-18076-6
– ident: e_1_2_10_2_1
  doi: 10.1039/D2NJ01761J
– ident: e_1_2_10_340_1
  doi: 10.1039/C6NR08895C
– ident: e_1_2_10_130_1
  doi: 10.1021/la300813z
– ident: e_1_2_10_331_1
  doi: 10.1016/j.ijhydene.2019.12.155
– ident: e_1_2_10_333_1
  doi: 10.1039/D0NJ04512H
– ident: e_1_2_10_21_1
  doi: 10.1016/j.jpowsour.2008.09.039
– ident: e_1_2_10_34_1
  doi: 10.1021/cr040090g
– ident: e_1_2_10_229_1
  doi: 10.1073/pnas.1001367107
– ident: e_1_2_10_59_1
  doi: 10.1016/j.jclepro.2017.05.176
– ident: e_1_2_10_285_1
  doi: 10.1016/j.jssc.2018.03.030
– ident: e_1_2_10_174_1
  doi: 10.1021/acsnano.7b06353
– ident: e_1_2_10_108_1
  doi: 10.1016/j.apsusc.2005.09.065
– ident: e_1_2_10_259_1
  doi: 10.1016/j.snb.2016.03.009
– ident: e_1_2_10_1_1
  doi: 10.1016/j.cej.2022.137335
– ident: e_1_2_10_40_1
  doi: 10.1039/C5CP00274E
– ident: e_1_2_10_170_1
  doi: 10.1016/j.apmt.2019.100526
– ident: e_1_2_10_258_1
  doi: 10.1002/anie.201902859
– ident: e_1_2_10_283_1
  doi: 10.1021/acssuschemeng.8b00815
– ident: e_1_2_10_173_1
  doi: 10.1016/j.jcis.2018.03.039
– ident: e_1_2_10_154_1
  doi: 10.1021/acs.chemmater.9b01093
– volume-title: Encyclopedia of Physical Organic Chemistry, 6 Volume Set
  year: 2017
  ident: e_1_2_10_270_1
– ident: e_1_2_10_202_1
  doi: 10.1021/nl101567m
– ident: e_1_2_10_77_1
  doi: 10.1021/acssuschemeng.8b04929
– volume: 19
  start-page: 349
  year: 2016
  ident: e_1_2_10_186_1
  publication-title: Today
– ident: e_1_2_10_23_1
  doi: 10.1016/j.jallcom.2017.11.322
– ident: e_1_2_10_204_1
  doi: 10.1002/cphc.202100021
– ident: e_1_2_10_38_1
  doi: 10.1021/nl070694a
– ident: e_1_2_10_119_1
  doi: 10.1021/am507764u
– ident: e_1_2_10_193_1
  doi: 10.1038/s41598-020-68472-7
– ident: e_1_2_10_322_1
  doi: 10.1021/ja406091p
– ident: e_1_2_10_63_1
  doi: 10.1021/acs.chemmater.6b02346
– ident: e_1_2_10_305_1
  doi: 10.1016/j.jcis.2018.01.060
– ident: e_1_2_10_300_1
  doi: 10.1016/j.elecom.2010.03.046
– volume: 29
  start-page: 2806
  year: 2018
  ident: e_1_2_10_180_1
  publication-title: J Mater Sci
– ident: e_1_2_10_62_1
  doi: 10.1002/9783527623013
– ident: e_1_2_10_262_1
  doi: 10.1038/s41467-021-22948-w
– ident: e_1_2_10_123_1
  doi: 10.1039/C6EE02002J
– volume: 117
  start-page: 7598
  year: 2013
  ident: e_1_2_10_49_1
  publication-title: J Phys Chem
– ident: e_1_2_10_195_1
  doi: 10.1021/acscatal.9b04302
– ident: e_1_2_10_240_1
  doi: 10.1017/S1431927612000104
– ident: e_1_2_10_216_1
  doi: 10.1016/j.pmatsci.2018.01.004
– ident: e_1_2_10_118_1
  doi: 10.1021/nl2045588
– ident: e_1_2_10_25_1
  doi: 10.1021/acs.chemrev.0c00436
– ident: e_1_2_10_66_1
  doi: 10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z
– ident: e_1_2_10_321_1
  doi: 10.1021/jacs.9b10813
– ident: e_1_2_10_315_1
  doi: 10.1126/science.1120560
– ident: e_1_2_10_318_1
  doi: 10.1006/jcat.1999.2635
– ident: e_1_2_10_79_1
  doi: 10.1021/acscatal.7b01735
– ident: e_1_2_10_211_1
  doi: 10.1002/anie.200454216
– ident: e_1_2_10_303_1
  doi: 10.1038/s41467-022-34444-w
– ident: e_1_2_10_88_1
  doi: 10.1021/acscatal.6b01275
– ident: e_1_2_10_8_1
  doi: 10.1021/acscatal.5b00830
– ident: e_1_2_10_6_1
  doi: 10.1371/journal.pmed.0020097
– ident: e_1_2_10_137_1
  doi: 10.1016/j.mcat.2017.09.004
– ident: e_1_2_10_210_1
  doi: 10.1016/j.powtec.2014.08.017
– ident: e_1_2_10_299_1
  doi: 10.1021/ja202655j
– ident: e_1_2_10_3_1
  doi: 10.1016/j.jpowsour.2020.227972
– ident: e_1_2_10_55_1
  doi: 10.1021/ja408645b
– ident: e_1_2_10_207_1
  doi: 10.1002/smll.202203126
– ident: e_1_2_10_99_1
  doi: 10.1016/j.jallcom.2017.03.241
– ident: e_1_2_10_252_1
  doi: 10.1007/s00339-009-5451-4
– ident: e_1_2_10_9_1
  doi: 10.1088/0957-4484/18/38/385604
– ident: e_1_2_10_54_1
  doi: 10.1021/jacs.5b04641
– ident: e_1_2_10_284_1
  doi: 10.1016/j.apcata.2018.03.014
– ident: e_1_2_10_296_1
  doi: 10.1016/S1381-1169(00)00258-2
– ident: e_1_2_10_264_1
  doi: 10.1006/jcat.1998.2343
– ident: e_1_2_10_327_1
  doi: 10.1002/adma.201703798
– ident: e_1_2_10_306_1
  doi: 10.1002/anie.202008962
– ident: e_1_2_10_199_1
  doi: 10.1116/1.5000587
– ident: e_1_2_10_241_1
  doi: 10.1021/acsnano.7b07504
– ident: e_1_2_10_324_1
  doi: 10.1016/j.jcis.2022.08.050
– ident: e_1_2_10_65_1
  doi: 10.1016/j.molcata.2011.05.023
– ident: e_1_2_10_261_1
  doi: 10.1021/ja077303e
– ident: e_1_2_10_328_1
  doi: 10.1021/acscentsci.9b01110
– ident: e_1_2_10_293_1
  doi: 10.1016/j.ijhydene.2018.12.004
– ident: e_1_2_10_320_1
  doi: 10.1166/jnn.2011.4989
– ident: e_1_2_10_192_1
  doi: 10.1038/s41467-019-11848-9
– volume: 102
  start-page: 7071
  year: 2019
  ident: e_1_2_10_184_1
  publication-title: Ann Cardiothorac Surg
– ident: e_1_2_10_100_1
  doi: 10.1016/j.electacta.2017.01.145
– ident: e_1_2_10_224_1
  doi: 10.1016/j.apsusc.2006.05.089
– ident: e_1_2_10_279_1
  doi: 10.1021/acsenergylett.9b02374
– ident: e_1_2_10_133_1
  doi: 10.1039/c2jm32397d
– ident: e_1_2_10_151_1
  doi: 10.1016/j.arabjc.2010.09.027
– volume: 4
  start-page: 6
  year: 2015
  ident: e_1_2_10_219_1
  publication-title: Res. Rev.: J. Phys.
– ident: e_1_2_10_109_1
  doi: 10.1016/j.jiec.2019.12.008
– ident: e_1_2_10_102_1
  doi: 10.3390/ma12203326
– ident: e_1_2_10_341_1
  doi: 10.1002/chem.201904229
– ident: e_1_2_10_76_1
  doi: 10.1039/c2cs35201j
– ident: e_1_2_10_149_1
  doi: 10.1007/s10853-020-05277-z
– ident: e_1_2_10_245_1
  doi: 10.1126/science.aao6538
– ident: e_1_2_10_304_1
  doi: 10.1126/science.aaw7493
– ident: e_1_2_10_289_1
  doi: 10.1038/s41467-018-06043-1
– ident: e_1_2_10_308_1
  doi: 10.1002/adfm.202100883
– ident: e_1_2_10_7_1
  doi: 10.1016/j.apcatb.2018.07.031
– ident: e_1_2_10_233_1
  doi: 10.1002/crat.201100125
– ident: e_1_2_10_222_1
  doi: 10.1021/bk-1992-0481
– volume: 115
  start-page: 1302
  year: 2011
  ident: e_1_2_10_103_1
  publication-title: J Phys Chem
– ident: e_1_2_10_167_1
  doi: 10.1039/B714761A
– ident: e_1_2_10_246_1
  doi: 10.1002/sca.1998.4950200104
– ident: e_1_2_10_276_1
  doi: 10.1016/j.cattod.2017.01.011
– volume: 11
  start-page: 1
  year: 2019
  ident: e_1_2_10_256_1
  publication-title: Nanomicro Lett
– ident: e_1_2_10_334_1
  doi: 10.1021/acscentsci.8b00426
– ident: e_1_2_10_254_1
  doi: 10.1021/acsnano.8b02444
– ident: e_1_2_10_46_1
  doi: 10.1021/acs.nanolett.8b02024
– ident: e_1_2_10_251_1
  doi: 10.1007/s42649-019-0003-7
– ident: e_1_2_10_190_1
  doi: 10.1126/science.aan5412
– ident: e_1_2_10_89_1
  doi: 10.1007/s12678-017-0359-9
– ident: e_1_2_10_53_1
  doi: 10.1146/annurev-chembioeng-080615-034503
– ident: e_1_2_10_143_1
  doi: 10.1002/cvde.200806725
– ident: e_1_2_10_221_1
  doi: 10.3390/coatings6040054
– ident: e_1_2_10_14_1
  doi: 10.1021/acscatal.6b02767
– ident: e_1_2_10_132_1
  doi: 10.1109/NAP.2016.7757309
– ident: e_1_2_10_93_1
  doi: 10.1016/j.catcom.2014.08.009
– ident: e_1_2_10_156_1
  doi: 10.1021/acscatal.7b03795
– ident: e_1_2_10_87_1
  doi: 10.1021/acscatal.7b01896
– ident: e_1_2_10_56_1
– volume: 114
  year: 2010
  ident: e_1_2_10_302_1
  publication-title: J Phys Chem
– ident: e_1_2_10_225_1
  doi: 10.1039/C8NR02278J
– ident: e_1_2_10_84_1
  doi: 10.1016/j.apcata.2016.06.022
– ident: e_1_2_10_94_1
  doi: 10.1016/j.jcat.2011.04.003
– ident: e_1_2_10_145_1
  doi: 10.1016/j.ijhydene.2014.11.128
– ident: e_1_2_10_29_1
  doi: 10.1021/jacs.5b08596
– ident: e_1_2_10_187_1
  doi: 10.1016/B978-0-12-800251-3.00002-X
– ident: e_1_2_10_265_1
  doi: 10.1016/j.pmatsci.2019.100591
– ident: e_1_2_10_208_1
  doi: 10.1002/9781118482568
– ident: e_1_2_10_11_1
  doi: 10.1016/j.jcat.2012.05.003
– ident: e_1_2_10_68_1
  doi: 10.1016/j.apcata.2018.02.005
– ident: e_1_2_10_175_1
  doi: 10.1021/jp710010f
– ident: e_1_2_10_188_1
  doi: 10.1007/978-3-030-12057-3
– ident: e_1_2_10_330_1
  doi: 10.1038/s41467-020-18430-8
– ident: e_1_2_10_332_1
  doi: 10.1016/j.ijhydene.2016.07.160
– ident: e_1_2_10_10_1
  doi: 10.1002/adma.201705698
– ident: e_1_2_10_41_1
  doi: 10.1021/ja8061425
– ident: e_1_2_10_218_1
  doi: 10.1107/S1600576717001753
– ident: e_1_2_10_325_1
  doi: 10.1002/cctc.202000443
– ident: e_1_2_10_101_1
  doi: 10.3390/ma13163485
– ident: e_1_2_10_163_1
  doi: 10.1080/14686996.2018.1542926
– ident: e_1_2_10_213_1
  doi: 10.1107/S0021889808001684
– ident: e_1_2_10_26_1
  doi: 10.1039/c2cs35296f
– ident: e_1_2_10_295_1
  doi: 10.3390/en12214027
– ident: e_1_2_10_205_1
  doi: 10.1039/C9RA03254A
– ident: e_1_2_10_78_1
  doi: 10.1016/j.colsurfa.2017.11.009
– ident: e_1_2_10_148_1
  doi: 10.1021/acs.langmuir.8b01838
– ident: e_1_2_10_157_1
  doi: 10.1002/celc.201700901
– ident: e_1_2_10_72_1
  doi: 10.1088/1361-6528/aaf9e8
– ident: e_1_2_10_227_1
  doi: 10.1021/nn700021x
– start-page: 2
  year: 2013
  ident: e_1_2_10_309_1
  publication-title: SPIE Newsroom
– ident: e_1_2_10_83_1
  doi: 10.1016/S0926-860X(99)00330-0
– ident: e_1_2_10_74_1
  doi: 10.1002/adma.201600469
– ident: e_1_2_10_177_1
  doi: 10.1021/cs300187z
– ident: e_1_2_10_13_1
  doi: 10.1021/acscatal.8b00140
– ident: e_1_2_10_312_1
  doi: 10.1007/s10562-007-9344-x
– ident: e_1_2_10_301_1
  doi: 10.1016/j.jhazmat.2008.04.027
– ident: e_1_2_10_179_1
  doi: 10.1016/j.matlet.2011.06.036
– ident: e_1_2_10_290_1
  doi: 10.1016/j.jcis.2018.11.038
– ident: e_1_2_10_45_1
  doi: 10.1002/adma.201605997
– ident: e_1_2_10_253_1
  doi: 10.1038/s41586-019-1603-7
– ident: e_1_2_10_266_1
  doi: 10.1021/acs.chemrev.8b00114
– ident: e_1_2_10_111_1
  doi: 10.1016/j.ijhydene.2019.09.213
– ident: e_1_2_10_152_1
  doi: 10.1016/j.colsurfa.2016.05.059
– ident: e_1_2_10_335_1
  doi: 10.1002/adma.202006034
– volume: 69
  start-page: 32
  year: 2021
  ident: e_1_2_10_194_1
  publication-title: J Mater Sci
– ident: e_1_2_10_39_1
  doi: 10.1631/jzus.A1700257
– ident: e_1_2_10_140_1
  doi: 10.1039/C6TA02748B
– ident: e_1_2_10_298_1
  doi: 10.1021/la401839m
– ident: e_1_2_10_212_1
– ident: e_1_2_10_81_1
  doi: 10.1021/acscatal.6b00520
– ident: e_1_2_10_107_1
  doi: 10.1007/s10562-005-7429-y
– ident: e_1_2_10_310_1
  doi: 10.1016/j.elecom.2006.02.020
– ident: e_1_2_10_235_1
  doi: 10.1002/advs.201600476
– ident: e_1_2_10_200_1
  doi: 10.1063/1.5128740
– ident: e_1_2_10_282_1
  doi: 10.1016/j.jcis.2017.05.088
– ident: e_1_2_10_144_1
  doi: 10.1021/acsaem.8b00790
– volume: 52
  start-page: 127
  year: 2009
  ident: e_1_2_10_278_1
  publication-title: Eur Phys J D At Mol Opt Phys
– ident: e_1_2_10_20_1
– ident: e_1_2_10_138_1
  doi: 10.1039/C9NR05835D
– ident: e_1_2_10_297_1
  doi: 10.1021/acssuschemeng.7b02754
– ident: e_1_2_10_236_1
  doi: 10.1016/j.micron.2018.04.011
– ident: e_1_2_10_271_1
  doi: 10.1002/9781119417651
– ident: e_1_2_10_110_1
  doi: 10.1039/D0EE03915B
– ident: e_1_2_10_142_1
  doi: 10.1246/bcsj.20160333
– ident: e_1_2_10_228_1
  doi: 10.1021/jacs.1c08644
– ident: e_1_2_10_316_1
  doi: 10.1002/adma.201104951
– ident: e_1_2_10_52_1
  doi: 10.1002/anie.200803477
– volume: 1
  start-page: 48
  year: 2008
  ident: e_1_2_10_61_1
  publication-title: Nano. Catal.
– ident: e_1_2_10_31_1
  doi: 10.1039/D0CC06745H
– ident: e_1_2_10_32_1
  doi: 10.1021/acs.chemrev.6b00211
– ident: e_1_2_10_36_1
  doi: 10.1021/cr100449n
– ident: e_1_2_10_248_2
  doi: 10.1063/1.3224886
– ident: e_1_2_10_237_1
  doi: 10.1021/nn2007496
– ident: e_1_2_10_291_1
  doi: 10.1016/j.ijhydene.2013.12.096
– ident: e_1_2_10_217_1
  doi: 10.1016/j.powtec.2018.07.083
– ident: e_1_2_10_317_1
  doi: 10.1002/bit.23293
– ident: e_1_2_10_15_1
  doi: 10.1021/jacs.0c05140
– ident: e_1_2_10_239_1
  doi: 10.1007/s12274-016-1345-x
– ident: e_1_2_10_67_1
  doi: 10.1039/c2pp25188d
– ident: e_1_2_10_150_1
  doi: 10.1016/j.colsurfa.2005.07.029
– ident: e_1_2_10_5_1
  doi: 10.1016/j.apcatb.2017.06.088
– ident: e_1_2_10_125_1
  doi: 10.1016/j.electacta.2016.12.123
– start-page: 639
  year: 2020
  ident: e_1_2_10_136_1
  publication-title: Micro Nano Technol.
– ident: e_1_2_10_28_1
  doi: 10.1016/j.nantod.2012.08.003
– ident: e_1_2_10_71_1
  doi: 10.1016/j.ceramint.2020.07.196
– ident: e_1_2_10_288_1
  doi: 10.1021/jp907059q
– ident: e_1_2_10_250_1
  doi: 10.1016/j.electacta.2018.03.169
– ident: e_1_2_10_44_1
  doi: 10.1021/cm103661q
– ident: e_1_2_10_129_1
  doi: 10.1039/c3ta01664a
– ident: e_1_2_10_323_1
  doi: 10.1007/s12274-020-2666-3
– ident: e_1_2_10_37_1
  doi: 10.1021/nn900242v
– ident: e_1_2_10_280_1
  doi: 10.1021/jacs.1c00656
– ident: e_1_2_10_27_1
  doi: 10.1002/adma.201003695
– ident: e_1_2_10_4_1
  doi: 10.1016/j.jechem.2022.07.017
– ident: e_1_2_10_198_1
  doi: 10.1088/2631-7990/ab83e0
– ident: e_1_2_10_269_1
  doi: 10.1021/acsbiomaterials.7b00040
– volume: 113
  year: 2009
  ident: e_1_2_10_147_1
  publication-title: J Phys Chem
– ident: e_1_2_10_60_1
  doi: 10.1126/science.aau4414
– ident: e_1_2_10_135_1
  doi: 10.1021/ja209044g
– ident: e_1_2_10_12_1
  doi: 10.1016/j.cej.2018.10.213
– ident: e_1_2_10_275_1
  doi: 10.1002/aenm.201903271
– ident: e_1_2_10_33_1
  doi: 10.1021/jacs.2c07844
– ident: e_1_2_10_95_1
  doi: 10.1016/j.apcata.2010.10.015
– ident: e_1_2_10_128_1
  doi: 10.1016/j.jechem.2018.02.012
– ident: e_1_2_10_329_1
  doi: 10.1039/D0TA02496A
– ident: e_1_2_10_209_1
  doi: 10.1039/c0cs90031a
– ident: e_1_2_10_238_1
  doi: 10.1039/C5CC05331E
– ident: e_1_2_10_162_1
  doi: 10.1016/j.jiec.2008.04.008
– ident: e_1_2_10_185_1
  doi: 10.1080/09506608.2016.1180020
– ident: e_1_2_10_197_1
  doi: 10.1039/D0CC03381B
– ident: e_1_2_10_307_1
  doi: 10.1021/acscatal.1c01761
– ident: e_1_2_10_85_1
  doi: 10.1021/cs500415e
– volume: 115
  year: 2011
  ident: e_1_2_10_113_1
  publication-title: J Phys Chem
– ident: e_1_2_10_141_1
  doi: 10.1016/j.jcis.2020.04.041
– ident: e_1_2_10_314_1
  doi: 10.1016/j.jcat.2008.10.003
– ident: e_1_2_10_191_1
  doi: 10.1016/j.matt.2019.11.006
– ident: e_1_2_10_232_1
  doi: 10.1016/j.jcat.2006.07.024
– ident: e_1_2_10_311_1
  doi: 10.1016/j.apcata.2015.03.004
SSID ssj0031247
Score 2.567076
SecondaryResourceType review_article
Snippet Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2303031
SubjectTerms Alloys
bimetallic nanoalloy
Bimetals
Catalysis
catalyst
Catalysts
Chemical reduction
Clean energy
Energy storage
High entropy alloys
hydrogen evolution reaction (HER)
Hydrogen evolution reactions
Nanoalloys
Nanoparticles
Nanotechnology
Oxidation
oxygen evolution reaction (OER)
Oxygen evolution reactions
oxygen reduction reaction (ORR)
Palladium
Production methods
Redox reactions
Renewable energy
Synthesis
Title Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202303031
https://www.ncbi.nlm.nih.gov/pubmed/37356067
https://www.proquest.com/docview/2881086340
https://www.proquest.com/docview/2829704887
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfpk3Igg-1bVp7MW3OSdDVEQn7K2kWQLDrROzgfPXe06z1k0RQelLm6Q0TXJyvpOcfIeQY6k8DlMAdxTgB4en_MyJmQpA3LUUYK-oMA_ad3sXtJ74deesM3OK3_JDlAtuKBn5fI0CLlJT-yQNNYM-bh0AhIYL7R_PD5A8__Kh5I_yQXnl0VVAZzlIvFWwNrqsNv_6vFb6BjXnkWuueq5WiCgqbT1Onk_Ho_RUvn_hc_zPX62S5SkupXU7kNbIgsrWydIMW-EGebvoDRRg9X5PUpiUh7hlP6ENXP-ZmJGhAH9p7sZDm_mBQnpv2WSh589p3foaGNrL6OMkA9hpeoaiPxKkiaxLGyVztD0YStsFu6zZJE9XzXaj5UwDNzjSD32wSVMmZMS1h-sV0CtxEIHVxAEqSh1r5utUqcgLu6qrIBVZ5aToBtKVSkYKDEB_i1SyYaZ2CBVShNpLhXC54Ez4Ik5DDLblCg3AUOsqcYqOS-SU1RyDa_QTy8fMEmzRpGzRKjkpy79YPo8fS-4X4yCZyrVJWBRhaCqfu1VyVGaDROI2i8jUcIxlWBzixBhWybYdP-WnoHkAYgaQw_JR8Esdksfbm5vyafcvL-2RRby3_of7pDJ6HasDwFGj9DCXlQ-riRVu
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h7oHtgY2PQcfGjITEU9rEcfPB21ZaddBWE22lvUWOa0sVbTotrbTy13MXNxkFIaShPMUfimP77N-dz78D-KC0J3AJEI5G_OCIVLScmOsAxd0oifqKDougfYNh0JuILzet0puQ7sJYfojK4EaSUazXJOBkkG4-sIbmizmdHSCGxgcVoD2BaIP0r8_fKgYpH7evIr4K7loOUW-VvI0ub-7W392X_gCbu9i12Hy6h5CWzbY-J98b61XaUD9-Y3T8r_86gmdbaMou7Fx6Dk909gIOfiEsfAn3l7OFRrg-nymG6_KSTu03rE0moE2-yhkiYFZ48rBOcaeQXVtCWRz8T-zCuhvkbJax0SZD5JnPckYuSZgmsylrV-TR9m4oG5cEs_krmHQ743bP2cZucJQf-qiWplyqSBiPTBZ-IOIgQsVJIFpUJjbcN6nWkRdO9VRjKhHLKTkNlKu0ijTqgP4x1LJlpt8Ak0qGxkuldIUUXPoyTkOKt-VKg9jQmDo45cglaktsTvE15omlZOYJ9WhS9WgdPlblby2lx19LnpYTIdmKdp7wKKLoVL5w6_C-ykahpJMWmenlmsrwOKS1MazDazuBqk9h9yDKDDCHF9PgH21IRoN-v3o7eUylc3jaGw_6Sf9q-PUt7FO6dUc8hdrqbq3PEFat0neF4PwEBHcZjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9GBqN92GfbuetWDQZ9cuPIqj_21mUJ2ZaE0LTQNyPLEoSmTqkTWPbX786yvWajDFr8ZH1gWbqTfiedfgfwSemOwClAuBrxgytSceLGXAeo7kZJtFd0WAbtG42DwYX4fnlyeecWv-WHaDbcSDPK-ZoU_CYz7T-kocX1nI4OEELjg_bPUxEgnCBYdNYQSPm4epXhVXDRcol5q6Zt9Hh7s_7msvQP1tyEruXa038Bsm61dTm5Ol4t02P16y9Cx8f81kt4XgFTdmol6RU80flr2L5DV_gGfn6ZXWsE6_OZYjgrL-jMfs26tAG0LpYFQ_zLSj8e1itvFLKJpZPFof_MTq2zQcFmOZuuc8Sdxaxg5JCEaTLPWLehjrY3Q9l5TS9b7MBFv3feHbhV5AZX-aGPRmnKpYqE6dCGhR-IOIjQbBKIFZWJDfdNqnXUCTOdaUwlWjkls0B5SqtIowXo70IrX-T6LTCpZGg6qZSekIJLX8ZpSNG2PGkQGRrjgFsPXKIqWnOKrjFPLCEzT6hHk6ZHHThqyt9YQo97Sx7UcpBUil0kPIooNpUvPAc-NtmoknTOInO9WFEZHoc0M4YO7Fn5aT6F3YMYM8AcXkrBf9qQTEfDYfO2_5BKh_Bs8rWfDL-Nf7yDLUq2vogH0FrervR7xFTL9EOpNr8BoGAYPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetallic+Nanoalloy+Catalysts+for+Green+Energy+Production%3A+Advances+in+Synthesis+Routes+and+Characterization+Techniques&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ashraf%2C+Saima&rft.au=Liu%2C+Yanyan&rft.au=Wei%2C+Huijuan&rft.au=Shen%2C+Ruofan&rft.date=2023-10-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=43&rft_id=info:doi/10.1002%2Fsmll.202303031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202303031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon